
Gapprox: using Gallup approach
for approximation in Big Data processing
Hossein Ahmadvand*  , Maziar Goudarzi and Fouzhan Foroutan

Introduction
Despite the huge number of researches in Big Data area, approximate computing in
this area still remains a challenge. The approximation is used for reduction of resources
such as time, cost or energy. Applications that analyze the input data, logs and queries to
generate aggregated results or dashboards can benefit from approximation techniques
in Big Data. In these applications, the output is much smaller than the input. This fact
indicates that approximation can be used for increasing the processing performance for
this kind of computation. Data skew causes reduction of performance in approxima-
tion. Data skew has many causes [1–3]. In this paper, we focused on the challenge that
stems from variety. Data variety can be created by aggregating input data from multiple
sources with different statistical distribution and uneven distribution of input data. This
uneven distribution causes the data skew.

There are many approaches that have addressed the sample-based approximation.
In case of lack of resources, approximate computing is a suitable approach for gen-
erating acceptable Quality of Result/Service [4–9]. The approximation can be used in

Abstract 

As Big Data processing often takes a long time and needs a lot of resources, sampling
and approximate computing techniques may be used to generate a desired Quality
of Result. On the other hand, due to not considering data variety, available sample-
based approximation approaches suffer from poor accuracy. Data variety is one of the
key features of Big Data which causes various parts of data to have different impact on
the final result. To address this problem, we develop a data variety aware approxima-
tion approach called Gapprox. Our idea is to use a kind of cluster sampling to improve
the accuracy of estimation. Our approach can decrease the amount of data to be
processed to achieve the desired Quality of Result with acceptable error bound and
confidence interval. We divide the input data into some blocks considering the intra/
inter cluster variance. The size of the block and the sample size are determined in such
a way that by processing small amount of input data, an acceptable confidence inter-
val and error bound is achieved. We compared our work with two well-known state of
the art. The experimental results show that our result surpasses the state of the art and
improve processing time up to 17× compared to ApproxHadoop and 8× compared to
Sapprox when the user can tolerate an error of 5% with 95% confidence.

Keywords:  Data variety, Quality of Result, Approximation, Cluster sampling

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Ahmadvand et al. J Big Data (2019) 6:20
https://doi.org/10.1186/s40537-019-0185-4

*Correspondence:
ahmadvand@ce.sharif.edu
Department of Computer
Engineering, Sharif University
of Technology, Tehran, Iran

http://orcid.org/0000-0003-1121-1914
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0185-4&domain=pdf

Page 2 of 24Ahmadvand et al. J Big Data (2019) 6:20

wide range of applications such as image, audio or video processing, data analytics,
Monte Carlo computation and machine learning processing [10–14].

Unfortunately, some of them do not consider data variety/skew. Some other process
a large number of samples to achieve the desired error bound and confidence interval.

ApproxHadoop [15] is a well-known state of the art of our work. The error bound
and confidence interval of its sampling approach is good when there is no variety in
data. But in the real world and real datasets, a large volume of variety and skew exists.
ApproxHadoop considers a large cluster size and produces very small samples. In the
case of existing data variety in input data, this method may suffer from inefficient
sampling and large variance.

We also have considered another well-known work for our evaluation. In Sapprox
[16], the authors have used the cluster sampling with unequal probability to consider
the distribution of input dataset. Implementation of this approach is not simple and
may cause some inefficiency.

Based on the description presented, we have focused on the weakness of these two
approaches and presented an approach to cover their weakness. Like Approxhadoop
and Sapprox, we also have used cluster sampling for our goal. We select a suitable size
as the block size in a way that inter-block variance decreased and intra-block vari-
ance increased. By obtaining a sample from each block, the error bound is decreased.
By using this approach we can achieve the suitable Quality of Result by processing a
small volume of the input dataset.

In our previous work [17], we have shown that data variety has a great impact on
the performance of progressive processing. In this paper, we present a sample-based
approximation method with high accuracy in the case of data skew/variety. For this
goal, we present Gapprox to increase the accuracy of approximate processing. We
have offered a kind of cluster sampling for increasing performance of sample-based
approximation. As Fig. 1 shows, in our approach, we divide the input data into some
blocks and then divide each block into some same sized frames. We select the block
size in such a way that the inter block variance is increased and intra block vari-
ance is decreased. By this approach, the acceptable Quality of Result is achieved by

Portion1

Portion2

Portion3

Portion n-1

Portion n

Input Data

Frame 1
Frame 2
Frame 3

Frame n-1
Frame m

.

.

.

.

.

.

Fig. 1  Blocks and frames design

Page 3 of 24Ahmadvand et al. J Big Data (2019) 6:20

processing a very small amount of input data. Block and frame design are shown in
Fig. 1.

We show the difference between approaches in Fig. 2. Approxhadoop selects some
blocks and some frames in it as the sample. Sapprox uses sample interval for getting
samples. Our approach divides the input data into some same size blocks and each
block into some same size frames. In each block samples are selected among frames
with certain error bound and confidence interval.

Weaknesses of ApproxHadoop

•	 The authors in ApproxHadoop have not considered the data variety/Skew. They
have evaluated their approach by uniform datasets. In the case of existing an
impressive amount of skew in data, the users get forced to process a large amount
of input data to achieve acceptable Quality of Result.

Weaknesses of Sapprox

•	 In the beginning, the amount of sampled data to achieve acceptable error bound
and the confidence interval is not definite. This weakness forces the user to pro-
cess more data that the needed.

•	 Sapprox is very difficult for implementation in case of NoSQL datasets. In this
kind of datasets determination of sampling interval is very hard for users. This fact
causes inefficiency in case of NoSQL datasets.

Advantages of our Approach

•	 We have considered different skew conditions in Gapprox. In the case of uniform
distribution, a negligible amount of input data must be processed to achieve the
acceptable error bound and confidence interval. In case of uneven distribution,
our approach is able to manage this issue by dividing input data into some blocks

Frame1
Frame2
Frame3

Frame m
Frame1
Frame2
Frame3

Frame m

Frame1
Frame2
Frame3

Frame m

Block1

Block2

Block n

Frame1
Frame2
Frame3

Frame m
Frame1
Frame2
Frame3

Frame m

Frame1
Frame2
Frame3

Frame m

Block1

Block2

Block n

Frame1
Frame2
Frame3

Frame m
Frame1
Frame2
Frame3

Frame m

Frame1
Frame2
Frame3

Frame m

Block1

Block2

Block n

Our Approach ApproxHadoop Sapprox

SI

SI

SI

SI

SI

SI

SI

SI

.

.

.

.

.

.

.

.

.

Fig. 2  Our approach in comparison with other approaches

Page 4 of 24Ahmadvand et al. J Big Data (2019) 6:20

and using sampling with a guarantee. By this technique, we can tolerate the weak-
ness of ApproxHadoop.

•	 Our approach can achieve sampling targets by processing a low amount of data
(less than 1%) in each condition of skew. Our approach can estimate the amount
of data that must be processed before starting the process. Due to the techniques
that we have used, our approach can achieve an acceptable Quality of Result by
processing less data than Sapprox.

•	 Our approach can produce targeted Quality of Result in any condition of data
skew by processing less than 1% of input data. But based on the experimental
results, in case of uneven distribution, a large and undefined amount of data must
be processed in ApproxHadoop.

•	 Our approach is applicable for SQL and NoSQL datasets and efficiently generate
acceptable Quality of Result in case of both.

•	 We have used some techniques and statistical methods to help the user to imple-
ment the approach. We have used Simple Random Sample to determine the pri-
mary condition of data skew. We also divide data into some equal parts and pre-
sent a simple approach to implement, in compare to Sapprox.

We proposed three techniques in our approach

1.	 Defining suitable size for the block. Block size should be defined in a way that the
intra block variance is minimized.

2.	 Input data sampling. Only a subset of input data is processed. We use a sampling
technique with a 95% confidence interval and 5% error bound.

3.	 User-defined approximation. In our work user can decide the level of approximation
which the generated outcome will have.

We evaluate our work by using some well-known datasets. We also used the TPC
Benchmark and Amazon review dataset for our evaluations [18, 19]. We compared our
work with two well-known previous works as the state of the art: ApproxHadoop [15]
and Sapprox [16].

Contributions In this paper, we have the following contributions:

1.	 We proposed a variety/skew aware approach for using an approximation in Big Data
processing. That is practical and easy to use for users.

2.	 We use some statistical theories for sampling with an acceptable confidence interval
and error bound in case of existing skew/variety in data.

3.	 We show how sampling theories can be used to estimate sample size and compute
error bounds for approximations in MapReduce-like systems.

4.	 Via experimental results, we show that our approach can significantly reduce pro-
cessing time compared to our state of the arts.

Organization The rest of the paper is organized as follows: “Related works” section
presents an overview of the state of the arts and previous works including a classifica-
tion of methods and tools. In “Background” section we introduced the background of
our work. “Motivation” section presents the overall motivation of our work. “Methods”

Page 5 of 24Ahmadvand et al. J Big Data (2019) 6:20

section describes the system design and experiments. The experimental result and dis-
cussion is presented in “Results and discussion” section, and finally, “Conclusions and
future work” section extracts the main conclusions of the paper and proposes future
work.

Related works

Approximation Approximate computing is used in large-scale computing in case of lack
of processing resources [4–9]. This kind of processing can be used for a wide range of
application types including data analytics, machine learning, Monte Carlo computa-
tions, and image, audio or video processing [10–14]. The approximation can be used
in case of the lack of resources such as time, cost or energy [9, 15, 20]. In [17] we also
have considered data variety and have the benefit from it to develop efficient progres-
sive processing. The acceptable quality of approximation results is achieved by using our
approach.

The authors in [9] have presented a survey of techniques for approximate comput-
ing. They discussed strategies and approaches for approximation and monitoring out-
put quality. They have considered different processing units (e.g., CPU, GPU and FPGA),
processor components memory techniques and different framework for approximation
computing. The authors in [20] have improved the performance of Big Data processing
by using a kind of MapReduce that supports the early return from a job as it is being
computed. ApproxHadoop [15] is well-known research in Big Data approximate com-
puting. The authors have presented a framework for approximate computing by using
sampling. Their framework has good performance in case of uniform distribution. But
our analysis shows that ApproxHadoop does not have acceptable performance in case
of existing data variety or input data with real distribution. The authors have paid atten-
tion to the weakness of Approxhadoop in [16]. They have considered data skew in their
research. They present an approach with unequal probability sampling. Their solution
has better performance in compare to ApproxHadoop. But this approach also has some
weaknesses about NoSQL datasets and complexity of implementation. The authors have
presented an approximate computing technique in [21] by learning how an approxima-
tion can be applied in code regions. They have used Neural Network techniques to learn
how to reduce energy consumption by replacing the code regions.

We also have presented an approximation framework for Big Data processing. Our
approach is more efficient than ApproxHadoop and more flexible than Sapprox. The
authors in ApproxHadoop do not consider the data skew/variety. The plan that pre-
sented in Sapprox is hard to implement for NoSQL datasets and achieved to the accept-
able Quality of Result by processing more data than Gapprox.

Sample-based approximation approaches Approaches and researches in approximate
query processing are presented in [22]. BlinkDB [10] offers a solution to select samples
for each query column set and uses samples to answer online queries in the distributed
file system. Offline sampling can use preprocessing and a priori knowledge of dataset.
Traditional sampling approach like [10, 23–25], that present uniform-based-sampling
are unreliable in case of data skew. These methods select more tuples for big groups and
enough tuples in rare groups. But in the case of data variety, the size of the sample group
and the values in each sample group may be highly skewed.

Page 6 of 24Ahmadvand et al. J Big Data (2019) 6:20

Agarwal et al. [26], Pol and Jermaine [27], Zeng et al. [28], Zeng et al. [29] used closed-
form estimation and Bootstrap method for providing high confidence interval. They
repaired the results by using resampling. The authors in [30] with the knowledge of data
distributions use error-bounded stratified sampling and can reduce the sample size.
The authors in [31] offer a solution for approximate computing for more kinds of data
besides relational data. Researchers in [32] use online uniform HDFS samples and by
using Bootstrap method incrementally evaluate the accuracy. This method can be used
efficiently for complex queries. But the researchers unlike us did not consider the data
variety and skew. Authors in ApproxHadoop [15] consider the datasets with uniform
distributions. But real datasets are not uniformly distributed. Random sampling in this
kind of datasets generate biased sampling and does not work very well. The authors in
Sapprox [16] have noted the weakness of ApproxHadoop [15] and tried to offer a way to
overcome it. They have used cluster sampling with unequal probability theory. It is very
hard for users to define suitable Sampling Interval for the various condition of skew. Our
approach can achieve acceptable Quality of Result with processing fewer amount data
than Sapprox. A cluster-based sampling approach is presented in [33]. This approach
combines three kinds of sampling: uniform sampler, distinct sampler, and universal sam-
pler. This method uses Horvitz–Thompson (HT) to estimate the exact answer and uses
the central-limit theorem to compute the confidence interval. It also uses “dominance
transitivity” before using the estimator. The authors in [34] have applied sampling to
MapReduce facilitate analysis of various film details, review comments and users profile.

We have also presented a sample based framework for Big Data processing that can be
used in case of data skew/variety. Previous approaches that are presented in this section
do not consider generating acceptable Quality of Result in any condition of data skew
and any types of dataset. In some approaches, we must have some information about
input data distribution. In some other, the authors consider uniform distribution. There
is no sensitivity about NoSQL datasets. So, Gapprox is generally different from previous
approaches.

Distributed approximation systems The authors in [10] present an approximate query
processing system that provides an efficient strategy to get a sample from the dataset.
Sapprox [16] presents a more flexible approach than BlinkDB and efficient than Approx-
Hadoop [15]. We also present an approach that is more efficient than ApproxHadoop
and more flexible than Sapprox. Quickr [33] is also designed presented ad-hoc queries
on big-data clusters like BlinkDB [10], ApproxHadoop and Sapprox. Quickr [33] does
not need to discover all dataset to achieve a certain confidence interval. It has been used
by Microsoft’s search engine, i.e., Bing. Microsoft also develop and use a framework for
progressive analytics “Now!” and use it for Windows Azure [35]. SnappyData [36] is a
Spark-based system for delivering interactive analytics. FluoDB [37] is another Spark-
based approach to support general (online analytical processing) OLAP queries. XDB
[38] is another system that can support online aggregation. This approach support com-
plex queries including join operator. We also have presented an approach that can be
used in any condition of data skew. Our approach can be used in case of uniform or une-
ven distribution. None of the above solutions can perform acceptable Quality of Result
in any condition of skew and input data types. So, our approach is different from them.

Page 7 of 24Ahmadvand et al. J Big Data (2019) 6:20

Variation We present a sample-based approximation in this paper. Our approach
improved the Quality of Result by processing a small amount of input data. The authors in
[39] have shown how approximation techniques can be used to address network and pro-
cessing variations. They have used an approximation to reduce computation requirement
without a reduction in Quality of Result. The authors in [40] investigated the problem of
imbalanced sub-datasets and inefficient sampling on sub-datasets over a Hadoop cluster.
They have mentioned that uneven sub-datasets distribution leads to lower-performance in
parallel data analysis. They have offered a framework to balance workload among compu-
tational nodes. The authors in [41] consider the data skew to reduce the finishing time and
computational resources. They have modeled different degrees of skew in the input data
and provided experimental results under different conditions. The authors in [42] have pre-
sented a framework to increase data-aware scheduling for jobs with combinatorial choices.
They have considered intermediate data transfer for locality and balancing. The authors
in [43] have presented a survey of techniques for approximate computing. They have dis-
cuss different approaches to find program portions that are suitable for approximation and
monitor Quality of Results. The authors in [44] have presented a framework to mitigate the
skew in Big Data processing applications. They have mitigated the skew of two sources: (1)
Skew due to an uneven distribution of input data, and (2) the skew caused by some subset
of data taking longer to process than other. The authors in [45] have surveyed Big Data pro-
cessing platforms. They have divided the Big Data processing platforms into 2 main catego-
ries: (1) Horizontal Scaling that also called Scale out and (2) Vertical scaling that also called
Scale-up. Using more distributed servers is considered in Scale-out strategy. In Scale up
approach, current processing element such as CPU and memory is replaced by more pow-
erful ones. We have also presented an approach to scale up for big data processing in [17]
considering the data variety.

None of the above researches have not yet presented a framework to increase the accu-
racy and reduce the amount of data to be processed to achieve acceptable Quality of Result.
ApproxHadoop and Sapprox are two works that can be compared with our approaches. We
show our work’s advantage in the case of efficiency and flexibility in compared with them.

Background

In this section, we present some tools, topics and statistical methods that will be noted in
this paper.

Spark Apache Spark is an open-source cluster-computing framework [46]. Originally
developed at the University of California, Berkeley’s AMPLab, the Spark codebase was later
donated to the Apache Software Foundation, which has maintained it since then. Spark
provides an interface for programming entire clusters with implicit data parallelism and
fault tolerance.

RDD RDDs are fault-tolerant, parallel data structures that let users explicitly persist
intermediate results in memory, control their partitioning to optimize data placement, and
manipulate them using a rich set of operators [47–49].

We use a command in Scala language for getting suitable size sample from RDDs.
Multi-stage sampling We leverage multi-stage sampling [50] to compute error bounds for

approximate MapReduce applications that compute aggregations (e.g., counting accesses to
Web pages from a log file). The set of supported aggregation functions includes sum, count,

Page 8 of 24Ahmadvand et al. J Big Data (2019) 6:20

average, and ratio. For simplicity, we next discuss two-stage sampling. Depending on the
computation, it may be necessary to use additional sampling stages as discussed at the end
of the section.

Suppose we have T units in N clusters. Each cluster contains Mi units. Suppose further
that each unit j in cluster i has an associated value Vij, and we want to compute the sum of
these values.

To compute an approximate sum, we can create a sample by randomly choosing n clus-
ters, and then randomly choosing mi units from each chosen cluster i. Two-stage sampling
then allows us to estimate the sum from this sample as:

where (su
2) is the inter-cluster variance (computed using the sum and average of the

values associated with units from each cluster in the sample), (si
2) is the intra-cluster

variance for cluster i, and tn−1,1−α/2 is the value of the Student t-distribution with n−1
degrees of freedom at the desired confidence 1−α.

Cochran sampling The Cochran formula allows you to calculate an ideal sample size
given a desired level of precision, desired confidence level, and the estimated propor-
tion of the attribute presented in the population [51]. Cochran’s formula is considered
especially appropriate in situations with large populations. A sample of any given size
provides more information about a smaller population than a larger one, so there’s a
‘correction’ through which the number given by Cochran’s formula can be reduced if the
whole population is relatively small.

Aggregation Applications Many companies are used Aggregation Applications widely
in transaction operations, Business calculations and Analytical computations. An aggre-
gate function is a function that computes multiple values grouped together and forms
final value. In this paper, we present an approach to increase the accuracy of approxima-
tion in aggregation applications. This kind of applications can benefit from approxima-
tion. As a real and concrete example, the popularity of individual Web pages is important
for the Web site operators. They use logs of their Websites for this information. In this
kind of computation, the relative popularity is more important than the exact access.

Motivation

Motivation We consider Data Variety in our work and show the difference of results
when different amount of skew exists. We have used bootstrapping method to gener-
ate 12 GB data without Data Variety and with uniform distribution [52]. We use this
uniform input data for the first experiment. We also have used an input with 12 GB size
for our second experiment that is collected from three sources. We consider IMDB,

(1)τ =
N

n

n�

i=1


Mi

mi

mi�

j=1

vij


± ∈

(2)∈= tn−1,1−α/2

√
Var(τ)

(3)Var(τ) = N (N − n)
S2u
n

+
N

n

n∑

i=1

Mi(Mi −mi)
S2i
nmi

Page 9 of 24Ahmadvand et al. J Big Data (2019) 6:20

Gutenberg, and Quotes and get 4 GB from each of them [53–55]. We show the result of
this experiment in Fig. 3. The vertical axis represents the “amount of data processed “to
meet the sampling requirements, and the horizontal axis represents the “Approaches”.

ApproxHadoop is a well-known state of the art. We study the functionality of Approx-
Hadoop in two conditions: existing and not existing data variety. As discussed before
multiple resources increase data variety and uneven distribution. Figure 3 shows the
amount of data processed to meet the acceptable confidence interval (95%) and error
bound (5%). In case of not existing data variety, ApproxHadoop has acceptable per-
formance and by processing less than 1% of input data the sampling requirement is
achieved. But ApproxHadoop has achieved expected Quality of Result by processing a
large amount of input data as sample. In this case, more than a half of the input data
must be processed. The authors in ApproxHadoop have assumed that input data is uni-
formly distributed. Some reasons such as aggregating data from multiple sources may
cause an impressive amount of variety in most real datasets. We have considered this
fact in our research.

Our approach is a kind of multistage sampling method. Multistage designs are used
in many practical cases [56]. For example in Gallup method, first approximately 300
election districts used in sampling. At the second stage, they select 5 households per
district. We employ the Gallup idea in our work and consider Data Variety in our
two-stage sampling.

Methods
Based on the motivation presented in “Motivation” section, in the case of Data
Variety, previous approaches do not have acceptable performance. So, we offer our
approach and discuss our system design in this section. As Fig. 4 shows, we divide the
input data into some same sized blocks and then divide each block into some same
sized frames. As discussed in “Results and discussion” section, we used multi-stage
sampling in this paper. We consider variance of blocks as inter-block variance (Su)
and variance of frames as intra-block variance (Si).

In our approach, based on formula 3, there are 4 approaches to reduce sample size
for achieving the acceptable result:

3

53

0

10

20

30

40

50

60

Single source Multiple sources

)
%(dessecorP ata

D fo tnuo
m

A

Data sources
Fig. 3  Amount of data processed to meet sampling requirements

Page 10 of 24Ahmadvand et al. J Big Data (2019) 6:20

1.	 Minimizing Su: For minimizing Su, we should consider bigger size as the Block Size.
This decision causes a bigger value for Si.

2.	 Minimizing Si: For minimizing Si, we should consider lower size as the Block Size,
this decision causes bigger value for Su.

3.	 Processing all blocks (n = N): In case of selecting all blocks, the first term of Eq. (3)
will be zero.

4.	 Processing all frames: In case of selecting all frames in selected Blocks, the second
term of Eq. (3) will be zero.

Decision 1 If we select 1 and try to minimize the Su, the Block Size would have big
value and it increases Si. So, based on formula 3, for minimizing the data variance we
should try to select all frames in selected Blocks for processing. Based on the big vol-
ume of Blocks in this approach, processing all frames have great overheads.

Decision 2 If we select 2 and try to minimize the Si the Block Size would have a
small value and increase Su. So, based on formula 3, for minimizing data variance we
should try to select all Blocks for processing. Based on the low volume of frames in
our approach, processing all samples have low overheads.

Determining Frame Size

The frame size should be determined small enough that intraframe has unique char-
acteristics and behavior. Also, the Frame Size should be big enough to be a good rep-
resentation of Block. In this paper, we consider 1 KB as the frame size.

Determining Sample Size

Sample Size We use Cochran Sampling technique for our work. Based on this
approach if we process limited samples, we achieve acceptable error bound and con-
fidence interval. Based on the Frame Size we can consider each frame as one unique
sample.

Cochran Sampling For populations that are large, Cochran yields a representative
sample for proportions.

Value of
Block1

Value of
Block2

Value of
Block3

Value of
Block n-1
Value of
Block n

Input Data

Value of Frame 1
Value of Frame 2
Value of Frame 3

.

.

.

.

.

.

Inter-Block Variance(Su)=Var (Value of Blocks)

Value of Frame n-1
Value of Frame n

Intra-Block Variance(Si)
=Var (Value of Frames)

Fig. 4  Inter/intra variance of blocks

Page 11 of 24Ahmadvand et al. J Big Data (2019) 6:20

Which is valid where n0 is the sample size, Z2 is the abscissa of the normal curve
that cuts off an area at the tails (1 − α equals the desired confidence level, e.g., 95%),
e is the desired level of precision, p is the estimated proportion of an attribute that is
present in the population, and q is 1 − p. The value for Z is found in statistical tables
which contain the area under the normal curve.

Determining Block Size

Problem definition As discussed in previous sections data skew reduces the efficiency of
approximation. We must design an approach to reduce the impact of skew on approxi-
mation efficiency. We must design an approach that can present acceptable performance
in any condition of data skew and in case of SQL and NoSQL data sets. For this goal,
we present 2 algorithms to solve the problem. Algorithm 1 presents our approach for
approximation in case of data skew to minimize the processing time. Algorithm 2 pre-
sents our approach for determining the Suitable block size for approximation.

Notation We use some notation for the presentation of our algorithm. We show this
notation in Table 1.

Problem statement Based on Eqs. 1 to 3, error bound and confidence interval depend
on inter and intra block variance. For reduction of the error bound the block size must
be determined in a way that the amount of sample is reduced.

Problem formulation The objective function, to be minimized, is the total processing
time of blocks and the constraint is the error bound. PT, EB, and PEB presents Process-
ing Time, Error Bound and Preferred Error Bound. Thus, the problem can be formulated
as below:

(4)n0 =
Z2pq

e2

Table 1  Our notations in our algorithm

Symbol Description

BS Block Size

UBS Upper bound of Block Size

LBS Lower bound of Block Size

PT Processing time

PPT Preferred processing time

PT(Bi) Processing time of i-th block

DV Data variety

IDS Input data size

PEB Preferred error bound

EB Error bound

PD Processed data

SBSA Suitable block size for approximation

EVar Expected variance

Varsrs Variance of simple random sample

Page 12 of 24Ahmadvand et al. J Big Data (2019) 6:20

 Subject to:

Equation (5) is the objective function which should be minimized. Equation (6) is the
constraint of our work. Based on the Spark and RDD limitation these constraints exist
in our work. Default RDD size in Spark is 64 MB. We can merge RDDs for generating a
bigger RDD.

Algorithm1. Deision1(skew-aware approximation)

1: Input: DV, IDS

2: output: BS, PT

3: select(SBSA for BS) // Algorithm2

4: estimate Su, Si, PD,PT and EB

5: while (!min(PT) & PEB < EB) // minimize PT and take PEB

6: Select all blocks // Multistage Sampling

7: Random Sampling for intra /blocks(frames) //Multistage Sampling

8: Merge partial results and generate final results // we used Scala commands

9: end while

Lines 1–2 of the algorithm is initializing the variables. Note that DV, IDS, BS and PT
show the Data variety, Input Data Size, Block Size and Processing Time. Line 3 presents
algorithm 2 to select SBSA. Line 4 estimate the Su, Si, PD, PT, and EB.

The loop in lines 5 to 9 shows the multistage sampling from which the Preferred Error
Bound and minimum Processing Time is achieved.

Complexity Analysis The algorithm time complexity is of O (1). Because the algorithm
selects all blocks and sample intra them based on the Cochran method.

Figure 5 shows our approach in general (Algorithm 1). Samples derived from primary
RDDs form new RDDs and intermediate RDDs join each other and make the final RDD.

Simple Random Sample We have used Simple Random Sample to determine the skew
condition. Using a cluster sample generally requires either a larger sample size than a SRS
or using a wider confidence interval. To determine segment size, we have used the design
effect formula [57]. The design effect is used to determine how much larger sample size or
confidence interval need to be. Based on Eq. 7 the design effect increases as cluster sizes
increases, and as interclass correlation increases.

DEFF is design effect, ρ is the intraclass correlation, n is the average size of the cluster.
Based on Eq. 8 the estimated variance decreases when the variance of Simple Random

Sample decreases and the DEFF decreases.

(5)f (x) = Min

n∑

i

PT (Bi)

(6)EB < PEB

(7)DEFF = 1+ ρ(n− 1)

(8)V̂ar
(
τ̂
)
= V̂arsrs

(
τ̂
)
× DEFF

Page 13 of 24Ahmadvand et al. J Big Data (2019) 6:20

We present algorithm 2 to determine the Suitable Block Size for Approximation. We have
used DEFF to estimate the amount of data skew. To overcome this issue, we divide the
Block Size and increase the amount of samples by this approach.

Lines 1–2 of the algorithm is initializing the variables. Note that DV, IDS, and BS show
the Data variety, Input Data Size and Block Size. The loop in Lines 3 to 10 selects SBSA
as BS. Line 4 select all data as Block Size. Line 5 estimates data skew by simple random
sampling. In line 6, 7 and 8 if the variance of SRS is bigger than Expected Variance the
RDDs will be divided.

Complexity Analysis Line 6–9 of the algorithm is a loop procedure and takes O (log2
(n)) time. Where n represents the volume of input data.

Figure 6 shows the overview of algorithm 2. In the case of existing low skew in input
data, the block size can be big. In the case of existing negligible skew in data, the input
data can be on the block. In this case, our algorithm works like ApproxHadoop.

RDD1

.

.

.

RDD2

RDD3

RDD(n-1)

RDDn

SBSA

RDDs Sampled RDDs

.

.

.

Final RDD

Fig. 5  Algorithm 1 overview

Page 14 of 24Ahmadvand et al. J Big Data (2019) 6:20

By using these two algorithms, we take Decision 1 when low skew exists and take
Decision 2 when there is a high skew in data.

Implementation in Spark

We have used commands and abilities of Spark and Scala language to implement our
approach. We get some samples from RDDs as Fig. 7 shows. For this purpose, we con-
sider frames within RDDs. In our approach, the frame is the smallest unit of our sam-
pling. Based on the Cochran sampling technique, when we get a certain number of
frames as a sample, the acceptable confidence interval is achieved. For example in Fig. 7,
we get 384 samples with a volume ratio of 0.0001 (per each sample) of all data. This sam-
ples make a new RDD and will be processed.

Results and discussion
We evaluate our approach using applications from a wide area, multiple applications,
and datasets.

Block 1Input
Data

Block 2

Block 1

Block n

Block 1
Block 2
Block 3

Block n-1

Block 1

Block 2

Block 3

Block m-1

Block m

.

.

.

.

.

.

. . .

Low Skew High Skew

. . .

Fig. 6  Algorithm 2 overview

RDDs
Sample(false,0.0001).take(384)

Sampling Mechanism
Fig. 7  Implementation of our approach in Spark

Page 15 of 24Ahmadvand et al. J Big Data (2019) 6:20

Datasets We evaluated seven benchmarks WordCount, Grep, and AverageLength
from BigDataBench suite [58]. The datasets comprised of 100 GB of data from three
different sources [53–55]. We also used well-known TPC benchmark [18] and Amazon
review for our evaluations [19, 59]. We have used a bootstrapping method for generating
100 GB data as input datasets [52].

Application

•	 WordCount: This application Counts the number of words in the file.
•	 Grep: It searches and counts a pattern in a file.
•	 AverageLength: This application calculates the average length of words in the file.
•	 We also consider AVG for TPC-H datasets and SUM for Amazon datasets.

Methodology

Hardware (Servers) We ran Experiments on 5 machines, Intel Core-i7 4 core CPU at
2.8 GHz with 4 GB of RAM.

Software We have used Spark version 2.0 on Ubuntu12.04 as the framework of experi-
ments. For our experiments.

Experimental results

The following figures presented the impact of Data variety on the volume of data that
must be processed to achieve a 95% confidence interval and 5% error bound. In this
experiment, we consider 0.5 GB for Block size.

In this section, we used two well-known datasets for our evaluations:

•	 Amazon datasets (Mc: Music, Bs: Books, Ms: Movies, Cg: Clothing, PS: Phones), and
•	 TPC-H datasets (M: MAIL, S: SHIP, A: AIR, R: RAIL, T: TRUCK).

Amazon product data contains product reviews and metadata from Amazon, includ-
ing 142.8 million reviews spanning May 1996–July 2014.

(TPC-H) is a decision support benchmark. It consists of a suite of business oriented
ad-hoc queries and concurrent data modifications. The queries and the data populating
the database have been chosen to have broad industry-wide relevance. This benchmark
illustrates decision support systems that examine large volumes of data, execute queries
with a high degree of complexity, and give answers to critical business questions.

We compared our work with other approaches in two factors: the amount of data
processed and the processing time. In Figs. 8, 9, and 10. Vertical axis shows the relative
amount of data to be processed and the horizontal axis presents the datasets. As dis-
cussed in previous sections, our approach can surpass Approxhadoop and Sapprox.
Based on the uneven distribution of real datasets, ApproxHadoop processed a large
amount of data to achieve processing requirements. Sapprox cannot perform efficient
estimation of the amount of data to be processed. So, our approach can surpass other
approaches.

Page 16 of 24Ahmadvand et al. J Big Data (2019) 6:20

39
37

39 40 41

19 18

25
23 22

0.8 1 0.9 0.7 0.9
0
5

10
15
20
25
30
35
40
45
50

S M A R T

D
at

a
R

at
io

(%
)

TPC Datasets

Approxhadoop Sapprox Gapprox

Fig. 8  Amount of data must be processed to achieve the sampling requirements (TPC datasets)

45
41 40 39

41

22
19 18

20 19

0.8 1 0.9 0.75 0.8
0
5

10
15
20
25
30
35
40
45
50

Mc Bs Ms Cg Ps

D
at

a
R

at
io

(%
)

Amazon Datasets

Approxhadoop Sapprox Gapprox

Fig. 9  Amount of data must be processed to achieve the sampling requirements (Amazon datasets)

42

34

40

27

20
22.5

0.9 0.6 0.7
0

5

10

15

20

25

30

35

40

45

50

Wordcount Grep AverageLength

D
at

a
R

at
io

(%
)

NoSQL Datasets

Approxhadoop Sapprox Gapprox

Fig. 10  Amount of data must be processed to achieve the sampling requirements (NoSQL datasets)

Page 17 of 24Ahmadvand et al. J Big Data (2019) 6:20

In Figs. 11, 12, and 13, processing time (in seconds) is presented as the vertical axis
and the horizontal axis shows the datasets. Our approach can reduce the time of pro-
cessing as these figures show.

140.4 140.6 136.5 132

155.8

62.7 61.2
71.25

64.4
72.6

8.4 9 9.09 8.12 9.45

0
20
40
60
80

100
120
140
160
180
200

S M A R T

)s(e
miT

gnissecorp

TPC Datasets

Approxhadoop Sapprox Gapprox

Fig. 11  Processing time for sampling (TPC datasets)

150.75
164 168

136.5 131.2

66
76

86.4

64 64.6

8.8 12 11.7 8.25 8.4

0
20
40
60
80

100
120
140
160
180
200

Mc Bs Ms Cg Ps

)s(e
miT

gnissecorP

Amazon Datasets

Approxhadoop Sapprox Gapprox

Fig. 12  Processing time for sampling (Amazon datasets)

168

102

140

94.5

56
67.5

11.52 8.4 9.1

0
20
40
60
80

100
120
140
160
180
200
220

Wordcount Grep AverageLength

)s(e
miT

gnissecorP

NoSQL Datasets

Approxhadoop Sapprox Gapprox

Fig. 13  Processing time for sampling (NoSQL datasets)

Page 18 of 24Ahmadvand et al. J Big Data (2019) 6:20

Our approach improved the processing time up to 17× and 8× compared to
ApproxHadoop and Sapprox, Respectively. We also reduce the amount of data pro-
cessed to achieve the sampling requirement up to 58× and 32× compared to Approx-
Hadoop and Sapprox. In NoSQL datasets, Sapprox has lower performance and we
achieve up to 9× speed up in compared with it.

Sensitivity analysis

Impact of Block Size on Inter/Intra Block Variance Figures 14 and 15 show the impact of BS
on Inter/Intra block Variance in SQL and NoSQL datasets. Vertical axis presents the vari-
ance (normalized to the 0.5 GB variance) and horizontal axis presents different block size.

1.	 In the case of increasing the Block Size, the intra Block variance is increasing and the
inter-block variance is decreasing.

2.	 In the case of decreasing the Block Size, the inter Block variance is increasing and the
intra-block variance is decreasing.

Based on these observations we decide to select 0.5 GB as Block Size. By this decision,
we are able to achieve desirable confidence interval and error bound.

0

0.5

1

1.5

2

2.5

3

3.5

0.125GB 0.25GB 0.5GB 1GB 2GB 4GB 8GB 16GB 32GB 64GB

)dezila
mro

N(ecnaira
V

WC-Grep-AL applications

AL-Inter AL-Intra Grep-Inter Grep-Intra WC-Inter WC-Intra

Fig. 14  Impact of block size on the intra/inter variance (NoSQL datasets)

0

0.5

1

1.5

2

2.5

3

0.125GB 0.25GB 0.5GB 1GB 2GB 4GB 8GB 16GB 32GB 64GB

)dezila
mro

N(ecnaira
V

TPC and Amazon Dataset

Amazon-Inter Amazon-Intra TPC-Inter TPC-Intra

Fig. 15  Impact of block size on the intra/inter variance (TPC and Amazon datasets)

Page 19 of 24Ahmadvand et al. J Big Data (2019) 6:20

Impact of data skew on volume of sample We discover the impact of data skew on vol-
ume of sampled data. We used a statistical method to model skewed data.

Modeling data skew We have used Zipfian [41, 60], distribution to generate skewed
data. Zipf ’s law states that out of a population on N elements, the frequency of elements
of rank k, f(k; z, N) is:

Following the Zipfian distribution, the frequency of occurrence of an element is
inversely proportional to its rank.

In the current context, let:

1.	 N = total number of input partitions;
2.	 k be their rank; partitions are ranked as per the number of records in the partition

that satisfy the given predicate;
3.	 z be the value of the exponent characterizing the distribution.

We have considered z = 0 for uniform distribution, z = 1 for moderate skew and z = 2
for high skew.

f (k; z,N) =

1

kz∑N
n=1

(
1
nz

)

1.6

15

34

2

11

21

0.05 0.6 0.9
0
5

10
15
20
25
30
35
40
45

Uniform Skew Moderate Skew High Skew

D
at

a
R

at
io

(%
)

Amazon Datasets

Approxhadoop Sapprox Gapprox

Fig. 16  Impact of data variety on the sampling overhead (Amazon datasets)

1.7

20

36

2.3

13

22

0.07 0.8 0.95
0
5

10
15
20
25
30
35
40
45

Uniform Skew Moderate Skew High Skew

D
at

a
R

at
io

(%
)

TPC Datasets

Approxhadoop Sapprox Gapprox

Fig. 17  Impact of data variety on the sampling overhead (TPC datasets)

Page 20 of 24Ahmadvand et al. J Big Data (2019) 6:20

Figures 16, 17 and 18 show the impact of data skew on the amount of data to be
processed to achieve processing requirements. The vertical axis shows the relative
amount of processed data and the horizontal axis shows the datasets. As above fig-
ures present, Sapprox has lower efficiency in case of NoSQL data. The reason for this
is that the determination of Sampling Interval is complex for NoSQL datasets.

Impact of Block Size on Volume of Sample In Fig. 19, we show the effect of block
size on the volume of the sample. The vertical axis shows the volume of sample
and the horizontal axis shows the block size. Aggregating input data from multiple
resources is one of the factors that cause data skew. We have shown it’s effect in pre-
vious sections. Figure 19, shows that in case of aggregating input data from the sin-
gle source, the big block is better than a small block and in case of input data from
multiple sources, the small block size is better than big block sizes. We have used

1.6 2
0.1

15

5

0.6

39

15

0.95 1.7 2
0.07

20

3

0.3

41

20

0.8 1.5
3

0.09

18

7

0.5

39

18

0.88
0

5

10

15

20

25

30

35

40

45

)
%(oita

R ata
D

NoSQL Datasets

WC-Uniform-Approx WC-Uniform-Sapprox WC-Uniform-Gapprox WC-Moderate-Approx
WC-Moderate-Sapprox WC-Moderate-Gapprox WC-High-Approx WC-High-Sapprox
WC-High-Gapprox Gr-Uniform-Approx Gr-Uniform-Sapprox Gr-Uniform-Gapprox
Gr-Moderate-Approx Gr-Moderate-Sapprox Gr-Moderate-Gapprox Gr-High-Approx
Gr-High-Sapprox Gr-High-Gapprox Al-Uniform-Approx AL-Uniform-Sapprox
AL-Uniform-Gapprox AL-Moderate-Approx AL-Moderate-Sapprox AL-Moderate-Gapprox
AL-High-Approx AL-High-Sapprox AL-High-Gapprox

Fig. 18  Impact of data variety on the sampling overhead (NoSQL datasets)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

)
%(elp

maSfo
e

muloV

Block Size(GB)

Uneven Distribution Unifrom Distribution

Fig. 19  Impact of block size on volume of sample

Page 21 of 24Ahmadvand et al. J Big Data (2019) 6:20

Wikipedia for single source and four different sources [53–55] and Wikipedia as mul-
tiple sources. The same behavior is observed for all applications.

Qualitative and quantitative analysis comparisons

In this section, we present a qualitative and quantitative comparison of approaches.
Table 2. Presents the comparisons in summary. More detail descriptions are provided
below in Table 2.

The advantage of Gapprox to ApproxHadoop

•	 Determined sized sample
•	 Considering data variety and skew
•	 Processing lower amount of input data to achieve acceptable confidence interval

and error bound.

The advantage of Gapprox to Sapprox

•	 Processing lower amount of input data to achieve acceptable confidence interval
and error bound.

•	 No need to specify the sampling interval.
•	 Applicable for SQL and NoSQL applications.
•	 More simple than Sapprox for implementation

Our novelties in the presented approach

•	 We offer an approach that has acceptable performance in various conditions of
data variety/skew.

•	 Our approach is simple for users to be implemented. The users can easily divide
the input data into some same size blocks and apply the Gapprox to them.

•	 Our approach has low overhead.
•	 Our approach can be used for SQL and NoSQL simply and presents acceptable

efficiency in any type of data.
•	 We have used abilities in Spark and Scala language to present a practical simple

approach. So, the users can easily implement this approach in Spark.

ApproxHadoop have high performance in case of uniform distribution. But in
case of skewed data does not have acceptable performance. Sapprox has better

Table 2  Qualitative and quantitative analysis comparisons with other methodologies

Amount of data must be processed Amount of data must be
processed prediction

Targeted
applications

Uniform
distribution (%)

Uneven
distribution (%)

Approx. < 1 20–70 No Sql/noSql

Sapprox < 1 5–30 No Sql

Gapprox < 1 < 1 Yes Sql/noSql

Page 22 of 24Ahmadvand et al. J Big Data (2019) 6:20

performance in case of data variety. Our algorithm also can surpass Sapprox in SQL
and NoSQL datasets. Sapprox has another weakness in the case of NoSQL datasets.
In this kind of dataset determining Sample Interval is complex.

Conclusions and future work
In this paper, we offer a solution for reducing processing time in case of existing data variety
in input data. We consider data variety/skew and use multi-stage sampling to discover the
input data. We select fixed block (cluster) and frame size. We use Cochran sampling for
intra block sampling.

Based on the experimental results our approach can surpass other approaches, improve
processing time and reduce the amount of data to be processed to achieve the desired error
bound and confidence interval. Our approach processes a certain amount of input data to
achieve processing requirements. For evaluation, we have used Amazon and TPC datasets
as SQL datasets and some other as NoSQL datasets. Our approach surpasses two other
approaches in SQL and NoSQL datasets. We also have modeled data skew and show that
our approach is more efficient than other approaches in various skew conditions. We have
shown that in uniform data sets large block size and in skewed datasets, small block size is
suitable in case of sampling overheads.

There are some directions for future works. One of them is the key management in
intermediate data to reduce data transportation among the network. In aggregation appli-
cations, the input and intermediate data are converted to a certain value of a key. By inter-
mediate processing and key management, we are able to reduce data transportation.

Abbreviations
Gapprox: using Gallup approach for approximation in Big Data processing; BS: block size; DV: data variety; EB: error
bound; IDS: input data size; UBS: upper bound of block size; LBS: lower bound of block size; PEB: preferred error bound;
PT: processing time; PPT: preferred processing time; PD: processed data; SABA: suitable block size for approximation;
VARSRS: variance of simple random sample.

Authors’ contributions
HA is the primary researcher for this study. His contributions include the original idea, literature review, implementation
and initial drafting of the article. MG guided the initial research concept and played a crucial role in the design of the
analytics approaches presented. FF discussed the results with the primary author to aid writing of the evaluation and
conclusion sections and played an essential role in editing the paper. All authors read and approved the final manuscript.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
BigDataBench: http://prof.ict.ac.cn/.

TPC Benchmark: http://www.tpc.org/infor​matio​n/bench​marks​.asp.
Amazon product data: http://jmcau​ley.ucsd.edu/data/amazo​n/.
IMDB data files: https​://datas​ets.imdbw​s.com/.
Gutenberg datasets: https​://www.guten​berg.org/.
Quotes-dataset: https​://www.kaggl​e.com/akmit​tal/quote​s-datas​et.

Funding
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://prof.ict.ac.cn/
http://www.tpc.org/information/benchmarks.asp
http://jmcauley.ucsd.edu/data/amazon/
https://datasets.imdbws.com/
https://www.gutenberg.org/
https://www.kaggle.com/akmittal/quotes-dataset

Page 23 of 24Ahmadvand et al. J Big Data (2019) 6:20

Received: 26 October 2018 Accepted: 14 February 2019

References
	1.	 Walton CB, Dale AG, Jenevein RM. A taxonomy and performance model of data skew effects in parallel joins. In:

VLDB, vol. 91; 1991.
	2.	 Ananthanarayanan G, Kandula S, Greenberg AG, Stoica I, Lu Y, Saha B, Harris E. Reining in the outliers in map-reduce

clusters using Mantri. In: OSDI’10 Proceedings of the 9th USENIX conference on Operating systems design and
implementation, Vancouver, BC, Canada; 2010.

	3.	 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 1958;51(1):107–13.
	4.	 Ananthanarayanan G, Hung MC, Ren X, Stoica I, Wierman A, Yu M. GRASS: trimming stragglers in approximation. In:

Proceedings of the USENIX symposium on networked systems design and implementation (NSDI); 2014.
	5.	 Baek W, Chilimbi TM. Green: a framework for supporting energy-conscious programming using controlled approxi-

mation. In: Proceedings of the ACM SIGPLAN conference on programming language design and implementation;
2010.

	6.	 Chaudhuri S, Das G, Narasayya V. Optimized stratified sampling for approximate query processing. ACM Trans Data-
base Syst. 2007;32(2):9.

	7.	 Garofalakis MN, Gibbon PB. Approximate query processing: taming the TeraBytes. In: Proceedings of the interna-
tional conference on very large databases (VLDB); 2001.

	8.	 Sampson A, Dietl W, Fortuna E, Gnanapragasam D, Ceze L, Grossman D. EnerJ: approximate data types for safe and
general low-power computation. In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI); 2011.

	9.	 Mittal S. A survey of techniques for approximate computing. ACM Comput Surv. 2016;48:62.
	10.	 Agarwal S, Mozafari B, Panda A, Milner H, Madden S, Stoica I. BlinkDB: queries with bounded errors and bounded

response times on very large data. In: Proceedings of the European conference on computer systems (EuroSys).
2013.

	11.	 Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat Comput.
2000;10(3):197–208.

	12.	 Liu JW, Shih WK, Lin KJ, Bettati R, Chung JY. Imprecise computations. In: Proceedings of the IEEE. 1994.
	13.	 Misailovic S, Roy DM, Rinard MC. Probabilistically accurate program transformations. In: International Static Analysis

Symposium. 2011.
	14.	 Sidiroglou-Douskos S, Misailovic S, Hoffmann H, Rinard M. Managing performance vs. accuracy trade-offs with loop

perforation. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Founda-
tions of software engineering. 2011.

	15.	 Goiri I, Bianchini R, Nagarakatte S, Nguyen TD. Approxhadoop: bringing approximations to mapreduce frameworks.
ACM SIGARCH Comput Arch News. 2015;43:383–97.

	16.	 Zhang X, Wang J, Yin J. Sapprox: enabling efficient and accurate approximations on sub-datasets with distribution-
aware online sampling. Proc VLDB Endowment. 2016;10(3):109–20.

	17.	 Ahmadvand H, Goudarzi M. Using data variety for efficient progressive Big Data processing in warehouse-scale
computers. IEEE Comput Arch Lett. 2017;16(2):166–9.

	18.	 TPC. http://www.tpc.org/defau​lt.asp. Accessed 30 Sept 2018.
	19.	 Amazon product data. http://jmcau​ley.ucsd.edu/data/amazo​n/. Accessed 30 Sept 2018.
	20.	 Condie T, Neil C, Peter A, Joseph MH, Khaled E, Russell S. MapReduce online. In: Nsdi. 2010.
	21.	 St Amant R, Yazdanbakhsh A, Park J, Thwaites B, Esmaeilzadeh H, Hassibi A, Ceze L, Burger D. General-purpose code

acceleration with limited-precision analog computation. In: ISCA ‘14 Proceeding of the 41st annual international
symposium on Computer architecture, Minneapolis, Minnesota, USA. 2014.

	22.	 Li K, Li G. Approximate query processing: what is new and where to go? Data Sci Eng. 2018;3:379.
	23.	 Acharya S, Gibbons PB, Poosala V, Ramaswamy S. The Aqua approximate query answering system. In: SIGMOD ‘99

Proceedings of the 1999 ACM SIGMOD international conference on management of data, Philadelphia, Pennsylva-
nia, USA. 1999.

	24.	 Chaudhuri S, Das G, Narasayya V. A robust, optimization-based approach for approximate answering of aggregate
queries. In: SIGMOD ‘01 proceedings of the 2001 ACM SIGMOD international conference on management of data,
Santa Barbara, California, USA. 2001.

	25.	 Babcock B, Chaudhuri S, Das G. Dynamic sample selection for approximate query processing. In: SIGMOD ‘03 Pro-
ceedings of the 2003 ACM SIGMOD international conference on management of data, San Diego, California. 2003.

	26.	 Agarwal S, Milner H, Kleiner A, Talwalkar A, Jordan M, Madden S, Mozafari B, Stoica I. Knowing when you’re wrong:
building fast and reliable approximate query processing systems. In: SIGMOD ‘14 Proceedings of the 2014 ACM
SIGMOD international conference on management of data, Snowbird, Utah, USA. 2014.

	27.	 Pol A, Jermaine C. Relational confidence bounds are easy with the bootstrap. In: SIGMOD ‘05 Proceedings of the
2005 ACM SIGMOD international conference on management of data, Baltimore, Maryland. 2005.

	28.	 Zeng K, Gao S, Mozafari B, Zaniolo C. The analytical bootstrap: a new method for fast error estimation in approxi-
mate query processing. In: SIGMOD ‘14 Proceedings of the 2014 ACM SIGMOD international conference on man-
agement of data, Snowbird, Utah, USA. 2014.

	29.	 Zeng K, Gao S, Gu J, Mozafari B, Zaniolo C. ABS: a system for scalable approximate queries with accuracy guarantees.
In: SIGMOD ‘14 proceedings of the 2014 ACM SIGMOD international conference on management of data, Snowbird,
Utah, USA. 2014.

	30.	 Yan Y, Chen LJ, Zhang Z. Error-bounded sampling for analytics on big sparse data. Proc VLDB Endowment.
2014;7(13):1508–19.

http://www.tpc.org/default.asp
http://jmcauley.ucsd.edu/data/amazon/

Page 24 of 24Ahmadvand et al. J Big Data (2019) 6:20

	31.	 Wang L, Christensen R, Li F, Yi K. Spatial online sampling and aggregation. Proc VLDB Endowment. 2015;9(3):84–95.
	32.	 Laptev N, Zeng K, Zaniolo C. Early accurate results for advanced analytics on MapReduce. Proc VLDB Endowment.

2012;5(10):1028–39.
	33.	 Kandula S, Shanbhag A, Vitorovic A, Olma M, R. Grandl, Chaudhuri S, Ding B. Quickr: lazily approximating complex

adhoc queries in bigdata clusters. In: Proceedings of the 2016 international conference on management of data.
2016.

	34.	 Yang J, Yecies B. Mining Chinese social media UGC: a big-data framework for analyzing Douban movie reviews. J Big
Data. 2016;3(1):3.

	35.	 Chandramouli B, Jonathan G, Abdul Q. Scalable progressive analytics on big data in the cloud. Proc VLDB Endow-
ment. 2013;6:1726–37.

	36.	 Ramnarayan J, Mozafari B, Wale S, Menon S, Kumar N, Bhanawat H, Chakraborty S, Mahajan Y, Mishra R, Bachhav K.
SnappyData: a hybrid transactional analytical store built on spark. In: SIGMOD ‘16 proceedings of the 2016 interna-
tional conference on management of data, San Francisco, California, USA. 2016.

	37.	 Zeng K, Agarwal S, Dave A, Armbrust M, Stoica I. G-OLA: generalized on-line aggregation for interactive analysis on
Big Data. In: SIGMOD ‘15 proceedings of the 2015 ACM SIGMOD international conference on management of data,
Melbourne, Victoria, Australia. 2015.

	38.	 Li F, Wu B, Yi K, Zhao Z. Wander join and XDB: online aggregation via random walks. ACM SIGMOD Record.
2017;46(1):33–40.

	39.	 Zamani AR, AbdelBaky M, Balouek-Thomert D, Rodero I, Parashar M. Supporting data-driven workflows enabled
by large scale observatories. In: 2017 IEEE 13th international conference on e-science (e-science), Auckland, New
Zealand. 2017.

	40.	 Wang J, Zhang X, Yin J, Wang R, Wu H, Han D. Speed up Big Data analytics by unveiling the storage distribution of
sub-datasets. IEEE Trans Big Data. 2018;4(2):231–44.

	41.	 Grover R, Carey MJ. Extending map-reduce for efficient predicate-based sampling. In: 2012 IEEE 28th international
conference on data engineering, Washington, DC, USA. 2012.

	42.	 Venkataraman S, Panda A, Ananthanarayanan G, Franklin MJ, Stoica I. The power of choice in data-aware cluster
scheduling. In: OSDI. 2014.

	43.	 Kwon Y, Balazinska M, Howe B, Rolia J. A study of skew in mapreduce applications. 2011.
	44.	 Kwon Y, Balazinska M, Howe B, Rolia J. SkewTune: mitigating skew in mapreduce applications. In: SIGMOD ‘12

proceedings of the 2012 ACM SIGMOD international conference on management of data, Scottsdale, Arizona, USA.
2012.

	45.	 Singh D, Reddy CK. A survey on platforms for big data analytics. J Big Data. 2015;2(1):8.
	46.	 Apache Spark. http://spark​.apach​e.org/. Accessed 30 Sept 2018.
	47.	 Resilient Distributed Dataset. https​://jacek​lasko​wski.gitbo​oks.io/maste​ring-apach​e-spark​/spark​-rdd.html. Accessed

30 Sept 2018.
	48.	 What is rdd. https​://datab​ricks​.com/gloss​ary/what-is-rdd. Accessed 30 Sept 2018.
	49.	 Apache Spark-RDD. https​://www.tutor​ialsp​oint.com/apach​e_spark​/apach​e_spark​_rdd.htm. Accessed 30 Sept 2018.
	50.	 Lohr S. Sampling: design and analysis. Scarborough: Nelson Education; 2009.
	51.	 Cochran WG. Sampling techniques. New York: Wiley; 2007.
	52.	 Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical

accuracy. Stat Sci. 1986;1:54.
	53.	 IMDb data files. https​://datas​ets.imdbw​s.com/. Accessed 30 Sept 2018.
	54.	 Project Gutenberg. http://www.guten​berg.org/. Accessed 30 Sept 2018.
	55.	 Quotes-dataset. https​://www.kaggl​e.com/akmit​tal/quote​s-datas​et. Accessed 30 Sept 2018.
	56.	 Multi-Stage Sampling. https​://onlin​ecour​ses.scien​ce.psu.edu/stat5​06/node/44/. Accessed 30 Sept 2018.
	57.	 Kish L. Survey sampling. New York: Wiley; 1965.
	58.	 Wang L, Zhan J, Luo C, Zhu Y, Yang Q, He Y, Gao W, Jia Z, Shi Y, Zhang S, Zheng C. Bigdatabench: a big data bench-

mark suite from internet services. In: IEEE 20th international symposium on high performance computer architec-
ture (HPCA). 2014.

	59.	 Recommender Systems Datasets. https​://csewe​b.ucsd.edu/~jmcau​ley/datas​ets.html. Accessed 30 Sept 2018.
	60.	 Knuth DE. The art of computer programming: volume 3: sorting and searching. Boston: Addison-Wesley; 1973.

http://spark.apache.org/
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd.html
https://databricks.com/glossary/what-is-rdd
https://www.tutorialspoint.com/apache_spark/apache_spark_rdd.htm
https://datasets.imdbws.com/
http://www.gutenberg.org/
https://www.kaggle.com/akmittal/quotes-dataset
https://onlinecourses.science.psu.edu/stat506/node/44/
https://cseweb.ucsd.edu/%7ejmcauley/datasets.html

	Gapprox: using Gallup approach for approximation in Big Data processing
	Abstract
	Introduction
	Related works
	Background
	Motivation

	Methods
	Determining Frame Size
	Determining Sample Size
	Determining Block Size
	Implementation in Spark

	Results and discussion
	Methodology
	Experimental results
	Sensitivity analysis
	Qualitative and quantitative analysis comparisons

	Conclusions and future work
	Authors’ contributions
	References

