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Introduction
One of the fundamental reasons for the notoriety of the Big Data phenomenon is the 
current extent to which information can be generated and made available [11], mainly 
due to the constant innovation, transformation, globalization and personalization of the 
services associated with new business models. Many definitions of the Big Data concept 
exist, mainly aligned with the consensus that Big Data can be defined as large amounts 
of data, flowing at different velocities, with varying degrees of complexity, without struc-
ture and/or organization, which cannot be processed or analyzed using traditional pro-
cesses or tools [11, 18, 23, 36].

One of the most popular approaches for managing large-scale datasets in a structured 
way is by the use of a Data Warehouse (DW), a repository with analytical purposes that 
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is mainly responsible for integrating and storing data coming from operational systems, 
and that is widely considered as a fundamental enterprise asset to support decision-
making. However, data volume is nowadays a major challenge for the DW, taking into 
consideration its traditional supporting technologies. Moreover, current data types and 
formats are also a major problem, since they challenge the fundamentals of DW process-
ing, as these cannot be applied to free text, images, videos or sensor data [18]. Due to 
this current conceptual, technological and organizational context, the design and imple-
mentation of Big Data Warehouses (BDWs) is becoming an important area of study [6, 7, 
13, 18, 20]. These repositories substantially differ from traditional DWs, since they must 
be based on new logical models, more flexible than the relational ones, and new tech-
nologies with higher levels of performance, scalability and fault-tolerance [14, 23].

Hadoop, an open source ecosystem for reliable, scalable and distributed computing [1], 
emerged as a solution to address Big Data processing on low-cost platforms, providing 
the computational resources to handle these large amounts of data [18]. Moreover, Hive, 
which is built on top of Hadoop, emerged as a system to store, query and manage large 
data volumes stored in distributed environments. Since its appearance, research in the 
area of Big Data Warehousing has been intensified, with developments aiming to bring 
the well-known concepts from relational databases, such as declarative query languages, 
tables and columns, into the unstructured environment of Hadoop. These characteris-
tics, along with the metastore concept, i.e., the system catalog with the metadata infor-
mation, contributed to the classification of Hive as a DW repository for Big Data [24]. 
In this sense, Hive is a distributed DW system that manages the data stored in HDFS 
(Hadoop Distributed File System) and provides a SQL-like language (HiveQL) for que-
rying the data [3, 26]. For data storage, Hive has four main components for organizing 
data: databases, tables, partitions and buckets. Partitions and buckets can theoretically 
improve query performance, as tables are split by the defined partitions and/or buckets, 
distributing the data into smaller and more manageable parts [27].

This is a recent area of research where there is a lack of related work on the way data 
must be organized in Hive, as well as on the impact of that organization in query per-
formance. Several open issues need further exploration from the scientific community, 
reason why the fundamental research questions of this work are expressed as follows: 
Are there any significant advantages in using partitions and/or buckets in Hive-based 
BDWs? Do these organization strategies have any impact on the efficiency of online 
analytical processing (OLAP) queries? What factors may influence the definition of an 
appropriate data organization strategy?

Given this context, this work has as main motivation verifying to what extent the way 
in which data is modelled and organized influences the query processing time of BDWs. 
Partitioning and bucketing strategies can be used when building BDWs, but they can be 
neglected by the practitioners or, sometimes, used in an ad hoc manner. The insights 
from this paper can be used to improve the knowledge-base regarding the guidelines for 
creating partitions and buckets, which we consider as a topic that is frequently unknown 
or subjective for (Big) Data Warehousing practitioners. For addressing this main con-
cern, this study aims to understand the impact of different data organization strate-
gies in the query processing time of BDWs, extending the preliminary work and results 
addressed in [10], specifically focusing on the following aspects: (i) the relationship and 
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impact between the definition of partitions and buckets in Hive, either individually or 
combining these two strategies; and, (ii) how the data processing workloads are affected 
regarding query processing time, as the volume of data that needs to be manipulated in 
a specific query can be significantly reduced with the adoption of an appropriate dis-
tribution of the data. As the implementation of BDWs is a significantly recent area of 
research, almost no guidelines are available regarding the way these repositories can be 
organized for increasing the overall performance of the system. Consequently, after the 
presentation, evaluation and discussion of the results, this paper summarizes a set of 
good practices for the modelling and organization of data in Hive-based BDWs.

This paper is structured as follows: “Related work” section presents the related con-
tributions in this topic. “Methods/experimental” section describes the technological 
infrastructure, the dataset and the test scenarios used in this research process. “Results” 
section describes the obtained results, highlighting the performed benchmarks and the 
needed resources, both in terms of processing time and central processing unit (CPU) 
usage. “Discussion” section discusses the obtained “Results” and “Conclusions” section 
presents the main conclusions, pointing the usefulness and applicability of the several 
strategies for organizing BDWs.

Related work
Data models have been key components in Business Intelligence and Analytics (BI&A) 
systems, ensuring that the analytical needs of the business are properly integrated and 
considered, allowing data analysis through different perspectives [27, 28]. In a traditional 
BI&A context, dimensional data models are the most popular ones [17], including star 
schemas for the different considered business processes. Although very useful, these 
logical models are not usually appropriate for Big Data contexts, requiring the adoption 
of new logical constructs that address the characteristics of NoSQL databases and the 
associated technologies available in the Hadoop environment [14]. In the work of [6, 25], 
the authors highlight that the design of a BDW should focus not only on the physical 
layer (the technological infrastructure), but also on a logical layer, giving an overall per-
spective on the data models, the logical components and how the data flows throughout 
the components. For [21], the design methodology of a BDW should be highly agile and 
iterative, integrating as many data sources as possible (either internal or external to the 
organization), and may use or not a rigid data model, aiming for a fast understanding 
and perception of the data.

Currently, SQL-on-Hadoop systems are significantly popular solutions for querying 
data available in a Hadoop cluster, of which several can be highlighted: Hive; Presto; 
Spark SQL; Drill; and Impala. Due to their popularity, several benchmarks compare their 
performance, as for instance the available in [9, 29]. However, SQL-on-Hadoop bench-
marks do not usually consider the impact of the data models, addressing mostly how fast 
these systems can be considering different workloads.

In the context of a BDW and having into consideration that Hive is the main Data 
Warehousing solution in Hadoop, supporting queries in HiveQL, it is important to 
understand how the way data is stored and organized in this system affects the perfor-
mance of the solution. Thus, as previously mentioned, this system supports three types 
of data structures, namely tables, partitions and buckets [12, 31], included in databases. 
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The concept of tables in Hive is similar to the concept of tables in relational databases 
(common structures with columns and rows), and each table corresponds to an HDFS 
directory. A Hive’s table can have one or more partitions that define the distribution of 
the data within subdirectories of the table’s directory, splitting the data horizontally and 
speeding up query processing. The buckets correspond to file segments in HDFS and can 
only be applied to a single attribute. These structures help to organize data in each table/
partition by dividing it by several files. To identify the segment to which a data record 
must be assigned, a hash function is applied on the bucketing column. Consequently, it 
is a technique for grouping data vertically, segmenting data records by a given attribute. 
Each bucket is stored as a file within the table’s directory or the partitions’ directories 
[12, 15, 27, 31].

Regarding data modelling, an evaluation of different data modelling and organization 
strategies for Hive-based DWs is described [9], showing the benefits of implementing a 
BDW based on a fully denormalized table, when compared with a dimensional struc-
ture (star schema). Moreover, [4, 5, 35] analyzed the implementation of BDWs based in 
NoSQL databases. While [4] studied the implementation of a DW based on a document-
oriented NoSQL database and [5] explored implementations of DWs on top of column-
oriented NoSQL databases, [35] proposed a transformation process for moving from a 
dimensional DW into a column-oriented and document-oriented NoSQL data model.

Regarding the data organization strategies, the creation of partitions and buckets in 
Hive has already been addressed in the literature. Kumar [19] presented a brief perfor-
mance analysis and comparison of MySQL partitions, Hive Partition/Bucketing and 
Apache Pig, highlighting the Hive’s advantages with the use of partitioning and bucket-
ing techniques. To [30], Hive partitioning can be used for improving the performance 
of a very specific set of queries, as long as the partitions are aligned with the attributes 
used in the queries’ filters. Moreover, in [27], it is recommended that the attribute, or 
attributes, used for partitioning have low cardinality, avoiding the creation of a signifi-
cantly high number of subdirectories, a process that will overload HDFS. Furthermore, 
according to [2], partitioning can improve query performance in large datasets, when, 
as already mentioned, the partition scheme considers the attributes used in the queries’ 
filters. These benefits were also shown in [9], presenting the advantages of creating data 
partitions using two different data organization strategies (star schemas and fully denor-
malized tables).

Partitioning requires the use of an attribute that does not create a large number of 
small partitions, avoiding a large number of small files that typically slow down the pro-
cessing time of Hadoop [30], while bucketing clusters large data sets into more manage-
able parts, corresponding to file segments in HDFS [2]. This means that bucketing is an 
ideal technique for sampling and joining tables more efficiently. For [27], buckets help to 
organize the data in each partition, distributing the data in several segments, being use-
ful for attributes with high cardinality. The work of [30] highlights other useful consid-
erations for using bucketing in Hive, namely: it is useful for fact tables in a star schema; 
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map-side joins can be more efficient if the joining attribute is bucketed; the bucket file 
size should have, at least, 1 GB; the number of buckets cannot be changed after the crea-
tion of the table; processing times can also be improved by combining bucketing with 
sort techniques. In general, bucketing may also optimize execution times, namely when 
bucketing by the attributes used in the queries’ “group by” and “order by” clauses and 
when a bucket has at least the size of one HDFS block or a multiple of that size. Besides 
these contexts, the use of bucketing is usually discouraged. However, all these considera-
tions are theoretical considerations, not corroborated by any type of practical work or 
performance analysis, which emphasizes the lack of studies about the real impact of the 
implementation of bucketing techniques.

Nowadays, and due to the youth of this research area, scientific papers related with 
data organization strategies in a BDW are scarce. Despite some of the mentioned studies 
already considering some partitioning strategies, there is a significant absence of works 
analyzing the impact of bucketing, the combination of partitioning and bucketing on 
Hive’s data models, and how the use of these techniques can be optimized. Therefore, 
this work, extending the work previously presented in [10], seeks to fulfil these scientific 
gaps by addressing different data organization strategies, i.e., by benchmarking different 
combinations of partitions and buckets for two different data modelling patterns, based 
on star schemas and fully denormalized tables, as these are the most common modelling 
approaches used when implementing Hive-based BDWs. To accomplish this task, sev-
eral workloads were tested using different scale factors (SFs), providing a clear overview 
of the impact of partitioning and bucketing strategies in these data modelling patterns.

Methods/experimental
Considering that the main goal of this work is the proposal of some best practices for 
modelling and organizing Hive-based BDWs, it is important that the guidelines and 
considerations here provided are adequately validated and the results are replicable. 
Therefore, a benchmark that includes several workloads was conducted to evaluate the 
performance of a Hive BDW in different scenarios. This section describes the materials 
and methods used in this research process.

Technological infrastructure

For this study, a Hadoop cluster including five nodes with similar configurations was 
used. Each node is composed of the following components:

(i)	 1 Intel Core i5, quad core, with a clock speed ranging between 3.1  GHz and 
3.3 GHz;

(ii)	 32 GB of 1333 MHz DDR3 Random Access Memory (RAM), with 24 GB available 
for query processing;

(iii)	1 Samsung 850 EVO 500  GB Solid State Drive (SSD) with up to 540  MB/s read 
speed and up to 520 MB/s write speed;
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(iv)	1 Gigabit Ethernet card connected through Cat5e Ethernet cables and a gigabit Eth-
ernet switch;

(v)	 The operating system installed in all nodes is CentOS 7 with an XFS file system.

In this infrastructure, one of the nodes is configured with the HDFS NameNode and 
YARN ResourceManager, assuring the typical management roles in Hadoop, and the 
other four nodes are configured as HDFS DataNodes and YARN NodeManagers.

The Hadoop distribution used in this work is the Hortonworks Data Platform (HDP) 
2.6.0 with the default configurations, excluding the HDFS replication factor, which was 
set to 2. Besides Hadoop (including Hive), Presto v.0180 is also available, being the coor-
dinator installed on the NameNode and the workers on the four remaining DataNodes. 
All Presto’s configurations were left to their defaults, except the memory configuration, 
which was set to use 24 GB of the 32 GB available in each worker (similar to the memory 
available for YARN applications in each DataNode/NodeManager).

Dataset and queries

In this work, the well-known star schema benchmark (SSB) was used, which considers a 
traditional sales data mart modeled according to dimensional structures (star schemas). 
This benchmark is based on the TPC-H Benchmark [33], with the necessary adaptations 
to transform the data model into a star schema, as can be seen in [22]. From the proposal 
of [22] and the data schema here used, there are some particular differences, namely: i) 
the original TPC-H scale factor of the customer and supplier tables was left unchanged, 
since in real contexts it is possible to have large customer and supplier dimensions, as 
happens in large e-commerce enterprises and social media networks; ii) a temporal 
dimension with less attributes than the one used by [22] was created, maintaining only 
the attributes that are relevant for executing the workloads available in [22], in order to 
keep a leveled ground between the two types of data modelling strategies evaluated in 
this work (star schemas and denormalized tables).

Therefore, both SSB’s relational tables and the fully denormalized table were imple-
mented in the Hive BDW, being stored using the Optimized Row Columnar (ORC) 
format and compressed using ZLIB. Besides the dataset, this work also uses the 13 que-
ries included in the SSB benchmark, measuring the performance of the BDW in typi-
cal OLAP workloads. The 13 queries are available in the work of [22] and, also, in [8] 
that provides all the scripts used in this work to run the queries in Hive and Presto. For 
having an overall overview of the queries and their patterns, the following listing code 
shows the first query of each group, as the SSB includes four groups of queries, as will be 
seen in the following subsection.
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--- SSB Q1.1
SELECT sum(lo.extendedprice*lo.discount) as revenue
FROM lineorder lo, date d 
WHERE lo.orderdate = d.datekey

AND d.year = 1993
AND lo.discount between 1 and 3  
AND lo.quantity < 25

--- SSB Q2.1
SELECT sum(lo.revenue), d.year, p.brand
FROM lineorder lo, date d, part p, supplier s 
WHERE lo.orderdate = d.datekey

AND lo.partkey = p.partkey
AND lo.suppkey = s.suppkey
AND p.category = 'MFGR#12'
AND s.region = 'AMERICA'

GROUP BY d.year, p.brand
ORDER BY d.year, p.brand

--- SSB Q3.1
SELECT c.nation, s.nation, d.year, sum(lo.revenue) as revenue
FROM customer c, lineorder lo, supplier s, date d 
WHERE lo.custkey = c.custkey

AND lo.suppkey = s.suppkey
AND lo.orderdate = d.datekey
AND c.region = 'ASIA'
AND s.region = 'ASIA'
AND d.year >= 1992 AND d.year <= 1997

GROUP BY c.nation, s.nation, d.year
ORDER BY d.year ASC, revenue DESC

--- SSB Q4.1
SELECT d.year, c.nation, sum(lo.revenue - lo.supplycost) as profit
FROM date d, customer c, supplier s, part p, lineorder lo
WHERE lo.custkey = c.custkey

AND lo.suppkey = s.suppkey
AND lo.partkey = p.partkey
AND lo.orderdate = d.datekey
AND c.region = 'AMERICA'
AND s.region = 'AMERICA'
AND (p.mfgr = 'MFGR#1' or p.mfgr = 'MFGR#2')

GROUP BY d.year, c.nation
ORDER BY d.year, c.nation

Test scenarios

In order to understand the impact in query processing times when using different 
strategies for data partitioning and bucketing, several test scenarios were defined 
(Fig. 1). In these scenarios, two different data models (star schema and denormalized 
table) are tested for three different SFs (30, 100 and 300), following the application of 
three main data organization strategies: partitioning by multiple attributes, bucketing 
and the combination of both. For each SF, the SSB data is stored in HDFS, and Hive 
tables are created for both data organization strategies. The queries are executed in 
Presto and Hive (on Tez). The selection of these two SQL-on-Hadoop engines takes 
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into consideration the results in [29]. Moreover, considering the work of [9], the 
broadcast join strategy was used for Presto to optimize the star schema processing 
times, in order to assure that they are comparable to the results of the denormalized 
table.

The study of the cardinality and distribution of the attributes available in the dataset 
was done to choose the attributes and the several combinations among them, in order 
to adequately plan partitioning strategies, bucketing strategies and the combinations 
of both. Regarding the denormalized table, for the highest SF used in this work, it was 
not possible to replicate all the scenarios due to the memory limitations of the infra-
structure used in this work.

To obtain more rigorous results, several scripts were developed to sequentially 
execute each query four times. The results in this work are presented as the average 
of the four executions. These scripts were adapted according to the SQL-on-Hadoop 
system in use (Presto or Hive), the applied data model (denormalized or star schema) 
and the data organization strategy (with or without partitions and buckets).

Results
After the work of [9], showing the advantages of simple partitioning using the attrib-
utes more frequently used in the query filters, and considering the work described in 
[10], this paper extends that previous work and presents the results obtained with: (i) 
the use of a multiple partitioning strategy; (ii) the use of different bucketing strategies 
(simple and multiple); and (iii) the combination of partitioning (simple and multiple) 
and bucketing strategies.

Despite the results depicted in [9], regarding the advantages of using a fully denor-
malized table over a dimensional model based on a star schema in Hive, this work 
also extends the comparison between these two data modelling techniques by apply-
ing different partitioning and bucketing strategies not only to a denormalized table 
but also to a star schema.

To give a global overview of the efficiency of the different strategies, extending the 
focus of the analysis besides query processing time, the impact of the data organization 
strategies in the use of the CPU was also studied. Therefore, after presenting the time 
needed for processing the several workloads, each subsection ends with a study of CPU 
usage, taking as examples some scenarios used for the processing time analysis.

Queries
Q1.1          Q2.1          Q3.1          Q4.1
Q1.2          Q2.2          Q3.2          Q4.2
Q1.3          Q2.3          Q3.3          Q4.3

                  Q3.4               

Data Organization

Partitions

Buckets

Denormalized 
Table

Star Schema

SF 30
± 18 x 107 rows

SF 100
± 6 x 108 rows

SF 300
± 18 x 108 rows

PrestoHive (on Tez)

Big Data
Warehouse

Hive HDFS

Partitions and 
Buckets

(Costa et al. 2018)

Fig. 1  Test scenarios
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All the processing times for each query and for the several scenarios are presented in 
the next subsections without decimal places, for the sake of clarity and simplification in 
the visualization of results.

Multiple partitioning

As previously mentioned, the work of [9] showed that simple partitioning, using an 
attribute that frequently appears in the “where” clause of the queries, has benefits 
in terms of processing time. Having that in mind, this subsection presents the results 
obtained when tables are partitioned by more than one attribute, continuing to study the 
impact of this type of data organization strategy. Along this subsection, the fastest pro-
cessing time for each query, workload, tool and data model is highlighted in italics when 
illustrating the results of the benchmark. Table 1 shows the results when the attributes 
“Od_Year” (order year) and “S_Region” (supplier region) were considered as partitioning 
attributes. These attributes are used as filters in 11 out of 13 SSB queries, either appear-
ing individually or combined in the queries’ “where” clauses. As can be seen, this sce-
nario highlights the advantages of multiple partitioning when compared with no specific 
data organization strategy in terms of partitions and/or bucketing. In a star schema con-
text, the decrease in the overall processing time reaches 42% in Hive and 46% in Presto. 
In the context of a denormalized table, the decreases in Hive vary between 16 and 45%, 
while with Presto the decrease can be over 50% (54% in the best scenario).

The only queries that do not directly use any of these filters are Q1.2 and Q3.4, but 
they have related filters like “YearMonth” (concatenation of year and month) and “S_
City” (supplier city). These results mean that, with this partitioning scheme, the same 
files and folders contain the “YearMonth” and “S_City” values that are related to the par-
titioning attributes, storing them closely and allowing the predicate pushdown at the 
level of the ORC stripe and file. This is a data filtering technique based on reading the 
headers and statistics of the ORC stripes and files created for the table. This technique 
first checks if the ORC stripe/file contains any line that matches the query predicate, 
identifying if the stripe/file needs to be scanned or if it can be ignored, advancing to 
another stripe/file [16]. Queries 3.1 and 4.2 present the two attributes in their “where” 
clauses and are, in fact, the ones with significant decreases, sometimes higher than 50%. 
In these results, it is also verified that the third group of queries (Q3.1 to Q3.4) does 
not always highlight the advantages of partitioning. This may be related to their filters 
that only exclude 1 year, implying a search throughout 6 of the 7 folders created by the 
“Od_Year” partitioning attribute, plus the 5 folders created by the “S_Region” attribute.

Nevertheless, in general, as some queries verify a decrease in the response time equal 
to or higher than 50% (in 15% of the cases), these balance the ones that are negatively 
affected by this type of partitioning, providing an overall benefit when using this data 
organization strategy. Its advantages are verified in all SFs, both for Hive and Presto.

After discussing the results for a two-level partitioning scheme, Table  2 shows the 
results considering a three-level partitioning scheme, for the star schema, studying the 
creation of folders based on a spatial hierarchy, in which all the attributes appear at least 
once in the query “where” predicate. The attributes used here are “S_Region” (supplier 
region), “S_Nation” (supplier nation) and “S_City” (supplier city).
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This partitioning scheme is complex and, by verifying the organization of the data, it 
is possible to realize that with the combination of 5 regions, 5 countries, and 9 cities, the 
data was distributed throughout 225 folders. Considering as an example the smallest SF 
with around 30 GB of data, several small files were created in HDFS. In this scenario, 
each partition gets a total of approximately 22 MB, a data distribution context that is not 
adequate for enhancing HDFS performance, as already discussed in previous sections. 
Even in this case, it was possible to observe a reduction of the overall processing time, as 
shown in Table 2.

Table 1  SSB execution times (in seconds): partitioning by “Od_Year” and “S_Region” (star 
schema (SS), star schema with  partitions (SS-P), denormalized table (DT), denormalized 
table with partitions (DT-P))

SF = 30 SF = 100 SF = 300 SF = 30 SF = 100 SF = 300

HIVE PRESTO

SS SS-P SS SS-P SS SS-P SS SS-P SS SS-P SS SS-P

Q1.1 25 21 31 22 44 25 5 2 13 4 36 8

Q1.2 24 27 29 33 42 54 5 7 13 18 34 48

Q1.3 24 21 29 22 43 26 4 2 13 4 35 8

Q2.1 32 30 47 45 531 153 8 4 19 8 59 23

Q2.2 31 28 46 39 531 152 7 4 18 6 51 17

Q2.3 30 27 44 41 531 147 7 3 17 6 49 15

Q3.1 35 26 59 34 651 162 8 4 29 9 81 27

Q3.2 30 30 45 52 677 570 6 7 17 19 51 52

Q3.3 33 37 219 75 665 578 5 7 15 16 43 48

Q3.4 34 36 222 223 675 618 6 8 15 20 43 56

Q4.1 38 33 86 70 226 205 13 6 43 15 119 40

Q4.2 49 30 70 58 141 91 9 4 26 9 69 20

Q4.3 34 29 54 44 116 70 8 5 23 14 63 36

Total 420 375 982 760 4874 2849 92 63 262 149 733 399

Diff. − 11% − 23% − 42% − 32% − 43% − 46%

SF = 30 SF = 100 SF = 300 SF = 30 SF = 100 SF = 300

HIVE PRESTO

DT DT-P DT DT-P DT DT-P DT DT-P DT DT-P DT DT-P

Q1.1 24 20 29 21 51 29 5 2 13 3 37 8

Q1.2 24 26 29 36 45 80 5 2 14 5 38 16

Q1.3 23 21 30 21 45 30 5 2 14 3 39 8

Q2.1 25 21 36 23 79 30 4 3 10 5 36 16

Q2.2 36 24 73 32 161 50 4 3 10 6 32 16

Q2.3 25 21 35 22 62 29 4 3 10 5 29 17

Q3.1 28 21 40 23 98 31 5 2 12 3 33 11

Q3.2 28 25 41 29 93 60 5 4 12 5 29 32

Q3.3 25 25 38 29 59 62 4 5 9 6 27 44

Q3.4 25 28 38 40 72 108 5 7 12 13 33 81

Q4.1 27 22 41 24 103 34 6 3 14 6 42 20

Q4.2 29 17 42 21 107 25 6 2 14 4 49 12

Q4.3 29 21 42 24 114 34 5 4 12 7 49 19

Total 349 292 516 346 1090 602 63 43 155 71 472 299

Diff. − 16% − 33% − 45% − 32% − 54% − 37%
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This scenario was not replicated using the denormalized tables, due to memory limita-
tions in the used cluster. Moreover, for the same reason, the largest scaling factor was 
not replicated using the star schema, given the complexity of this scenario. Nevertheless, 
given all the performed tests, we believe that the main conclusions remain true.

As already mentioned, although this strategy involves significant complexity in its cre-
ation, as well as memory problems and the storage of several small files, there is a notice-
able decrease from Q2.1 to Q4.3 (highlighted in italics in Table 2), as the partitioning 
attributes are often used in the “where” clauses. The decrease in processing time is even 
more evident in Q3.3 and Q3.4, as these queries have the filter by city (the most detailed 
level of partitioning). Combining the predicate pushdown technique, on the two previ-
ous partitioning levels of region and nation, with the highest level of detail provided by 
city, these queries need, in the best scenario, less 85% of the time to execute.

However, although the advantages may be clear, it is important to be careful with this 
type of data organization strategy, in order to avoid an excessive partitioning that may 
impact the performance of HDFS. Consequently, the creation of many partitioning lev-
els must be carefully analyzed, including a study of the expected total data volume, the 
amount of data that will be stored in each folder, and the type of updating processes that 
may be implemented for the BDW.

In addition to the analysis of the processing time, the use of CPU by the queries was 
also verified, in both data models with the application of multiple partitioning. Figure 2 
shows the variation in CPU usage by the partitioned tables, using as an example the par-
titioning by “Od_Year” and “S_Region”. The obtained results are compared with the CPU 
workload for processing the tables without any type of data organization strategy. In this 
figure, the presented results consider the use of Presto and a SF of 100 GB, showing the 
impact on CPU needs with an intermediate workload in terms of data volume.

Table 2  SSB execution times (in seconds): partitioning by “S_Region”, “S_Nation” and “S_
City”

SF = 30 SF = 100 SF = 30 SF = 100

HIVE PRESTO

SS SS-P SS SS-P SS SS-P SS SS-P

Q1.1 25 32 31 41 5 11 13 36

Q1.2 24 31 29 44 5 11 13 37

Q1.3 24 30 29 43 4 11 13 35

Q2.1 32 30 47 46 8 4 19 10

Q2.2 31 29 46 43 7 4 18 10

Q2.3 30 30 44 45 7 4 17 9

Q3.1 35 28 59 38 8 4 29 11

Q3.2 30 24 45 28 6 2 17 4

Q3.3 33 27 219 35 5 2 15 3

Q3.4 34 26 222 33 6 2 15 3

Q4.1 38 37 86 79 13 6 43 16

Q4.2 49 42 70 63 9 5 26 14

Q4.3 34 30 54 45 8 3 23 5

Total 420 396 982 582 92 70 262 193

Diff. − 6% − 41% − 24% − 26%
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Analyzing Fig.  2, and taking into consideration the results presented for the star 
schema, the queries that have at least one of the partitioning attributes as filter (namely 
Q1.1, Q1.3, Q2.1, Q.2.2, Q2.3, Q3.1, Q3.2, Q3.3, Q4.1, Q4.2 and Q4.3) are the ones that 
present higher decreases in CPU usage. Regarding the denormalized table, the advan-
tage of partitioning is evident in all queries, although the decreases tend to be smaller 
in queries that do not have the partitioning attributes in their filters. Thus, with these 
results, it is possible to conclude that, in addition to the decrease in processing time, this 
type of strategy also achieves less CPU usage, improving the overall system performance.

Bucketing

According to the literature, although rarely mentioned or exemplified, the definition 
of buckets can consider the attributes with high cardinality and the way data should be 
grouped/sorted according to the expected queries. In addition, the number of buckets 
should be defined to avoid the creation of several small files [15, 16, 27, 30]. According to 
[30], the files must have at least 1 GB of size to optimize storage. Given the lack of strict 
guidelines, the empirical knowledge obtained when testing different scenarios was used 
to identify the number of buckets, by following this expression:

In this work, as the cluster’s minimum size of a HDFS block is 128 MB, some tested 
scenarios followed the previous expression, while in other cases, the size of the dataset 
was divided by 1 GB, mainly for larger SFs, avoiding the creation of several small files in 
HDFS, as this may jeopardize its performance.

Based on these two options for calculating the number of buckets, Table 3 shows the 
number of buckets that must be used in the creation of the tables that only use bucketing 
as the data organization strategy.

Considering the high number of buckets that would be created for files of 128 MB, the 
second approach (files with at least 1 GB of data) was followed for all the tables that were 
created with bucketing as the only data organization strategy.

File size

Number of buckets
≥ size of aHDFS block

Fig. 2  CPU usage: multiple partitioning by “Od_Year” and “S_Region” (Presto, SF = 100)
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Considering this, this subsection presents the results obtained when the tables are 
bucketed by attributes that have high cardinality and/or that are grouped/sorted accord-
ing to those attributes. In each table, the fastest processing time for each query, work-
load and tool is highlighted in italics. Table  4 presents the results obtained when the 
table is bucketed by “Orderkey”, an attribute with high cardinality.

The results obtained with this bucketing strategy do not show any advantage when 
compared with a scenario without any type of data organization strategy. Apparently, 
there is no recognition of the data organization strategy here applied, since processing 
times always increase, except in the case of Hive for SF = 30. Although it does not pre-
sent any significant changes (e.g., decreases of 2%), it presents minor variations that can 
change from execution to execution. Thus, this scenario does not seem to represent an 
adequate practice for organizing the data.

Given this less advantageous results for bucketing, when using a high cardinality buck-
eting attribute, another approach was followed, taking into consideration the documen-
tation from Hortonworks and Hive, which states that using bucketing attributes that are 
sorted by a common attribute used in the queries can be advantageous for processing 
time, Table 5 presents the results obtained for a denormalized table with buckets created 
by “Od_Year” (order year) and sorted by “P_Brand” (product brand) [12, 16].

In addition to the study of this technique for sorting the data, this scenario also intends 
to study the definition of buckets using attributes that are used in the “group by” and 
“order by” clauses of the queries. Despite being a low cardinality attribute, buckets were 
defined by order year (“Od_Year”), creating 7 buckets in both scaling factors (SF = 30, 
SF = 100), with each year’s data being stored in a different file. This strategy is only 
applied to the denormalized table, since it is not possible to create buckets for attributes 
only present in the dimensions of the star schema. Additionally, this scenario could not 
be replicated in the SF = 300 workload, due to the cluster’s memory limitations.

In general, the results demonstrate a decrease in processing times in a context of 
sorted buckets. Almost all the queries, which include the sorted attribute in the “group 
by” and “order by” clauses (Q2.1 to Q4.3—highlighted in italics in Table  5), present 
advantages with this data organization strategy. Of all these queries, the third group 
(Q3) is the one where this decrease is not always verified. Nevertheless, it is important 
to recall that these queries are complex and have filters with large time intervals, reason 
why in contexts of larger amounts of data, additional processing time may be needed.

Even queries that do not include the sorted attribute in the “group by” and “order 
by” clauses verify decreases in the processing time (namely Q1.1, Q1.2, Q1.3). Ana-
lyzing this group of queries, it is possible to see that the ones with less complexity 

Table 3  Definition of the number of buckets (for bucketing only)

Data model SF Table size (MB) HDFS block (128 MB) At least 1 GB

SS 30 5088 5088MB

128MB
∼= 40 buckets

5088MB

1024MB
∼= 5 buckets

100 16,533 16533MB

128MB
∼= 129 buckets

16533MB

1024MB
∼= 16 buckets

300 49,700 49700MB

128MB
∼= 388 buckets

49700MB

1024MB
∼= 49 buckets

DT 30 14,650 14650MB

128MB
∼= 114 buckets

14650MB

1024MB
∼= 14 buckets

100 46,800 46800MB

128MB
∼= 366 buckets

46800MB

1024MB
∼= 46 buckets



Page 14 of 38Costa et al. J Big Data            (2019) 6:34 

are also the ones that only deal with temporal data in almost all conditions, reason 
why an organization of the files per year enhances their processing, due to the opti-
mization techniques used by the querying systems. In addition, Q2.2, Q2.3 and Q4.3 
also present the “P_Brand” attribute in the “select” clause, as well as in filters and in 
other clauses. As the files are sorted by this attribute, performance in data processing 
increases less than 50% in most of the executions. This is the first scenario where this 
data organization strategy presents benefits in processing time.

Table 4  SSB execution times  (in seconds): bucketing by  “Orderkey” (star schema 
with buckets (SS-B), denormalized table with buckets (DT-B))

SF = 30 SF = 100 SF = 30 SF = 100

HIVE PRESTO

SS SS-B SS SS-B SS SS-B SS SS-B

Q1.1 25 23 31 29 5 7 13 14

Q1.2 24 23 29 30 5 7 13 13

Q1.3 24 23 29 30 4 6 13 13

Q2.1 32 33 47 59 8 11 19 26

Q2.2 31 32 46 51 7 11 18 23

Q2.3 30 30 44 54 7 10 17 22

Q3.1 35 35 59 64 8 12 29 30

Q3.2 30 30 45 46 6 8 17 19

Q3.3 33 34 219 224 5 8 15 18

Q3.4 34 32 222 225 6 7 15 18

Q4.1 38 39 86 100 13 19 43 47

Q4.2 49 50 70 70 9 14 26 33

Q4.3 34 35 54 65 8 13 23 29

Total 420 421 982 1047 92 133 262 305

Diff. 0% 7% 44% 16%

SF = 30 SF = 100 SF = 30 SF = 100

HIVE PRESTO

DT DT-B DT DT-B DT DT-B DT DT-B

Q1.1 24 23 29 31 5 5 13 15

Q1.2 24 23 29 30 5 6 14 15

Q1.3 23 23 30 30 5 5 14 15

Q2.1 25 26 36 42 4 6 10 14

Q2.2 36 35 73 69 4 5 10 12

Q2.3 25 23 35 34 4 4 10 10

Q3.1 28 27 40 45 5 5 12 13

Q3.2 28 27 41 44 5 5 12 12

Q3.3 25 24 38 35 4 4 9 10

Q3.4 25 25 38 42 5 5 12 12

Q4.1 27 27 41 44 6 7 14 16

Q4.2 29 29 42 46 6 6 14 17

Q4.3 29 29 42 47 5 6 12 17

Total 349 342 516 539 63 71 155 178

Diff. − 2% 5% 14% 15%
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For the star schema, as it is not possible to create sorted buckets in the fact table using 
dimensions’ attributes, this data organization strategy was tested creating the fact table 
with buckets by the attribute “Orderkey”, sorted by “Orderdate”. However, since these 
two attributes are not recognized in any of the “group by” clauses of the queries, the 
results for this scenario have no benefits when compared to the results obtained for the 
tables without any kind of data organization strategy. Therefore, the results for this sce-
nario are not here presented.

As mentioned in previous sections, the works of [15, 27, 30] argue that the definition 
of buckets can have advantages when joining two or more tables, as long as both tables 
use bucketing by the same column. Thus, and only considering the star schema model, 
two distinct scenarios have been defined to create buckets that intend to study the buck-
eting advantages when using join operations, namely simple bucketing and multiple 
bucketing.

Table 6 presents the first scenario, which includes creating the fact table with the defi-
nition of buckets by a key that is used to perform join operations with one of its dimen-
sions, in this case the supplier dimension. Both tables were created using as bucketing 
attribute “Suppkey” (supplier key).

The results presented here show the potential of Hive in this type of data organization 
strategy. Contrary to what has been seen so far, this type of data organization, which 
points out the benefits of buckets to join two or more tables, ensures better performance 
when using Hive, though Presto continues to have better processing times. Figure  3 
highlights the results obtained using Hive for SF = 300.

In this case, Hive appears to activate the bucket map join, an appropriate join strat-
egy for large tables with buckets using the join attribute, as long as the number of 

Table 5  SSB execution times (in seconds): bucketing by “Od_Year” sorted by “P_Brand”

Italic values indicate the fastest processing time by query, workload, tool and data model, also pointing the queries that 
include the sorted attribute in the “group by” and “order by” clauses

SF = 30 SF = 100 SF = 30 SF = 100

HIVE PRESTO

DT DT-B DT DT-B DT DT-B DT DT-B

Q1.1 24 18 29 21 5 3 13 8

Q1.2 24 19 29 21 5 3 14 9

Q1.3 23 18 30 22 5 3 14 8

Q2.1 25 18 36 20 4 2 10 4

Q2.2 36 18 73 20 4 2 10 3

Q2.3 25 18 35 16 4 2 10 4

Q3.1 28 26 40 39 5 5 12 14

Q3.2 28 25 41 40 5 5 12 13

Q3.3 25 23 38 32 4 4 9 11

Q3.4 25 26 38 39 5 5 12 13

Q4.1 27 22 41 30 6 3 14 9

Q4.2 29 20 42 23 6 2 14 5

Q4.3 29 14 42 15 5 2 12 4

Total 349 265 516 337 63 41 155 103

Diff. − 24% − 35% − 35% − 34%
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buckets in one of the tables is a multiple of the number of buckets in the other [15]. 
As these conditions are verified in this scenario (although in some SFs the size of the 
tables is not so large), there is a clear advantage, with the SF = 300 workload showing 
decreases of 63%. Presto probably does not recognize this type of data organization 
strategy and, therefore, the advantages are not verified with the use of this system, 
despite its faster processing times. Consequently, this would be a beneficial strategy 
for contexts where a BDW based on dimensional models is chosen, and where Hive is 
used not only for storage, but also for query processing.

The second scenario considers bucketing based on multiple attributes. Although 
several authors state that it is advisable to create buckets using only one attribute 
[2, 27, 30, 32], this work shows that it is possible to create buckets with multiple 

Table 6  SSB execution times (in seconds): bucketing by “Suppkey”

Italic values indicate the fastest processing time by query, workload, tool and data model

SF = 30 SF = 100 SF = 300 SF = 30 SF = 100 SF = 300

HIVE PRESTO

SS SS-B SS SS-B SS SS-B SS SS-B SS SS-B SS SS-B

Q1.1 25 22 31 29 44 46 5 6 13 16 36 36

Q1.2 24 23 29 29 42 44 5 7 13 16 34 36

Q1.3 24 23 29 30 43 45 4 7 13 14 35 34

Q2.1 32 31 47 53 531 110 8 11 19 25 59 62

Q2.2 31 29 46 66 531 611 7 9 18 22 51 56

Q2.3 30 29 44 49 531 101 7 9 17 22 49 53

Q3.1 35 33 59 68 651 137 8 11 29 35 81 83

Q3.2 30 28 45 52 677 92 6 8 17 23 51 53

Q3.3 33 33 219 45 665 80 5 7 15 17 43 44

Q3.4 34 30 222 44 675 78 6 6 15 19 43 43

Q4.1 38 39 86 88 226 237 13 17 43 51 119 127

Q4.2 49 49 70 65 141 119 9 11 26 32 69 75

Q4.3 34 35 54 57 116 103 8 10 23 28 63 67

Total 420 404 982 676 4874 1803 92 120 262 321 733 768

Diff. − 4% − 31% − 63% 30% 22% 5%

Fig. 3  SSB execution times with bucketing by “Suppkey” (Hive, SF = 300)
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attributes, as Hive internally applies a hash function to the concatenation of these 
attributes as a single string. Therefore, this scenario tests if the tools recognize this 
strategy and if there is any kind of advantage in using it. The fact table was defined 
with four buckets, corresponding to the keys used to perform joins with the four 
dimensions (“Orderdate”, “Custkey”, “Suppkey” and “Partkey”). The dimensions were 
bucketed by the corresponding key, and the results are presented in Table 7.

Regarding the possible benefits that could be obtained with bucketing when joining 
two or more tables, and with several bucketing attributes, the results show a clear dis-
advantage for this type of organization strategy, since in 92% of the cases this bucket-
ing strategy did not show any performance benefits. Even the queries that include all 
the attributes in the join operation (Q4.1, Q4.2 and Q4.3) did not present any benefit 
by having this configuration. Therefore, the disadvantages of the application of mul-
tiple bucketing are here shown, confirming that the SQL-on-Hadoop systems used in 
this work did not benefit from this type of data organization strategy.

Again, in addition to the study of the processing time, the CPU usage was also ana-
lyzed for each query in both data models, now with the implementation of bucketing 
techniques. Figure 4 shows the variation in CPU usage, obtained with Presto, by the 
tables using simple bucketing in relation to the tables without any data organization 
strategy. The first example here presented considers bucketing by “Orderkey” (Fig. 4).

As in the study of processing times, this scenario shows a disadvantage for buck-
eting strategies when analyzing the CPU usage. All queries, in both data models, 
require a higher use of the CPU, with values sometimes higher than 60% of the time 
needed for a star schema without buckets, and higher than 35% of the time needed 

Table 7  SSB execution times: bucketing by  “Orderdate”, “Custkey”, “Suppkey” 
and “Partkey”

Italic values indicate the fastest processing time by query, workload, tool and data model

SF = 30 SF = 100 SF = 300 SF = 30 SF = 100 SF = 300

HIVE PRESTO

SS SS-B SS SS-B SS SS-B SS SS-B SS SS-B SS SS-B

Q1.1 25 23 31 29 44 45 5 5 13 14 36 35

Q1.2 24 24 29 30 42 45 5 6 13 12 34 34

Q1.3 24 24 29 30 43 44 4 5 13 12 35 36

Q2.1 32 33 47 59 531 702 8 11 19 27 59 82

Q2.2 31 31 46 51 531 681 7 9 18 23 51 67

Q2.3 30 31 44 54 531 699 7 9 17 22 49 62

Q3.1 35 34 59 64 651 684 8 11 29 30 81 88

Q3.2 30 30 45 46 677 688 6 7 17 20 51 57

Q3.3 33 33 219 224 665 702 5 7 15 17 43 52

Q3.4 34 32 222 225 675 870 6 7 15 16 43 52

Q4.1 38 39 86 100 226 256 13 18 43 49 119 142

Q4.2 49 50 70 70 141 155 9 14 26 33 69 90

Q4.3 34 37 54 65 116 141 8 12 23 29 63 77

Total 420 420 982 1047 4874 5712 92 121 262 305 733 876

Diff. 0% 7% 17% 32% 16% 19%
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for a denormalized table without any data organization strategy. As such, this data 
organization strategy brings disadvantages both considering processing time and the 
use of CPU resources.

Given the more satisfactory results obtained with the implementation of simple buck-
eting in two tables of the star schema by the same attribute, Fig. 5 shows the variations of 
CPU usage obtained by the two querying tools in SF = 100.

As shown in the variations of the processing time (Table 6), it is not for the SF = 100 
that more advantages are verified. Although in these tests Hive better recognizes the 
bucketing strategy, when compared with Presto, this does not imply a decrease in the 
CPU usage. However, if we consider this strategy for the SF = 300 and only using Hive, as 
Presto does not recognize this strategy in any of the analyzed workloads, Fig. 6 presents 
the variation in CPU usage and the clear decrease in the used resources for the majority 
of the queries.

Considering these results, it is possible to highlight that, with Hive, significant 
decreases are obtained not only in the processing time, but also in CPU usage. On aver-
age, there is a decrease of about 41% with the application of this data organization strat-
egy in the larger SF, which is when Hive seems to activate join optimization mechanisms.

Fig. 4  CPU usage: bucketing by “Orderkey” (Presto, SF = 100)

Fig. 5  CPU usage: bucketing by “Suppkey” (Presto, Hive; SF = 100)
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Considering the use of the “sorted by” technique, which was the simple bucketing sce-
nario for the denormalized table that obtained the best results, Fig. 7 presents the varia-
tion in CPU usage by the tables with simple bucketing and sorted data in relation to the 
tables without any data organization strategy. The simple bucketing example here used 
was bucketing by Od_Year (sorted by P_Brand) and all results presented here are the 
results for Presto SF = 100 and for the denormalized model.

As can be seen, the queries that recognize the “Od_Year” attribute in the “group by” 
clause (ranging from Q2.1 to Q4.3) are queries that usually require less CPU usage. The 
queries of group 3 (Q3.1 to Q3.4), as in the analysis of processing times, show some 
increases due to their complexity and the filters with large time intervals, which in con-
texts of larger amounts of data require some extra CPU usage. The queries in group 
1 (Q1.1 to Q1.3) also show decreases, because these are queries that benefit from an 
organization of the files per year, due to their filters and temporal conditions.

Complementing the results shown so far, to conclude the analysis of bucketing as a 
data organization strategy, and although the results regarding query processing time did 

Fig. 6  CPU usage: bucketing by “Suppkey” (Hive, SF = 300)

Fig. 7  CPU usage: bucketing by “Od_Year” and Sorted by “P_Brand” (Presto, SF = 100)
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not show any additional benefit, the variation in CPU usage in a multiple bucketing con-
text is also studied and is shown in Fig. 8.

In this case, as with processing time, the disadvantage of this scenario in terms of CPU 
usage is also clear. All the queries require more CPU usage, spending, in average, 40% 
more resources than in the case of a star schema without buckets. Consequently, the 
multiple bucketing strategy seems to have no advantages both in terms of processing 
speed and in terms of the resources needed to do such processing.

Combination of partitioning and bucketing

As the scenarios defined for this section do not always make sense for the two data mod-
els compared in this work, this section will be divided into two subsections. The first 
subsection presents the scenarios combining partitioning with bucketing applied to the 
star schema, while the second subsection presents the scenarios tested for the denor-
malized table.

Fig. 8  CPU usage: multiple bucketing by “Orderdate”, “Orderkey”, “Custkey” and “Suppkey” (Presto, SF = 100)

Table 8  Definition of the number of buckets (Partitioning and Bucketing)

Italic values highlight the approach used for the definition of the number of buckets

Data model Scenario SF Partition size HDFS block (128 MB) At least 1 GB

SS P = Od_Year
B = Orderkey

30 828 MB 828MB

128MB
∼= 6 buckets –

100 2844 MB 2844MB

128MB
∼= 22 buckets 2844MB

1024MB
∼= 3 buckets

300 8670 MB 8670MB

128MB
∼= 68 buckets 8670MB

1024MB
∼= 9 buckets

P = S_Region
B = Suppkey

30 879 MB 879MB

128MB
∼= 7 buckets –

100 3306 MB 3306MB

128MB
∼= 26 buckets 3306MB

1024MB
∼= 3 buckets

300 9830 MB 9830MB

128MB
∼= 77 buckets 9830MB

1024MB
∼= 9 buckets

DT P = Od_Year
B = P_Brand

30 828 MB 828MB

128MB
∼= 6 buckets –

100 2844 MB 2844MB

128MB
∼= 22 buckets 2844MB

1024MB
∼= 3 buckets

P = Od_Year S_Region
B = P_Brand

30 240 MB 240MB

128MB
∼= 2 buckets –

100 1815 MB 1815MB

128MB
∼= 14 buckets 1815MB

1024MB
∼= 2 buckets
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Regarding the definition of the number of buckets, in the previous scenario, it was 
considered the total size of the table without any distribution of the data by partitions, 
for example (“Bucketing” subsection). However, the calculation in this scenario is based 
on the average size of a table partition, since the creation of too many small files within 
each subdirectory needs to be avoided. Table  8 presents the possible approaches for 
defining an appropriate number of buckets. In this data organization strategy, combin-
ing partitioning and bucketing, it was not possible to follow one of the approaches for all 
cases, as it depends on the size of the partitions. The approach used in each case is the 
one highlighted in italics in Table 8.

Star schema

Table  9 presents the results obtained for the scenario of simple partitioning by “Od_
Year”, an attribute that is frequently used in the “where” clause of the SSB queries (Q1.1, 
Q1.3, Q3.1, Q3.2, Q3.3, Q4.2 and Q4.3), and as bucketing an attribute with high cardi-
nality (“Orderkey”).

In this case, the queries presenting a decrease in the processing time are mainly those 
in which the attribute used as partition appears in their filters, consolidating the results 
obtained in the work of [9]. If the attribute used for bucketing is not present in the filters 
of the queries, it is important to verify whether the positive results in this configuration 
are related to the combination of the two techniques or if they are only related with the 
use of partitions. Therefore, the increase in the overall processing time verified in the 
highest SF can be related with the use of bucketing, adding complexity to the queries 
that do not include the bucketing attributes as filtering attributes, withdrawing the pos-
sible positive impact of partitioning for some of the queries.

Table 9  SSB execution times  (in seconds): partitioning by  “Od_Year” and  bucketing 
by “Orderkey” (star schema with partitions and buckets (SS-PB)). Retrieved from [10]

Italic values indicate the fastest processing time by query, workload, tool and data model

SF = 30 SF = 100 SF = 300 SF = 30 SF = 100 SF = 300

HIVE PRESTO

SS SS-PB SS SS-PB SS SS-PB SS SS-PB SS SS-PB SS SS-PB

Q1.1 25 16 31 21 44 26 5 2 13 4 36 7

Q1.2 24 23 29 32 42 42 5 6 13 13 34 44

Q1.3 24 18 29 21 43 25 4 2 13 4 35 8

Q2.1 32 33 47 60 531 682 8 11 19 26 59 98

Q2.2 31 32 46 53 531 677 7 10 18 23 51 76

Q2.3 30 30 44 52 531 670 7 9 17 22 49 74

Q3.1 35 31 59 56 651 667 8 10 29 29 81 100

Q3.2 30 28 45 50 677 634 6 7 17 19 51 63

Q3.3 33 33 219 78 665 648 5 6 15 16 43 53

Q3.4 34 31 222 228 675 674 6 7 15 19 43 59

Q4.1 38 39 86 102 226 253 13 17 43 50 119 164

Q4.2 49 35 70 63 141 91 9 7 26 18 69 48

Q4.3 34 28 54 50 116 77 8 6 23 14 63 38

Total 420 378 982 865 4874 5166 92 100 262 256 733 835

Diff − 10% − 12% 6% 8% − 2% 14%
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The next scenarios explore if there are benefits of using buckets when joining two 
tables and having one of them partitioned. Table 10 presents the results for the scenario 
of simple partitioning by “S_Region”, an usual attribute in the “where” clause of the SSB 
queries (Q2.1, Q2.2, Q2.3, Q3.1, Q4.1 and Q4.2), and as bucketing attribute one with 
high cardinality typically used as the join attribute with the Supplier dimension, the 
“Suppkey”.

Looking into the results of Hive in the SF = 300, the bucketing technique reveals 
a positive impact on the processing times, being the results presented in Fig. 9. The 
subset of queries that do not present a join with the Supplier dimension are Q1.1, 
Q1.2 and Q1.3. By analyzing the results, these are effectively the only ones that do 

Table 10  SSB execution times  (in seconds): partitioning by  “S_Region” and  bucketing 
by “Suppkey”. Retrieved from [10]

Italic values indicate the fastest processing time by query, workload, tool and data model

SF = 30 SF = 100 SF = 300 SF = 30 SF = 100 SF = 300

HIVE PRESTO

SS SS-PB SS SS-PB SS SS-PB SS SS-PB SS SS-PB SS SS-PB

Q1.1 25 22 31 32 44 48 5 6 13 24 36 36

Q1.2 24 23 29 29 42 47 5 6 13 23 34 37

Q1.3 24 23 29 30 43 46 4 6 13 22 35 37

Q2.1 32 25 47 39 531 44 8 4 19 10 59 19

Q2.2 31 21 46 39 531 143 7 4 18 9 51 14

Q2.3 30 21 44 38 531 42 7 4 17 9 49 13

Q3.1 35 23 59 37 651 67 8 4 29 15 81 28

Q3.2 30 29 45 46 677 96 6 7 17 33 51 52

Q3.3 33 33 219 219 665 77 5 7 15 29 43 46

Q3.4 34 32 222 220 675 75 6 7 15 29 43 45

Q4.1 38 30 86 61 226 118 13 7 43 22 119 36

Q4.2 49 34 70 58 141 67 9 5 26 17 69 26

Q4.3 34 34 54 60 116 110 8 11 23 44 63 63

Total 420 349 982 908 4874 982 92 77 262 285 733 452

Diff − 17% − 8% − 80% − 16% 9% − 38%

Fig. 9  SSB execution times with partition = “S_Region” and bucket = ”Suppkey” (Hive, SF = 300) (retrieved 
from [10])
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not present decreases in the processing time. All the other queries present signifi-
cant decreases, ranging from 5 to 92%. Again, Hive seems to activate the bucket map 
join, as it did in a previous scenario (using only buckets, Table  6), showing a clear 
advantage for this SF, presenting, in average, a decrease of 80% of the execution time. 
Although this is a remarkable result for Hive, Presto continues to obtain the fastest 
overall processing time (452 s in SF = 300).

Complementing this last scenario and considering that multiple partitioning previ-
ously showed advantages in data processing, an analysis with the use of multiple par-
titioning (partitioning by “Od_Year” and “S_Region”) combined with bucketing by the 
same attribute (“Suppkey”) was also performed (Table 11).

As can be seen in Table 11, the obtained results are significantly similar to the ones 
presented in the previous scenario. Nevertheless, it is relevant to emphasize that, with 
the use of these two partitioning attributes, only two queries (Q1.2 and Q3.4) did not 
acknowledge the filter, not verifying any decrease (or at least a significant one) in the 
processing time. The decreases achieved in the overall processing time of this scenario 
were relevant, although very similar to the results obtained in the scenario of mul-
tiple partitioning without bucketing, which may question the usefulness of buckets in 
these cases. Besides that, just like in the previous scenario, Hive achieves a significant 
decrease, higher than 80%, in the highest factors, which may be justified, once again, by 
the join optimization mechanisms (bucket map join).

Table 11  SSB execution times  (in seconds): partitioning by  “Od_Year” and  “S_Region” 
and bucketing by “Suppkey”

Italic values indicate the fastest processing time by query, workload, tool and data model

SF = 30 SF = 100 SF = 300 SF = 30 SF = 100 SF = 300

HIVE PRESTO

SS SS-PB SS SS-PB SS SS-PB SS SS-PB SS SS-PB SS SS-PB

Q1.1 25 19 31 22 44 27 5 3 13 5 36 12

Q1.2 24 25 29 32 42 51 5 8 13 21 34 65

Q1.3 24 19 29 22 43 25 4 2 13 5 35 12

Q2.1 32 28 47 43 531 50 8 5 19 12 59 37

Q2.2 31 26 46 41 531 160 7 5 18 10 51 27

Q2.3 30 26 44 41 531 45 7 4 17 9 49 26

Q3.1 35 25 59 36 651 66 8 5 29 14 81 44

Q3.2 30 30 45 50 677 92 6 9 17 31 51 100

Q3.3 33 36 219 78 665 78 5 9 15 25 43 86

Q3.4 34 33 222 226 675 81 6 10 15 30 43 91

Q4.1 38 33 86 70 226 127 13 9 43 24 119 65

Q4.2 49 30 70 57 141 60 9 4 26 13 69 25

Q4.3 34 31 54 47 116 72 8 7 23 21 63 60

Total 420 362 982 765 4874 933 92 81 262 220 733 650

DIF − 14% − 22% − 81% − 12% − 16% − 11%
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Denormalized table

When considering a fully denormalized table, there are no guidelines regarding the way 
bucketing can be defined to influence execution time. Thus, in order to verify if a buck-
eting strategy brings any advantages when considering the attributes in the “group by” 
clause, partitioning by “Od_Year” and bucketing by “P_Brand” was done (Table 12).

In this case, the decreases in processing time are not only due to partitioning, since the 
queries that present the partitioning attribute as a filter are not the only ones that show 
a decrease in the processing time. Queries Q1.1, Q1.2 and Q1.3 show decreases in all 
executions, although these decreases may be related to the low complexity of these que-
ries or to the use of straight temporal filters. This means that they only benefit from the 
partitioning by year and the predicate pushdown.

In this scenario, Q2.2 and Q2.3 present decreases in some of the SFs, maintaining the 
same performance levels in the remaining ones. Analyzing the queries, the “P_Brand” 
attribute is present in the “group by” and “order by” clauses, which may influence these 
decreases. However, Q2.1 also presents this attribute in these clauses and does not verify 
any decrease in the processing time. As these queries present this attribute not only in 
the “group by” and “order by” clauses, but also in the “where” clause, it may happen that 
the files that are bucketed by “P_Brand” can be searched more easily.

In the last scenario presented in this paper, multiple partitioning is combined with 
bucketing by an attribute with high cardinality, namely using partitioning by “Od_Year” 
and “S_Region”, and bucketing by “Suppkey” (Table 13).

The obtained results show an overall increase in efficiency, considering the processing 
time. In this case, two attributes frequently used in the queries (isolated or combined) 

Table 12  SSB execution times  (in seconds): partitioning by  “Od_Year” and  bucketing 
by “P_Brand” (denormalized table with  partitions and  buckets (DT-PB)). Retrieved from 
[10]

Italic values indicate the fastest processing time by query, workload, tool and data model

SF = 30 SF = 100 SF = 30 SF = 100

HIVE PRESTO

DT DT-PB DT DT-PB DT DT-PB DT DT-PB

Q1.1 24 19 29 21 5 2 13 3

Q1.2 24 21 29 22 5 2 14 5

Q1.3 23 20 30 21 5 2 14 4

Q2.1 25 26 36 40 4 5 10 14

Q2.2 36 36 73 68 4 4 10 11

Q2.3 25 23 35 32 4 4 10 9

Q3.1 28 25 40 40 5 5 12 13

Q3.2 28 26 41 39 5 5 12 13

Q3.3 25 22 38 31 4 4 9 10

Q3.4 25 25 38 39 5 4 12 10

Q4.1 27 27 41 43 6 6 14 17

Q4.2 29 22 42 26 6 3 14 5

Q4.3 29 21 42 27 5 3 12 5

Total 349 312 516 449 63 47 155 119

Diff − 10% − 13% − 24% − 23%
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were used to partition the table. Only Q1.2 and Q3.4 do not include any of them in their 
filters. Nevertheless, even in these queries, some scenarios present decreases when using 
this partitioning strategy. These decreases may be related with the predicate pushdown 
technique applied by the two SQL-on-Hadoop engines, meaning that, although they 
do not present the attributes of the partitions in the “where” clause, they have filters by 
attributes hierarchically related to them (“S_Nation” or “YearMonth”, for example), mak-
ing the search faster as only some of the folders should be considered.

Analyzing the obtained results and their implications, it seems that bucketing tech-
niques have no significant impact in reducing processing time, besides the very specific 

Table 13  SSB execution times  (in seconds): partitioning by  “Od_Year” and  “S_Region” 
and bucketing by “Suppkey”. Retrieved from [10]

Italic values indicate the fastest processing time by query, workload, tool and data model

SF = 30 SF = 100 SF = 30 SF = 100

HIVE PRESTO

DT DT-PB DT DT-PB DT DT-PB DT DT-PB

Q1.1 24 19 29 23 5 2 13 5

Q1.2 24 22 29 44 5 3 14 8

Q1.3 23 18 30 25 5 3 14 6

Q2.1 25 20 36 25 4 2 10 6

Q2.2 36 22 73 35 4 2 10 5

Q2.3 25 19 35 24 4 2 10 4

Q3.1 28 19 40 27 5 2 12 6

Q3.2 28 23 41 47 5 3 12 11

Q3.3 25 23 38 45 4 3 9 12

Q3.4 25 25 38 51 5 4 12 13

Q4.1 27 20 41 28 6 3 14 7

Q4.2 29 15 42 22 6 2 14 3

Q4.3 29 21 42 29 5 2 12 5

Total 349 265 516 424 63 33 155 90

Diff − 24% − 18% − 47% − 42%

Fig. 10  CPU usage: multiple partitioning by “Od_Year” and “S_Region” and bucketing by “Suppkey” (Presto; 
SF = 100)



Page 26 of 38Costa et al. J Big Data            (2019) 6:34 

cases already shown in this paper, as the positive results seem to be more related with 
the attributes used in the partitioning strategy rather than the advantages of the bucket-
ing strategy.

CPU usage

To conclude the various performed tests, the variation in CPU usage per query in both 
data models is presented, now integrating the two data organization strategies. Figure 10 
presents this variation for Presto and SF = 100, taking as an example the scenario that 
combines multiple partitioning (“Od_Year” and “S_Region”) with bucketing by “Supp-
key”, since it was the scenario with the best results in terms of processing time.

As can be seen in Fig. 10, the decreases obtained for this SF in both data models are 
similar to the decreases obtained with the multiple partitioning scenario (with the same 
attributes), without using the bucketing strategy. In these results, the queries that pre-
sent the partitioning attributes in the “where” clause (all except Q1.2 and Q3.4) are the 
ones that verified the most significant decreases in CPU usage. This shows that, in con-
texts of smaller data volumes, applying bucketing strategies does not seem to have any 
advantage when compared with the multiple partitioning strategy.

However, in the star schema with Hive and the SF = 300, the highest overall reduc-
tion in processing time was obtained, due to the possible activation of join optimization 
mechanisms, Fig. 11 shows the variation in CPU usage per query, measured with Hive in 
vcores-seconds.1

Considering these values (Fig. 11), it is possible to notice that, in this scenario, there 
are not only significant decreases in processing time, but also in CPU usage. On average, 
there is a decrease of about 65% with the application of this data organization strategy in 
the highest SF, which is when Hive seems to activate the join optimization mechanisms.

Fig. 11  CPU usage: multiple partitioning by “Od_Year” and “S_Region” and bucketing by “Suppkey” (Hive; 
SF = 300)

1  Vcores-seconds = number of vcores (3 per cluster node) * time worked by each vcore, in seconds.
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Synopsis

To summarize the several results presented in this section, this subsection provides an 
overview of the presented scenarios, highlighting if any improvements were achieved, 
either in the processing time or in CPU usage. For all the data organization strategies, 
their impact in the processing time was analyzed. The same is not verified for CPU 
usage as, for some scenarios, CPU usage was not extensively analyzed due to the results 
achieved in the other tested scenarios. Given this context, Table 14 depicts the differ-
ent data organization strategies, the tested data models, the attributes that were used on 
those strategies and the advantages, when verified, in the processing time and/or CPU 
usage. As can be seen, bucketing is the strategy in which the advantages, analyzed from 
the perspective of the decrease in processing time and CPU usage, are more limited and 
restricted to very specific use cases, as explained in more detail in the following section 
of this paper.

Discussion
The purpose of this work was to study the impact of implementing different data organi-
zation strategies in the processing times of Hive-based BDWs. Considering all the tested 
scenarios, the most adequate results for each SF and for each configuration will be pre-
sented throughout the next subsection. Afterwards, in “Guidelines for practitioners” 
subsection, a set of guidelines for practitioners is presented, taking into consideration 
the main insights retrieved from this work.

Main insights

Regarding partitioning strategies, Table 15 summarizes the best overall processing times 
obtained for each tested configuration, by scaling factor. These results are compared 

Table 14  Data organization strategies and their impact on processing time and CPU usage 
(NA: Not Available)

Data organization 
strategy

Data model Attributes Decrease 
in processing 
time

Decrease in CPU usage

Multiple partitioning SS-P
DT-P

“Od_Year”, “S_Region” Yes Yes

SS-P “S_Region”, “S_Nation”, 
“S_City”

Yes NA

Bucketing SS-B
DT-B

“Orderkey” No No

DT-B “Od_Year”, “P_Brand” Yes Yes

SS-B “Suppkey” Yes (Hive)
No (Presto)

No (SF = 100)
Yes (Hive, SF = 300)

SS-B “Orderdate”, “Custkey”, 
“Suppkey”, “Partkey”

No No

Partitioning and bucket-
ing

SS-PB “Od_Year”, “Orderkey” No NA

SS-PB “S_Region”, “Suppkey” Yes NA

SS-PB “Od_Year”, “S_Region”, 
“Suppkey”

Yes Yes

DT-PB “Od_Year”, “P_Brand” Yes NA

DT-PB “Od_Year”, S_Region”, 
“Suppkey”.

Yes Yes
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with the best results obtained when no data organization strategy is applied, present-
ing the difference obtained with the application of multiple partitioning techniques. It 
should be noted that all the results presented in this section correspond to the results 
obtained using Presto, as it was the system with the best processing times in all contexts. 
As Presto targets low-latency query execution, having constantly running daemons on 
each node based on in-memory data processing and avoiding costly coordination over-
heads, its results are significantly superior to Hive’s results, reason why the tables pre-
sented in this section are more focused on Presto’s results. However, the focus is not on 
the results comparison between these two engines, but on the main insights regarding 
different data organization and distribution strategies.

Considering the results obtained in this first scenario, it is possible to conclude that 
partitioning should indeed consider attributes that are often used in the queries’ predi-
cates. Hierarchical partitioning (e.g. spatial partitioning) may also be one of the most 
adequate partitioning strategies to implement, and the results obtained here are aligned 
with the related studies referred throughout this paper. Considering most of the real 
organizational contexts, effectively, it is easy to observe that the queries executed on the 
data imply, in most cases, temporal and geographic filters, so the main guideline is to 
choose a partitioning scheme that includes this type of attributes. In addition, consid-
ering the HDFS performance requirements, an appropriate data organization strategy 
must take into account the size of the files by which the data is distributed. This means 
that, despite the adequate results obtained in this scenario, one must be careful about 
excessive partitioning, as this, in addition to the processing complexity associated with 
the existence of multiple levels of folders, makes the system store less data per folder and 
have several small files that can degrade the performance of the BDW.

Regarding the bucketing strategies, Table 16 summarizes the best overall processing 
times obtained for each tested configuration, by SF. Throughout the tests that were per-
formed using bucketing, it was verified that the definition of buckets depends on the 
type of model applied to the data. The scenario based on the definition of buckets by 

Table 15  Best results by multiple partitioning configuration and by SF

Italic values indicate the fastest processing time by SF, data model and configuration

SF Data model Without data organization 
strategies

Multiple partitioning

Od_Year, S_Region S_Region, 
S_Nation, 
S_City

30 SS 92 s 63 s 70 s

− 32% − 24%

DT 63 s 43 s –

− 32% –

100 SS 262 s 149 s 193 s

− 43% − 26%

DT 155 s 71 s –

− 54% –

300 SS 733 s 399 s –

− 46% –

DT 472 s 299 s –

− 37% –
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attributes with high cardinality was not beneficial in any of the contexts, so it may not be 
considered, in these contexts, an adequate data organization strategy.

Regarding the use of bucketing techniques for star schemas, the inefficiency of the 
application of multiple bucketing was shown, since it is a strategy that is not advanta-
geous in any of the used SQL-on-Hadoop systems. However, in the context of simple 
bucketing, there were scenarios that have shown some advantages, namely with Hive 
and for the larger SF. Thus, the only context in which some advantages were found in 
the definition of buckets is the context of the bucketing of two tables by the same attrib-
ute, the one used to join these tables. This context has seen decreases of around 80% in 
Hive’s query execution times compared to a scenario without any type of strategy, which 
indicates that Hive is an adequate tool to deal with this type of configuration due to its 
inherent optimization features. Regarding Presto’s tests, when some decreases were veri-
fied, most of them were related to another type of strategy (use of the sorting strategy 
by attributes used in the “group by” or “order by” of the queries), and in other cases, 
increases in processing times were observed. Nevertheless, the best results continue to 
be presented in scenarios using Presto, achieving faster processing times than the ones 
obtained with Hive.

For denormalized tables, the only scenarios where bucketing shows some benefits are 
the scenarios in which they are defined by the attributes that appear several times in the 
“group by” clause of the queries, combined with the sorting technique by an attribute 
that is relevant for the executed queries, most of which are frequently used in the “order 
by” clause. Consequently, although in one of the scenarios an attribute with low cardi-
nality (“Od_Year”) was used, since most queries were oriented towards temporal condi-
tions, significant decreases were verified in all the scenarios, pointing that this may be a 
strategy to be considered in contexts where the use of partitions is not intended.

Nevertheless, it is relevant to highlight Hive’s restriction of not allowing changes to 
the number of buckets after the table has been created, a feature that makes difficult 
the refreshment of the data. Thus, whenever there is the need to add new records to the 

Table 16  Best results by bucketing configuration and by SF

Italic values indicate the fastest processing time by SF, data model and configuration

SF Data model Without data 
organization 
strategies

Bucketing

Orderkey Od_Year (sorted 
by P_Brand)

Suppkey Orderdate, 
Custkey, Suppkey, 
Partkey

30 SS 92 s 133 s – 120 s 121 s

44% – 30% 32%

DT 63 s 71 s 41 s – –

14% − 35% – –

100 SS 262 s 305 s – 321 s 305 s

16% – 22% 16%

DT 155 s 178 s 103 s – –

15% − 34% – –

300 SS 733 s – – 768 s 876 s

– – 5% 19%

DT 472 s – – – –

– – – –
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table, and that implies a different number of buckets, a new table must be created with 
a reworked bucketing strategy, if necessary, and load the data from the old table to the 
new one. Consequently, this additional complexity shows another disadvantage of this 
type of data organization strategy. Taking this into consideration, it is possible to realize 
that only in very specific cases may exist some advantage in using buckets, although its 
definition is not a straightforward process.

Concerning the combination of the two data organizations strategies, Table 17 sum-
marizes the best overall processing times obtained for each tested configuration, by 
scaling factor. In most cases, the increase in the queries processing efficiency seems 
to be highly influenced by the benefits of partitioning rather than by the benefits of 
bucketing, since the best results are obtained in the queries that use the partition-
ing attributes as filters. In the tested scenarios, the only case where there are advan-
tages of using partitions and buckets together, not only as result of partitioning, is 
in the star model using Hive and using the joining attribute (between the fact table 
and a dimension table) for bucketing. Nevertheless, even in this case, this is not the 
best obtained processing time, since Hive’s processing times are higher than those 
obtained by Presto, where the results seem to be only influenced by the partitioning 
strategy.

Table 17  Best results by partitioning and bucketing configuration and by SF

Italic values indicate the fastest processing time by SF, data model and configuration

SF Data model Without data 
organization 
strategies

Partitioning (P) and bucketing (B)

P = Od_Year
B = Orderkey

P = S_Region
B = Suppkey

P = Od_Year
B = P_Brand

P = Od_Year, 
S_Region
B = Suppkey

30 SS 92 s 100 s 77 s – 81 s

8% − 16% – − 12%

DT 63 s 46 s – 47 s 33 s

− 26% – − 24% − 47%

100 SS 262 s 256 s 285 s – 220 s

− 2% 9% – − 16%

DT 155 s 129 s – 119 s 90 s

− 17% – − 23% − 42%

300 SS 733 s 835 s 452 s – 650 s

14% − 38% – − 11%

DT 472 s – – – –

– – – –

Table 18  Best configuration and processing time by SF

SF Partitioning Bucketing Partitioning 
and bucketing

Configuration
(best scenario)

SS DT SS DT SS DT

30 41 s Bucketing by “Od_Year” (Sorted by “P_Brand”)

100 71 s Multiple Partitioning by “Od_Year” and “S_Region”

300 299 s Multiple Partitioning by “Od_Year” and “S_Region”
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In conclusion, and to have an overall picture of all the tested scenarios and the 
best obtained results, Table 18 shows the best configuration, highlighting the lowest 
achieved total processing time by SF.

Considering all the results presented above, the advantages associated with the use 
of partitioning techniques were evident, since they cause considerable decreases in 
the time needed for data processing. On the other hand, the use of bucketing tech-
niques falls short of expectations, since the scenarios in which they demonstrated 
benefit for the attributes here studied were rare. Despite the fastest processing time of 
the SF 30, this was the only scenario with benefits of the bucketing strategy. In all the 
other scenarios and scale factors there was no evidence of the advantages of this tech-
nique. Nevertheless, its use in very specific contexts, with an in-depth study of how 
to define them, and even combining with partitioning techniques, can assure some 
advantages in the storage and processing of data.

Table 19  Total query execution time for 30 GB, 100 GB and 300 GB

Data model Attributes SF Tool

Time (s) Increase 
along SF

Hive Presto Hive Presto

SS None 30 420 92

100 982 262 2.34 2.85

300 4874 733 4.96 2.80

SS-P Od_Year + S_Region 30 375 63

100 760 149 2.03 2.37

300 2849 399 3.75 2.68

SS-B Orderdate + Custkey + Suppkey + Partkey 30 420 121

100 1047 305 2.49 2.52

300 5712 876 5.46 2.87

Suppkey 30 404 120

100 676 321 1.67 2.68

300 1803 768 2.67 2.39

SS-PB Od_Year + Orderkey 30 378 100

100 865 256 2.29 2.56

300 5166 835 5.97 3.26

Od_Year + S_Region+ Suppkey 30 362 81

100 765 220 2.11 2.72

300 933 650 1.22 2.95

S_Region + Suppkey 30 349 77

100 908 285 2.60 3.70

300 982 452 1.08 1.59

DT None 30 349 63

100 516 155 1.48 2.46

300 1090 472 2.11 3.05

DT-P Od_Year + S_Region 30 292 43

100 346 71 1.18 1.65

300 602 299 1.74 4.21
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Although it is not the focus of this work, it is important to highlight the perfor-
mance of Presto as a system for querying data, since it presented the best processing 
times in all contexts here studied. However, the potential of Hive is highlighted in two 
bucketing contexts (using bucketing by the attribute used in the join), where Presto 
has showed that it may not recognize or have any kind of optimization mechanism to 
handle this data organization strategy. Still, the overall processing times obtained by 
Presto, even in these scenarios, are considerably lower than the ones of Hive.

To complement the discussion of the results, looking into the perspective of the 
scalability of the tools, the additional time needed when the size of the datasets 
increases in now analyzed. Both Hive and Presto, as processing tools, were designed 
to be scalable, implementing different strategies to achieve that. As can be seen in 
Table  19, from one workload to another, Hive needs between more 1.18  to 2.60× 
extra time to accommodate the increase between 30  GB and 100  GB, while Presto 
needs between 1.65× and 3.70× extra time for the same job, depending on the 
adopted data organization strategy. For the denormalized tables, mainly with parti-
tions, both Hive and Presto demonstrate a significantly adequate scalability.

When the analysis looks into a more severe increase in the dataset size, namely from 
30 GB to 300 GB, Table 20 shows that Presto maintains the increase in the extra time 
between 5.87× and 8.02×, while Hive presents values ranging from 2.06× to 13.67×. 
Taking this into consideration, there are three scenarios that do not seem to have advan-
tages for data processing in Hive, and those are related with the use of star schemas and, 
considering this data modeling approach, the use of bucketing strategies. Besides these 

Table 20  Total query execution time for 30 GB and 300 GB

Data model Attributes SF Tool

Time (s) Increase 
along SF

Hive Presto Hive Presto

SS None 30 420 92

300 4874 733 11.60 7.97

SS-P Od_Year + S_Region 30 375 63

300 2849 399 7.60 6.33

SS-B Orderdate + Custkey + Suppkey + Partkey 30 420 121

300 5712 876 13.60 7.24

Suppkey 30 404 120

300 1803 768 4.46 6.40

SS-PB Od_Year + Orderkey 30 378 100

300 5166 835 13.67 8.35

Od_Year + S_Region+ Suppkey 30 362 81

300 933 650 2.58 8.02

S_Region + Suppkey 30 349 77

300 982 452 2.81 5.87

DT None 30 349 63

300 1090 472 3.12 7.49

DT-P Od_Year + S_Region 30 292 43

300 602 299 2.06 6.95
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Table 21  Role of  the  attributes in  the  data organization strategies and  their impact 
on processing time and CPU usage

NA, not available

Data organization 
strategy

Data model Attributes Decrease 
in processing 
time

Decrease in CPU 
usage

Role 
of the attributes

Multiple partitioning SS-P
DT-P

“Od_Year”
“S_Region”

Yes Yes Attributes are used as 
filters in the “where” 
conditions, and in 
the “group by” and 
“order by” clauses

SS-P “S_Region”
“S_Nation”
“S_City”

Yes NA Attributes are used as 
filters in the “where” 
conditions, and in 
the “group by” and 
“order by” clauses

Bucketing SS-B
DT-B

“Orderkey” No No Attribute not used in 
the “where” condi-
tions nor used for 
“group by” or “order 
by”

DT-B “Od_Year”
“P_Brand”

Yes Yes Attributes are used as 
filters in the “where” 
conditions, and in 
the “group by” and 
“order by” clauses

SS-B “Suppkey” Yes (Hive)
No (Presto)

No (SF = 100)
Yes (Hive, SF = 300)

Attribute not used in 
the “where” condi-
tions nor used for 
“group by” or “order 
by”. Attribute used 
for joining tables

SS-B “Orderdate”
“Custkey”
“Suppkey”
“Partkey”

No No Attributes not used in 
the “where” condi-
tions nor used for 
“group by” or “order 
by”. Attributes used 
for joining tables

Partitioning and 
bucketing

SS-PB “Od_Year”
“Orderkey”

No NA Only “Od_Year” is used 
in the “where” condi-
tions, and in the 
“group by” and “order 
by” clauses

SS-PB “S_Region”
“Suppkey”

Yes NA Only “S_Region” is 
used in the “where” 
conditions. “Sup-
pkey” is used for 
joining tables

SS-PB
DT-PB

“Od_Year”
“S_Region” 
“Suppkey”

Yes Yes “Od_Year” and 
“S_Region” are used 
in the “where” condi-
tions, and “Od_Year” 
is also used in the 
“group by” and “order 
by” clauses.

“Suppkey” is used for 
joining tables in the 
SS-PB scenario

DT-PB “Od_Year” 
“P_Brand”

Yes NA Attributes are used as 
filters in the “where” 
conditions, and in 
the “group by” and 
“order by” clauses
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cases, and once again for denormalized tables, Hive presents a satisfactory behavior in 
terms of scalability.

Guidelines for practitioners

After analyzing all the tested scenarios, it is possible to summarize a set of guidelines 
that can be followed by practitioners when addressing the definition of data organization 
strategies in Hive-based BDWs. Before that, Table 21 shows the role of the several attrib-
utes used throughout the benchmark, pointing if the attributes are used, or not, as filters 
in the “where” conditions, as grouping or sorting attributes in the “group by” and “order 
by” clauses, or as joining attributes.

Considering all the results evaluated in this paper, it is possible to identify some good 
practices for the modelling and organization of data in Hive-based BDWs:

1.	 Generally, use data models based on denormalized tables for better performance;
2.	 Perform a study of the cardinality and distribution of the attributes that integrate the 

dataset, in order to identify the most appropriate attributes for partitioning (attrib-
utes with low cardinality and uniform distribution) and/or for bucketing (attributes 
with high cardinality). For partitioning and bucketing, it is important to recall that:

a.	 Partitions are stored in subdirectories of a table’s directory, performing a hierar-
chical organization of the data, and are used to prune the data that is searched in 
a specific query, influencing the processing time of that query;

b.	 Buckets can be associated to tables or to partitions, being stored in a file within 
the partition or table’s directory, and are used as a technique to cluster large 
datasets;

c.	 The definition of partitions and buckets is constrained by the available data 
like, for instance, the number of different products, customers, or years, as data 
should not be over partitioned. If partitions are relatively small in terms of data 
volume, the cost of searching many directories becomes more expensive than 
simple scanning a file with all the data. In addition, partitions should be similar 
in size to prevent a single long-running operation in one of them. In contexts 
where two or three directories (for partitions) would contain the majority of the 
data and many other directories would contain small data files, the use of buck-
eting would be preferred as different small data files can be clustered in the same 
bucket;

3.	 For the implementation of partitioning techniques:

a.	 Knowing the queries in advance is relevant to partition the tables by the attrib-
utes that are more frequently used in the query filters;

b.	 Pay attention to excessive partitioning, avoiding the creation of a large num-
ber of subdirectories, as already mentioned, as it adds additional overheads on 
HDFS;
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c.	 Give preference to temporal, geographic or departmental partitioning, depend-
ing on the filters needed in the real contexts and how the data is updated in 
those contexts;

4.	 Bucketing techniques alone tend to not improve performance, but, if one finds them 
useful, for the implementation of bucketing techniques consider the following guide-
lines:

a.	 Define a number of buckets that is appropriate for the size of the dataset, in 
order to avoid the creation of several small files;

b.	 Give preference to the attributes that appear frequently in the “group by” or 
“order by” query clauses;

5.	 If processing speed is crucial, it is advisable to use Presto, or other similar interactive 
distributed SQL engine (e.g., Impala), as the querying technology.

Through the experiments, it was also possible to verify that there is a set of optimiza-
tions that can be used, such as:

1.	 Apply to the created tables (without buckets) the “alter table concatenate” function, 
in order to optimize the distribution of the data throughout the several files (trans-
forming several small files into few larger files), optimizing HDFS’ performance;

2.	 Apply to the created tables the “analyze table compute statistics” and “analyze table 
compute statistics for columns” functions, in order to keep Hive’s metadata and sta-
tistics updated, optimizing the execution of the queries;

3.	 In a star schema context, force the use of broadcast joins in Presto (map joins 
in Hive), since the results are better than those obtained with the distributed join 
(default setting in Presto v.0180).

Conclusions
This work presented an evaluation and discussion of the use of several data organization 
strategies in Hive-based BDWs, testing different combinations of partitions and buckets, 
either individually or combining these as different data organization strategies. The SSB, 
both the dataset and the queries, was used to evaluate the performance of a star schema 
and a fully denormalized table, with or without partitions and buckets, using three SFs 
(30, 100 and 300) and two SQL-on-Hadoop systems as query engines (Presto and Hive 
on Tez).

In general, the implementation of data organization strategies, mainly based on parti-
tioning, brings benefits both in terms of storage (better organization and distribution of 
the data) and in terms of query processing (with lower response times). These benefits 
support faster decision-making processes, as well as less use of resources, as shown with 
the decreases in CPU usage, especially for the denormalized tables and with Presto as 
the query engine.
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From all the results and the discussion presented throughout the paper, it is possible 
to infer some good practices for the modelling and organization of the data. First, it is 
important to perform a study of the cardinality and distribution of the attributes that 
integrate the dataset, as well as an analysis of the queries to be executed, in order to 
identify the most appropriate attributes for partitioning and/or bucketing. Then, regard-
ing the partitioning strategies, and knowing the queries beforehand, the partitions 
should be defined with the attributes that frequently appear in the filters applied on the 
data. In addition, an adequate strategy would be to choose temporal, geographical or 
departmental attributes for partitioning, depending on the filters used in real contexts 
and on how the data is updated. Considering the level of partitioning, it is important 
to pay attention to excessive partitioning, avoiding the creation of many subdirectories 
with a high number of small files.

Concerning the use of bucketing, there was no evidence of significant advantages 
when using this strategy. As shown and explained in several scenarios, partitioning alone 
may significantly improve efficiency, since the use of the appropriate attributes enable 
better processing times. In several of the tested scenarios, considerable decreases in que-
ries’ execution time were verified. For bucketing, the scenarios where clear advantages 
emerged from the use of this data organization strategy were limited. Nevertheless, its 
use in very specific contexts, with an in-depth study of how to define them, and always 
combined with partitioning techniques, can bring some advantages in the storage and 
processing of data. Therefore, when considering the implementation of bucketing strate-
gies, the number of buckets must consider the size of the dataset, in order to avoid cre-
ating many small files, and should also consider attributes that appear frequently in the 
“group by” or “order by” of the queries.

Despite not being the focus of this work, it was also possible to conclude that, although 
the implementation of dimensional data models in Big Data Warehousing contexts is 
possible, they do not seem to be the most advantageous design pattern for the decision-
making process, since these models need more processing time and CPU usage in all the 
tested scenarios. Besides that, if processing speed is crucial, aiming to achieve higher 
efficiency, it is advisable to use Presto, or a similar SQL-on-Hadoop technology, as the 
query engine.

Taking into account the results, insights and guidelines presented in this paper, we 
believe that this work provides more clarification to researchers and practitioners regard-
ing the use of certain data modelling strategies, such as partitioning and bucketing tech-
niques, through the several scenarios here depicted. Previously to this work, to the best 
of our knowledge, there was no attempt to solidify a set of general guidelines supported 
by a structured benchmark, such as the guidelines provided in “Guidelines for practition-
ers” subsection. Consequently, to summarize the main insights and guidelines of this work, 
researchers and practitioners should consider the following: (i) denormalized tables tend to 
outperform star schemas; (ii) partitioning performs appropriately when using low cardinal-
ity attributes, while bucketing makes more sense when applied to high cardinality attrib-
utes; (iii) partitioning must be based on the attributes that appear frequently as filters in the 
queries, typically considering temporal, geospatial or departmental attributes, and avoid-
ing over partitioning; (iv) bucketing techniques did not show any significant performance 
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advantages, but there are scenarios in which their use is possible. In these scenarios, prac-
titioners should plan the number of buckets according to the size of the dataset, and they 
should select the attributes that appear frequently in “group by” or “order by” clauses; and, 
(v) the selection of an interactive SQL-on-Hadoop engine is crucial to accomplish certain 
latency requirements, as seen in the scenarios where Presto’s performance was significantly 
superior to Hive’s performance. Considering this, practitioners should be open to perform 
some preliminary tests using several SQL-on-Hadoop engines, before committing entirely 
to a specific technology.

For future work, the study of different approaches for identifying the number of buckets 
for Hive-based BDWs will be considered, as well as testing this data organization strategy in 
other datasets with different data contexts. It would also be interesting to extend the analy-
sis to the real impact of the size of the denormalized tables in contexts of higher data vol-
umes, identifying possible alternative approaches for these cases.

Abbreviations
BDW: Big Data Warehouse; BI&A: Business Intelligence and Analytics; CPU: central processing unit; DT: denormalized 
table; DT-B: denormalized table with buckets; DT-P: denormalized table with partitions; DW: Data Warehouse; HDFS: 
Hadoop Distributed File System; HDP: Hortonworks Data Platform; OLAP: online analytical processing; ORC: optimized 
row columnar; RAM: random access memory; SS: star schema; SS-B: star schema with buckets; SS-P: star schema with 
partitions; SSD: Solid State Drive; SF: scale factor; SSB: star schema benchmark.

Authors’ contributions
EC designed and executed the benchmark, having also reported and analyzed the results. CC contributed to the design 
of the research process, managed the distributed storage and processing infrastructure, and reviewed the work. MYS 
supervised the entire research process, contributing to the design of the research process and review of the work. All 
authors read and approved the final manuscript.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The execution scripts used in this work are openly available on GitHub [8]. Moreover, the original TPC-H data generator 
used in this work can be retrieved from the TPC-H homepage [34].

Funding
This work is supported by COMPETE: POCI-01-0145- FEDER-007043 and FCT—Fundação para a Ciência e Tecnologia 
within the Project Scope: UID/CEC/00319/2013, and by European Structural and Investment Funds in the FEDER com-
ponent, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project no. 
002814; Funding Reference: POCI-01-0247-FEDER-002814].

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 ALGORITMI Research Centre, University of Minho, 4800 058 Guimarães, Portugal. 2 Center for Computer Graphics, 
University of Minho, 4800 058 Guimarães, Portugal. 

Received: 10 January 2019   Accepted: 22 April 2019

References
	1.	 Apache (2014) Apache Hadoop. http://hadoo​p.apach​e.org/.
	2.	 Capriolo E, Wampler D, Rutherglen J. Programming Hive. O’Reilly Media, Inc. 2012.
	3.	 Cassavia N, Dicosta P, Masciari E, Saccà D. Data preparation for tourist Data Big Data Warehousing. In: Proceedings of 3rd 

international conference on data management technologies and applications (DATA). SciTePress, 2014. p. 419–26.
	4.	 Chavalier M, El Malki M, Kopliku A, et al. Document-Oriented Data Warehouses: models and extended cuboids. In: 10th 

international conference on research challenges in information science (RCIS). IEEE, 2016. P. 1–11.

http://hadoop.apache.org/


Page 38 of 38Costa et al. J Big Data            (2019) 6:34 

	5.	 Chevalier M, El Malki M, Kopliku A, et al. Implementation of multidimensional databases in column-oriented NoSQL 
systems. In: East European conference on advances in databases and information systems. 2015. p. 79–91.

	6.	 Costa C, Santos MY. The SusCity big data warehousing approach for smart cities. In: Proceedings of the 21st international 
database engineering & applications symposium. 2017. p. 264–73.

	7.	 Costa C, Santos MY. Evaluating Several Design Patterns and Trends in Big Data Warehousing Systems. In J. Krogstie & 
H. A. Reijers (Eds.), Advanced Information Systems Engineering (Vol. 10816, pp. 459–473). In: Proceedings of the 30th 
international conference on advanced information systems engineering (CAiSE’2018). Cham: Springer International 
Publishing; 2018.

	8.	 Costa E (2018) SSB Scripts. https​://githu​b.com/Eduar​daCos​ta/Scrip​tsSSB​. Accessed 19 Dec 2018.
	9.	 Costa E, Costa C, Santos MY. Efficient Big Data Modelling and Organization for Hadoop Hive-Based Data Warehouses. 

In: Themistocleous M, Morabito V, editors. 14th European, Mediterranean, and Middle Eastern Conference (EMCIS). 
Coimbra: Springer International Publishing; 2017. p. 3–16.

	10.	 Costa E, Costa C, Santos MY (2018) Partitioning and Bucketing in Hive-Based Big Data Warehouses. In: WorldCIST’18 - 
World Conference on Information Systems and Technologies. Springer International Publishing, pp 764–774.

	11.	 De Mauro A, Greco M, Grimaldi M. What is Big Data? A Consensual Definition and a Review of Key Research Topics. In: 
AIP conference proceedings. AIP Publishing; 2015. p. 97–104.

	12.	 Dere J (2017) Apache Hive. https​://cwiki​.apach​e.org/confl​uence​/displ​ay/Hive/Home.
	13.	 Di Tria F, Lefons E, Tangorra F. A framework for evaluating design methodologies for Big Data Warehouses: measurement 

of the design process. Int J Data Warehous Min. 2018;14:15–39. https​://doi.org/10.4018/IJDWM​.20180​10102​.
	14.	 Di Tria F, Lefons E, Tangorra F. Design process for Big Data Warehouses. In: IEEE 2014 International conference on data 

science and advanced analytics (DSAA). 2014. p. 512–18.
	15.	 Du D. Apache Hive Essentials. Packt Publishing Ltd. 2015.
	16.	 Hortonworks I (2017) Hortonworks. https​://horto​nwork​s.com. Accessed 22 Oct 2017.
	17.	 Kimball R, Ross M. The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3 edn. New York: Wiley; 

2013.
	18.	 Krishnan K (2013) Data Warehousing in the Age of Big Data. Elsevier Inc.
	19.	 Kumar AS (2016) Performance analysis of MySQL Partition, Hive Partition-Bucketing and Apache Pig. In: Information 

Processing (IICIP), 2016 1st India International Conference. IEEE, p. 1–6.
	20.	 Martinho B, Santos MY. An architecture for Data Warehousing in Big Data environments. International conference on 

research and practical issues of enterprise information systems. Cham: Springer; 2016. p. 237–50.
	21.	 Mohanty S, Jagadeesh M, Srivatsa H. Big data imperatives: enterprise Big Data Warehouse, BI implementations and 

analytics. New York: Apress; 2013.
	22.	 O’Neil P, O’Neil B, Chen X. The star schema benchmark (SSB). 2007.
	23.	 Philip Chen CL, Zhang CY. Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. 

Inf Sci. 2014;275:314–47. https​://doi.org/10.1016/j.ins.2014.01.015.
	24.	 Ptiček M, Vrdoljak B. Big Data and New Data Warehousing Approaches. In: Proceedings of the 2017 International Confer-

ence on Cloud and Big Data Computing. ACM, 2017. p. 6–10.
	25.	 Russom P. Evolving Data Warehouse Architectures in the Age of Big Data. 2014.
	26.	 Sandoval LJ. Design of business intelligence applications using big data technology. In: Central American and Panama 

Convention (CONCAPAN XXXV), 2015 IEEE Thirty Fifth. Institute of Electrical and Electronics Engineers Inc., 2016. p. 1–6.
	27.	 Santos MY, Costa C (2016a) Data Warehousing in Big Data: from multidimensional to tabular data models. In: C3S2E’16—

Ninth international C* conference on computer science & software engineering. p. 10.
	28.	 Santos MY, Costa C. Data models in NoSQL databases for Big Data contexts. In: Tan Y, Shi Y, editors. International Confer-

ence on Data Mining and Big Data. Cham: Springer International Publishing; 2016. p. 475–85.
	29.	 Santos MY, Costa C, Galvão J, et al. Evaluating SQL-on-Hadoop for Big Data Warehousing on not-so-good hardware. In: 

Proceedings of the 21st international database engineering & applications symposium. ACM, New York, NY, USA. 2017. 
p. 242–52.

	30.	 Shaw S, Vermeulen AF, Gupta A, Kjerrumgaard D. Practical Hive: a guide to Hadoop’s Data Warehouse System. New York: 
Apress; 2016.

	31.	 Thusoo A, Sarma J Sen, Jain N, et al. Hive—a Warehousing solution over a map-reduce framework. In: Proceedings of 
the VLDB endowment. 2009. p. 1626–9.

	32.	 Thusoo A, Sen Sarma J, Jain N, et al. Hive—a Petabyte Scale Data Warehouse using Hadoop. In: 2010 IEEE 26th interna-
tional conference on Data Engineering (ICDE), 2010. p. 996–1005.

	33.	 TPC (2017a) TPC. http://www.tpc.org/tpch/.
	34.	 TPC (2017b) TPC-H—Homepage. http://www.tpc.org/tpch/. Accessed 16 Aug 2017.
	35.	 Yangui R, Nabli A, Gargouri F. Automatic transformation of data warehouse schema to NoSQL data base: compara-

tive study. Procedia Comput Sci. 2016;96:255–64.
	36.	 Zikopoulos P, Eaton C. Understanding Big Data: analytics for enterprise class hadoop and streaming data. 1st ed. 

Delhi: McGraw-Hill Osborne Media; 2011.

https://github.com/EduardaCosta/ScriptsSSB
https://cwiki.apache.org/confluence/display/Hive/Home
https://doi.org/10.4018/IJDWM.2018010102
https://hortonworks.com
https://doi.org/10.1016/j.ins.2014.01.015
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

	Evaluating partitioning and bucketing strategies for Hive-based Big Data Warehousing systems
	Abstract 
	Introduction
	Related work
	Methodsexperimental
	Technological infrastructure
	Dataset and queries
	Test scenarios

	Results
	Multiple partitioning
	Bucketing
	Combination of partitioning and bucketing
	Star schema
	Denormalized table
	CPU usage

	Synopsis

	Discussion
	Main insights
	Guidelines for practitioners

	Conclusions
	Authors’ contributions
	References




