
A survey on data storage and placement
methodologies for Cloud‑Big Data ecosystem
Somnath Mazumdar1  , Daniel Seybold2, Kyriakos Kritikos3*  and Yiannis Verginadis4

Introduction
Over the time, the type of applications has evolved from batch, compute or memory
intensive applications to streaming or even interactive applications. As a result, appli-
cations are getting more complex and become long-running. Such applications might
require frequent-access to multiple distributed data sources. During application deploy-
ment and provisioning, the user can face various issues such as (i) where to effectively
place both the data and the computation; (ii) how to achieve required objectives while
reducing the overall application running cost. Data could be generated from various
sources, including a multitude of devices over IoT environments that can generate a
huge amount of data, while the applications are running. An application can further pro-
duce a large amount of data. In general, data of such size is usually referred to as Big
Data. In general, Big Data is characterised by five properties [1, 2]. These are volume,
velocity (means rapid update and propagation of data), variety (means different kinds of

Abstract 

Currently, the data to be explored and exploited by computing systems increases at
an exponential rate. The massive amount of data or so-called “Big Data” put pressure
on existing technologies for providing scalable, fast and efficient support. Recent
applications and the current user support from multi-domain computing, assisted in
migrating from data-centric to knowledge-centric computing. However, it remains a
challenge to optimally store and place or migrate such huge data sets across data cent-
ers (DCs). In particular, due to the frequent change of application and DC behaviour
(i.e., resources or latencies), data access or usage patterns need to be analyzed as well.
Primarily, the main objective is to find a better data storage location that improves the
overall data placement cost as well as the application performance (such as through-
put). In this survey paper, we are providing a state of the art overview of Cloud-centric
Big Data placement together with the data storage methodologies. It is an attempt to
highlight the actual correlation between these two in terms of better supporting Big
Data management. Our focus is on management aspects which are seen under the
prism of non-functional properties. In the end, the readers can appreciate the deep
analysis of respective technologies related to the management of Big Data and be
guided towards their selection in the context of satisfying their non-functional applica-
tion requirements. Furthermore, challenges are supplied highlighting the current gaps
in Big Data management marking down the way it needs to evolve in the near future.

Keywords:  Big Data, Cloud, Data models, Data storage, Placement

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

SURVEY PAPER

Mazumdar et al. J Big Data (2019) 6:15
https://doi.org/10.1186/s40537-019-0178-3

*Correspondence:
kritikos@ics.forth.gr
3 ICS-FORTH, Heraklion, Crete,
Greece
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-1751-2569
http://orcid.org/0000-0001-9633-1610
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0178-3&domain=pdf

Page 2 of 37Mazumdar et al. J Big Data (2019) 6:15

data parts), veracity (related to the trustworthiness, authenticity and protection (degree)
of the data) and value (the main added-value and the importance of the data to the busi-
ness). A large set of different data types generated from various sources can hold enor-
mous information (in the form of relationships [3], system access logs, and also as the
quality of services (QoSs)). Such knowledge can be critical for improving both products
and services. Thus, to retrieve the underlying knowledge from such big sized data sets an
efficient data processing ecosystem and knowledge filtering methodologies are needed.

In general, Cloud-based technology offers different solutions over different levels of
abstractions to build and dynamically provision user applications. The Cloud offers suit-
able frameworks for the clustering of Big Data as well as efficiently distributed data-
bases for their storage and placement. However, the native Cloud facilities have a lack
of guidance on how to combine and integrate services in terms of holistic frameworks
which could enable users to properly manage both their applications and the data. While
there exist some promising efforts that fit well under the term Big Data-as-a-service
(BDaaS), most of them still lack adequate support for: data-privacy [4–6], query optimi-
sation [7], robust data analytics [8] and data-related service level objective management
for increased (Big Data) application quality [9]. Currently, the application placement and
management over multi or cross-Clouds is being researched. However, the additional
dimension of Big Data management does raise significantly the complexity of finding
adequate and realistic solutions.

The primary goal of this survey is to present the current state-of-affairs in Cloud com-
puting with respect to the Big Data management (mainly storage and placement) from
the application’s administration point-of-view. To this end, we have thoroughly reviewed
the proposed solutions based on the placement and storage of Big Data through the
use of a carefully designed set of criteria. Such criteria were devised under the prism of
non-functional properties. This was performed in an attempt to unveil those solutions
which can be deemed suitable for the better management of different kinds of applica-
tions (while taking into consideration non-functional aspects). In the end, the prospec-
tive readers (such as Big Data application owners, DevOps) can be guided towards the
selection of those solutions in each Big Data management lifecycle phase (focused in this
article) that satisfy in a better way their non-functional application requirements. The
analysis finally concludes with the identification of certain gaps. Based on the latter, a set
of challenges for the two Big Data management phases covered as well as for Big Data
management as a whole are supplied towards assisting in the evolution of respective
solutions and paving the way for the actual directions that the research should follow.

Based on the above analysis, it is clear that this article aims at providing guidance to
potential adopters concerning the most appropriate solution for both placing and stor-
ing Big Data (according to the distinctive requirements of the application domain). To
this end, our work can be considered as complementary to other relevant surveys that
attempt to review Big Data technologies. In particular, the past surveys have focused
on the deployment of data-intensive applications in the Cloud [10], on assessing vari-
ous database management tools for storing Big Data [11], on evaluating the technologies
developed for Big Data applications [12], on Cloud-centric distributed database manage-
ment systems (primarily on NoSQL storage models) [13], on design principles for in-
memory Big Data management and processing [14] and on research challenges related

Page 3 of 37Mazumdar et al. J Big Data (2019) 6:15

to Big Data in the Cloud ecosystem [15]. However, the primary focus of these surveys
is mainly on functional aspects examined under the prism of analysing different dimen-
sions and technology types related to Big Data. Further, there is no clear discussion on
management aspects in the context of the whole Big Data management lifecycle as usu-
ally the focus seems to be merely on the Big Data storage phase. Interestingly, our survey
deeply analyses those phases in the Big Data management lifecycle that are the most
crucial in the context of satisfying application non-functional requirements.

The remaining part of this manuscript is structured as follows: "Data lifecycle manage-
ment (DLM)" section explicates how data modelling can be performed, analyses various
data management lifecycle models and comes up with an ideal one which is presented
along with the proper architecture to support it. Next, "Methodology" section attempts
to explain this survey’s main methodology. "Non-functional data management features"
section details the main non-functional features of focus in this article. Based on these
features, the review of Big Data storage systems and distributed file systems are supplied
in "Data storage systems" section. Similarly, the review of state-of-the-art data place-
ment techniques is performed in "Data placement techniques" section. Next, "Lessons
learned and future research directions" section presents relevant lessons learned as well
as certain directions for future research work and finally "Concluding remarks" section
concludes the survey paper.

Data lifecycle management (DLM)
Data lifecycle models

There exist two types of data lifecycle models focusing on either general data or Big Data
management. The generic data management lifecycles usually cover activities such as
generation, collection (curation), storage, publishing, discovery, processing and analysis
of data [16].

In general, Big Data lifecycle models primarily comprises activities (such as data col-
lection, data loading, data processing, data analysis and data visualisation [17, 18]). It is
worth to note that apart from the data visualisation, they do share many identical activi-
ties with the generic ones. However, such models do not mention the value of data.

To counter this, the NIST reference model [19] suggests four data management
phases: collection, preparation, analysis and action, where the action phase is related to
using synthesised knowledge to create value (represents analytics and visualisation of
knowledge). Furthermore, focusing more on the data value, OECD [20] has proposed
a data value cycle model comprising six phases: datafication and data collection, Big
Data, data analytics, knowledge base, decision making and valued-added for growth and
well-being. The model forms an iterative, closed feedback loop where results from Big
Data analytics are fed back to the respective database. Later, the work in [21] exposed
the main drawbacks of OECD and proposed a new reference model that adds two addi-
tional components, the business intelligence (BI) system and the environment, into the
OECD model. The data interaction and analysis formulates a short closed loop in the
model. A greater loop is also endorsed via the BI’s iterative interaction and observation
of its environment. Finally, it is claimed that the management of Big Data for value crea-
tion is also linked to the BI management. In this way, Big Data management is related

Page 4 of 37Mazumdar et al. J Big Data (2019) 6:15

directly to the activities of data integration, analysis, interaction and effectuation along
with the successful management of the emergent knowledge via data intelligence.

Data modelling

The data needs to be described in an appropriate form prior to any kind of usage.
The information used for the data description is termed as metadata (i.e., data about
data) [22–24]. The use of metadata enriches data management so that it can properly
support and improve any data management activity. Two major issues related to meta-
data management are:

•	 How should metadata be described (or characterised)? The description of a metadata
schema which can be exploited to efficiently place a certain Big Data application in
multiple Clouds by respecting both user constraints and requirements. Such a meta-
data schema has been proposed partially in [25] or completely in [26].

•	 How should metadata be efficiently managed and stored for better retrieval and
exploitation? The design of appropriate languages [27, 28] that focus on the descrip-
tion of how Big Data applications and data should be placed and migrated across dif-
ferent multiple Cloud resources.

For a better description of metadata, the authors in [22] identify available Cloud services
and analyse some of their main characteristics following a tree-structured taxonomy.
Another relevant effort is the DICE project [25] that focuses on the quality-driven devel-
opment of Big Data applications. It offers a UML profile along with the appropriate tools
that may assist software designers to reason about the reliability, safety and efficiency of
data-intensive applications. Specifically, it has introduced a metamodel for describing
certain aspects of Big Data-intensive applications.

Most of these efforts do not offer a direct support for expressing significant aspects
of Big Data, such as data origin, location, volume, transfer rates or even aspects of the
operations that transfer data between Cloud resources. One effort that tries to cover the
requirements for a proper and complete metadata description is the Melodic metadata
schema [26]. This schema refers to a taxonomy of concepts, properties and relationships
that can be exploited for supporting Big Data management as well as application deploy-
ment reasoning. The schema is clustered into three parts: (i) one focusing on specifying
Cloud service requirements and capabilities to support application deployment reason-
ing; (ii) another focusing on defining Big Data features and constraints to support Big
Data management; (iii) a final one concentrating on supplying Big Data security-related
concepts to drive the data access control.

With respect to the second direction of work, although several languages are cur-
rently used for capturing application placement and reconfiguration requirements (e.g.,
TOSCA [27]), a lack of distinct support for describing placement and management
requirements for Big Data can be observed. However, if such languages are extended
through the possible use of a metadata schema, then they could be able to achieve this
purpose. This has been performed in [26], where a classical, state-of-the-art Cloud
description language called CAMEL [29] has been extended to enable the description of
Big Data placement and management requirements by following a feature-model-based

Page 5 of 37Mazumdar et al. J Big Data (2019) 6:15

approach where requirements are expressed as features or attributes that are annotated
via elements from the metadata schema.

Data lifecycle management systems

Traditional data lifecycle management systems (DLMSs) focus more on the way data is
managed and not on how they are processed. In particular, the actual main services that
they offer are data storage planning (and provisioning) and data placement (and execu-
tion support) via efficient data management policies. On the other hand, it seems that
data processing is covered by other tools or systems as it is regarded as application-spe-
cific. Traditionally in Cloud, Big Data processing is offered as a separate service, while
the resource management is usually handled by other tools, such as Apache Mesos or
YARN. Figure 1 depicts the architecture of a system that completely addresses the data
management lifecycle, as inscribed in the previous sub-section. This system comprises
six primary components.

•	 Metadata management takes care of maintaining information which concerns both
the static and dynamic characteristics of data. It is the cornerstone for enabling effi-
cient data management.

•	 Data placement encapsulates the main methods for efficient data placement and data
replication while satisfying user requirements.

•	 Data storage is responsible for proper (transactional) storage and efficient data
retrieval support.

•	 Data ingestion enables importing and exporting the data over the respective system.
•	 Big Data processing supports the efficient and clustered processing of Big Data by

executing the main logic of the user application(s).
•	 Resource management is responsible for the proper and efficient management of

computational resources.

In this article, our focus is mainly on the Data storage and Data placement parts of
the above architecture. Our rationale is that the integration of such parts (or Big Data
lifecycle management phases) covers the core of a DLMS. An application’s data access
workflow in the Cloud is presented in Fig. 2. As a first step, the application checks the
availability of the input data. In general, the data needs to be known by the system to
optimally handle it. It maps to two main cases: (i) data already exist and have been regis-
tered; (ii) data do not exist and must be registered. In the latter case, metadata is needed

Data Processing

Metadata Management

Data
Placement

Data
Storage

R
esource

M
anagem

ent

Data Ingestion

Fig. 1  A high-level block diagram of a Big Data management system

Page 6 of 37Mazumdar et al. J Big Data (2019) 6:15

to register the data into the system (thus mapping to the data-registration process). Dur-
ing the data modelling (see "Data modelling" sub-section), the metadata are maintained
via a data catalogue (i.e., a special realisation of Metadata management component).
Such an approach can guarantee the efficient maintenance of application data through-
out the application’s lifecycle by both knowing and dynamically altering the values of
data features (such as data type, size, location, data format, user preference, data replica
numbers, cost constraints) whenever needed. In the next phase, based on the employed
data placement methodology, the data is placed/migrated next to the application or both
the data and application code is collocated. Here, the underlying scheduler (realising
the Data placement component) acquires the up-to-date data knowledge to achieve an
efficient data placement during both the initial application deployment and its runtime.
Such an approach can restrain unnecessary data movement and reduces cost (at runt-
ime) [30–32]. Next, during the application execution, two situations may arise: (i) new
data sets are generated; (ii) data sets are transformed into another form (such as data
compression). Furthermore, temporary data may also need to be handled. Finally, once
application execution ends, the generated or transformed data needs to be stored (or
backed up) as per user instructions.

In general, a hierarchical storage management [33] could be considered as a DLMS
tool. In recent times, cognitive data management (CDM) has gained industrial sup-
port for automated data management together with high-grade efficiency. The CDM

DLMS Workflow

Start Data Registration

Submit User
Application

Pre-process Data

NO

YES

Data Modelling

Goto Data
Catalogue

Metadata
Exists

NO

YES

Data Placement/Migration

Output
(Data)

Is Placement of
Data Near Computation

Needed
(Migration)?

NO

Done?

 Migrate the data

YES

Call Resource
Scheduler

Application
Running

Failed?

Saving data for future jobs

Failure and Backup

Application/
Hardware

Failure

Fixed/Done?

Completion

Exit

Data Store

Input Datasets
(URI/URL)

Data Exists
Locally

Fig. 2  Standard workflow of application data lifecycle

Page 7 of 37Mazumdar et al. J Big Data (2019) 6:15

(e.g., Stronglink1) is generally the amalgamation of intelligent (artificial-intelligence2/
machine learning-based approach) distributed storage including resource management
together with a more sophisticated DLMS component. The CDM works on the data-
base-as-a-service (DBaaS) layer which instructs the data to be used by the scheduler
with an efficient management approach including the exploitation of the data catalogue
via data modelling.

Methodology
We have conducted a systematic literature review (SLR) on Big Data placement and
storage methods in the Cloud, following the guidelines proposed in [34]. Such an SLR
comprises three main phases: (i) SLR planning, (ii) SLR conduction and (iii) SLR report-
ing. In this section, we briefly discuss the first two phases. While the remaining part of
this manuscript focuses on the presenting the survey, the identification of the remaining
research issues and the potential challenges for current and future work.

SLR planning

This phase comprises three main steps: (i) SLR need identification, (ii) research ques-
tions identification and (iii) SLR protocol formation.

SLR need identification

Here, we are advocating to add more focus on the Big Data storage and placement phases
of the respective Big Data management lifecycle. Thus be able to confront the respective
challenges that Big Data place on them. Such phases are also the most crucial in the
attempt to satisfy the non-functional requirements of Big Data applications. The primary
focus of this survey is over storage and placement phases. It is an attempt to examine
if they are efficiently and effectively realised by current solutions and approaches. The
twofold advantage of identifying the efficient ways to manage and store Big Data are: (i)
practitioners can select the most suitable Big Data management solutions for satisfying
both their functional and non-functional needs; (ii) researchers can fully comprehend
the research area and identify the most interesting directions to follow. To this end, we
are countering both the data placement and the storage issues focusing on the Big Data
management lifecycle and Cloud computing under the prism of non-functional aspects.
In contrast to previous surveys that have concentrated mainly on the Big Data storage
issues in the context of functional aspects.

Research questions identification

This survey has the ambition to supply suitable and convincing answers to:

1.	 What are the most suitable (big) data storage technologies and how do they compete
with each other according to certain criteria related to non-functional aspects?

2.	 What are the most suitable and sophisticated (big) data placement methods that can
be followed to (optimally) place and/or migrate Big Data?

1  https​://stron​gboxd​ata.com/produ​cts/stron​glink​/.
2  https​://www.ibm.com/servi​ces/artif​icial​-intel​ligen​ce.

https://strongboxdata.com/products/stronglink/
https://www.ibm.com/services/artificial-intelligence

Page 8 of 37Mazumdar et al. J Big Data (2019) 6:15

SLR protocol formation

It is a composite step related to the identification of (i) (data) sources—here we have pri-
marily consulted the Web of Science and Scopus, and (ii) the actual terms for querying
these (data) sources—here, we focus on population, intervention and outcome as men-
tioned in [34]. It is worth to note that such data sources supply nice structured searching
capabilities which enabled us to better pose the respective query terms. The population
mainly concerns target user groups in the research area or certain application domains.
The intervention means the specific method employed to address a certain issue (used
terms include: methodology, method, algorithm, approach, survey and study). Lastly, the
outcome relates to the final result of the application of the respective approach (such
as management, placement, positioning, allocation, storage). Based on these terms, the
abstract query concretised in the context of the two data sources can be seen in Table 1.

SLR conduction

Systematic literature review conduction includes the following steps: (i) study selection
criteria; (ii) quality assessment criteria; (iii) study selection procedure. All these steps are
analysed in the following three paragraphs.

Study selection

The study selection was performed via a certain set of inclusion and exclusion criteria.
The inclusion criteria included the following:

•	 Peer-reviewed articles.
•	 Latest articles only (last 8 years).
•	 In case of equivalent studies, only the one published in the highest rated journal

or conference is selected to sustain only a high-quality set of articles on which the
review is conducted.

•	 Articles which supply methodologies, methods or approaches for Big Data manage-
ment.

•	 Articles which study or propose Big Data storage management systems or databases.
•	 Articles which propose Big Data placement methodologies or algorithms.

While the exclusion criteria were the following:

•	 Inaccessible articles.
•	 Articles in a different language than English.
•	 Short papers, posters or other kinds of small in contribution articles.
•	 Articles which deal with the management of data in general and do not focus on Big

Data.

Table 1  Search query

(Big Data) AND (METHODOLOGY OR METHOD OR ALGORITHM OR APPROACH OR SURVEY OR STUDY)

AND (MANAGEMENT OR PLACEMENT OR POSITION OR ALLOCATION OR STORAGE) WITH TIME SPAN:2010–2018

Page 9 of 37Mazumdar et al. J Big Data (2019) 6:15

•	 Articles that focus on studying or proposing normal database management systems.
•	 Articles that focus on studying or proposing normal file management systems.
•	 Articles that focus on the supply of Big Data processing techniques or algorithms. As

the focus in this article is mainly on how to manage the data and not how to process
them to achieve a certain result.

Quality assessment criteria

Apart from the above criteria, quality assessment criteria were also employed to enable
prioritising the review as well as possibly excluding some articles not reaching certain
quality standards. In the context of this work, the following criteria were considered:

•	 Presentation of the article is clear and there is no great effort needed to comprehend
it.

•	 Any kind of validation is offered especially in the context of the proposal of certain
algorithms, methods, systems or databases.

•	 The advancement over the state-of-the-art is clarified as well as the main limitations
of the proposed work.

•	 The objectives of the study are well covered by the approach that is being employed.

Study selection procedure

It has been decided to employ two surveyors for each main article topic which were
given a different portion of the respective reviewing work depending on their expertise.
In each topic, the selection results of one author were assessed by the other one. In case
of disagreement, a respective discussion was conducted. If this discussion was not hav-
ing a positive outcome, the respective decision was delegated to the principal author
which has been unanimously selected by all authors from the very beginning.

Non‑functional data management features
For effective Big Data management, current data management systems (DMSs), includ-
ing distributed file systems (DFSs) and distributed database management systems
(DDBMSs) need to provide a set of non-functional features to cater the storage, manage-
ment and access of the continuously growing data. This section introduces a classifica-
tion of the non-functional features (see Fig. 3) of DMSs in the Big Data domain extracted
from [10, 13, 35–37].

Non-functional
Requirements

ConsistencyElasticityScalabilityPerformance Availability Big Data
Processing

Fig. 3  Non-functional features of data management systems

Page 10 of 37Mazumdar et al. J Big Data (2019) 6:15

Figure 3 provides an overview of the relevant non-functional features while the follow-
ing subsections attempt to analyse each of them.

Performance

Performance is typically referred to as one of the most important non-functional fea-
tures. It directly relates to the execution of requests by the DMSs [38, 39]. Typical per-
formance metrics are throughput and latency.

Scalability

Scalability focuses on the general ability to process arbitrary workloads. A definition of
scalability for distributed systems in general and with respect to DDBMSs is provided
by Agrawal et al. [40], where the terms scale-up, scale-down, scale-out and scale-in are
defined focusing on the management of growing workloads. Vertical as well as horizon-
tal scaling techniques are applied to distributed DBMSs and can also be applied to DFSs.
Vertical scaling applies by adding more computing resources to a single node. While
horizontal scaling applies by adding nodes to a cluster (or in general to the instances of a
certain application component).

Elasticity

Elasticity is tightly coupled to the horizontal scaling and helps to overcome the sudden
workload fluctuations by scaling the respective cluster without any downtime. Agrawal
et al. [40] formally define it by focusing on DDBMSs as follows “Elasticity, i.e. the ability
to deal with load variations by adding more resources during high load or consolidating
the tenants to fewer nodes when the load decreases, all in a live system without service
disruption, is therefore critical for these systems”. While elasticity has become a common
feature for DDBMSs, it is still in an early stage for DFSs [41].

Availability

The availability tier builds upon the scalability and elasticity as these tiers are exploited
to handle request fluctuations [42]. Availability represents the degree to which a system
is operational and accessible when required. The availability of a DMS can be affected
by overloading at the DMS layer and/or failures at the resource layer. During overload-
ing, a high number of concurrent client requests overload the system such that these
requests are either handled with a non-acceptable latency or not handled at all. On the
other hand, a node can fail due to a resource failure (such as network outage or disk fail-
ure). An intuitive way to deal with overload is to scale-out the system. Distributed DMSs
apply data replication to handle such resource failures.

Consistency

To support high availability (HA), consistency becomes an even more important and
challenging non-functional feature. However, there is a trade-off among consistency,
availability and partitioning guarantees, inscribed by the well-known CAP theorem [43].
This means that different kinds of consistency guarantees could be offered by a DMS.
According to [44] consistency can be considered from both the client and data perspec-
tives (i.e., from the DMS administrator perspective). The client-centric consistency can

Page 11 of 37Mazumdar et al. J Big Data (2019) 6:15

be classified further into staleness and ordering [44]. Staleness defines the lagging of rep-
lica behind its master. It can be measured either in time or versions. Ordering defines
that all requests must be executed on all replicas in the same chronological order. Data-
centric consistency focuses on the synchronization processes among replicas and the
internal ordering of operations.

Big Data processing

The need of native integration of (big) data processing frameworks into the DMSs arises
along with the number of recently advanced Big Data processing frameworks, such as
Hadoop MapReduce, Apache Spark, and their specific internal data models. Hence, the
DMSs need to provide native drivers for Big Data processing frameworks which can
automate the transformation of DMS data models into the respective Big Data process-
ing framework storage models. Further, these native drivers can exploit data locality fea-
tures of the DMSs as well. Please note that such a feature is also needed based on the
respective DLMS architecture that has been presented in "Data lifecycle management
(DLM)" section as a Big Data processing framework needs to be placed on top of the
data management component.

Data storage systems
A DLMS in the Big Data domain requires both the storage and the management of het-
erogeneous data structures. Consequently, a sophisticated DLMS would need to support
a diverse set of DMSs. DMSs can be classified into file systems for storing unstructured
data and DBMSs (database management systems) for storing semi-structured and struc-
tured data. However, the variety of semi-structured and structured data requires suitable
data models (see Fig. 4) to increase the flexibility of DBMSs. Following these require-
ments, the DBMS landscape is constantly evolving and becomes more heterogeneous.3
The following sub-sections provides (i) an overview of related work on DBMS classifica-
tions; (ii) a holistic and up-to-date classification of current DBMS data models; (iii) a
qualitative analysis of selected DBMSs; (iv) a classification and analysis of relevant DFSs.

Database management systems

The classification of the different data models (see Fig. 4) for semi-structured data has
been in the focus since the last decade [37] as heterogeneous systems (such as Dynamo,
Cassandra [45] and BigTable [46]) appeared on the DBMS landscape. Consequently, the
term NoSQL evolved, which summarizes the heterogeneous data models for semi-struc-
tured data. Similar, the structured data model evolved with the NewSQL DBMSs [13,
47].

Several surveys have reviewed NoSQL and NewSQL data models over the last years
and analyze the existing DBMS with respect to their data models and the specific non-
functional features [11, 13, 35–37, 48, 49]. In addition, dedicated surveys focus explic-
itly specific data models (such as the time series data model [50, 51]) or specific DBMS
architectures (such as in-memory DBMS [14]).

3  http://nosql​-datab​ase.org/ lists over 225 DBMS for semi-structured data.

http://nosql-database.org/

Page 12 of 37Mazumdar et al. J Big Data (2019) 6:15

Cloud-centric challenges for operating distributed DBMS are analysed by [13], con-
siders the following: horizontal scaling, handling elastic workload patterns and fault
tolerance. It also classifies nineteen DDBMSs against features, such as partitioning, rep-
lication, consistency and security.

Recent surveys on NoSQL-based systems [35, 49] derive both, the functional and the
non-functional NoSQL and NewSQL features and correlated them with distribution
mechanisms (such as sharding, replication, storage management and query process-
ing). However, the implications of Cloud resources or the challenges of Big Data applica-
tions were not considered. Another conceptual analysis of NoSQL DBMS is carried out
by [48]. It outlines many storage models (such as key-value, document, column-oriented
and graph-based) and also analyses current NoSQL implementations against persis-
tence, replication, sharding, consistency and query capability. However, recent DDBMSs
(such as time-series DBMSs or NewSQL DBMSs) are not analysed from Big Data as well
as the Cloud context. A survey on DBMS support for Big Data with the focus on data
storage models, architectures and consistency models is presented by [11]. Here, the

Database Management
Systems

Relational
Storage

Non-Relational
Storage

RDBMS
MySQL
PostgreSQL

New SQL
VoltDB
CockroachDB

Key-Value
Redis
Riak

Document

Wide-Column

Graph

Multi-Model

MongoDB
Couchbase

Cassandra
HBase

InfluxDB
Prometheus

Neo4J
JanusGraph

Time-Series

ArangoDB
OrientDB

Fig. 4  DBMS data model classification

Page 13 of 37Mazumdar et al. J Big Data (2019) 6:15

relevant DBMSs are analysed towards their suitability for Big Data applications, but the
Cloud service models and evolving DBMSs (such as time-series databases) are also not
considered.

An analysis of the challenges and opportunities for DBMSs in the Cloud is presented
by [52]. Here, the relaxed consistency guarantees (for DDBMS) and heterogeneity, as
well as the different level of Cloud resource failures are explained. Moreover, it is also
explicated that HA mechanism is needed to overcome failures. However, the HA and
horizontal scalability come with the weaker consistency model (e.g., BASE [53]) com-
pared to ACID [43].

In the following, we distil and join existing data model classifications (refer to Fig. 4)
into an up-to-date classification of the still-evolving DBMS landscape. Hereby, we select
relevant details for the DLMS of Big Data applications, while we refer the interested
reader to the presented surveys for an in-depth analysis of specific data models. Analo-
gously, we apply a qualitative analysis of currently relevant DBMS based on the general
DLMS features (see "Non-functional data management features" section), while in-depth
analysis of specific features can be found in the presented surveys. Hereby, we select two
common DBMS4 of each data model for our analysis.

Relational data models

The relational data model stores data as tuples forming an ordered set of attributes;
which can be extended to extract more meaningful information [54]. A relation forms a
table and tables are defined using a static, normalised data schema. SQL is a generic data
definition, manipulation and query language for relational data. Popular representative
DBMSs with a relational data model are MySQL and PostgreSQL.

NewSQL

The traditional relational data model provides limited data partitioning, horizontal scal-
ability and elasticity support. NewSQL DBMSs [55] aim at bridging this gap and build
upon the relational data model and SQL. However, NewSQL relaxes relational features
to enable horizontal scalability and elasticity [13]. It is worth to note that only a few
NewSQL DBMSs, such as VoltDB5 and CockroachDB,6 are built upon such architectures
with the focus on scalability and elasticity as most NewSQL DBMSs are constructed out
of existing DBMSs [47].

Key‑value

The key-value data model relates to the hash tables of programming languages. The data
records are tuples consisting of key-value pairs. While the key uniquely identifies an
entry, the value is an arbitrary chunk of data. Operations are usually limited to simple
put or get operations. Popular key-value DBMSs are Riak7 and Redis.8

4  https​://db-engin​es.com/en/ranki​ng.
5  https​://www.voltd​b.com/.
6  https​://www.cockr​oachl​abs.com/.
7  http://basho​.com/produ​cts/riak-kv/.
8  https​://redis​.io/.

https://db-engines.com/en/ranking
https://www.voltdb.com/
https://www.cockroachlabs.com/
http://basho.com/products/riak-kv/
https://redis.io/

Page 14 of 37Mazumdar et al. J Big Data (2019) 6:15

Document

The document data model is similar to the key-value data model. However, it defines
a structure on the values in certain formats, such as XML or JSON. These values are
referred to as documents, but usually without fixed schema definitions. Compared to
key-value stores, the document data model allows for more complex queries as docu-
ment properties can be used for indexing and querying. MongoDB9 and Couchbase10
represent the common DBMSs with a document data model.

Wide‑column

The column-oriented data model stores data by columns rather than by rows. It ena-
bles both storing large amounts of data in bulk and efficiently querying over very large
structured data sets. A column-oriented data model does not rely on a fixed schema. It
provides nestable, map-like structures for data items which improve flexibility over fixed
schema [46]. The common representatives of column-oriented DBMSs are Apache Cas-
sandra11 and Apache HBase.12

Graph

The graph data model primarily uses graph structures, usually including elements like
nodes and edges, for data modelling. Nodes are often used for the main data entities,
while edges between nodes are used to describe relationships between entities. Query-
ing is typically executed by traversing the graph. Typical graph-based DBMS are Neo4J13
and JanusGraph.14

Time‑series

The time-series data model [50] is driven by the needs of sensor storage within the
Cloud and Big Data context. The time-series DBMSs are typically built upon existing
non-relational data models (preferably key-value or column-oriented), and add a dedi-
cated time-series data model on top. The data model is built upon data points which
comprise a time stamp, an associated numeric value and a customisable set of metadata.
Time-series DBMSs offers analytical query capabilities, which cover statistical functions
and aggregations. Well-known time-series DBMSs are InfluxDB15 and Prometheus.16

Multi‑model

A multi-model address the problem of polyglot persistence [56] which signifies that each
of the existing non-relational data models addresses a specific use case. Hence, multi-
model DBMSs combine different data models into a single DBMS while build upon one
storage backend to improve flexibility (e.g., providing the document and graph data

11  http://cassa​ndra.apach​e.org/.
12  https​://hbase​.apach​e.org/.
13  https​://neo4j​.com/.
14  http://janus​graph​.org/.
15  https​://www.influ​xdata​.com/
16  https​://prome​theus​.io/.

9  https​://www.mongo​db.com/.
10  https​://www.couch​base.com/.

http://cassandra.apache.org/
https://hbase.apache.org/
https://neo4j.com/
http://janusgraph.org/
https://www.influxdata.com/
https://prometheus.io/
https://www.mongodb.com/
https://www.couchbase.com/

Page 15 of 37Mazumdar et al. J Big Data (2019) 6:15

model via a unified query interface). Common multi-model DBMSs are ArangoDB17 and
OrientDB.18

Comparison of selected DBMSs

In this section, we analyse already mentioned DBMSs in the context of Big Data appli-
cations (see Table 2). To perform this, we first analyse already mentioned DBMS (of
the previously introduced data models) with respect to their features and supported
Cloud service models. Next, we provide a qualitative analysis with respect to the non-
functional features of the DMSs (refer to "Non-functional data management features"
section). For quantitative analysis of these non-functional requirements, we refer the
interested reader to the existing work focused on DBMS evaluation frameworks [44, 57–
60] and evaluation results [42, 61, 62].

Qualitative criteria

In the Table 2, the first three columns present each DBMS and its data model, followed
by the technical features and the service models supported. The analysis only considers
the standard version of a DBMS.

In the following, we attempt to explicate each of the technical features considered.
The DBMS architecture is classified into single, master–slave and multi-master architec-
tures [56]. The sharding strategies are analysed based on the DBMS architectures; they
can be supported manually as well as automatically in a hash- or range-based manner.
The elasticity feature relies on a distributed architecture and relates to whether a DBMS
supports adding and/or removing nodes from the cluster at runtime without a down-
time. For consistency and availability guarantees, each DBMS is analysed with respect
to its consistency (C), availability (A) and partition tolerance (P) properties within the
CAP theorem (i.e., CA, CP, AC or AP) [43]. However, it should be highlighted that we
did not consider fine-grained configuration options that might be offered for a DBMS to
vary the CAP properties. Next, the replication mechanisms are analysed in terms of both
cluster and cross-cluster replication (also known as geo-distribution). Consequently, a
DBMS supporting cross-cluster replication implicitly supports cluster replication. The
interested reader might consider [63] for more fine-grained analysis of replication mech-
anisms of DDBMSs. The Big Data adapter is analysed by evaluating native and/or third-
party drivers for Big Data processing frameworks. Finally, the DDBMSs are classified
based on their offering as community editions, enterprise commercial editions or man-
aged DBaaS. One exemplary provider is presented if the DBMS is offered as a DBaaS.

Qualitative analysis

The resulting Table 2 represents the evolving landscape of the DBMSs. The implemented
features of existing DBMSs significantly differ (except the RDBMSs) even within one
data model. The heterogeneity of analysed DBMSs is even more obvious across data
models. Further, the heterogeneous DBMS landscape offers a variety of potential DBMS
solutions for Big Data.

17  https​://www.arang​odb.com/.
18  https​://orien​tdb.com/.

https://www.arangodb.com/
https://orientdb.com/

Page 16 of 37Mazumdar et al. J Big Data (2019) 6:15

Ta
bl

e 
2 

Te
ch

ni
ca

l f
ea

tu
re

 a
na

ly
si

s
of

 s
el

ec
te

d
D

BM
S

D
BM

S
Ve

rs
io

n
D

at
a

m
od

el
Te

ch
ni

ca
l f

ea
tu

re
s

Se
rv

ic
e

m
od

el

A
rc

hi
te

ct
ur

e
Sh

ar
di

ng
El

as
tic

it
y

CA
P

Re
pl

ic
at

io
n

Bi
g

D
at

a
ad

ap
te

r
Co

m
m

un
it

y
En

te
rp

ri
se

D
Ba

aS

M
yS

Q
L

8.
0.

11
RD

BM
S

Si
ng

le
/m

as
te

r–
sl

av
e

M
an

ua
l

N
o

C
A

C
lu

st
er

3r
d

pa
rt

y
(S

Q
L-

ba
se

d)
Ye

s
Ye

s
ht

tp
s​:/

/C
lo

ud
​.o

ra
cl

​
e.

co
m

/
m

ys
ql

Po
st

gr
eS

Q
L

10
.4

RD
BM

S
Si

ng
le

/m
as

te
r–

sl
av

e
M

an
ua

l
N

o
C

A
C

lu
st

er
3r

d
pa

rt
y

(S
Q

L-
ba

se
d)

Ye
s

Ye
s

ht
tp

s​:/
/a

w
s.a

m
az

o​
n.

co
m

/r
ds

/p
os

tg
​

re
sq

l​/

Vo
ltD

B
8.

1.
2

N
ew

SQ
L

M
ul

ti-
m

as
te

r
H

as
h

Ye
s

(c
om

m
er

ci
al

)
C

P
C

ro
ss

-c
lu

st
er

(c

om
m

er
ci

al
)

3r
d

pa
rt

y
(S

Q
L-

ba
se

d)
Ye

s
Ye

s
N

o

Co
ck

ro
ac

hD
B

2.
0.

3
N

ew
SQ

L
M

ul
ti-

m
as

te
r

H
as

h
Ye

s
C

P
C

ro
ss

-c
lu

st
er

(c

om
m

er
ci

al
)

3r
d

pa
rt

y
(S

Q
L-

ba
se

d)
Ye

s
Ye

s
N

o

Ri
ak

2.
2.

3
Ke

y-
va

lu
e

M
ul

ti-
m

as
te

r
H

as
h

Ye
s

A
P

C
ro

ss
-c

lu
st

er
N

at
iv

e
Ye

s
Ye

s
N

o

Re
di

s
4.

0
Ke

y-
va

lu
e

M
ul

ti-
m

as
te

r
H

as
h

Ye
s

A
C

C
lu

st
er

N
at

iv
e

Ye
s

Ye
s

ht
tp

s​:/
/r

ed
is

​la
bs

.
co

m
/

M
on

go
D

B
4.

0.
0

D
oc

um
en

t
M

ul
ti-

m
as

te
r

H
as

h/
ra

ng
e

Ye
s

C
P

C
ro

ss
-c

lu
st

er
N

at
iv

e
Ye

s
Ye

s
ht

tp
s​:/

/w
w

w
.

m
on

go
​db

.c
om

/
C

lo
ud

/a
tla

s

Co
uc

hb
as

e
5.

0.
1

D
oc

um
en

t
M

ul
ti-

m
as

te
r

H
as

h
Ye

s
C

P
C

ro
ss

-c
lu

st
er

N
at

iv
e

Ye
s

Ye
s

ht
tp

s​:/
/w

w
w

.c
ou

ch
​

ba
se

.c
om

/p
ro

du
​

ct
s/

C
lo

ud
​/m

an
ag

​
ed

-C
lo

ud
​

Ca
ss

an
dr

a
3.

11
.2

W
id

e-
co

lu
m

n
M

ul
ti-

m
as

te
r

H
as

h/
ra

ng
e

Ye
s

A
P

C
ro

ss
-c

lu
st

er
N

at
iv

e
Ye

s
Ye

s,
By

 D
at

aS
ta

x
ht

tp
s​:/

/w
w

w
.in

st
a​

cl
us

t​r.
co

m
/s

ol
ut

​
io

ns
/m

an
ag

​
ed

-a
pa

ch
​e-

ca
ss

a​
nd

ra
/

H
Ba

se
2.

0.
1

W
id

e-
co

lu
m

n
M

ul
ti-

m
as

te
r

H
as

h
Ye

s
C

P
C

ro
ss

-c
lu

st
er

3r
d

pa
rt

y
Ye

s
Ye

s,
By

 C
lo

ud
er

a
N

o

N
eo

4J
3.

4.
1

G
ra

ph
M

as
te

r–
sl

av
e

N
o

Ye
s

C
A

C
ro

ss
-c

lu
st

er
N

at
iv

e
Ye

s
Ye

s
ht

tp
s​:/

/w
w

w
.g

ra
ph

​
st

or
y​.

co
m

/

Ja
nu

sG
ra

ph
0.

2.
0

G
ra

ph
M

ul
ti-

m
as

te
r

M
an

ua
l

Ye
s

A
P/

C
P

C
lu

st
er

3r
d

pa
rt

y
Ye

s
N

o
N

o

https://Cloud.oracle.com/
https://Cloud.oracle.com/
https://aws.amazon.com/rds/postgresql/
https://aws.amazon.com/rds/postgresql/
https://aws.amazon.com/rds/postgresql/
https://redislabs.com/
https://redislabs.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.couchbase.com/products/Cloud/managed-Cloud
https://www.couchbase.com/products/Cloud/managed-Cloud
https://www.couchbase.com/products/Cloud/managed-Cloud
https://www.couchbase.com/products/Cloud/managed-Cloud
https://www.instaclustr.com/solutions/managed-apache-cassandra/
https://www.instaclustr.com/solutions/managed-apache-cassandra/
https://www.instaclustr.com/solutions/managed-apache-cassandra/
https://www.instaclustr.com/solutions/managed-apache-cassandra/
https://www.instaclustr.com/solutions/managed-apache-cassandra/
https://www.graphstory.com/
https://www.graphstory.com/

Page 17 of 37Mazumdar et al. J Big Data (2019) 6:15

Ta
bl

e 
2 

(c
on

ti
nu

ed
)

D
BM

S
Ve

rs
io

n
D

at
a

m
od

el
Te

ch
ni

ca
l f

ea
tu

re
s

Se
rv

ic
e

m
od

el

A
rc

hi
te

ct
ur

e
Sh

ar
di

ng
El

as
tic

it
y

CA
P

Re
pl

ic
at

io
n

Bi
g

D
at

a
ad

ap
te

r
Co

m
m

un
it

y
En

te
rp

ri
se

D
Ba

aS

A
ra

ng
oD

B
3.

3.
11

M
ul

ti-
m

od
el

(k

ey
-v

al
ue

,
do

cu
m

en
t,

gr
ap

h)

M
ul

ti-
m

as
te

r
H

as
h

Ye
s

C
P

C
ro

ss
-c

lu
st

er
N

at
iv

e
Ye

s
Ye

s
N

o

O
rie

nt
D

B
3.

0.
2

M
ul

ti-
m

od
el

(k

ey
-v

al
ue

,
do

cu
m

en
t,

gr
ap

h)

M
ul

ti-
m

as
te

r
H

as
h

Ye
s

–
C

ro
ss

-c
lu

st
er

(c

om
m

er
ci

al
)

N
at

iv
e

Ye
s

Ye
s

N
o

In
flu

xD
B

1.
5.

4
Ti

m
e-

se
rie

s
M

ul
ti-

m
as

te
r

(c
om

m
er

ci
al

)
Ra

ng
e

Ye
s

(c
om

m
er

ci
al

)
A

P/
C

P
C

ro
ss

-c
lu

st
er

(c

om
m

er
ci

al
)

3r
d

pa
rt

y
Ye

s
Ye

s
ht

tp
s​:/

/c
lo

ud
​.in

flu
​

xd
at

a​.
co

m
/

Pr
om

et
he

us
2.

3
Ti

m
e-

se
rie

s
M

as
te

r–
sl

av
e

M
an

ua
l

N
o

–
C

lu
st

er
3r

d
pa

rt
y

Ye
s

Ye
s

N
o

https://cloud.influxdata.com/
https://cloud.influxdata.com/

Page 18 of 37Mazumdar et al. J Big Data (2019) 6:15

The feature analysis provides a baseline for the qualitative analysis of the non-func-
tional features. From the (horizontal) scalability point-of-view, a DBMS with a multi-
master architecture is supposed to provide scalability for write and read workloads,
while a master–slave architecture is supposed to provide read scalability. Due to the
differences between the DBMSs, the impact of elasticity requires additional qualitative
evaluations [42].

The consistency guarantees correlate to the classification in the CAP theorem. Table 2
clearly shows the heterogeneity compared to the consistency guarantees. Generally,
the single-master or master–slave architectures provide strong consistency guarantees.
Multi-master architectures cannot be exactly classified into the CAP theorem as their
consistency guarantees heavily depend on the DBMS runtime configuration [64]. Addi-
tional evaluations of the consistency for the selected DBMSs are required for strong con-
sistency (so as to ensure scalability, elasticity and availability) [44, 62].

Providing HA directly relates to the supported replication mechanisms to overcome
failures. The analysis shows that all DBMSs support cluster-level replication, while
cross-cluster replication is supported by ten out of the sixteen DBMSs. Big Data pro-
cessing relates to the technical feature of Big Data adapters. Table 2 clearly shows that
seven DBMSs provide native adapters and nine DBMS enable it via third-party adapt-
ers to support Big Data processing. The service model of all the DBMSs is either avail-
able as a self-hosted community or enterprise version. In addition, both RDBMS and six
NoSQL DBMS are offered as managed DBaaS. While the DBaaS offerings are abstract-
ing all operational aspects of the DBMS, an additional analysis might be required with
respect to their non-functional features and cost models [65].

Cloudification of DMS

Traditional on-premise DBMS offerings are still popular, but the current trend shows
that DDBMSs running in the Cloud are also well-accepted. Especially, as Big Data
imposes new challenges such as scalability, the diversity of data management or the
usage of Cloud resources, towards the massive storage of data [66]. In general, the dis-
tributed architecture of DMSs evolved their focus over exploiting the Cloud features
and catering the 5Vs of Big Data [67]. Data-as-a-service (DaaS) mostly handles the
data aggregation and management via appropriate web-services, such as RESTful APIs.
While database-as-a-service (DBaaS) offers database as a service which can include (dis-
tributed) a relational database or a non-relational one. In most of the cases, storage-as-
a-service (STaaS) includes both DaaS and the DBaaS [68]. Furthermore, BDaaS [3] is a
Cloud service (such as Hadoop-as-a-service) where traditional applications are migrated
from local installations to the Cloud. BDaaS wraps three primary services. They are
(i) IaaS (for underlying resources), (ii) STaaS (a sub-domain of platform-as-s-service
(PaaS)) for managing the data via dynamic scaling and (iii) data management (such as
data placement, replica management).

Distributed file systems

A distributed file systems (DFS) is an extended networked file system that allows mul-
tiple distributed nodes to internally share data/files without using remote call methods
or procedures [69]. A DFS offers scalability, fault-tolerance, concurrent file access and

Page 19 of 37Mazumdar et al. J Big Data (2019) 6:15

metadata support. However, the design challenges (independent of data size and stor-
age type) of a DFS are transparency, reliability, performance, scalability, and security. In
general, DFSs do not share storage access at the block level but rather work at the net-
work level. In DFSs, security relies on either access control lists (ACLs) or respectively
defined capabilities, depending on how the network is designed. DFSs can be broadly
classified into three models and respective groups (see Fig. 5). First, client–server archi-
tecture based file systems which supply a standardized view of a local file system. Sec-
ond, clustered-distributed file systems which offer multiple nodes to enable concurrent
access to the same block device. Third, symmetric file systems, where all nodes have a
complete view of the disk structure. Below, we briefly analyse each category in a separate
sub-section while we also supply some strictly open-source members for it.

Client–server model

In the client–server architecture based file system, all communications between servers
and clients are conducted via remote procedure calls. The clients maintain the status of
current operations on a remote file system. Each file server provides a standardized view
of its local file system. Here, the file read-operations are not mutually exclusive but the
write operations are. File sharing is based on mounting operations. Only the servers can
mount directories exported from other servers. Network File System (NFS) and Glus-
terFS19 are two popular open source implementations of the client–server model.

Clustered‑distributed model

Clustered-distributed based systems organize the clusters in an application-specific
manner and are ideal for DCs. The model supports a huge amount of data; the data is
stored/partitioned across several servers for parallel access. By design, this DFS model

Client-Server

File Systems

Distributed
File Systems

Clustered
Distributed

Local File
Systems

Symmetric

NFS
GlusterFS

HDFS
CephFS

Ivy
PVFS

Fig. 5  Distributed file systems classification

19  https​://docs.glust​er.org/en/lates​t/.

https://docs.gluster.org/en/latest/

Page 20 of 37Mazumdar et al. J Big Data (2019) 6:15

is fault tolerant as it enables the hosting of a number of replicas. Due to the huge vol-
ume of data, data are appended instead of overwritten. In general, the DNS servers map
(commonly using round-robin fashion) access requests to the clusters for load-balancing
purposes. The Hadoop distributed file system (HDFS) and CephFS20 are two popular
implementations of such a DFS model.

Symmetric model

Symmetric is a DFS that supports a masterless architecture, where each node has the
same set of roles. It mainly resembles a peer-to-peer system. In general, the symmetric
model employs a distributed hash table approach for data distribution and replication
across systems. Such a model offers higher availability but reduced performance. Ivy [70]
and the parallel virtual file system (PVFS) [71] are examples of a symmetric DFS model.

DFS evaluation

Similar to DDBMSs, we also compare the open source implementations of DFSs according
to the same set of technical features or criteria. A summary of this comparison is depicted
in Table 3. In general, most of the file systems are distributed in nature (except NFS and
GlusterFS). However, they do exhibit some architectural differences. NFS and GlusterFS are
both developed focusing on a master–slave approach, while Ivy and PVFS are based on the
masterless model. Data partitioning (or sharding) is also supported dynamically (featured
by Ivy and PVFS) or statically via a fixed size (as in case of HDFS) by these DFSs. Elasticity
or supporting the data scaling is a very important feature for many Big Data applications
(especially hosted at Cloud). We can thus observe that except NFS all mentioned DFSs sup-
port scalability. Further, HDFS, CephFS, Ivy and PVFS are fault tolerant as well. Replication,
highly needed for not losing data, is well supported by all DFSs. However, their granularity
differs from the block to the cluster level. Finally, these DFSs also offer some form of hooks
(either native or third-party supplied) to be used with Big Data frameworks.

Table 3  Feature analysis of selected DFSs

DFS Version FileSystem Technical features

Architecture Sharding Elasticity CAP Replication Big Data
adapter

NFS 4.2 Client–
server

Fully-central-
ized

Index/range No CA Block level 3rd party

GlusterFS 4.0 Client–
server

Fully-central-
ized

Automatic Yes CA Node level Native

HDFS 3.0.1 Clustered-
distributed

Less-central-
ized

Fixed size Yes AP Block level Native

CephFS 12.2.5 Clustered-
distributed

Less-central-
ized

Index/range Yes CP Cluster-level Native/3rd
party

Ivy 0.3 Symmetric Fully-distrib-
uted

DHash Yes AP Block-level –

PVFS 2.0 Symmetric Fully-distrib-
uted

Hash Yes AP – 3rd party

20  http://docs.ceph.com/docs/mimic​/cephf​s/.

http://docs.ceph.com/docs/mimic/cephfs/

Page 21 of 37Mazumdar et al. J Big Data (2019) 6:15

Data placement techniques
In the Cloud ecosystem, traditional placement algorithms incur a high cost (including
the time) on storing and transferring data [72]. Placing data while data is partitioned and
distributed across multiple locations is a challenge [23, 73]. Runtime data migration is an
expensive affair [30–32] and the complexity increases due to the frequent change of appli-
cations as well as DCs’ behaviour (i.e., resources or latencies) [74]. Placing a large amount
of data across the Cloud is complex due to issues, such as (i) data storage and transfer cost
optimisation while maintaining data dependencies; (ii) data availability and replication; (iii)
privacy policies, such as restricted data storage based on geo-locations. Data replication can
influence consistency, while it also enhances the scalability and higher availability of data. In
general, the existing data placement strategies can be grouped based on user-imposed con-
straints, such as data access latency [75], fault tolerance [76], energy-cost awareness [77],
data dependency [78, 79] and robustness or reliability [80, 81].

Formal definition

The data placement in a distributed computing domain is an instance of NP-hard prob-
lem [82], while it can be reduced to a bin-packing problem instance. Informally, the data
placement problem can be described as follows: given a certain workflow, the current data
placement, and a particular infrastructure, find the right position(s) of data within the
infrastructure to optimise one or more certain criteria, such as the cost of the data transfer.

A formal representation of this problem as follows: suppose that there are N datasets,
represented as di (where i = 1, . . . ,N  ). Each dataset has a certain size si . Further, suppose
that there are M computational elements represented as Vj (where j = 1, . . . ,M ). Each
computational element has a certain storage capacity denoted as cj . Finally, suppose that
there is a workflow W with T tasks which are represented as tk (where k = 1, . . . ,T  ). Each
task has a certain input tk .input and output tk .output , where each maps to a set of datasets.

The main set of decision variables is cij representing the decisions (e.g., based on privacy
or legal issues) of whether a certain dataset i should be stored in a certain computational
element j. Thus, there is a need to have cij == 1 for each i and a certain j. Two hard con-
straints need to hold: (i) a dataset should be stored in one computational element which
can be represented as follows:

∑

j cij = 1 for each i. It is worth to note that this constraint
holds when no dataset replication is allowed. Otherwise, it would take the following form:
∑

j cij >= r , where r is the replication factor; (ii) the capacity of a computational element
should be sufficient for hosting the respective dataset(s) assigned to it. This is represented
as follows:

∑

i cij ∗ si <= cj for each j.
Finally, suppose that the primary aim is to reduce the total amount of data transfers for

the whole workflow. In this respect, this optimisation objective can be expressed as follows:

where m(di) (which supplies as the output a value in [1, M]) indicates the index of the
computational element that has been selected for a certain dataset. This objective adds
the amount of data transfers per each workflow task which relates to the fact that the
task will be certainly placed in a specific resource mapping to one of the required input

(1)
minimise

∑

k

∑

di ,di′
∈tk .input

(

m(di) <> m
(

di′
))

Page 22 of 37Mazumdar et al. J Big Data (2019) 6:15

datasets. Thus, during its execution, the data mapping to the rest of the input datasets
will need to be moved in order to support the respective computation needed.

Data placement methodologies

We broadly classify the proposed data placement methods into data dependency, holis-
tic task and data scheduling and graph-based methods. The methods in each category
are analysed in the following subsections.

Data dependency methods

A data-group-aware placement scheme is proposed in [83] by employing the bond
energy algorithm (BEA) [84] to transform the original data dependency matrix into a
Hadoop cluster. It exploits access patterns to find an optimal data grouping to achieve
better parallelism and workload balancing. In [85], a data placement algorithm is pro-
posed for solving the data inter-dependency issue at the VM level. Scalia [86] proposes
a Cloud storage brokerage scheme that optimises the storage cost by exploiting the real-
time data access patterns. Zhao et al. [87] proposed data placement strategies for both
initial data placement and relocation using a particle swarm optimization (PSO) algo-
rithm. For fixed data set placement, this method relies on hierarchical data correlation
and performs data re-allocation during the storage saturation. Yuan et al. [78] propose
a k-means based dataset clustering algorithm to construct a data dependency matrix
by exploiting the data dependency and the locality of computation. Later, the depend-
ency matrix is transformed by applying the BEA while items are clustered based on their
dependencies by following a recursive binary partitioning algorithm. In general, the
preservation of time locality can significantly impact caching performance while the effi-
cient re-ordering of jobs can improve the resource usage. In [79] authors propose a file
grouping policy for pre-staging data by preserving time locality and enforcing the role of
job re-ordering via extracting access patterns.

Task and data scheduling methods

In [88], the authors propose an adaptive (based on multi-objective optimization model)
data management middleware which collects system-state information and abstracts
away the complexities of multiple Cloud storage systems. For internet-of-things (IoT)
data streaming support, Lan et al. [89] proposed a data stream partitioning mechanism
by exploiting statistical feature extraction. Zhang et al. [90] propose a mixed-integer lin-
ear programming model for modelling the data placement problem. It considers both
the data access cost as well as the storage limitations of DCs. Hsu et al. [91] proposed a
Hadoop extension by adding dynamic data re-distribution (by VM profiling) before the
map phase and VM mapping for reducers based on partition size and VM availability.
Here, high capacity VMs are assigned for high workload reducers. Xu et al. [92] pro-
poses a genetic programming approach to optimise the overall number of data transfers.
However, this approach does not consider the DCs’ capacity constraints and the non-
replication constraints of data sets. In [93], a policy engine is proposed for managing
both the number of parallel streams (between origin and destination nodes) and the pri-
orities for data staging jobs in scientific workflows. The policy engine also considers data
transfers, storage allocation and network resources.

Page 23 of 37Mazumdar et al. J Big Data (2019) 6:15

The storage resource broker [23] provides seamless access to the different distrib-
uted data sources (interfacing multiple storages) via its APIs. It works as a middleware
between the multiple distributed data storages and applications. BitDew [94] offers
a programmable environment for data management via metadata exploitation. The
data scheduling (DS) service takes care of implicit data movement. Pegasus [95] pro-
vides a framework that maps complex scientific applications onto distributed resources.
It stores the newly generated data and also registers them in the metadata catalogue.
The replica location service [96] is a distributed, scalable, data management service that
maps the logical data names to target names. It supports both centralized as well as dis-
tributed resource mapping. Kosar and Livny [81] proposes a data placement that con-
sists of a scheduler, a planner and a resource broker. The resource broker is responsible
for matching resources, data identification and decisions related to data movement. The
scheduling of data placement jobs relies on the information given by the workflow man-
ager, the resource broker and the data miner. A very interesting feature of the proposed
sub-system is that it is able to support failure recovery through the application of retry
semantics.

Graph‑based data placement

Yu and Pan [72] proposes the use of sketches to construct a hyper-graph sparsifier of data
traffic to lower the data placement cost. Such sketches represent data structures that
approximate properties of a data stream. LeBeane et al. [97] proposed on-line graph-
partitioning multiple strategies to optimise data-ingress across heterogeneous clusters.
SWORD [98] handles the partitioning and placement for OLTP workloads. Here, the
workload is represented as a hypergraph and a hyper-graph compression technique is
employed to reduce the data partitioning overhead. An incremental data re-partitioning
technique is also proposed that modifies data placement in multiple steps to support
workload changes. Kayyoor et al. [99] propose how to map nodes to a subset of clus-
ters via satisfying user constraints. It minimises the query span for query workloads by
applying replica selection and data placement algorithms. The query-based workload is
represented as hyper-graphs and a hypergraph partitioning algorithm is used to process
them. Kaya et al. [100] model the workflow as a hypergraph and employ a partitioning
algorithm to reduce the computational and storage load while trying to minimise the
total amount of file transfers.

Comparative evaluation

In this section, we have carefully selected a set of criteria to evaluate the methods ana-
lysed in "Data placement methodologies" section. The curated criteria are: (i) fixed data
sets—whether the placement of data can be a priori fixed in sight of, e.g., regulations, (ii)
constraint satisfaction—which constraint solving technique is used, (iii) granularity—
what is the granularity of the resources considered, (iv) intermediate data handling—
whether intermediate data, produced by, e.g., a running workflow, can be also handled,
(v) multiple application handling—whether the data placement over multiple applica-
tions can be supported, (vi) increasing data size—whether the growth rate of data is
taken into account, (vii) replication—whether data replication is supported, (viii) optimi-
sation criteria—which optimisation criteria are exploited, (ix) additional system related

Page 24 of 37Mazumdar et al. J Big Data (2019) 6:15

information—whether additional knowledge is captured which could enable the produc-
tion of better data placement solutions. An overview of the evaluation based on these
criteria can be observed in comparison Table 4. First of all, we can clearly see that there
is no approach that covers all the criteria considered. Three approaches (Yuan et al. [78],
BitDew [94] and Kosar [81]) can be distinguished, considered also as complementary to
each other. However, only in [78] a suitable optimisation/scheduling algorithm for data
placement has been realised.

Table 4  Comparative summary of existing data placement algorithms

Approach Fixed DS Constraint
satisfaction

Granul. Interm.
DS

Mult.
appl.

Data
size

Repl. Opt.
criteria

Add.
info.

BDAP [85] Yes Meta-heu-
ristic

Fine Yes No No No Comm.
cost

No

Xu [92] No Meta-heu-
ristic

Coarse No No No No Data
transf.
number

No

Yuan [78] Yes Recursive
binary part.

Coarse Yes Yes Yes No Data
transf.
number

No

Kaya [100] No Hypergraph
part.

Coarse No No No No Data
transf.
number

No

Zhao [87] Yes Hierarchical
part. clust.
+ PSO

Fine Yes No No No Data
transf.
number

No

Wang [83] No Recursive
clust. +
ODPA

Fine No No No No Data
transf.
number

Yes

Yu [72] No Hypergraph
part.

Fine No No No No Cut
weight

Yes

Zhang [90] No Lagrance MIP
relaxation

Coarse No No No No Data
access
cost

No

Hsu [91] No – Fine No No No No Profiling-
related
metric

Yes

LeBeane [97] No Hypergraph
part.

Fine No No No No Skew fac-
tor

Yes

Lan [89] No Clustering-
based PSO
search

Fine No No No No Volatility
AMA,
hurst
distance

Yes

BitDew [94] No Fine Yes Yes No Yes Data dep.
repl.,
fault tol.

Yes

Kayoor [99] No Hypergraph
part.

Coarse No No No Yes Avg.
query
span

Yes

Kosar [81] Yes Fine Yes Yes No Yes Yes

Scalia [86] No Multi-dimen-
sional
Knapsack
problem

Fine No Yes Yes No Storage
cost

Yes

SWORD [98] Yes Graph parti-
tion

Fine No Yes Conflict-
ing
transac-
tions

Yes

Page 25 of 37Mazumdar et al. J Big Data (2019) 6:15

Considering now each criterion in isolation, we can observe in Table 4 that very few
approaches consider the existence of a fixed or semi-fixed location of data sets. Further,
such approaches seem to prescribe a fixed a-priori solution to the data placement prob-
lem which can lead to a sub-optimal solution. Especially as optimisation opportunities
are lost in sight of more flexible semi-fixed location constraints. For instance, fixing the
placement of a dataset to a certain DC might be sub-optimal in case that multiple DCs
in the same location exist.

Three main classes of data placement optimisation techniques can be observed:
(i) meta-search (like PSO)/genetic programming) to more flexibly inspect the avail-
able solution space and efficiently find a near-optimal solution; (ii) hierarchical parti-
tion algorithms (based on BEA) that attempt to group data recursively based on data
dependencies either to reduce the number or the cost of data transfers. BEA is used as
the baseline for many of these algorithms. BEA also supports dynamicity. In particu-
lar, new data sets are handled by initially encoding them in a reduced table-based form
before applying the BEA. After the initial solution is found, the modification can be done
by adding cluster/VM capacity constraints into the model. (iii) a Big Data placement
problem can also be encoded via a hypergraph. Here, nodes are data and machines while
hyper-edges attempt to connect them together. Through such modelling, traditional or
extended hypergraph partitioning techniques can be applied to find the best possible
partitions. There can be a trade-off between different parameters or metrics that should
be explored by all the data placement algorithms irrespectively of the constraint solving
technique used. However, such a trade-off is not usually explored as in most cases only
one metric is employed for optimisation.

Granularity constitutes the criterion with less versatility as most of the approaches
have selected a fine-grained approach for data-to-resource mapping, which is suitable
for the Cloud ecosystem.

The real-world applications are dynamic and can have varying load at different points
of time. Furthermore, applications can produce additional data which can be used for
next computation steps. Thus, data placement should be a continuous process to vali-
date decisions taken at different points in time. However, most approaches in data place-
ment, focus mainly on the initial positioning of Big Data and do not interfere with the
actual runtime of the applications.

There seems also to exist a dependency between this criterion and the fixed data sets
one. The majority of the proposed approaches satisfying this criterion also satisfy the
fixed data set one. This looks like a logical outcome as dynamicity is highly correlated to
the need to better handle some inherent data characteristics. Further, a large volume of
intermediate data can also have a certain gravity effect that could resemble the one con-
cerning fixed data.

The multi-application criterion is not supported at all. This can be due to the following
facts: (i) multi-application support can increase the complexity and the size of the prob-
lem; (ii) it can also impact the solution quality and solution time which can be undesir-
able especially for approaches that already supply sub-optimal solutions.

Only the approach in [78] caters for data growth via reserving additional space in
already allocated nodes based on statically specified margins. However, such an approach
is static in nature and faces two unmet challenges: the support for dynamic data growth

Page 26 of 37Mazumdar et al. J Big Data (2019) 6:15

monitoring, suitable especially in cases where data can grow fast, and dynamic storage
capacity determination, through, e.g., data growth prediction, for better supporting pro-
active data allocation. However, if we consider all dynamicity criteria together, we can
nominate the approach in [78] as the one with the highest level of dynamicity, which is
another indication of why it can be considered as prominent.

Data replication has been widely researched in the context of distributed systems but
has not been extensively employed in data placement. Thus, we do believe that there
exists a research gap here. Especially as those few approaches (such as SWORD [98],
Kosar [81], Kayoor [99], BitDew [94]) that do support replication still lack suitable
details or rely on very simple policies driven by user input.

We can observe that the minimisation of data transfer number or cost is a well-
accepted optimisation criterion. Furthermore, data partitioning related criteria, such as
skew factor and cut weight, have been mostly employed in the hypergraphs based meth-
ods. In some cases, we can also see multiple criteria to be considered which are: (i) either
reduced to an overall one; (ii) not handled through any kind of optimisation but just
considered in terms of policies that should be enforced. In overall, we are not impressed
by the performance of the state-of-the-art in this comparison criterion. So, there is a
huge room for potential improvement here.

Finally, many of the methods also consider additional input to achieve a better solu-
tion. The most common extra information that is exploited is data access patterns and
nodes (VMs or PMs) profiling to, e.g., inspect their (data) processing speed. However,
while both are important, usually only one from these two is exploited in these methods.

Lessons learned and future research directions
To conclude our survey, in this section we will discuss the issues of the current state-of-
the-art and the research gaps or opportunities related to data storage and placement.
Further, we also supply research directions towards a complete DLMS system in the Big
Data-Cloud ecosystem.

Data lifecycle management

Challenges and issues

This subsection refers to how the discussed data storage and placement challenges can
be combined and viewed from the perspective of a holistic DLMS of the future. Such
a DLMS should be able to cope with the optimal data storage and placement in a way
that considers the Big Data processing required, along with the functional and non-func-
tional variability space of the given Cloud resources at hand, in each application sce-
nario. It implies the ability to consider both private and public Clouds, offered by one
or several Cloud vendors, according to the specifics of each use cases, while making the
appropriate decisions on how the data should be stored, placed, processed and eventu-
ally managed.

Just considering the cross-Cloud application deployment for fully exploiting the ben-
efits of the Cloud paradigm hinders the important challenge of data-awareness. This
data-awareness refers to the need to support an application deployment process that
considers the locations of data sources, their volume and velocity characteristics, as well
as any security and privacy constraints applicable. Of course, from the DLM perspective,

Page 27 of 37Mazumdar et al. J Big Data (2019) 6:15

this means that there should also be a consideration of the dependencies between appli-
cation components and all data sources. This has the reasonable implication that the
components requiring frequent accesses to data artefacts, found at rest in certain data
stores, cannot be placed in a different Cloud or even in a certain physical and network
distance from the actual storage location. If such aspects are ignored then application
performance certainly degrades, as expensive data migrations may incur while legisla-
tion conformance issues might be applicable.

Future research directions

Among the most prominent research directions, we highlighted the design and imple-
mentation of a holistic DLMS, able to cope with all of the above-mentioned aspects on
the data management, while employing the appropriate strategies for benefiting from
the multi-Cloud paradigm. It is important to note that data placement in virtualized
resources is generally subjected to long-term decisions as any potential data migrations
generally incur immense costs which may be amplified by data gravity aspects that may
result in subsequent changes in the application placement. Based on this, we consider
the following aspects that should sketch the main functionality of the DLMS of the
future that is able to cope with Big Data management and processing by really taking
advantage of the abundance of resources in the Cloud computing world:

•	 Use of advanced modelling techniques that consider metadata schemas for setting
the scope of truly exploitable data modelling artefacts. It refers to managing the
modelling task in a way that covers the description of all V’s (e.g. velocity, volume,
value, variety, and veracity) in the characteristics of Big Data to be processed. The
proper and multi-dimensional data modelling will allow for an adequate description
of the data placement problem.

•	 Perform optimal data placement across multiple Cloud resources based on the data
modelling and user-defined goals, requirements and constraints.

•	 Use of efficiently distributed monitoring functionalities for observing the status of
the Big Data stored or processed and detect any migration or reconfiguration oppor-
tunities.

•	 Employ the appropriate replication, fail-over and backup techniques by considering
and exploiting at the same time the already offered functionalities by public Cloud
providers.

•	 According to such opportunities, continuously make reconfiguration and migra-
tion decisions by consistently considering the real penalty for the overall application
reconfiguration, always in sight of the user constraints, goals and requirements that
should drive the configuration of computational resources and the scheduling of
application tasks.

•	 Design and implement security policies in order to guarantee that certain regula-
tions (e.g., General Data Protection Regulation) are constantly and firmly respected
(e.g., data artefacts should not be stored or processed outside the European Union)
while at the same time the available Cloud providers’ offerings are exploited accord-
ing to the data owners’ privacy needs (e.g., exploit the data sanitization service when
migrating or just removing data from a certain Cloud provider).

Page 28 of 37Mazumdar et al. J Big Data (2019) 6:15

Data storage

In this section, we highlight the challenges for holistic data lifecycle management with
respect to both the current DBMS and DFS systems and propose future research direc-
tions to overcome such challenges.

Challenges and issues

In the recent decade, the DBMS landscape has significantly evolved with respect to the
data models and supported non-functional features, driven by Big Data and the related
requirements of Big Data applications (see "Non-functional data management features"
section). The resulting heterogeneous DBMS landscape provides a lot of new opportuni-
ties for Big Data management while it simultaneously imposes new challenges as well.
The variety of data models offers domain-specific solutions for different kinds of data
structures. Yet, the vast number of existing DBMSs per data model leads to a complex
DBMS selection process. Hereby, functional features of potential DBMSs need to be
carefully evaluated (e.g., NoSQL DBMSs do not offer a common query interface even
within the same data model). For the non-functional features, the decision process is
twofold: (i) a qualitative analysis (as carried out in "Comparison of selected DBMSs" sec-
tion) should be conducted to narrow down the potential DBMSs; (ii) quantitative evalu-
ations should be performed over the major non-functional features based on existing
evaluation frameworks.

While collecting data from many distributed and diverse data sources is a challenge [8]
modern Big Data applications are typically built upon multiple different data structures.
Consequently, current DBMSs cater for domain-specific data structures due to the vari-
ety of data models supported, (as shown in our analysis Table 2). However, exploiting
the variety of data models typically leads to the integration of multiple different DBMSs
in modern Big Data applications. Consequently, the operation of a DBMS needs to be
abstracted to ease the integration of different DBMSs into Big Data applications and
to fully exploit the required features (such as scalability or elasticity). Hereby, research
approaches in Cloud-based application orchestration can be exploited [101, 102]. While
the current DBMS landscape already moves towards the Big Data domain, the optimal
operation of large-scale or even geo-distributed DBMSs still remains a challenge as the
non-functional features significantly differ for different DBMSs (especially by using
Cloud resources [42, 61, 103]).

In general, DFS provides scalability, network transparency, fault tolerance, concurrent
data (I/O) access, and data protection [104]. It is worth noting that in Big Data domain,
the scalability must be achieved without increasing the degree of replication of stored
data (particularly for the Cloud ecosystem while combined with the private/local data
storage systems). The storage system must increase user data availability but not the
overheads. While resource sharing is a complex task and the severity can increase many-
folds while managing the Big Data. In today’s Cloud ecosystem, we lack a single/uni-
fied model that offers a single interface to connect multiple Cloud-based storage models
(such as Amazon S3 objects) and DFSs. Apart from that, the synchronization in DFS
is also a well-known issue and as the degree of data access concurrency is increasing,
synchronization could certainly be a performance bottleneck. Moreover, in some cases,

Page 29 of 37Mazumdar et al. J Big Data (2019) 6:15

it has also been observed that the performance of DFSs is low compared to the local file
systems [105, 106]. Furthermore, network transparency is also a crucial process related
to the performance, especially while handling Big Data (because now the Big Data is dis-
tributed across multiple Clouds). Although most DFSs uses transmission control proto-
col or user datagram protocol during the communication process, however, a smarter
way needs to be devised. In DFS, the fault-tolerance is achieved by lineage, checkpoint,
and replicating metadata (and data objects) [104]. While the state-less based DFSs are
having fewer overheads regarding managing the file states while reconnecting after fail-
ures, the state-full approach is also in use. For DFSs, the failure must be handled very
fast and seamlessly across the Big Data management infrastructure. On the other side,
there is no well-accepted approach to data access optimization methods. The methods
such as data locality, multi-level caches are used case by case. Finally, securing the data
in the DFS-Cloud ecosystem is a challenge due to the interconnection of so many diverse
hardware as well as software components.

Future research directions

To address the identified challenges for the data storage in Big Data lifecycle manage-
ment, novel Big Data-centric evaluations are required that ease the selection and opera-
tion of large-scale DBMS.

•	 The growing domain of hybrid transaction/analytical processing workloads needs to
be considered for the existing data models. Moreover, comparable benchmarks for
different data models need to be established [107] and qualitative evaluations need to
be performed across all data model domains as well.

•	 To select an optimal combination of a distributed DBMS and Cloud resources, eval-
uation frameworks across different DBMS, Cloud resource and workload domains
are required [108]. Such frameworks ease the DBMS selection and operation for Big
Data lifecycle management.

•	 Holistic DBMS evaluation frameworks are required to enable the qualitative analysis
across all non-functional features in a comparable manner. In order to achieve this,
frameworks need to support complex DBMS adaptation scenarios, including scaling
and failure injection.

•	 DBMS adaptation strategies need to be derived and integrated into the orchestration
frameworks to enable the automated operation (to cope with workload fluctuations)
of a distributed DBMS.

•	 Qualitative DBMS selection guidelines need to be extended with respect to opera-
tional and adaptation features of current DBMS (i.e., support for orchestration
frameworks to enable automated operation and adaptation and the integration sup-
port into Big Data frameworks).

Similar to the above research directions for DBMSs, we also mention below the research
directions for DFSs.

•	 For efficient, resource sharing among multiple Cloud service providers/compo-
nents, a single/unified interface must handle the complex issues, such as seamless

Page 30 of 37Mazumdar et al. J Big Data (2019) 6:15

workload distribution, improved data access experience and faster read-write syn-
chronizations, together with the increased level of data serialization for DFSs.

•	 We also advocate for using smarter replica-assignment policies to achieve better
workload balance and efficient storage space management.

•	 To counter the synchronization issue in DFSs, a generic solution could be to cache
the data in the client or in the local server’s side, but such an approach can become
the bottleneck for the Big Data management scenario as well. Thus, exploratory
research must be done in this direction.

•	 As the data diversity and the networks heterogeneity is increasing, an abstract
communication layer must be in place to address the issue of network transpar-
ency. Such abstraction can handle different types of communications easily and
efficiently.

•	 The standard security mechanisms are in place (such as ACLs) for data security.
However, after the Cloudification of the file system, the data become more vulner-
able due to the interconnection of diverse distributed, heterogeneous computing
components. Thus, proper security measures must be built-in features of tomorrow’s
DFSs.

Data placement

The following data placement challenges and corresponding research directions are in
line with our analysis in "Comparative evaluation" section.

Challenges and issues

Fixed data set size  We have observed data placement methods able to fix the location
of data sets based on respective (privacy) regulations, laws or user requirements. Such
requirements indicate that data placement should be restrained within a certain coun-
try, sets of countries or even continents. However, this kind of semi-fixed constraints is
handled in a rather static way by already pre-selecting the right place for such data sets.

Constraint solving  Exhaustive solution techniques are efficient to reach optimal solu-
tions but suffer from scalability issues and higher execution time (especially for medium/
big-sized problem instances). On the other hand, meta-heuristics (such as PSO) seems
more promising as they can produce near-optimal solutions faster by also achieving bet-
ter scalability. However, they need proper configuration and modelling which can be a
time-consuming task while it is not always guaranteed that near-optimal solutions can
be produced.

Granularity  Most of the evaluated methods support a fine-grained approach for dataset
placement. However, all such methods consider that resources are fixed in number. Such
assumptions are inflexible in the sight of the following issues: (i) a gradual data growth
can saturate the resources assigned to data. In fact, a whole private storage infrastructure
could be saturated for this reason; (ii) data should be flexibly (re-)partitioned to tackle the
workload variability.

Page 31 of 37Mazumdar et al. J Big Data (2019) 6:15

Multiple applications  Only three from the evaluated methods (see Table 4) can handle
multiple applications but also in a very limited fashion. Such handling is challenging,
especially when different applications are assorted with conflicting requirements. It must
also be dynamic due to the changes brought by application execution as well as other fac-
tors (e.g., application requirement and Cloud infrastructure changes).

Data growth  Data sets can grow over time. Only one method [78] in the previous analy-
sis is able to handle the data size change. It employs a threshold-based approach to check
when data needs to be moved or when resources are adequate for storing the data to also
handle their growth. However, no detailed explanation is supplied concerning how the
threshold is computed.

Data replication  It is usually challenging to find the best possible trade-off between cost
and replication degree to enable cost-effective data replication.

Optimisation criteria  Data transfer and replication management is a complex pro-
cess [109] due to the completely distributed nature of the Cloud ecosystem. It further gets
complicated due to the unequal data access speed. Data transfer number or cost is a well-
accepted criterion for optimising data placement. However, it can be also quite restric-
tive. First, as there can be cases where both of these two metrics need to be considered.
For instance, suppose that we need to place two datasets, initially situated in one VM,
to other VMs as this VM will become soon unavailable. If we just consider the transfer
number, this can lead to the situation where the movement is performed in an arbitrary
way even migrating data to another DC while there is certainly a place in the current one.
In the opposite direction, there can be cases where cost could be minimised but this could
lead to increasing the number of transfers which could impact application performance.
Second, data placement has been mainly seen in an isolated manner without examining
user requirements. However, it can greatly affect application performance and cost.

Additional information  Apart from extracting data access patterns and node profiles,
we believe that more information is needed for a better data placement solution.

Future research directions

•	 Fixed data set size: To guarantee the true, optimal satisfaction of the user require-
ments and optimisation objectives, we suggest the use of semi-fixed constraints in
a more suitable and flexible manner as a respective non-static part of the location-
aware optimisation problem to be solved.

•	 Constraint solving: We propose the use of hybrid approaches (i.e., combining exhaus-
tive and meta-search heuristic techniques) so as to rapidly get (within an accept-
able and practically employable execution time) optimal or near-optimal results in
a scalable fashion. For instance, constraint programming could be combined with
local search. The first could be used to find a good initial solution, while the latter
could be used for neighbourhood search to find a better result. In addition, it might
be possible that a different and more scalable modelling of the optimisation problem
could enable to run standard exhaustive solution techniques even with medium-

Page 32 of 37Mazumdar et al. J Big Data (2019) 6:15

sized problem instances. Finally, solution learning from history could be adopted to
fix parts of the optimisation problem and thus substantially reduce the solution space
to be examined.

•	 Granularity: There is a need for dynamic approaches for data placement which do
take into account the workload fluctuation and the data growth to both partition
data as well as optimally place them in a set of resources with a size that is dynami-
cally identified.

•	 Multiple applications: To handle applications conflicting requirements and the dyna-
micity of context (e.g., change of infrastructure, application requirements), different
techniques to solve the (combined) optimisation problem are required. First, soft con-
straints could be used to solve this problem, even if it is over-constrained (e.g., pro-
ducing a solution that violates the least number of these preferences). Next, we could
prioritise the applications and/or their tasks. Third, distributed solving techniques
could be used to produce application-specific optimisation problems of reduced
complexity. This would require a transformation of the overall problem into sub-prob-
lems which retains as much as possible the main constraints and requirements of each
relevant application. Finally, complementary to these distributed solving techniques,
the measure of replication could also be employed. By using such a measure, we ena-
ble each application to operate over its own copy of the data originally shared. This
could actually enable to have complete independence of applications which would
then allow us to solve data placement individually for each of these applications.

•	 Data growth: There is a need to employ a more sophisticated approach which exploits
the data (execution) history as well as data size prediction and data (type) similar-
ity techniques to solve the data growth issue. Similarity can be learned by know-
ing the context of data (e.g., by assuming the same context has been employed for
similar data over time by multiple users), while statistical methods can predict the
data growth. Such an approach can also be used for new data sets for which no prior
knowledge exists (known as the cold-start problem).

•	 Data replication: For data replication, we suggest to dynamically compute the replica-
tion degree by considering the application size, data size, data access pattern, data
growth rate, user requirements, and the capabilities of Cloud services. Such a solution
could also rely on a weight calculation method for the determination of the relative
importance of each of these factors.

•	 Optimisation criteria: An interesting research direction compiles into exploring ways
via data placement and task scheduling could be either solved in conjunction or in a
clever but independent way such that they do take into account the same set of (high-
level) user requirements. This could lead to producing solutions which are in concert
and also optimal according to both aspects of data and computation.

•	 Additional information: We advocate that the additional information required to be
collected or derived include: (i) co-locating frequently accessing tasks and data; (ii)
exploiting data dependencies to have effective data partitioning. A similar approach
is employed by Wang et al. [83] where data are grouped together at a finer granu-
larity. There are also precautions in not storing different data blocks from the same
data in the same node; (iii) data variability data can be of different forms. Each form
might require a different machine configuration for optimal storage and processing.

Page 33 of 37Mazumdar et al. J Big Data (2019) 6:15

In this case, profiling should be extended to also capture this kind of machine perfor-
mance variation which could be quite beneficial for more data-form-focused place-
ment. In fact, we see that whole approaches are dedicated to dealing with different
data forms. For instance, graph analytics-oriented data placement algorithms exploit
the fact that data are stored in the form of graphs to more effectively select the right
techniques and algorithms for solving the data placement problem. While special-
purpose approaches might be suitable for different data forms, they are not the right
choice for handling different kinds of data. As such, we believe that an important
future direction should be the ability to more optimally handle data of multiple forms
to enhance the applicability of a data placement algorithm and make it suitable for
handling different kinds of applications instead of a single one.

Concluding remarks
The primary aim of this survey is to provide a holistic overview of the state of the art
related to both data storage and placement in the Cloud ecosystem. We acknowledge
that there do exist some surveys on various aspects of Big Data, which focus on the
functional aspect and mainly on Big Data storage issues. However, this survey plays a
complementary role with respect to them. In particular, we cover multiple parts of the
Big Data management architecture (such as DLM, data storage systems, data placement
techniques), which were neglected in the other surveys, under the prism of non-func-
tional properties. Further, our contribution to Big Data placement is quite unique. In
addition, the in-depth analysis of each main article section is covered by a well-designed
set of evaluation criteria. Such an analysis also assists in a better categorization of the
respective approaches (or technologies, involved in each part).

Our survey enables readers to better understand which solution could be utilized
under which non-functional requirements. Thus, assisting towards the construction of
user-specific Big Data management systems according to the non-functional require-
ments posted. Subsequently, we have described relevant challenges that can pave the
way for the proper evolution of such systems in the future. Each challenge prescribed
in "Lessons learned and future research directions" section has been drawn from the
conducted analysis. Lastly, we have supplied a set of interesting and emerging future
research work directions concerning both the functionalities related to the Big Data
management (i.e., Big Data storage and placement), as well as the Big Data lifecycle man-
agement as a whole, in order to address the identified challenges.

Abbreviations
ACL: access control list; BDaaS: Big Data-as-a-service; BEA: bond energy algorithm; BI: business intelligence; CDM: cogni-
tive data management; DaaS: data-as-a-service; DBaaS: database-as-a-service; DCs: data centers; DDBMS: distributed
database management system; DFS: distributed file system; DLMS: data lifecycle management system; DMS: data
management system; HA: high availability; HDFS: Hadoop distributed file system; IoT: internet-of-thing; NFS: Network File
System; PaaS: platform-as-a-service; PSO: particle swarm optimization; PVFS: parallel virtual file system; QoS: quality of
service; SLR: systematic literature review; STaaS: storage-as-a-service.

Authors’ contributions
"Introduction" is contributed by SM, DS, KK and YV; "Data lifecycle management (DLM)" is contributed by SM, KK and YV;
"Methodology" is contributed by KK and SM; "Non-functional data management features" is contributed by DS and SM;
"Data storage systems" is contributed by DS, SM and YV; "Data placement techniques" is contributed by KK and SM; and
"Lessons learned and future research directions" is contributed by YV, SM, DS, KK. All authors read and approved the final
manuscript.

Page 34 of 37Mazumdar et al. J Big Data (2019) 6:15

Author details
1 Simula Research Laboratory, 1325 Lysaker, Norway. 2 Ulm University, Ulm, Germany. 3 ICS-FORTH, Heraklion, Crete,
Greece. 4 Institute of Communication and Computer Systems (ICCS), 9 Iroon Polytechniou Str., Athens, Greece.

Acknowledgements
The research leading to this survey paper has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No. 731664. The authors would like to thank the partners of the
MELODIC project (http://www.melod​ic.cloud​/) for their valuable advices and comments.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Funding
This work is generously supported by the Melodic project (Grant Number 731664) of the European Union H2020
program.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 October 2018 Accepted: 22 January 2019

References
	 1.	 Khan N, Yaqoob I, Hashem IAT, et al. Big data: survey, technologies, opportunities, and challenges. Sci World J.

2014;2014:712826.
	 2.	 Kaisler S, Armour F, Espinosa JA, Money W. Big data: issues and challenges moving forward. In: System sciences

(HICSS), 2013 46th Hawaii international conference on, IEEE. 2013. pp. 995–1004.
	 3.	 Zheng Z, Zhu J, Lyu MR. Service-generated big data and big data-as-a-service: an overview. In: Big Data (BigData

Congress), 2013 IEEE international congress on, IEEE. 2013. pp. 403–10.
	 4.	 Chen M, Mao S, Liu Y. Big data: a survey. Mob Netw Appl. 2014;19(2):171–209.
	 5.	 Inukollu VN, Arsi S, Ravuri SR. Security issues associated with big data in cloud computing. Int J Netw Secur Appl.

2014;6(3):45.
	 6.	 Wang C, Wang Q, Ren K, Lou W. Privacy-preserving public auditing for data storage security in cloud computing.

In: Infocom, 2010 proceedings IEEE, IEEE. 2010. pp. 1–9.
	 7.	 Chaudhuri S. What next?: a half-dozen data management research goals for big data and the cloud. In: PODS,

Scottsdale, AZ, USA. 2012. pp. 1–4.
	 8.	 Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and

challenges in big data analytics. J Big Data. 2015;2(1):1.
	 9.	 Verma D. Supporting service level agreements on IP networks. Indianapolis: Macmillan Technical Publishing; 1999.
	 10.	 Sakr S, Liu A, Batista DM, Alomari M. A survey of large scale data management approaches in cloud environments.

IEEE Commun Surv Tutor. 2011;13(3):311–36.
	 11.	 Wu L, Yuan L, You J. Survey of large-scale data management systems for big data applications. J Comput Sci Tech-

nol. 2015;30(1):163.
	 12.	 Oussous A, Benjelloun FZ, Lahcen AA, Belfkih S. Big data technologies: a survey. J King Saud Univ Comput Inf Sci.

2017;30(4):431–48.
	 13.	 Grolinger K, Higashino WA, Tiwari A, Capretz MA. Data management in cloud environments: NoSQL and NewSQL

data stores. J Cloud Comput Adv Syst Appl. 2013;2(1):22.
	 14.	 Zhang H, Chen G, Ooi BC, Tan KL, Zhang M. In-memory big data management and processing: a survey. IEEE Trans

Knowl Data Eng. 2015;27(7):1920–48.
	 15.	 Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU. The rise of “big data” on cloud computing: review

and open research issues. Inf Syst. 2015;47:98–115.
	 16.	 Ball A. Review of data management lifecycle models. Bath: University of Bath; 2012.
	 17.	 Demchenko Y, de Laat C, Membrey P. Defining architecture components of the big data ecosystem. In: Interna-

tional conference on collaboration technologies and systems. 2014. pp. 104–12.
	 18.	 Pääkkönen P, Pakkala D. Reference architecture and classification of technologies, products and services for big

data systems. Big Data Res. 2015;2(4):166–86.
	 19.	 NBD-PWG. NIST big data interoperability framework: volume 2, big data taxonomies. Tech. rep., NIST, USA 2015.

Special Publication 1500-2.
	 20.	 Organisation for Economic Co-operation and Development. Data-driven innovation: big data for growth and well-

being. Paris: OECD Publishing; 2015.
	 21.	 Kaufmann M. Towards a reference model for big data management. Research report, University of Hagen. 2016.

Retrieved from https​://ub-depos​it.fernu​ni-hagen​.de/recei​ve/mir_mods_00000​583. Retrieved 15 July 2016.
	 22.	 Höfer C, Karagiannis G. Cloud computing services: taxonomy and comparison. J Internet Serv Appl.

2011;2(2):81–94.
	 23.	 Baru C, Moore R, Rajasekar A, Wan M. The sdsc storage resource broker. In: CASCON first decade high impact

papers, IBM Corp.; 2010. pp. 189–200.

http://www.melodic.cloud/
https://ub-deposit.fernuni-hagen.de/receive/mir_mods_00000583

Page 35 of 37Mazumdar et al. J Big Data (2019) 6:15

	 24.	 Chasen JM, Wyman CN. System and method of managing metadata data 2004. US Patent 6,760,721.
	 25.	 Gómez A, Merseguer J, Di Nitto E, Tamburri DA. Towards a uml profile for data intensive applications. In: Proceed-

ings of the 2nd international workshop on quality-aware DevOps, ACM. 2016. pp. 18–23.
	 26.	 Verginadis Y, Pationiotakis I, Mentzas G. Metadata schema for data-aware multi-cloud computing. In: Proceedings

of the 14th international conference on INnovations in Intelligent SysTems and Applications (INISTA). IEEE. 2018.
	 27.	 Binz T, Breitenbücher U, Kopp O, Leymann F. Tosca: portable automated deployment and management of cloud

applications. In: Advanced web services. Springer; 2014. pp. 527–49.
	 28.	 Kritikos K, Domaschka J, Rossini A. Srl: a scalability rule language for multi-cloud environments. In: Cloud comput-

ing technology and science (CloudCom), 2014 IEEE 6th international conference on, IEEE. 2014. pp. 1–9.
	 29.	 Rossini A, Kritikos K, Nikolov N, Domaschka J, Griesinger F, Seybold D, Romero D, Orzechowski M, Kapitsaki G,

Achilleos A. The cloud application modelling and execution language (camel). Tech. rep., Universität Ulm 2017.
	 30.	 Das S, Nishimura S, Agrawal D, El Abbadi A. Albatross: lightweight elasticity in shared storage databases for the

cloud using live data migration. Proc VLDB Endow. 2011;4(8):494–505.
	 31.	 Lu C, Alvarez GA, Wilkes J. Aqueduct: online data migration with performance guarantees. In: Proceedings of the

1st USENIX conference on file and storage technologies, FAST ’02. USENIX Association 2002.
	 32.	 Stonebraker M, Devine R, Kornacker M, Litwin W, Pfeffer A, Sah A, Staelin C. An economic paradigm for query

processing and data migration in mariposa. In: Parallel and distributed information systems, 1994., proceedings of
the third international conference on, IEEE. 1994. pp. 58–67.

	 33.	 Brubeck DW, Rowe LA. Hierarchical storage management in a distributed VOD system. IEEE Multimedia.
1996;3(3):37–47.

	 34.	 Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, Emam KE, Rosenberg J. Preliminary guidelines for
empirical research in software engineering. IEEE Trans Softw Eng. 2002;28(8):721–34.

	 35.	 Gessert F, Wingerath W, Friedrich S, Ritter N. NoSQL database systems: a survey and decision guidance. Comput
Sci Res Dev. 2017;32(3–4):353–65.

	 36.	 Sakr S. Cloud-hosted databases: technologies, challenges and opportunities. Clust Comput. 2014;17(2):487–502.
	 37.	 Cattell R. Scalable SQL and NoSQL data stores. Acm Sigmod Rec. 2011;39(4):12–27.
	 38.	 Gray J. Database and transaction processing performance handbook. In: The benchmark handbook for database

and transaction systems. 2nd ed. Digital Equipment Corp. 1993.
	 39.	 Traeger A, Zadok E, Joukov N, Wright CP. A nine year study of file system and storage benchmarking. ACM Trans

Storage. 2008;4(2):5.
	 40.	 Agrawal D, El Abbadi A, Das S, Elmore AJ. Database scalability, elasticity, and autonomy in the cloud. In: Interna-

tional conference on database systems for advanced applications. Springer. 2011. pp. 2–15.
	 41.	 Séguin C, Le Mahec G, Depardon B. Towards elasticity in distributed file systems. In: Cluster, cloud and grid com-

puting (CCGrid), 2015 15th IEEE/ACM international symposium on, IEEE. 2015. pp. 1047–56.
	 42.	 Seybold D, Wagner N, Erb B, Domaschka J. Is elasticity of scalable databases a myth? In: Big Data (Big Data), 2016

IEEE international conference on, IEEE. 2016. pp. 2827–36.
	 43.	 Gilbert S, Lynch N. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services.

Acm Sigact News. 2002;33(2):51–9.
	 44.	 Bermbach D, Kuhlenkamp J. Consistency in distributed storage systems. In: Networked systems. Springer. 2013.

pp. 175–89.
	 45.	 Lakshman A, Malik P. Cassandra: a decentralized structured storage system. ACM SIGOPS Oper Syst Rev.

2010;44(2):35–40.
	 46.	 Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: a distrib-

uted storage system for structured data. ACM Trans Comput Syst. 2008;26(2):4.
	 47.	 Pavlo A, Aslett M. What’s really new with newsql? ACM Sigmod Rec. 2016;45(2):45–55.
	 48.	 Corbellini A, Mateos C, Zunino A, Godoy D, Schiaffino S. Persisting big-data: the NoSQL landscape. Inf Syst.

2017;63:1–23.
	 49.	 Davoudian A, Chen L, Liu M. A survey on NoSQL stores. ACM Comput Surv. 2018;51(2):40.
	 50.	 Jensen SK, Pedersen TB, Thomsen C. Time series management systems: a survey. IEEE Trans Knowl Data Eng.

2017;29(11):2581–600.
	 51.	 Bader A, Kopp O, Falkenthal M. Survey and comparison of open source time series databases. In: BTW (Work-

shops). 2017. pp. 249–68.
	 52.	 Abadi JD. Data management in the cloud: limitations and opportunities. IEEE Data Eng Bull. 2009;32:3–12.
	 53.	 Pritchett D. Base: an acid alternative. Queue. 2008;6(3):48–55.
	 54.	 Codd EF. Extending the database relational model to capture more meaning. ACM Trans Database Syst.

1979;4(4):397–434.
	 55.	 Aslett M. How will the database incumbents respond to nosql and newsql. The San Francisco. 2011;451:1–5.
	 56.	 Sadalage PJ, Fowler M. NoSQL distilled. 2012. ISBN-10 321826620
	 57.	 Seybold D, Hauser CB, Volpert S, Domaschka J. Gibbon: an availability evaluation framework for distributed data-

bases. In: OTM confederated international conferences “On the Move to Meaningful Internet Systems”. Springer.
2017. pp. 31–49.

	 58.	 Seybold D, Domaschka J. Is distributed database evaluation cloud-ready? In: Advances in databases and informa-
tion systems. Springer. 2017. pp. 100–8.

	 59.	 Barahmand S, Ghandeharizadeh S. BG: a benchmark to evaluate interactive social networking actions. In: CIDR.
Citeseer. 2013.

	 60.	 Cooper BF., Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud serving systems with ycsb. In:
Proceedings of the 1st ACM symposium on Cloud computing, ACM. 2010. pp. 143–54.

	 61.	 Kuhlenkamp J, Klems M, Röss O. Benchmarking scalability and elasticity of distributed database systems. Proc
VLDB Endow. 2014;7(12):1219–30.

	 62.	 Bermbach D, Tai S. Benchmarking eventual consistency: lessons learned from long-term experimental studies. In:
Cloud engineering (IC2E), 2014 IEEE international conference on, IEEE. 2014. pp. 47–56.

Page 36 of 37Mazumdar et al. J Big Data (2019) 6:15

	 63.	 Domaschka J, Hauser CB, Erb B. Reliability and availability properties of distributed database systems. In: Enter-
prise distributed object computing conference (EDOC), 2014 IEEE 18th international, IEEE. 2014. pp. 226–33.

	 64.	 Brewer E. Cap twelve years later: How the “rules” have changed. Computer. 2012;45(2):23–9.
	 65.	 Klems M, Bermbach D, Weinert R. A runtime quality measurement framework for cloud database service

systems. In: Quality of information and communications technology (QUATIC), 2012 eighth international
conference on the, IEEE. 2012. pp. 38–46.

	 66.	 Abadi D, Agrawal R, Ailamaki A, Balazinska M, Bernstein PA, Carey MJ, Chaudhuri S, Chaudhuri S, Dean J, Doan
A. The beckman report on database research. Commun ACM. 2016;59(2):92–9.

	 67.	 Group NBDPW, et al. Nist big data interoperability framework. Special Publication 2015. pp. 1500–6.
	 68.	 Kachele S, Spann C, Hauck FJ, Domaschka J. Beyond iaas and paas: an extended cloud taxonomy for computa-

tion, storage and networking. In: Utility and cloud computing (UCC), 2013 IEEE/ACM 6th international confer-
ence on, IEEE. 2013. pp. 75–82.

	 69.	 Levy E, Silberschatz A. Distributed file systems: concepts and examples. ACM Comput Surv. 1990;22(4):321–74.
	 70.	 Muthitacharoen A, Morris R, Gil TM, Chen B. Ivy: a read/write peer-to-peer file system. ACM SIGOPS Oper Syst

Rev. 2002;36(SI):31–44.
	 71.	 Ross RB, Thakur R, et al. PVFS: a parallel file system for Linux clusters. In: Proceedings of the 4th annual Linux

showcase and conference. 2000. pp. 391–430.
	 72.	 Yu B, Pan J. Sketch-based data placement among geo-distributed datacenters for cloud storages. In: INFO-

COM, San Francisco: IEEE. 2016. pp. 1–9.
	 73.	 Greene WS, Robertson JA. Method and system for managing partitioned data resources. 2005. US Patent

6,922,685.
	 74.	 Greenberg A, Hamilton J, Maltz DA, Patel P. The cost of a cloud: research problems in data center networks.

ACM SIGCOMM Comput Commun Rev. 2008;39(1):68–73.
	 75.	 Hardavellas N, Ferdman M, Falsafi B, Ailamaki A. Reactive nuca: near-optimal block placement and replication

in distributed caches. ACM SIGARCH Comput Archit News. 2009;37(3):184–95.
	 76.	 Kosar T, Livny M. Stork: making data placement a first class citizen in the grid. In: Distributed computing sys-

tems, 2004. Proceedings. 24th international conference on, IEEE. 2004. pp. 342–9.
	 77.	 Xie T. Sea: a striping-based energy-aware strategy for data placement in raid-structured storage systems. IEEE

Trans Comput. 2008;57(6):748–61.
	 78.	 Yuan D, Yang Y, Liu X, Chen J. A data placement strategy in scientific cloud workflows. Future Gener Comput

Syst. 2010;26(8):1200–14.
	 79.	 Doraimani S, Iamnitchi A. File grouping for scientific data management: lessons from experimenting with real

traces. In: Proceedings of the 17th international symposium on High performance distributed computing,
ACM. 2008. pp. 153–64.

	 80.	 Cope JM, Trebon N, Tufo HM, Beckman P. Robust data placement in urgent computing environments. In: Paral-
lel & distributed processing, 2009. IPDPS 2009. IEEE international symposium on, IEEE. 2009. pp. 1–13.

	 81.	 Kosar T, Livny M. A framework for reliable and efficient data placement in distributed computing systems. J
Parallel Distrib Comput. 2005;65(10):1146–57.

	 82.	 Bell DA. Difficult data placement problems. Comput J. 1984;27(4):315–20.
	 83.	 Wang J, Shang P, Yin J. Draw: a new data-grouping-aware data placement scheme for data intensive applica-

tions with interest locality. IEEE Trans Magnetic. 2012;49(6):2514–20.
	 84.	 McCormick W, Schweitzer P, White T. Problem decomposition and data reorganisation by a clustering tech-

nique. Oper Res. 1972;20:993–1009.
	 85.	 Ebrahimi M, Mohan A, Kashlev A, Lu S. BDAP: a Big Data placement strategy for cloud-based scientific work-

flows. In: BigDataService, IEEE computer society. 2015. pp. 105–14.
	 86.	 Papaioannou TG, Bonvin N, Aberer K. Scalia: an adaptive scheme for efficient multi-cloud storage. In: Proceed-

ings of the international conference on high performance computing, networking, storage and analysis. IEEE
Computer Society Press. 2012. p. 20.

	 87.	 Er-Dun Z, Yong-Qiang Q, Xing-Xing X, Yi C. A data placement strategy based on genetic algorithm for scientific
workflows. In: CIS, IEEE computer society. 2012. pp. 146–9.

	 88.	 Rafique A, Van Landuyt D, Reniers V., Joosen W. Towards an adaptive middleware for efficient multi-cloud data
storage. In: Proceedings of the 4th workshop on CrossCloud infrastructures & platforms, Crosscloud’17. 2017.
pp. 1–6.

	 89.	 Lan K, Fong S, Song W, Vasilakos AV, Millham RC. Self-adaptive pre-processing methodology for big data
stream mining in internet of things environmental sensor monitoring. Symmetry. 2017;9(10):244.

	 90.	 Zhang J, Chen J, Luo J, Song A. Efficient location-aware data placement for data-intensive applications in geo-
distributed scientific data centers. Tsinghua Sci Technol. 2016;21(5):471–81.

	 91.	 Hsu CH, Slagter KD, Chung YC. Locality and loading aware virtual machine mapping techniques for optimizing
communications in mapreduce applications. Future Gener Comput Syst. 2015;53:43–54.

	 92.	 Xu Q, Xu Z, Wang T. A data-placement strategy based on genetic algorithm in cloud computing. Int J Intell Sci.
2015;5(3):145–57.

	 93.	 Chervenak AL, Smith DE, Chen W, Deelman E. Integrating policy with scientific workflow management for
data-intensive applications. In: 2012 SC companion: high performance computing, networking storage and
analysis. 2012. pp. 140–9.

	 94.	 Fedak G, He H, Cappello F. Bitdew: a programmable environment for large-scale data management and
distribution. In: 2008 SC—international conference for high performance computing, networking, storage and
analysis. 2008. pp. 1–12.

	 95.	 Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB, Good J. Pegasus:
a framework for mapping complex scientific workflows onto distributed systems. Sci Program.
2005;13(3):219–37.

Page 37 of 37Mazumdar et al. J Big Data (2019) 6:15

	 96.	 Chervenak A, Deelman E, Foster I, Guy L, Hoschek W, Iamnitchi A, Kesselman C, Kunszt P, Ripeanu M, Schwartzkopf
B, et al. Giggle: a framework for constructing scalable replica location services. In: Proceedings of the 2002 ACM/
IEEE conference on supercomputing. IEEE computer society press. 2002. pp. 1–17.

	 97.	 LeBeane M, Song S, Panda R, Ryoo JH, John LK. Data partitioning strategies for graph workloads on heterogene-
ous clusters. In: SC, Austin: ACM; 2015. pp. 1–12.

	 98.	 Quamar A, Kumar KA, Deshpande A. Sword: scalable workload-aware data placement for transactional workloads.
In: Proceedings of the 16th international conference on extending database technology, EDBT ’13, ACM. 2013. pp.
430–41.

	 99.	 Kumar KA, Deshpande A, Khuller S. Data placement and replica selection for improving co-location in distributed
environments. CoRR 2012. arXiv​:1302.4168.

	100.	 Catalyurek UV, Kaya K, Uçar B. Integrated data placement and task assignment for scientific workflows in clouds. In:
Proceedings of the Fourth International Workshop on Data-intensive Distributed Computing, New York, NY, USA:
ACM; 2011. pp. 45–54.

	101.	 Baur D, Seybold D, Griesinger F, Tsitsipas A, Hauser CB, Domaschka J. Cloud orchestration features: are tools fit for
purpose? In: Utility and Cloud Computing (UCC), 2015 IEEE/ACM 8th international conference on, IEEE. 2015. pp.
95–101.

	102.	 Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J. Borg, omega, and kubernetes. Queue. 2016;14(1):10.
	103.	 Schad J, Dittrich J, Quiané-Ruiz JA. Runtime measurements in the cloud: observing, analyzing, and reducing vari-

ance. Proc VLDB Endow. 2010;3(1–2):460–71.
	104.	 Thanh TD, Mohan S, Choi E, Kim S, Kim P. A taxonomy and survey on distributed file systems. In: Networked com-

puting and advanced information management, 2008. NCM’08. Fourth international conference on, vol. 1, IEEE.
2008. pp. 144–9.

	105.	 Ananthanarayanan G, Ghodsi A, Shenker S, Stoica I. Disk-locality in datacenter computing considered irrelevant. In:
HotOS. 2011. p. 12.

	106.	 Nightingale EB, Chen PM, Flinn J. Speculative execution in a distributed file system. In: ACM SIGOPS operating
systems review, vol. 39, ACM. 2005. pp. 191–205.

	107.	 Coelho F, Paulo J, Vilaça R, Pereira J, Oliveira R. Htapbench: Hybrid transactional and analytical processing bench-
mark. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, ACM; 2017.
pp. 293–304.

	108.	 Seybold D, Keppler M, Gründler D, Domaschka J. Mowgli: Finding your way in the DBMS jungle. In: Proceedings of
the 2019 ACM/SPEC international conference on performance engineering. ACM. 2019.

	109.	 Allen MS, Wolski R. The livny and plank-beck problems: studies in data movement on the computational grid. In:
Supercomputing, 2003 ACM/IEEE conference, IEEE. 2003. pp. 43.

http://arxiv.org/abs/1302.4168

	A survey on data storage and placement methodologies for Cloud-Big Data ecosystem
	Abstract
	Introduction
	Data lifecycle management (DLM)
	Data lifecycle models
	Data modelling

	Data lifecycle management systems

	Methodology
	SLR planning
	SLR need identification
	Research questions identification
	SLR protocol formation

	SLR conduction
	Study selection
	Quality assessment criteria
	Study selection procedure

	Non-functional data management features
	Performance
	Scalability
	Elasticity
	Availability
	Consistency
	Big Data processing

	Data storage systems
	Database management systems
	Relational data models
	NewSQL
	Key-value
	Document
	Wide-column
	Graph
	Time-series
	Multi-model

	Comparison of selected DBMSs
	Qualitative criteria
	Qualitative analysis
	Cloudification of DMS

	Distributed file systems
	Client–server model
	Clustered-distributed model
	Symmetric model
	DFS evaluation

	Data placement techniques
	Formal definition
	Data placement methodologies
	Data dependency methods
	Task and data scheduling methods
	Graph-based data placement

	Comparative evaluation

	Lessons learned and future research directions
	Data lifecycle management
	Challenges and issues
	Future research directions

	Data storage
	Challenges and issues
	Future research directions

	Data placement
	Challenges and issues
	Fixed data set size
	Constraint solving
	Granularity
	Multiple applications
	Data growth
	Data replication
	Optimisation criteria
	Additional information

	Future research directions

	Concluding remarks
	Authors’ contributions
	References

