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Introduction
Despite the huge number of researches in Big Data area, approximate computing in 
this area still remains a challenge. The approximation is used for reduction of resources 
such as time, cost or energy. Applications that analyze the input data, logs and queries to 
generate aggregated results or dashboards can benefit from approximation techniques 
in Big Data. In these applications, the output is much smaller than the input. This fact 
indicates that approximation can be used for increasing the processing performance for 
this kind of computation. Data skew causes reduction of performance in approxima-
tion. Data skew has many causes [1–3]. In this paper, we focused on the challenge that 
stems from variety. Data variety can be created by aggregating input data from multiple 
sources with different statistical distribution and uneven distribution of input data. This 
uneven distribution causes the data skew.

There are many approaches that have addressed the sample-based approximation. 
In case of lack of resources, approximate computing is a suitable approach for gen-
erating acceptable Quality of Result/Service [4–9]. The approximation can be used in 
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wide range of applications such as image, audio or video processing, data analytics, 
Monte Carlo computation and machine learning processing [10–14].

Unfortunately, some of them do not consider data variety/skew. Some other process 
a large number of samples to achieve the desired error bound and confidence interval.

ApproxHadoop [15] is a well-known state of the art of our work. The error bound 
and confidence interval of its sampling approach is good when there is no variety in 
data. But in the real world and real datasets, a large volume of variety and skew exists. 
ApproxHadoop considers a large cluster size and produces very small samples. In the 
case of existing data variety in input data, this method may suffer from inefficient 
sampling and large variance.

We also have considered another well-known work for our evaluation. In Sapprox 
[16], the authors have used the cluster sampling with unequal probability to consider 
the distribution of input dataset. Implementation of this approach is not simple and 
may cause some inefficiency.

Based on the description presented, we have focused on the weakness of these two 
approaches and presented an approach to cover their weakness. Like Approxhadoop 
and Sapprox, we also have used cluster sampling for our goal. We select a suitable size 
as the block size in a way that inter-block variance decreased and intra-block vari-
ance increased. By obtaining a sample from each block, the error bound is decreased. 
By using this approach we can achieve the suitable Quality of Result by processing a 
small volume of the input dataset.

In our previous work [17], we have shown that data variety has a great impact on 
the performance of progressive processing. In this paper, we present a sample-based 
approximation method with high accuracy in the case of data skew/variety. For this 
goal, we present Gapprox to increase the accuracy of approximate processing. We 
have offered a kind of cluster sampling for increasing performance of sample-based 
approximation. As Fig. 1 shows, in our approach, we divide the input data into some 
blocks and then divide each block into some same sized frames. We select the block 
size in such a way that the inter block variance is increased and intra block vari-
ance is decreased. By this approach, the acceptable Quality of Result is achieved by 
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processing a very small amount of input data. Block and frame design are shown in 
Fig. 1.

We show the difference between approaches in Fig. 2. Approxhadoop selects some 
blocks and some frames in it as the sample. Sapprox uses sample interval for getting 
samples. Our approach divides the input data into some same size blocks and each 
block into some same size frames. In each block samples are selected among frames 
with certain error bound and confidence interval.

Weaknesses of ApproxHadoop

•	 The authors in ApproxHadoop have not considered the data variety/Skew. They 
have evaluated their approach by uniform datasets. In the case of existing an 
impressive amount of skew in data, the users get forced to process a large amount 
of input data to achieve acceptable Quality of Result.

Weaknesses of Sapprox

•	 In the beginning, the amount of sampled data to achieve acceptable error bound 
and the confidence interval is not definite. This weakness forces the user to pro-
cess more data that the needed.

•	 Sapprox is very difficult for implementation in case of NoSQL datasets. In this 
kind of datasets determination of sampling interval is very hard for users. This fact 
causes inefficiency in case of NoSQL datasets.

Advantages of our Approach

•	 We have considered different skew conditions in Gapprox. In the case of uniform 
distribution, a negligible amount of input data must be processed to achieve the 
acceptable error bound and confidence interval. In case of uneven distribution, 
our approach is able to manage this issue by dividing input data into some blocks 
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and using sampling with a guarantee. By this technique, we can tolerate the weak-
ness of ApproxHadoop.

•	 Our approach can achieve sampling targets by processing a low amount of data 
(less than 1%) in each condition of skew. Our approach can estimate the amount 
of data that must be processed before starting the process. Due to the techniques 
that we have used, our approach can achieve an acceptable Quality of Result by 
processing less data than Sapprox.

•	 Our approach can produce targeted Quality of Result in any condition of data 
skew by processing less than 1% of input data. But based on the experimental 
results, in case of uneven distribution, a large and undefined amount of data must 
be processed in ApproxHadoop.

•	 Our approach is applicable for SQL and NoSQL datasets and efficiently generate 
acceptable Quality of Result in case of both.

•	 We have used some techniques and statistical methods to help the user to imple-
ment the approach. We have used Simple Random Sample to determine the pri-
mary condition of data skew. We also divide data into some equal parts and pre-
sent a simple approach to implement, in compare to Sapprox.

We proposed three techniques in our approach

1.	 Defining suitable size for the block. Block size should be defined in a way that the 
intra block variance is minimized.

2.	 Input data sampling. Only a subset of input data is processed. We use a sampling 
technique with a 95% confidence interval and 5% error bound.

3.	 User-defined approximation. In our work user can decide the level of approximation 
which the generated outcome will have.

We evaluate our work by using some well-known datasets. We also used the TPC 
Benchmark and Amazon review dataset for our evaluations [18, 19]. We compared our 
work with two well-known previous works as the state of the art: ApproxHadoop [15] 
and Sapprox [16].

Contributions In this paper, we have the following contributions:

1.	 We proposed a variety/skew aware approach for using an approximation in Big Data 
processing. That is practical and easy to use for users.

2.	 We use some statistical theories for sampling with an acceptable confidence interval 
and error bound in case of existing skew/variety in data.

3.	 We show how sampling theories can be used to estimate sample size and compute 
error bounds for approximations in MapReduce-like systems.

4.	 Via experimental results, we show that our approach can significantly reduce pro-
cessing time compared to our state of the arts.

Organization The rest of the paper is organized as follows: “Related works” section 
presents an overview of the state of the arts and previous works including a classifica-
tion of methods and tools. In “Background” section we introduced the background of 
our work. “Motivation” section presents the overall motivation of our work. “Methods” 
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section describes the system design and experiments. The experimental result and dis-
cussion is presented in “Results and discussion” section, and finally, “Conclusions and 
future work” section extracts the main conclusions of the paper and proposes future 
work.

Related works

Approximation Approximate computing is used in large-scale computing in case of lack 
of processing resources [4–9]. This kind of processing can be used for a wide range of 
application types including data analytics, machine learning, Monte Carlo computa-
tions, and image, audio or video processing [10–14]. The approximation can be used 
in case of the lack of resources such as time, cost or energy [9, 15, 20]. In [17] we also 
have considered data variety and have the benefit from it to develop efficient progres-
sive processing. The acceptable quality of approximation results is achieved by using our 
approach.

The authors in [9] have presented a survey of techniques for approximate comput-
ing. They discussed strategies and approaches for approximation and monitoring out-
put quality. They have considered different processing units (e.g., CPU, GPU and FPGA), 
processor components memory techniques and different framework for approximation 
computing. The authors in [20] have improved the performance of Big Data processing 
by using a kind of MapReduce that supports the early return from a job as it is being 
computed. ApproxHadoop [15] is well-known research in Big Data approximate com-
puting. The authors have presented a framework for approximate computing by using 
sampling. Their framework has good performance in case of uniform distribution. But 
our analysis shows that ApproxHadoop does not have acceptable performance in case 
of existing data variety or input data with real distribution. The authors have paid atten-
tion to the weakness of Approxhadoop in [16]. They have considered data skew in their 
research. They present an approach with unequal probability sampling. Their solution 
has better performance in compare to ApproxHadoop. But this approach also has some 
weaknesses about NoSQL datasets and complexity of implementation. The authors have 
presented an approximate computing technique in [21] by learning how an approxima-
tion can be applied in code regions. They have used Neural Network techniques to learn 
how to reduce energy consumption by replacing the code regions.

We also have presented an approximation framework for Big Data processing. Our 
approach is more efficient than ApproxHadoop and more flexible than Sapprox. The 
authors in ApproxHadoop do not consider the data skew/variety. The plan that pre-
sented in Sapprox is hard to implement for NoSQL datasets and achieved to the accept-
able Quality of Result by processing more data than Gapprox.

Sample-based approximation approaches Approaches and researches in approximate 
query processing are presented in [22]. BlinkDB [10] offers a solution to select samples 
for each query column set and uses samples to answer online queries in the distributed 
file system. Offline sampling can use preprocessing and a priori knowledge of dataset. 
Traditional sampling approach like [10, 23–25], that present uniform-based-sampling 
are unreliable in case of data skew. These methods select more tuples for big groups and 
enough tuples in rare groups. But in the case of data variety, the size of the sample group 
and the values in each sample group may be highly skewed.
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Agarwal et al. [26], Pol and Jermaine [27], Zeng et al. [28], Zeng et al. [29] used closed-
form estimation and Bootstrap method for providing high confidence interval. They 
repaired the results by using resampling. The authors in [30] with the knowledge of data 
distributions use error-bounded stratified sampling and can reduce the sample size. 
The authors in [31] offer a solution for approximate computing for more kinds of data 
besides relational data. Researchers in [32] use online uniform HDFS samples and by 
using Bootstrap method incrementally evaluate the accuracy. This method can be used 
efficiently for complex queries. But the researchers unlike us did not consider the data 
variety and skew. Authors in ApproxHadoop [15] consider the datasets with uniform 
distributions. But real datasets are not uniformly distributed. Random sampling in this 
kind of datasets generate biased sampling and does not work very well. The authors in 
Sapprox [16] have noted the weakness of ApproxHadoop [15] and tried to offer a way to 
overcome it. They have used cluster sampling with unequal probability theory. It is very 
hard for users to define suitable Sampling Interval for the various condition of skew. Our 
approach can achieve acceptable Quality of Result with processing fewer amount data 
than Sapprox. A cluster-based sampling approach is presented in [33]. This approach 
combines three kinds of sampling: uniform sampler, distinct sampler, and universal sam-
pler. This method uses Horvitz–Thompson (HT) to estimate the exact answer and uses 
the central-limit theorem to compute the confidence interval. It also uses “dominance 
transitivity” before using the estimator. The authors in [34] have applied sampling to 
MapReduce facilitate analysis of various film details, review comments and users profile.

We have also presented a sample based framework for Big Data processing that can be 
used in case of data skew/variety. Previous approaches that are presented in this section 
do not consider generating acceptable Quality of Result in any condition of data skew 
and any types of dataset. In some approaches, we must have some information about 
input data distribution. In some other, the authors consider uniform distribution. There 
is no sensitivity about NoSQL datasets. So, Gapprox is generally different from previous 
approaches.

Distributed approximation systems The authors in [10] present an approximate query 
processing system that provides an efficient strategy to get a sample from the dataset. 
Sapprox [16] presents a more flexible approach than BlinkDB and efficient than Approx-
Hadoop [15]. We also present an approach that is more efficient than ApproxHadoop 
and more flexible than Sapprox. Quickr [33] is also designed presented ad-hoc queries 
on big-data clusters like BlinkDB [10], ApproxHadoop and Sapprox. Quickr [33] does 
not need to discover all dataset to achieve a certain confidence interval. It has been used 
by Microsoft’s search engine, i.e., Bing. Microsoft also develop and use a framework for 
progressive analytics “Now!” and use it for Windows Azure [35]. SnappyData [36] is a 
Spark-based system for delivering interactive analytics. FluoDB [37] is another Spark-
based approach to support general (online analytical processing) OLAP queries. XDB 
[38] is another system that can support online aggregation. This approach support com-
plex queries including join operator. We also have presented an approach that can be 
used in any condition of data skew. Our approach can be used in case of uniform or une-
ven distribution. None of the above solutions can perform acceptable Quality of Result 
in any condition of skew and input data types. So, our approach is different from them.
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Variation We present a sample-based approximation in this paper. Our approach 
improved the Quality of Result by processing a small amount of input data. The authors in 
[39] have shown how approximation techniques can be used to address network and pro-
cessing variations. They have used an approximation to reduce computation requirement 
without a reduction in Quality of Result. The authors in [40] investigated the problem of 
imbalanced sub-datasets and inefficient sampling on sub-datasets over a Hadoop cluster. 
They have mentioned that uneven sub-datasets distribution leads to lower-performance in 
parallel data analysis. They have offered a framework to balance workload among compu-
tational nodes. The authors in [41] consider the data skew to reduce the finishing time and 
computational resources. They have modeled different degrees of skew in the input data 
and provided experimental results under different conditions. The authors in [42] have pre-
sented a framework to increase data-aware scheduling for jobs with combinatorial choices. 
They have considered intermediate data transfer for locality and balancing. The authors 
in [43] have presented a survey of techniques for approximate computing. They have dis-
cuss different approaches to find program portions that are suitable for approximation and 
monitor Quality of Results. The authors in [44] have presented a framework to mitigate the 
skew in Big Data processing applications. They have mitigated the skew of two sources: (1) 
Skew due to an uneven distribution of input data, and (2) the skew caused by some subset 
of data taking longer to process than other. The authors in [45] have surveyed Big Data pro-
cessing platforms. They have divided the Big Data processing platforms into 2 main catego-
ries: (1) Horizontal Scaling that also called Scale out and (2) Vertical scaling that also called 
Scale-up. Using more distributed servers is considered in Scale-out strategy. In Scale up 
approach, current processing element such as CPU and memory is replaced by more pow-
erful ones. We have also presented an approach to scale up for big data processing in [17] 
considering the data variety.

None of the above researches have not yet presented a framework to increase the accu-
racy and reduce the amount of data to be processed to achieve acceptable Quality of Result. 
ApproxHadoop and Sapprox are two works that can be compared with our approaches. We 
show our work’s advantage in the case of efficiency and flexibility in compared with them.

Background

In this section, we present some tools, topics and statistical methods that will be noted in 
this paper.

Spark Apache Spark is an open-source cluster-computing framework [46]. Originally 
developed at the University of California, Berkeley’s AMPLab, the Spark codebase was later 
donated to the Apache Software Foundation, which has maintained it since then. Spark 
provides an interface for programming entire clusters with implicit data parallelism and 
fault tolerance.

RDD RDDs are fault-tolerant, parallel data structures that let users explicitly persist 
intermediate results in memory, control their partitioning to optimize data placement, and 
manipulate them using a rich set of operators [47–49].

We use a command in Scala language for getting suitable size sample from RDDs.
Multi-stage sampling We leverage multi-stage sampling [50] to compute error bounds for 

approximate MapReduce applications that compute aggregations (e.g., counting accesses to 
Web pages from a log file). The set of supported aggregation functions includes sum, count, 
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average, and ratio. For simplicity, we next discuss two-stage sampling. Depending on the 
computation, it may be necessary to use additional sampling stages as discussed at the end 
of the section.

Suppose we have T units in N clusters. Each cluster contains Mi units. Suppose further 
that each unit j in cluster i has an associated value Vij, and we want to compute the sum of 
these values.

To compute an approximate sum, we can create a sample by randomly choosing n clus-
ters, and then randomly choosing mi units from each chosen cluster i. Two-stage sampling 
then allows us to estimate the sum from this sample as:

where (su
2) is the inter-cluster variance (computed using the sum and average of the 

values associated with units from each cluster in the sample), (si
2) is the intra-cluster 

variance for cluster i, and tn−1,1−α/2 is the value of the Student t-distribution with n−1 
degrees of freedom at the desired confidence 1−α.

Cochran sampling The Cochran formula allows you to calculate an ideal sample size 
given a desired level of precision, desired confidence level, and the estimated propor-
tion of the attribute presented in the population [51]. Cochran’s formula is considered 
especially appropriate in  situations with large populations. A sample of any given size 
provides more information about a smaller population than a larger one, so there’s a 
‘correction’ through which the number given by Cochran’s formula can be reduced if the 
whole population is relatively small.

Aggregation Applications Many companies are used Aggregation Applications widely 
in transaction operations, Business calculations and Analytical computations. An aggre-
gate function is a function that computes multiple values grouped together and forms 
final value. In this paper, we present an approach to increase the accuracy of approxima-
tion in aggregation applications. This kind of applications can benefit from approxima-
tion. As a real and concrete example, the popularity of individual Web pages is important 
for the Web site operators. They use logs of their Websites for this information. In this 
kind of computation, the relative popularity is more important than the exact access.

Motivation

Motivation We consider Data Variety in our work and show the difference of results 
when different amount of skew exists. We have used bootstrapping method to gener-
ate 12  GB data without Data Variety and with uniform distribution [52]. We use this 
uniform input data for the first experiment. We also have used an input with 12 GB size 
for our second experiment that is collected from three sources. We consider IMDB, 
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Gutenberg, and Quotes and get 4 GB from each of them [53–55]. We show the result of 
this experiment in Fig. 3. The vertical axis represents the “amount of data processed “to 
meet the sampling requirements, and the horizontal axis represents the “Approaches”.

ApproxHadoop is a well-known state of the art. We study the functionality of Approx-
Hadoop in two conditions: existing and not existing data variety. As discussed before 
multiple resources increase data variety and uneven distribution. Figure  3 shows the 
amount of data processed to meet the acceptable confidence interval (95%) and error 
bound (5%). In case of not existing data variety, ApproxHadoop has acceptable per-
formance and by processing less than 1% of input data the sampling requirement is 
achieved. But ApproxHadoop has achieved expected Quality of Result by processing a 
large amount of input data as sample. In this case, more than a half of the input data 
must be processed. The authors in ApproxHadoop have assumed that input data is uni-
formly distributed. Some reasons such as aggregating data from multiple sources may 
cause an impressive amount of variety in most real datasets. We have considered this 
fact in our research.

Our approach is a kind of multistage sampling method. Multistage designs are used 
in many practical cases [56]. For example in Gallup method, first approximately 300 
election districts used in sampling. At the second stage, they select 5 households per 
district. We employ the Gallup idea in our work and consider Data Variety in our 
two-stage sampling.

Methods
Based on the motivation presented in “Motivation” section, in the case of Data 
Variety, previous approaches do not have acceptable performance. So, we offer our 
approach and discuss our system design in this section. As Fig. 4 shows, we divide the 
input data into some same sized blocks and then divide each block into some same 
sized frames. As discussed in “Results and discussion” section, we used multi-stage 
sampling in this paper. We consider variance of blocks as inter-block variance (Su) 
and variance of frames as intra-block variance (Si).

In our approach, based on formula 3, there are 4 approaches to reduce sample size 
for achieving the acceptable result:
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1.	 Minimizing Su: For minimizing Su, we should consider bigger size as the Block Size. 
This decision causes a bigger value for Si.

2.	 Minimizing Si: For minimizing Si, we should consider lower size as the Block Size, 
this decision causes bigger value for Su.

3.	 Processing all blocks (n = N): In case of selecting all blocks, the first term of Eq. (3) 
will be zero.

4.	 Processing all frames: In case of selecting all frames in selected Blocks, the second 
term of Eq. (3) will be zero.

Decision 1 If we select 1 and try to minimize the Su, the Block Size would have big 
value and it increases Si. So, based on formula 3, for minimizing the data variance we 
should try to select all frames in selected Blocks for processing. Based on the big vol-
ume of Blocks in this approach, processing all frames have great overheads.

Decision 2 If we select 2 and try to minimize the Si the Block Size would have a 
small value and increase Su. So, based on formula 3, for minimizing data variance we 
should try to select all Blocks for processing. Based on the low volume of frames in 
our approach, processing all samples have low overheads.

Determining Frame Size

The frame size should be determined small enough that intraframe has unique char-
acteristics and behavior. Also, the Frame Size should be big enough to be a good rep-
resentation of Block. In this paper, we consider 1 KB as the frame size.

Determining Sample Size

Sample Size We use Cochran Sampling technique for our work. Based on this 
approach if we process limited samples, we achieve acceptable error bound and con-
fidence interval. Based on the Frame Size we can consider each frame as one unique 
sample.

Cochran Sampling For populations that are large, Cochran yields a representative 
sample for proportions.
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Which is valid where n0 is the sample size, Z2 is the abscissa of the normal curve 
that cuts off an area at the tails (1 − α equals the desired confidence level, e.g., 95%), 
e is the desired level of precision, p is the estimated proportion of an attribute that is 
present in the population, and q is 1 − p. The value for Z is found in statistical tables 
which contain the area under the normal curve.

Determining Block Size

Problem definition As discussed in previous sections data skew reduces the efficiency of 
approximation. We must design an approach to reduce the impact of skew on approxi-
mation efficiency. We must design an approach that can present acceptable performance 
in any condition of data skew and in case of SQL and NoSQL data sets. For this goal, 
we present 2 algorithms to solve the problem. Algorithm 1 presents our approach for 
approximation in case of data skew to minimize the processing time. Algorithm 2 pre-
sents our approach for determining the Suitable block size for approximation.

Notation We use some notation for the presentation of our algorithm. We show this 
notation in Table 1.

Problem statement Based on Eqs. 1 to 3, error bound and confidence interval depend 
on inter and intra block variance. For reduction of the error bound the block size must 
be determined in a way that the amount of sample is reduced.

Problem formulation The objective function, to be minimized, is the total processing 
time of blocks and the constraint is the error bound. PT, EB, and PEB presents Process-
ing Time, Error Bound and Preferred Error Bound. Thus, the problem can be formulated 
as below: 

(4)n0 =
Z2pq

e2

Table 1  Our notations in our algorithm

Symbol Description

BS Block Size

UBS Upper bound of Block Size

LBS Lower bound of Block Size

PT Processing time

PPT Preferred processing time

PT(Bi) Processing time of i-th block

DV Data variety

IDS Input data size

PEB Preferred error bound

EB Error bound

PD Processed data

SBSA Suitable block size for approximation

EVar Expected variance

Varsrs Variance of simple random sample
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 Subject to:

Equation (5) is the objective function which should be minimized. Equation (6) is the 
constraint of our work. Based on the Spark and RDD limitation these constraints exist 
in our work. Default RDD size in Spark is 64 MB. We can merge RDDs for generating a 
bigger RDD.

Algorithm1. Deision1(skew-aware approximation)

1: Input: DV, IDS

2: output: BS, PT

3:   select(SBSA for BS) // Algorithm2

4:  estimate Su, Si, PD,PT and EB

5:  while (!min(PT) & PEB < EB) // minimize PT and take PEB

6:          Select all blocks // Multistage Sampling

7:        Random Sampling for intra /blocks(frames) //Multistage Sampling

8:      Merge partial results and generate final results     // we used Scala commands 

9: end while

Lines 1–2 of the algorithm is initializing the variables. Note that DV, IDS, BS and PT 
show the Data variety, Input Data Size, Block Size and Processing Time. Line 3 presents 
algorithm 2 to select SBSA. Line 4 estimate the Su, Si, PD, PT, and EB.

The loop in lines 5 to 9 shows the multistage sampling from which the Preferred Error 
Bound and minimum Processing Time is achieved.

Complexity Analysis The algorithm time complexity is of O (1). Because the algorithm 
selects all blocks and sample intra them based on the Cochran method.

Figure  5 shows our approach in general (Algorithm  1). Samples derived from primary 
RDDs form new RDDs and intermediate RDDs join each other and make the final RDD.

Simple Random Sample We have used Simple Random Sample to determine the skew 
condition. Using a cluster sample generally requires either a larger sample size than a SRS 
or using a wider confidence interval. To determine segment size, we have used the design 
effect formula [57]. The design effect is used to determine how much larger sample size or 
confidence interval need to be. Based on Eq. 7 the design effect increases as cluster sizes 
increases, and as interclass correlation increases.

DEFF is design effect, ρ is the intraclass correlation, n is the average size of the cluster.
Based on Eq. 8 the estimated variance decreases when the variance of Simple Random 

Sample decreases and the DEFF decreases.

(5)f (x) = Min

n∑

i

PT (Bi)

(6)EB < PEB

(7)DEFF = 1+ ρ(n− 1)

(8)V̂ar
(
τ̂
)
= V̂arsrs

(
τ̂
)
× DEFF
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We present algorithm 2 to determine the Suitable Block Size for Approximation. We have 
used DEFF to estimate the amount of data skew. To overcome this issue, we divide the 
Block Size and increase the amount of samples by this approach.

Lines 1–2 of the algorithm is initializing the variables. Note that DV, IDS, and BS show 
the Data variety, Input Data Size and Block Size. The loop in Lines 3 to 10 selects SBSA 
as BS. Line 4 select all data as Block Size. Line 5 estimates data skew by simple random 
sampling. In line 6, 7 and 8 if the variance of SRS is bigger than Expected Variance the 
RDDs will be divided.

Complexity Analysis Line 6–9 of the algorithm is a loop procedure and takes O (log2 
(n)) time. Where n represents the volume of input data.

Figure 6 shows the overview of algorithm 2. In the case of existing low skew in input 
data, the block size can be big. In the case of existing negligible skew in data, the input 
data can be on the block. In this case, our algorithm works like ApproxHadoop.

RDD1

.

.

.

RDD2

RDD3

RDD(n-1)

RDDn

SBSA

RDDs Sampled RDDs

.

.

.

Final RDD

Fig. 5  Algorithm 1 overview
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By using these two algorithms, we take Decision 1 when low skew exists and take 
Decision 2 when there is a high skew in data.

Implementation in Spark

We have used commands and abilities of Spark and Scala language to implement our 
approach. We get some samples from RDDs as Fig. 7 shows. For this purpose, we con-
sider frames within RDDs. In our approach, the frame is the smallest unit of our sam-
pling. Based on the Cochran sampling technique, when we get a certain number of 
frames as a sample, the acceptable confidence interval is achieved. For example in Fig. 7, 
we get 384 samples with a volume ratio of 0.0001 (per each sample) of all data. This sam-
ples make a new RDD and will be processed.

Results and discussion
We evaluate our approach using applications from a wide area, multiple applications, 
and datasets.

Block 1Input 
Data

Block 2

Block 1

Block n

Block 1
Block 2
Block 3

Block n-1

Block 1

Block 2

Block 3

Block m-1

Block m

.

.

.

.

.

.

. . .

Low Skew High Skew

. . .

Fig. 6  Algorithm 2 overview

RDDs
Sample(false,0.0001).take(384)

Sampling Mechanism
Fig. 7  Implementation of our approach in Spark
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Datasets We evaluated seven benchmarks WordCount, Grep, and AverageLength 
from BigDataBench suite [58]. The datasets comprised of 100  GB of data from three 
different sources [53–55]. We also used well-known TPC benchmark [18] and Amazon 
review for our evaluations [19, 59]. We have used a bootstrapping method for generating 
100 GB data as input datasets [52].

Application

•	 WordCount: This application Counts the number of words in the file.
•	 Grep: It searches and counts a pattern in a file.
•	 AverageLength: This application calculates the average length of words in the file.
•	 We also consider AVG for TPC-H datasets and SUM for Amazon datasets.

Methodology

Hardware (Servers) We ran Experiments on 5 machines, Intel Core-i7 4 core CPU at 
2.8 GHz with 4 GB of RAM.

Software We have used Spark version 2.0 on Ubuntu12.04 as the framework of experi-
ments. For our experiments.

Experimental results

The following figures presented the impact of Data variety on the volume of data that 
must be processed to achieve a 95% confidence interval and 5% error bound. In this 
experiment, we consider 0.5 GB for Block size.

In this section, we used two well-known datasets for our evaluations:

•	 Amazon datasets (Mc: Music, Bs: Books, Ms: Movies, Cg: Clothing, PS: Phones), and
•	 TPC-H datasets (M: MAIL, S: SHIP, A: AIR, R: RAIL, T: TRUCK).

Amazon product data contains product reviews and metadata from Amazon, includ-
ing 142.8 million reviews spanning May 1996–July 2014.

(TPC-H) is a decision support benchmark. It consists of a suite of business oriented 
ad-hoc queries and concurrent data modifications. The queries and the data populating 
the database have been chosen to have broad industry-wide relevance. This benchmark 
illustrates decision support systems that examine large volumes of data, execute queries 
with a high degree of complexity, and give answers to critical business questions.

We compared our work with other approaches in two factors: the amount of data 
processed and the processing time. In Figs. 8, 9, and 10. Vertical axis shows the relative 
amount of data to be processed and the horizontal axis presents the datasets. As dis-
cussed in previous sections, our approach can surpass Approxhadoop and Sapprox. 
Based on the uneven distribution of real datasets, ApproxHadoop processed a large 
amount of data to achieve processing requirements. Sapprox cannot perform efficient 
estimation of the amount of data to be processed. So, our approach can surpass other 
approaches.  
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In Figs. 11, 12, and 13, processing time (in seconds) is presented as the vertical axis 
and the horizontal axis shows the datasets. Our approach can reduce the time of pro-
cessing as these figures show.
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Fig. 11  Processing time for sampling (TPC datasets)
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Our approach improved the processing time up to 17× and 8× compared to 
ApproxHadoop and Sapprox, Respectively. We also reduce the amount of data pro-
cessed to achieve the sampling requirement up to 58× and 32× compared to Approx-
Hadoop and Sapprox. In NoSQL datasets, Sapprox has lower performance and we 
achieve up to 9× speed up in compared with it.

Sensitivity analysis

Impact of Block Size on Inter/Intra Block Variance Figures 14 and 15 show the impact of BS 
on Inter/Intra block Variance in SQL and NoSQL datasets. Vertical axis presents the vari-
ance (normalized to the 0.5 GB variance) and horizontal axis presents different block size.

1.	 In the case of increasing the Block Size, the intra Block variance is increasing and the 
inter-block variance is decreasing.

2.	 In the case of decreasing the Block Size, the inter Block variance is increasing and the 
intra-block variance is decreasing.

Based on these observations we decide to select 0.5 GB as Block Size. By this decision, 
we are able to achieve desirable confidence interval and error bound.
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Impact of data skew on volume of sample We discover the impact of data skew on vol-
ume of sampled data. We used a statistical method to model skewed data.

Modeling data skew We have used Zipfian [41, 60], distribution to generate skewed 
data. Zipf ’s law states that out of a population on N elements, the frequency of elements 
of rank k, f(k; z, N) is:

Following the Zipfian distribution, the frequency of occurrence of an element is 
inversely proportional to its rank.

In the current context, let:

1.	 N = total number of input partitions;
2.	 k be their rank; partitions are ranked as per the number of records in the partition 

that satisfy the given predicate;
3.	 z be the value of the exponent characterizing the distribution.

We have considered z = 0 for uniform distribution, z = 1 for moderate skew and z = 2 
for high skew.

f (k; z,N ) =

1

kz∑N
n=1
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Figures  16, 17 and 18 show the impact of data skew on the amount of data to be 
processed to achieve processing requirements. The vertical axis shows the relative 
amount of processed data and the horizontal axis shows the datasets. As above fig-
ures present, Sapprox has lower efficiency in case of NoSQL data. The reason for this 
is that the determination of Sampling Interval is complex for NoSQL datasets.

Impact of Block Size on Volume of Sample In Fig.  19, we show the effect of block 
size on the volume of the sample. The vertical axis shows the volume of sample 
and the horizontal axis shows the block size. Aggregating input data from multiple 
resources is one of the factors that cause data skew. We have shown it’s effect in pre-
vious sections. Figure 19, shows that in case of aggregating input data from the sin-
gle source, the big block is better than a small block and in case of input data from 
multiple sources, the small block size is better than big block sizes. We have used 
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Wikipedia for single source and four different sources [53–55] and Wikipedia as mul-
tiple sources. The same behavior is observed for all applications.

Qualitative and quantitative analysis comparisons

In this section, we present a qualitative and quantitative comparison of approaches. 
Table 2. Presents the comparisons in summary. More detail descriptions are provided 
below in Table 2.

The advantage of Gapprox to ApproxHadoop

•	 Determined sized sample
•	 Considering data variety and skew
•	 Processing lower amount of input data to achieve acceptable confidence interval 

and error bound.

The advantage of Gapprox to Sapprox

•	 Processing lower amount of input data to achieve acceptable confidence interval 
and error bound.

•	 No need to specify the sampling interval.
•	 Applicable for SQL and NoSQL applications.
•	 More simple than Sapprox for implementation

Our novelties in the presented approach

•	 We offer an approach that has acceptable performance in various conditions of 
data variety/skew.

•	 Our approach is simple for users to be implemented. The users can easily divide 
the input data into some same size blocks and apply the Gapprox to them.

•	 Our approach has low overhead.
•	 Our approach can be used for SQL and NoSQL simply and presents acceptable 

efficiency in any type of data.
•	 We have used abilities in Spark and Scala language to present a practical simple 

approach. So, the users can easily implement this approach in Spark.

ApproxHadoop have high performance in case of uniform distribution. But in 
case of skewed data does not have acceptable performance. Sapprox has better 

Table 2  Qualitative and quantitative analysis comparisons with other methodologies

Amount of data must be processed Amount of data must be 
processed prediction

Targeted 
applications

Uniform 
distribution (%)

Uneven 
distribution (%)

Approx. < 1 20–70 No Sql/noSql

Sapprox < 1 5–30 No Sql

Gapprox < 1 < 1 Yes Sql/noSql
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performance in case of data variety. Our algorithm also can surpass Sapprox in SQL 
and NoSQL datasets. Sapprox has another weakness in the case of NoSQL datasets. 
In this kind of dataset determining Sample Interval is complex.

Conclusions and future work
In this paper, we offer a solution for reducing processing time in case of existing data variety 
in input data. We consider data variety/skew and use multi-stage sampling to discover the 
input data. We select fixed block (cluster) and frame size. We use Cochran sampling for 
intra block sampling.

Based on the experimental results our approach can surpass other approaches, improve 
processing time and reduce the amount of data to be processed to achieve the desired error 
bound and confidence interval. Our approach processes a certain amount of input data to 
achieve processing requirements. For evaluation, we have used Amazon and TPC datasets 
as SQL datasets and some other as NoSQL datasets. Our approach surpasses two other 
approaches in SQL and NoSQL datasets. We also have modeled data skew and show that 
our approach is more efficient than other approaches in various skew conditions. We have 
shown that in uniform data sets large block size and in skewed datasets, small block size is 
suitable in case of sampling overheads.

There are some directions for future works. One of them is the key management in 
intermediate data to reduce data transportation among the network. In aggregation appli-
cations, the input and intermediate data are converted to a certain value of a key. By inter-
mediate processing and key management, we are able to reduce data transportation.
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