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Introduction
The availability of rich online resources is an important source from which people dis-
cover and consume new information. Because of the scale and influence of the online 
marketplace of ideas there has been a particular focus on information diffusion dynam-
ics [17] as well as information cascades of social hashtags, memes, and online news 
content [3, 4], including a recent focus on how these processes might be corrupted to 
spread false or misleading content [15]. In these studies, some piece of information (e.g., 
a hashtag, image, post) is typically tracked through a social or digital system. These large 
scale studies are usually sufficient to understand how far some information spreads and 
may be able to predict the future spread of information [7]. However, the question that 
many really want answered is, did the piece of information have any effect on the user? 
That is, did it change a user’s behavior [6]?

Abstract 

We study the the spread and adoption of libraries within Python projects hosted in 
public software repositories on GitHub. By modelling the use of Git pull, merge, com-
mit, and other actions as deliberate cognitive activities, we are able to better under-
stand the dynamics of what happens when users adopt new and cognitively demand-
ing information. For this task we introduce a large corpus containing all commits, diffs, 
messages, and source code from 259,690 Python repositories (about 13% of all Python 
projects on Github), including all Git activity data from 89,311 contributing users. In 
this initial work we ask two primary questions: (1) What kind of behavior change occurs 
near an adoption event? (2) Can we model future adoption activity of a user? Using a 
fine-grained analysis of user behavior, we show that library adoptions are followed by 
higher than normal activity within the first 6 h, implying that a higher than normal cog-
nitive effort is involved with an adoption. Further study is needed to understand the 
specific types of events that surround the adoption of new information, and the cause 
of these dynamics. We also show that a simple linear model is capable of classifying 
future commits as being an adoption or not, based on the commit contents and the 
preceding history of the user and repository. Additional work in this vein may be able 
to predict the content of future commits, or suggest new libraries to users.

Keywords:  Information adoption, Software libraries, GitHub, Python, StackOverflow, 
Classification, SVM, Modelling, Git, Repository, Commit, Software development, 
Cognitive science, Text mining

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Krohn and Weninger ﻿J Big Data            (2019) 6:36  
https://doi.org/10.1186/s40537-019-0201-8

*Correspondence:   
tweninger@nd.edu 
Department of Computer 
Science and Engineering, 
University of Notre Dame, 
Notre Dame, IN 46556, USA

http://orcid.org/0000-0003-3164-2615
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0201-8&domain=pdf


Page 2 of 19Krohn and Weninger ﻿J Big Data            (2019) 6:36 

It is important to distinguish between the spread of information and its adoption. 
Information can be spread and promoted, particularly in online spaces, with little 
thought given to the quality or accuracy of the content itself. Indeed, most information 
is shared on social media without the user ever reading the content of the post [14]. On 
the other hand, to adopt an idea one must incorporate the new information into their 
personal knowledge base so that it is reflected in their beliefs and behavior [44].

Online software repositories offer a unique setting for the examination of informa-
tion adoption because the adoption of a software library requires a level of interac-
tion beyond the simple sharing a social media post. Contrary to much of the data and 
systems used to collect and understand information adoption in the recent literature, 
software development processes result in an enormous volume of specific and well-
documented signals of information adoption. This paper presents a thorough analysis of 
social software development patterns with the ultimate goal of developing a fine grained 
understanding of socially-mediated information adoption behaviors.

We make two main contributions in the present work. Based on a comprehensive 
analysis of user behavior, we show that library adoption commits are followed by higher 
than normal commit activity within the first 6 h. This implies that adoption is associated 
with increased cognitive effort. We also show that a simple linear model is capable of 
classifying commits as containing a library adoption or not, based on recent user and 
repository history.

Related work

Information adoption and diffusion

Information adoption refers to the process of accepting new knowledge assets into a 
personal knowledge base. The information source is often other people, or users in the 
case of online information adoption. Because of the complex mechanisms inherent in 
the information adoption process, researchers commonly rely on models to capture and 
simulate this behavior.

The processes by which humans adopt new ideas and information is rooted in cogni-
tive science [31], which differentiates a person’s understanding of language, for example, 
into receptive and productive vocabularies [37]. A receptive vocabulary are those words 
that a person understands when they are spoken or read. A productive vocabulary are 
those words that a person uses to express themselves in their own speech or writing. The 
information that a person reads represents a different cognitive engagement than the 
information that they produce. In this context we say that a person adopts a new word or 
phrase if they receive it and then use it for the first time, i.e., when it is transferred from 
their receptive vocabulary to their productive vocabulary [9, 10, 16].

Previous works rely on small user samples to examine information adoption in a 
particular context. For example, to determine the effect of argument quality or source 
credibility on information adoption in online communities, a sample of users could be 
surveyed about their recent activities [45]. A similar methodology can also be applied to 
adoption of opinions from online shopping reviews [8]. Researchers have also utilized 
this approach in the context of electronic word-of-mouth on social media [13]. Though 
this survey approach draws directly from users’ experiences, the simplified models and 
small sample sizes limit the applicability of results.
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Other researchers seek to model adoption at the user level. The Independent Cascade 
Model relies on cellular automata to track the state of each individual in the network 
over time [18, 19]. Diffusion thresholds [20] have been incorporated in this paradigm 
for greater simulation power [29]. Additional features, like real world nodes, user atten-
tion spans, and topic “stickiness” seek to mitigate the original model limitations. Overall, 
the user-based approach offers higher resolution than population-level models, but at 
the cost of increased complexity. This complexity makes approximation models for effi-
cient computation attractive, particularly for large datasets [30]. The present work uses 
an adoption graph based on the Independent Cascade Model to help define the features 
of the adoption classifier.

Consideration of information adoption can reveal new approaches to existing prob-
lems in social networking. Determining influential users is a common challenge, and 
most approaches rely on the network structure or user attributes, like follower counts. 
One proposed alternative method incorporates temporal dynamics to produce a ranking 
of influential Twitter users based on information diffusion principles [33]. In this present 
work, we consider commit events temporally to trace all adoption events through users 
and repositories.

Big data analysis

Existing machine learning techniques can be applied to a wide array of problems, such as 
using patient and population-level data in health informatics [24], applying deep learn-
ing models to AI tasks [38], or leveraging clustering algorithms to improve agricultural 
yield estimates [36]. For example, text mining can be used not only to extract libraries 
from source code, but also to determine the key words in a health study [26] or infer 
product characteristics from user reviews [39]. Often specialized analysis techniques 
are required because of the volume of data to be analyzed and the scalability problems 
that result [27, 41]. Processing frameworks for cluster computing, such as MapReduce, 
Hadoop, or Spark, allow for parallel processing of large datasets [32, 40, 47]. More 
recently, cloud computing offers researchers the capability to perform machine learning 
on big data without dedicated hardware [21].

In this work, we examine information adoption from the perspective of libraries used 
in public Python repositories on Github using both existing and novel analysis and 
machine learning techniques. In this study we rely on an SVM to predict future adoption 
activity based on commit features. By examining each commit individually in the context 
of the user’s previous actions and the repository’s history, we can determine whether 
or not an adoption event occurs in the commit. This is analogous to existing work that 
seeks to identify anomalies in datasets—in our work, an adoption can be viewed as an 
anomaly in the committing user’s behavior. For example, classification techniques have 
been applied to user access behaviors on a secured system to identify abnormal behavior 
patterns as a malignant user [34]. Data profiles created by clustering algorithms have 
been used to detect anomalies in real-time data based on both the content and context 
of the information [22].
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Present work

In the present work, we measure adoption by observing changes in the information cre-
ated by online users. Specifically, we focus on the adoption of software libraries within 
public Python software repositories. We tackle this question in a practical, quantitative 
way and make two primary contributions: (1) a fine-grained analysis of user behavior 
during and surrounding an adoption event as compared to normal activity, and (2) the 
development of a user model that predicts future adoption behavior. Additionally, we 
introduce a large dataset consisting of all the commit activity for roughly 250,000 Python 
repositories.

Our data comes from a large set of Github repositories that use the Python program-
ming language. Within this data we identified users and their commits. Our “unit of 
information” is a software library ℓ (e.g., numpy, pandas, tensorflow) that is imported 
into a Python module through an import statement. For example, the random sub-
module of numpy can be imported using a command such as from numpy import 
random or import numpy.random as rnd. There are dozens of variations on 
Python import statements. We assume that each import statement is written delib-
erately and therefore define a library by its full library path as written. Therefore, sub-
modules like import numpy.random are considered distinct from import numpy 
in the present work. The appeal of focusing on Python libraries is that they provide a 
clearly defined and rich information unit that is adopted rather than shared. To adopt 
the library, the user must understand its mechanics and be able to incorporate its func-
tionality to produce new source code.

Although the two are commonly conflated, it is important to distinguish between Git 
and Github. Git is a source code management system allowing individual users to pull 
updated code from the shared software repository, merge them into a local codebase, 
and commit changes back to the shared repository. GitHub is a social and online hosting 
service for Git repositories that also provides an online mechanism for accessing, shar-
ing, and discussing millions of repositories. The confluence of Github’s online social sys-
tem and Git’s complete history of pull and commit behavior provides an unprecedented 
source of information on adoption behavior [28].

Public Github repositories only represent a subset of all Git repositories. Generally, 
Git is a specific and unique domain representing a single type of highly specialized activ-
ity—software creation. As such, we must temper conclusions to represent a case study of 
this particular domain. It will be interesting to see in future work if these findings gener-
alize to other information contexts.

Methods
Data collection

We explore information adoption through a case study of software libraries in Python 
repositories found on Github. We collected repositories as follows. First, we issued 
a query to the Github search API for repositories written primarily in Python. Github 
returned repository IDs of the 1000 most popular Python projects on the site. We then 
found all Github users who made at least one commit to a repository in this set, and 
retrieved all of their Python repositories. This breadth-first style crawling was repeated, 
culminating in 259,923 repositories with 89,311 contributing Github users.
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Of these, we were able to clone 259,690 Python repositories to disk; the remainder 
were made private or deleted between the time we crawled their repository address 
and performed the clone operation. Each cloned repository includes all files, branches, 
versions, and a complete edit history. These repositories R constitute about 13% of all 
Python repositories on Github as of July 2018.

Each repository contains files, commits c, and users. Each commit is marked with a 
timestamp t, a message, and a diff specifying lines that were added, edited, or deleted 
within each file. A commit also contains a name and email address defined by the user’s 
local Git configuration. This configuration may or may not be correlated with a user’s 
Github account; we make no attempt to associate the Github user account with the Git 
email or username. Because names may be ambiguous, we uniquely identify a user u 
by their email address. A single user may contribute to multiple repositories. In total, 
we collected 170,413 unique Git users. An important caveat, however, is that users may 
change their Git configurations to alter their email address. It is unclear exactly how 
often this happens, but individuals may be represented as multiple users in our dataset.

We define two types of adoption. A user-to-user adoption occurs when the user u pulls 
data from a repository, sees some new library ℓ committed by another user v, and then 
commits new code containing ℓ . In this case we say that u adopted ℓ from v. Note the 
pull and commit of library ℓ need not be consecutive. A resource adoption occurs when 
the user reads about ℓ from some other resource and commits code containing ℓ for the 
first time. It can be difficult to distinguish between user-to-user and resource adoptions 
because much of modern programming is aided by online resources like StackOverflow 
[48]. To incorporate these exogenous effects, we augment the Github repository data 
with the complete history of StackOverflow. In either case, an adoption is a global event, 
and a user may only adopt each library once; the repository committed to has no effect 
on whether the library was adopted or not.

Library extraction

For each Python file in each repository, we retrieved its full history and examined all 
edited lines of each commit. An edit can be an addition marked by (+) or a deletion 
marked by (−). For each addition and deletion, we extracted any newly added or deleted 
Python libraries included in the commit. All library information is considered a unique 
package; for example, from numpy import random denotes the library numpy.
random, which is considered a separate, albeit, closely related, library from numpy.
linalg and even the top level library numpy, etc.

In total we extracted 29,060,288 commits over 331 months from August 1, 1990 
through February 28, 2018. Of these, 15% contained at least one library addition and 6% 
contained at least one library deletion. Figure 1 (top) shows the growth in the number 
of commits made in our dataset per month including commits with at least one library 
addition or deletion. The number of libraries increased significantly over the past dec-
ade. Figure 1 (middle) plots the total number of libraries added and deleted as well as the 
number of unique libraries added and deleted per month.

We caution the reader not to conclude any trends of overall Python or Github usage 
from these plots. Although out dataset is large, it is biased towards more popular reposi-
tories, which are biased towards being older; this bias results from the first 1000 Python 
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repositories returned by the Github search API. Fortunately, this sampling bias will 
not effect the adoption analysis, since the dataset contains all commits by each of the 
included users.

Library adoption

Based on their Git history, we model a user’s receptive vocabulary Ru and produc-
tive vocabulary Pu as those libraries that the user has seen and those libraries that the 
user has used, respectively ( Pu ⊆ Ru ). When u encounters a new library ℓ from new 
code obtained via a pull/merge of some repository, they may chose to ignore that new 
library or they may chose to consider the new library but not use it: Ru ← ℓ . Occasion-
ally, however, the user will choose to adopt that library by using it in a commit: Pu ← ℓ . 
We assume that importing a library implies a conscious choice by the user to add that 
library’s functionality to the repository.

Formally, we define a library adoption as any library ℓ /∈ Pu committed by user u to 
repository r at some time t, such that Ru ← ℓ via a pull, merge, or clone operation from 
r′ (where r′ may or may not be r) at some time t ′ < t.

It follows that ℓ must have been added to r′ by some other user v before t ′ . There-
fore we say that u adopted ℓ from v. In the present work we focus on these user-to-user 
library adoptions, and therefore use the term “adoption” to mean a user-to-user library 
adoption as defined here.

Simply put, a library adoption occurs when a user encounters some library and later 
uses it for the first time. This definition makes some assumptions. First, we assume that 
the adopting user received the library information through a pull, merge, or clone opera-
tion. Second, we assume that the adopting user is consciously aware that they are using 
the library. Finally, we assume the user has shared all of their commits publicly and has 
not been privately using the library.

The illustration in Fig. 2 captures the basic adoption behavior as time moves from left 
to right. Let Pu = {∅} initially. This figure illustrates that u pulled updates from r′ and r′′ 
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Fig. 1  Top: monthly commits containing library additions or deletions. Middle: Monthly library additions 
and deletions. Caution: plots represent our sample of Python Github repositories; sampling is biased towards 
popular repositories and not representative of overall usage trends



Page 7 of 19Krohn and Weninger ﻿J Big Data            (2019) 6:36 

containing libraries ℓ , n, and m. Later ℓ and n were adopted by u as demonstrated by u’s 
commit containing +import ℓ , n to r. Conversely, despite pulling code containing m, u 
did not adopt m in this commit. Figure 2 also demonstrates that the libraries ℓ , n, and m 
were introduced to repositories r′ and r′′ by users v and x.

Adoption event extraction

To create a dataset for adoption analysis, we extracted all library adoption events from 
the GitHub data using the following procedure. First, the added and deleted libraries 
were extracted from each commit, as discussed in “Library extraction” section above. 
Then, we stepped through all commits in time-sorted order, tracking the set of libraries 
used by each user. If a user commits a library that they have not previously used, this 
means the user adopts that library. Using this approach, we can obtain a dataset contain-
ing all library adoption events, for all users, across all cloned repositories. This adoption 
data is then used for the behavior change analysis.

During this data extraction process, we also track the libraries used in each reposi-
tory and the number of commits adding each library. Similar values are tracked for each 
library, across all repositories. The supplementary data created during this temporal 
analysis is used to create the featureset outlined in Table 1, which is used for the adop-
tion classification task.

Adoption graph

If we consider a library adoption to be a directed edge between users, the collection of 
all adoptions forms a directed, edge-labeled multigraph. We call this edge-labeled mul-
tigraph the adoption graph, since each edge represents a user’s adoption of a new library 
from another user [2]. The example multigraph illustrated in Fig. 3 represents the adop-
tion graph from the events in Fig. 2. We represent the user-to-user adoption of ℓ as an 
edge v ℓ

−→ u where the edge direction denotes the flow of information.
In the dataset collected from Github, we identified 512,097 commits containing at 

least one library adoption. These commits yielded 4,891,070 adoption-edges labeled by 
248,141 unique libraries between 68,692 user-nodes. From this adoption graph we sum-
marize various user roles and behaviors by their graph properties. The outdegree of a 
node represents how often a user’s library usage was adopted by another user, akin to a 
user’s leadership and innovativeness [46]. Conversely, the indegree of a node represents 
a user’s propensity to adopt new libraries from other users, literally their adapt-ability 
[11, 44].
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Fig. 2  Example of how Git events like commit and pull spread information
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The in- and out-degree of the adoption graph forms a power law distribution with 
k = 1.225 and k = 1.187 respectively (not illustrated here). Such a long-tailed indegree 
distribution is surprising because of the cognitive effort required in adopting a new 
library, but the extreme cases are relatively few: only 17% of users have more than 100 
adoptions and only 6% of users have more than 500 adoptions. The long-tailed outde-
gree distribution implies that there are a handful of users that are responsible for most of 
the library cross-pollination throughout Github.

Table 1  Feature set for the library adoption model

Commit features (C)

 C1 # libs added by user

 C2 # libs updated since last commit

 C3 —C1 ∩ C2—

User features (U)

 U1 Size of productive vocab Pu
 U2 Size of receptive vocab Ru
 U3 Time since last commit

 U4 Intra-commit duration in last 10% of commits

 U5 # Repos committed

 U6 # Repos committed in last 10% of commits

 U7 % commits with added libs

 U8 % commits with added libs in last 10% of commits

User–Library pair features (P)

 P1 # times user has seen ℓ

 P2 # times user has seen any library

 P3 P1/P2

 P4 # times user has seen ℓ in last 10%

 P5 # times user has seen any library in last 10%

 P6 P4/P5

Library features (L)

 L1 # commits adding ℓ

 L2 # users who have committed ℓ

 L3 # repos containing ℓ

 L4 Time since last commit of ℓ

 L5 Avg time between last 10% of commits adding ℓ

 L6 Avg time between last 10% of commits adding ℓ

StackOverflow features (S)

 S1 # posts containing ℓ

 S2 # views of posts containing ℓ

 S3 # posts containing ℓ created in last 30 days

 S4 # views of posts containing ℓ created in last 30 days

v
u

x

�
n

�

Fig. 3  Example adoption multigraph
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StackOverflow

A reasonable argument can be made that many Python libraries are not adopted by 
viewing pulled source code, but rather by searching the Web [42]. StackOverflow is 
one of the primary sources of programming guidance, so we compare adoption behav-
ior against the popularity of related posts on StackOverflow. For this task, we identified 
279,212 top-level libraries by removing submodule descriptors: numpy.random and 
numpy are both condensed as the top-level library numpy. Only 19% of adopted librar-
ies also appeared in at least one post on StackOverflow.

Figure 4 plots, for each top-level library, how many views it received on StackOver-
flow against the number of commits adopting it. Some libraries like error and help 
have almost no adoptions, as we define them, but hundreds of millions of StackOverflow 
views. Conversely, homeassistant, an open-source home automation library, has 
hundreds of adoptions but only a dozen views on StackOverflow. We show a small posi-
tive correlation (Pearson R = 0.16 , p < 0.001 ) between StackOverflow Views and Adop-
tion Commits. However, its overall effect is tempered by the finding that a relative-few 
(22%) adoption events were of a library that appeared on StackOverflow.

Results and discussion
Behavior change near adoption events

Software systems are constantly changing. Python is a fast-evolving language with new 
libraries being invented frequently. Some libraries are in vogue only for a short period 
while others become ubiquitous and even change the culture of the language [43]. This 
process relies on individuals to adopt the new library and spread it to other reposito-
ries [1]. However, often the adoption of new technology comes with certain risks. Users 
implementing a new software library for the first time may not fully comprehend its use, 
or they may inadvertently introduce bugs into the system.

In this section our goal is to identify what change in behavior, if any, occurs when a 
user adopts a new library. For example, if a user adopted a new library that permitted 
the creation of a new feature or represents a marked change in the system, then we may 

Fig. 4  Adoption commits and StackOverflow views for top-level libraries with at least 100 adoptions
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see increased activity before and after the adoption event [12]. Alternatively, if an adop-
tion event has a high cognitive cost, then we might expect a decrease in activity after the 
adoption event [5]. Perhaps the adoption of a new library introduces a bug into the soft-
ware system, which must be immediately fixed resulting in additional commits immedi-
ately surrounding the adoption event [25, 35].

Without interviewing individual users during adoption commits, it is difficult to ascer-
tain the motivation for specific behaviors. To get a basic understanding of user behav-
ior near an adoption event, we compare the frequency of commits immediately before 
and after an adoption event to the normal activity rate. We define three different activity 
rates: (1) the commit frequency for non-adoption sessions; (2) the commit frequency 
for non-adoption sessions where a library is added, but not adopted; and (3) the commit 
frequency during sessions where a library is adopted.

The first two rates are baselines, defined as follows. For each commit by each user, rea-
lign the commit time to t = 0 and compute the relative time difference (positive or nega-
tive) for all surrounding commits by the same user. These relative times are stacked into 
5 min bins. The result demonstrates typical user activity surrounding each commit type. 
For the third activity rate, adoption commits are stacked separately.

Figure 5 shows all non-adoption sessions (orange) and the non-adoption sessions with 
added libraries (red). Non-adoption sessions with added libraries is necessarily a subset 
of all non-adoption sessions, thus there is slightly less activity. Both baselines are roughly 
symmetric around the central commit, indicating business as usual. The rise in activity 
directly before and the fall in activity directly after a commit indicates, generally, that 
activity surrounds activity.

The main result of this section is indicated by the blue line in Fig. 5. This represents 
commits (of any type, adoption or not) that occur within 6 h of an adoption event. We 
find that there are relatively few adoption sessions and that the activity preceding an 
adoption event is rather small. However, following an adoption the user, on average, 
becomes much more active than the pre-adoption baseline. These residual effects could 
represent various kinds of user behavior. We speculate that this surge of activity is due 

Fig. 5  Activity rates for two baseline sessions (red and orange) versus adoption session rate (blue). The 
baseline sessions are roughly symmetrical surrounding the central commit indicating normal rates of commit 
activity. The residual activity directly following an adoption is significantly higher than the activity preceding 
the adoption, indicating anomalous behavior
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to feature construction using newly adopted libraries, and bug fixes caused by the new 
libraries. Further investigation in needed to study this phenomenon.

Adoption model

Our next task is to predict future adoptions by users [49]. To accomplish this task we 
must model the process by which users read, understand, and adopt information, as well 
as their receptive and productive vocabularies. We present a straightforward but sur-
prisingly effective predictor that learns a model of user behavior. The goal is to model 
how a user will behave when shown new information—in this case new Python libraries. 
Will the user employ this new information to solve their programming challenges or will 
they ignore (or choose to not use) the new information?

The remainder of this section outlines the adoption model, and the results obtained 
from it. Additional details can be found in Appendix A.

Model data and features

We transform the stream of Git pulls and commits into a classification task in the fol-
lowing way. For each commit we create a training instance for each library added in the 
commit as well as all libraries added in Git pull operations since the user’s last commit 
(an example of this transformation is given in Appendix A). Note that this is a classifica-
tion task and not a simulation task, i.e., we do not simulate future user commits. Rather, 
given some commit-library pair, we predict whether it is an adoption or not.

Each instance is described by a comprehensive set of features that imbue the model 
with the state of the user’s receptive and productive vocabulary, recency, and the state of 
the repository at the time of the commit.

We define 5 feature categories: Commit (C), User (U), User–Library Pair (P), Library 
(L), and StackOverflow (S). Table  1 describes the features used in the model. Com-
mit features describe information related to the libraries used in the current commit 
and updated since the user’s last commit. User features describe previous user behav-
ior. User–Library pair features encode information about how often the user has seen 
or previously interacted with a library. Library features describe the use of the library 
throughout the entire population. StackOverflow features denote the popularity of the 
library on the Web. Recency is encoded through the inclusion of features that only con-
sider the last 10% of relevant commits, or the last 30 days of StackOverflow history.

Training and testing methodology

We used the SVM implementation of SKLearn’s SGDClassifier to train and test the 
model. Specific parameter values and training data preparations, including negative 
sampling, are outlined in Appendix A. Model performance is measured by area under 
the ROC curve (AUC). We plot the (mean) avg AUC and its 95% confidence interval for 
the 10 random days.

Our first task was to choose the proper amount of training data. Based on a series 
of tests using various training data set lengths (see Appendix A), the optimal training 
set interval is 1 month; we therefore use a training interval of 1 month for all further 
experiments.
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Model tuning

In addition to the training interval, we also tuned the training algorithm’s parameters. 
Based on learning rate and regularizer experiments (see Appendix A), the L1 regularizer 
and a learning rate of 0.0001 produced the best results. Following experiments leave the 
learning rate set at 0.0001 and change the regularizer to L1.

Next we investigated the effect of the training data negative sampling rate. Because 
negative examples (non-adoption events) greatly outnumbered positive (adoption) 
events, we applied the common negative sampling strategy to the training set [23]. 
Experiments led us to select a negative sampling ratio of 2:1 (2 negative instances for 
each positive instance) for all following experiments (see Appendix A).

Feature ablation tests and model performance

The overarching goal of this paper is to understand and model information adoption 
through the lens of library adoption in public software repositories. The modelling por-
tion of this task is not complete without a thorough understanding of the information 
provided by the various features used to model the overall system. To do this we perform 
feature ablation tests; these tests purposefully hold out one or more features or feature 
sets in order to gauge their relative effectiveness and impact.

Using the parameters tuned in the experiments presented in Appendix A, we again 
performed classification tests for 10 random days. Figure 6 shows the performance of 
the ablation tests. These results show that the Commit features hold, by far, the most 
information: feature sets including Commit features perform significantly better than 
those without. The results also show that the User, User–Library pair, and Library fea-
ture sets carried only a modest amount of information. The User–Library pair feature 
set holds slightly more information than either the User or Library sets, suggesting that 
previous interactions between a user and library are more predictive than the user or 
library’s overall history. Inclusion of the StackOverflow features do not significantly 
improve results, particularly if the feature set is already rich.

Fig. 6  Feature ablation tests for predicting library adoptions with 95% confidence intervals. Results are 
ordered within feature categories from lowest to highest performance. Commit features (C) provide a large 
amount of information. The reduced feature set CPL has the highest performance on average, followed 
closely by the full feature set CUPLS
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Why do Commit features carry so much information? Features C1 and C2 (from 
Table  1) denote the number of libraries added by the user in the current commit 
and the number of libraries that have been pulled by the user since the last commit 
respectively. Both of these activities are necessary for a library adoption to occur, 
since by our definition a library is only adopted if it is first received and later com-
mitted by a user. A large number of added libraries (C1) provides a greater chance 
for an adoption. However, because there is one testing instance per library-commit 
pair, a single adoption co-located with many non-adoptions could produce a high 
false positive rate. Overall, the number of libraries added within the commit con-
tains a large amount of information about the number of adoptions. Indeed we find 
that the number of libraries added in the commit is strongly positively correlated 
(Pearson R = 0.51 , p < 0.001 ) with the number of adoptions in the commit.

Similar to the results regarding user behavior near adoption events (Fig. 5), these 
results imply that adoptions are not isolated events. Instead, they occur during 
highly active periods and often include several other adoptions and additional com-
mit activity.

As seen in Fig. 6, many feature sets achieve an AUC score of 0.8 or higher, indicat-
ing that these classifiers correctly identify adoptions 80% of the time. In fact, using 
Commit features alone is sufficient for this level of prediction. Including other fea-
tures improves results, with a maximum AUC of approximately 0.85 for the CPL fea-
ture set. One month of training data is sufficient for this level of accuracy; therefore, 
the model only requires recent history for successful predictions.

Main findings

We used an extensive dataset of commits, pulls, and pushes for public Python repos-
itories to study library adoption in a network of users. First, we examined the activ-
ity rates of users during normal activity or surrounding an adoption event. As shown 
in Fig.  5, normal activity rates are higher than those before and after an adoption, 
suggesting that adoption is associated with some cognitive cost. Additionally, the 
activity rate immediately following an adoption is significantly higher than the base-
line activity preceding the adoption. This implies that adoption a library is associ-
ated with a higher than normal cognitive effort, and this effort induces a temporary 
change on the user’s behavior. The increased activity also suggests that library adop-
tions are not isolated events, and instead are followed by a flurry of commits. This 
anomalous behavior may be the result of feature construction or bug fixes induced 
by the adopted library, but further study is required to ascertain the true cause of 
this behavior.

Second, we trained a classifier to predict future library adoptions based on com-
mit, user, library, and StackOverflow features. A single month of training data is suf-
ficient to accurately predict 85% of library adoptions. As seen in Fig. 6, most of the 
model’s power comes from the Commit features, which depend on the set of librar-
ies committed by the user, and the set of libraries made visible to the user by pull 
operations. This again implies that adoptions are not isolated events, but instead 
tend to occur with other commit activity.
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Limitations

The present work is not without limitations. Though the dataset is large, it covers only a 
subset of the public Python repositories. Therefore, conclusions should not be taken as 
more than a case study of this particular domain.

Our commit analysis assumes that all library usage is purposeful and intentional, and 
that the user is making a conscious decision to add the library. In reality, users may be 
copying code from other sources, instead of directly importing the library. Even in these 
cases the library is still adopted by the user, they may just not be aware of it. This pos-
sibility should be considered when evaluating results.

Conclusions
Analyzing the adoption of libraries within public software repositories has been a meth-
odological challenge for many years. We introduced a new setting for studying cognitive 
behavior in a digital environment where it is possible to observe, in detail, the exposure 
to and adoption of new information. We introduced a large dataset of Git activity con-
taining a thorough accounting of changes in imported libraries of Python repositories. 
This corpus allowed for the identification of library adoptions at the user and repository 
level.

Analysis focused on two concepts. First, we showed that user-to-user adoptions gener-
ated a higher than normal residual effect immediately following the adoption. User activ-
ity rates spike immediately following an adoption. Further study is needed to understand 
the exact mechanisms causing these dynamics. Second, we created a model that classi-
fies commit-library pairs as adoptions or not. This model relies on not only the commit 
data, but also the history of the user and library in question. Data from StackOverflow 
was also incorporated. We showed that adoptions rarely occur in isolation; the inclusion 
of many libraries within a single commit is a strong indicator of new adoptions. This 
could suggest a common development strategy, but further study is required to deter-
mine the true cause of this phenomena.

Future work

We alluded to many avenues for further study. The foremost task is to identify the spe-
cific causes, if any exist, of the residual effects of an adoption event. Perhaps the adoption 
of a new library results in buggy software that needs to be frequently fixed or reverted. 
Further examination of the commit data could reveal additional user activity patterns. 
Are most commits following an adoption additions, or deletions? Does a single adop-
tion tend to induce further library adoptions? Is there a correlation between user session 
characteristics and adoption events? The usage of the newly-adopted library could also 
be examined. Do users tend to use new libraries often following the adoption, or is the 
initial usage an isolated event? Are newly adopted libraries used throughout the code, 
or only in a few places? The motivation for a library adoption could also be examined. Is 
the adopted library used to replace or upgrade existing functionality? Or is it adopted to 
create new features in the project? Further study of the Git data could answer these, and 
many more, questions about library adoption.

The analysis methodology used in the present work could also be applied to other con-
texts. For example, a similar methodology of information adoption could also be applied 



Page 15 of 19Krohn and Weninger ﻿J Big Data            (2019) 6:36 

to language usage across the public Web. Do these residual effects occur in other adop-
tion scenarios? Does adoption of a new word or term induce a similar activity spike? 
For example, when someone learns a new word do they tend to learn other new words 
simultaneously? Are newly-adopted words used frequently, or do users ease into their 
usage? The acceptance of bots in online communities could also be studied from the per-
spective of information adoption.

Finally, this data and methodology can be easily adapted to other areas of inquiry. For 
example, a similar methodology could be applied to other programming languages that 
use libraries, or to study ever-changing programming conventions across compiler ver-
sions. What impact does adopting a changed convention have on user activity patterns? 
Are certain changes easier to accept, with a lower cognitive cost? Beyond information 
adoption, this dataset could be used for more general studies on cooperative software 
development behavior. For example, the impact of team size on the development process 
could be examined.

Beyond additional research opportunities, the classifier could potentially be modified 
to serve as a library recommendation system. Based on a user’s development history, 
and the history of the repositories they contribute to, a prediction system may be able 
to suggest potential libraries to the user. This could be a useful tool for new developers 
unfamiliar with the project or programming the language, since it would tend to suggest 
libraries already in use by connected users.
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Appendix A: adoption model
Data transformation

Consider the example below containing Git activity for a single user u. Let the produc-
tive vocabulary Pu = {∅} and the receptive vocabulary Ru = {∅} initially. Line 1 shows 
that u imported a library n organically; n was not introduced to the user previously via 
a Git pull, so n is not an “adoption” by our definition. After line 1 the receptive vocabu-
lary and productive vocabulary of the user Ru = Pu = {n} . Lines 2 and 3 indicate that 
the user pulled source code containing newly included libraries ℓ , m, and p. After line 3 
Ru = {ℓ,m, n, p} and Pu = {n} . Finally, line 4 indicates that the user committed code with 
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q and ℓ . Because ℓ was introduced to the user via a Git pull event in line 2, ℓ is adopted 
by u in line 4. On the other hand, because q /∈ Ru before line 3, q is not a adoption by our 
definition. After line 4 Ru = {ℓ,m, n, p, q} and Pu = {ℓ, n, q}.

t Event Newly included libraries

1 Git commit +import n

2 Git pull +import ℓ,m

3 Git pull +import p

4 Git commit +import q, ℓ

The time-ordered stream of Git pulls and commits are used to create the training data 
for the adoption classification model. For each commit, we create a training instance for 
each library added in the commit as well as all libraries added in Git pull operations 
since the user’s last commit. Therefore, each commit results in one or more training 
instances, each corresponding to a single added or pulled library.

Returning to the example above, the commit at line 4 will generate 4 instances cor-
responding to ℓ , m, p, and q—one instance for each unique library that was in a Git pull 
or commit since the user’s last commit. Each instance is labeled as being adopted or not 
adopted in the current commit. Of the 4 instances corresponding to the commit on line 
4, p, q, and m are labeled as “not adopted,” and ℓ is labeled as “adopted”. Not all libraries 
that a user receives will necessarily be adopted; this is the behavior we aim to predict.

Model framework

We used the SVM implementation of SKLearn’s SGDClassifier to train and test the 
model. We limited hyperparameter exploration and instead focused on model data, 
using default values unless specified otherwise. This includes L2 regularization, and a 
learning rate of 0.0001. Negative instances (libraries received but not adopted) greatly 
outnumbered positive (adoption) instances, so we performed negative sampling to re-
balance the training set. Unless otherwise specified, we maintained all positive train-
ing instances and randomly selected 2 negative training instances for each positive 
instance—a 2:1 negative sampling ratio. We did not perform any sampling on the test 
data. All tests were repeated 10 times, once for each of 10 random days; the same ran-
dom days are used across comparable tests.

Model performance is measured by area under the ROC curve (AUC). This metric 
indicates how capable the model is at distinguishing between the binary classes: adop-
tion and non-adoption events. The AUC always falls between 0 and 1, with 1 indicating 
perfect classification. We plot the (mean) avg AUC and its 95% confidence interval for 
the 10 random days used for testing.

Training data interval

Before tuning model parameters or performing ablation tests, the first task was to 
choose the proper amount of training data. We assumed more training data is better. To 
test this assumption we selected 10 random days between February 1, 2017 and Febru-
ary 1, 2018. We generated hold-out testing data from Git activity for 30 days after each 
random date. We also generated training data sets of various lengths from Git activity 
immediately prior.
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The results for various training intervals are plotted in Fig.  7. We show that model 
performance rises as the training interval increases from 1 day to 1 month. Beyond this 
point, performance decreases as more training data is included. The cause for this per-
formance deterioration is unclear, but we suspect it is due to out-of-date information. 
Users may change their development behavior over time, and smaller training intervals 
are not diluted by old commit data. Overall the optimal training set interval is 1 month; 
all further experiments therefore use a training interval of 1 month, immediately preced-
ing the 30 days of testing data.

Classifier parameter tuning

To tune the classifier’s training algorithm parameters, we varied the learning rate from 
0.00001 to 1.0, and tested the L1, L2, and ElasticNet regularizers. All other settings were 
left at the default values. Figure 8 shows that the L1 regularizer performed the best, and 
a learning rate of 0.0001 yielded the most consistent and highest performance. All fol-
lowing experiments therefore use a learning rate set at 0.0001 and the regularizer set to 
L1.

Negative sampling

Further tuning experiments examined the effect of the training data negative sampling 
rate. Figure 9 illustrates the model performance over various negative to positive label 

Fig. 7  Model performance and 95% confidence intervals (which may be occluded by the marker) on 1 
month of testing data as a function of the training data interval. 1 month of training data performs the best 
on average

Fig. 8  Model performance and 95% confidence interval as the learning rate and regularizer are varied. A 
learning rate of 0.0001 and the L1 regularizer yields the best performance
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ratios; NA represents no sampling. The avg AUC score indicates that performance 
decreases as the ratio of negative instances increases. Although the ratio of 1 negative to 
2 positive instances (1:2) shows the highest avg AUC, other performance measures like 
accuracy, precision, and recall (not shown) are consistently higher with a ratio of 2:1. In 
the following experiments we leave the negative sampling ratio unchanged at 2:1.
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