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of relation ship exist. Today, due to having high variety of frequently produced large
data size, currently suggested variable filtering and selection methods have gaps to
full fill the need. This research desires to fill this gap by comparing literature suggested
methods to finding out a better variable selection and dimension reduction methods.
The result from regression analysis using all literature suggested factors shows that
none of the predictors for development status of enterprise are significant, and only
10 predictors for number of employer in an enterprise are significant out of 81 fac-
tors. Since, variable selection and dimension reduction methods are applied to find
out predictors of a response by removing variable redundancy, and complexity of
incorporating large number variable. Based on statistical power, for the results from
variable selection methods, specially association and correlation methods showed that,
CANOVA more efficiently detects non-linear or non-monotonic correlation between a
continuous—continuous and a continuous-categorical variables. Spearman’s correlation
coefficient more efficiently detects a monotonic correlation between a continuous
with a continuous, and a continuous with a categorical variable. Pearson correlation
coefficient more efficiently detects the linear correlation between continuous vari-
ables. MIC efficiently detects non-linear or non-monotonic relation between continu-
ous variables. Chi-square test of independence efficiently detects relation between a
continuous with a continuous, and categorical with categorical variables, but the non
linear or non monotonic relation between a continuous with a categorical are not
well detected. On the other hand, the result from lasso and stepwise methods reveals
that, the relation between the predictor and response due to interaction effect not
detected by correlation and association methods are detected by stepwise variable
selection method, and the multicollinearity is detected and removed by lasso method.
Regressing the response variable “number of employer in an enterprise” based on vari-
ables selected by lasso and stepwise method does bring greater model fitness (based
on adjusted R-squared value) than variables selected by association and correlation
methods. Similarly, regressing the response variable “development status of an enter-
prise”based on variables selected by association and correlation methods does bring
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12 significant variables, where none of variables are significant from variables selected
by lasso and stepwise methods. As a result, 51 predictors for number of employment in
an enterprise, and 40 predictors for development status of an enterprise are detected
as significantly related variables. And, lasso and stepwise methods are preferred to
select predictors of a continuous response variable ‘number of employers in an enter-
prise’, and association and correlation methods are preferred to select predictors of a
categorical response variable “development status of an enterprise”. Finally, the reduced
regression models result reveals that, 20 predictors have causal relation with number of
employment in an enterprise, and 12 predictors have causal relation with development
status of an enterprise. On the other hand, based on model fitness, information lost,
and number of significant factors, principal factor is preferred and applied in dimen-
sion reduction for a categorical response variable “development status of an enterprise’,
and factor score based regression is preferred and applied for a continuous response
variable “‘number of employers in an enterprise”. However, the comparison of the
results in variable selection and dimension reduction indicates that, variable selection
methods gave more gain in model fitness than dimension reduction methods. Hence,
the suggested variable selection methods are more preferred than dimension reduc-
tion methods, and applied to find out predictors. In general, the suggested procedure
for variable selection methods are recommended when small number of variables are
studied, and the suggested dimension reduction methods are recommended for large
number of variant variables (Big data case).

Keywords: Variable selection, Dimension reduction, CANOVA, Stepwise elimination,
Lasso variable selection

Introduction
Nature create variables using its character component, and variables are sharing charac-
ters from a vary small to relatively large scale. This results, variables to have from a vary
different to a more similar character. Variables having a more similar character are vari-
ables sharing largely a more similar character component (have relatively the same com-
position), and apparently a vary small similarity is due to high difference in component
character composition. Hence, taking variables having more similar character as one
variable or taking one of them as a representative can remove natural character redun-
dancy, and it helps to mange and analyse the relation ship between variables in a world
of large amount of variables are inter-related. This inter-relation between the variables
causes the variables to have a direct causal relation, or an indirect causal relation or rela-
tion with out causal nature. Statistically, a direct causal relation indicates the presence
of dependency between variables, where as indirect causality is due to the presence of
latent variable. However, the relation between the variables without known causality is
due to not well understood relation in the real world. The relation between variables can
be linear or non-linear or random. Statistical methods like, variable-selection and varia-
ble-dimension-reduction methods can used to reduce the number of variable by taking
single variable or merging as a component for statistically significantly similar variables.

Measuring the predictor—predictor relation, and response—predictor relation is
important to recognize the relationship exist, and having a short list of influential factors
for further analysis to determine their effect on response variable.

However, due to inter-relation between dependent variables, their influence on response
variable is not only individual rather in group too. Since, the natural inter-relation between
variable is not captured and considered by simulation study, or by predictor—response
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association or correlation measures only. Correspondingly, this interaction effect is planed
to detected for real data using Micro and small enterprise (MSE’s) data set[File Name:
MSEs.csv] by considering the predictors filtered by association, correlation and regression
measures for predictor—predictor and predictor-response relation. Then, the possible com-
bination of selected (filtered) groups of variables are then regressed for response variable,
and significantly and potentially related variables are re-selected using stepwise and lasso
variable selection method.

Statistical measures of association, correlations and regression are used to find out the
relation exist between variables. In this research the statistical relation measures used for
variable selection, and dimension reduction are, Pearson correlation coefficient, Spearman’s
rank correlation coefficient, Chi-square test of independence, maximal information crite-
rion (MIC), continuous analysis of variance test (CANOVA), stepwise variable selection
and lasso variable selection, and Principal factor and Factor score analysis respectively.

Wang et al. [20] used simulated and real datasets (kidney cancer RNA-seqdataset) to
compare the false positive rates and statistical power of CANOVA to six other methods
(Distance correlation’s, Hoeffding’s independence test, CANOVA the Pearson correlation
coefficient, the Spearman’s rank correlation coefficient, the Kendall’s rank correlation coef-
ficient and the Maximal information coefficient), and showed that CANOVA, the Pearson
correlation coefficient, the Spearman’s rank correlation coefficient, the Kendall’s rank cor-
relation coefficient and the MIC gave the expected false positives. Hence, these methods
can detect the true significant variables. However, the false positive rate is lower than the
expected for distance correlation and higher than the expected for Hoeffding’s independ-
ence test. So the true significant variables may not be detected by distance correlation, and
there may be false significant variables in Hoeffding’s independence test result. Hence,
Pearson correlation were recommended when correlation between two continuous variable
is linear, and CANOVA were recommended when the correlation between two continuous
variable is non-linear or complicated.

Variable dimension reduction is a tool to avoid complexity due to having large number of
variables by considering the possible small number of variables those can reflect the needed
information: which arise due to some variables are highly correlated to each other or to
latent variable, or from the set of variables some variables may accounted for large amount
of variability in the data set. For this type of problem variable reduction methods like prin-
cipal factor analysis and factor score analysis are suggested [1, 2].

Currently due to having high variety of frequently produced big data size, literature sug-
gested variable filtering and selection methods have gaps to full fill the need. Hence, this
research desires to fill this gap by finding out a better variable filtering, selection and dimen-
sion reduction methods using real data. The above statistical methods of variable-selection
and variable-dimension-reduction are applied to reduce the number of variable by taking
single variable or merging as a component for statistically significantly similar variables.

Data and variable

From literature, entrepreneur’s development is measured in relation to the success of
an individual, society, and firm survival [3, 4]. Bosma et al. [4] measured development
of enterprise by considering profits of the entrepreneur, employment created by the
entrepreneur, and the survival period of the firm. The determinants for development of
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entrepreneurs are dependent on the starting human capital, social capital, financial capi-
tal and strategies applied on business.

Coduras et al. [5] construct a measure for an individual’s readiness for entrepreneur-
ship based on three main categories: sociological, psychological and managerial-entre-
preneurial. The South African small enterprise development agency perform a study
based on literature and current data for the impact of 2008 and 2009 global financial
crisis on South Africa’s SMMEs, and they suggests that the South Africa’s SMMEs are
challenged by access to finance and markets, poor infrastructure, labour laws, crime,
skills shortages and inefficient bureaucracy. Assefa et al. [7] perform a study on factors
affecting the success of Micro and Small-scale Enterprises in Addis Ababa and five other
major regional towns in Ethiopia and find out the key success factors are personal quali-
ties, such as having an articulate vision or ambition and innate abilities, working experi-
ence in the formal sector as a factory employee or having worked in family businesses,
managerial and entrepreneurial skills, and higher equity in the invested money. Whereas
shortage and small size of credit, shortage of working and sales spaces, lack of rental
machinery and stringent licensing requirements are constraints of MSEs.

The sample data is taken from Debre Markos town enterprises in 2017. The study units
are individuals starting their business in the interval of a year 1994 to 2006 and currently
working on their own enterprise or business. The respondents gave detailed information
on their entrepreneurial knowledge, skill and experience, on business environment and
their strategies. Additional information on enterprises were also taken from Trade and
industry office of Debre Markos town.

Sampling method of a study is determined based on the nature of the population under
study. Ethiopian Ministry of Urban Development and Housing (MoUDH) classify micro
and small size enterprise into five sectors, namely Manufacturing sector, Service sector,
Trade, Construction sector, service sector, and Mining and Quarrying Sector. However,
based on the present Trade and industry office of Debre Markos town MSEs are re-clas-
sified as Manufacturing sector, Service sector, Trade, Urban farming and Construction
sector, by splitting Service sector in to service and Urban Farming. Hence, enterprises
across sector are more heterogeneous than within sector, stratified sampling method
is the right choice. The sample size is determined by using stratified optimal allocation
based on the strata’s variance calculated from the information (secondary data) obtained
from Trade and industry office: for the situation in which the variable of interest is enter-
prise development status which is categorical with value 1 (achieved expected progress
stated by MoUDH) and 0 (not achieved expected progress), and at 99% level of confi-
dence for the true population proportion to be in 0.05 interval of the sample proportion,
179 sample of enterprise is taken from a total of 2093 enterprises. The study unites are
allocated to each strata by considering strata’s variance rather than proportion, due to
high difference in strata’s size where some clusters have size less than 20 and some larger
than a thousand [8].

Variable of the study
Under these study two dependent and 81 independent variables are considered. List of
explanatory variables considered are listed in Appendix: Tables 12, 13, 14, 15, 16 and 17.
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Dependent variable

The variable of interest is enterprise development status. Bosma et al. [4] measured
Entrepreneurs development (which is individual approach to measure enterprise devel-
opment status ) in relation to, the success of an individual like profit made and capital
growth, the success of society based on employee capacity, and firm survival. Contextu-
ally, Ethiopian Ministry of Urban Development and Housing (MoUDH) state a measure
for development status of micro and small size enterprise based on the progress made
by an enterprise on their capital accumulation and human capital mainly in terms of
number of employee [3]. The MoUDH definition for micro and small enterprise is given
by Table 1.

Correspondingly, on this study enterprise development status is measured based on
the progress made by an enterprise which is a categorical variable with value 1 (achieved
expected progress) and 0 (not achieved expected progress), and by number of employers
in an enterprise as defined by MoUDH.

Explanatory variables
Explanatory variables or factors those have direct or indirect influences on interest vari-
able is the concern need to dig out to find out relevant solution on achieving the planed
enterprise development by controlling influential variables. As stated on literature by
Bosma et al. [4] determinants for development of entrepreneurs are related to starting
human capital, social capital, financial capital, and strategies applied on business.

In general, literature suggested measures of control variables, human capital, finan-
cial capital, influencing factors, social capital, and information’s relevant for the develop-
ment of their businesses are considered [3—-19].

Variable-selection method

Chi-squared test of independence

Chi-square test of independence is one of the statistical measures that tests the linear
and non-linear association between variables. This test helps to determine whether
variables are independent of each other or whether there is pattern of dependency
between variables. Formally, chi square test of independence determine whether the
observed pattern between the variables is strong enough to show that the two variables
are dependent on each other, or by considering all possible combinations of variables
events and testing for the independence of each pair of these events. If the probability of
occurrence of the different possible values of one variable depend on which category of
another variable occurs, then the two variables are dependent on each other. Chi-square
variable have a continuous distribution obtained by the sum of the squares of a set of

Table 1 Current definition of MSEs in Ethiopia

Level of enterprise Sector Head count staff Total asset ETB Total asset USD
Micro enterprise Industry <5 < 100,000 < 4630

Service <5 < 50,000 < 2310
Small enterprise Industry 6-30 101,000-1,500,000 4630-69,500

Service 6-30 50,001-500,000 2310-23,150
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normally distributed variables. Chi-square distribution is a rightly skewed distribution
with lower limit at 0 and declines as x? increases to the right with most of values near
the center of the distribution. Since, theoretical distribution of chi square distribution
is a continuous distribution, and the chi square statistic have discrete distribution, chi
square statistic is approximated by the theoretical chi square distribution for reasonably
large sample size or for expected number of cases exceed 5 in most cells of the cross
classification table. The wildly used rule on expected cases are less than 1 and no more
than 20% of expected cases have less than 5 per category. The chi square test for inde-
pendence is conducted by assuming that there is no relationship (independent) between
the two variables being examined versus an alternative hypothesis clam: there is some
relationship (dependency) between the variables. Under the null hypothesis of no rela-
tionship between variables, the expected cases for each of the cell can be obtained from

the multiplication rule of probability for independent events.

Continuous analysis of variance test (CANOVA)

CANOVA is a measure for non linear correlation between two continuous variables, as
an extension to ANOVA for continuous variables by making generalization on “within
category variance” CANOVA first define a neighborhood for each data point of response
variable based on its predictor value, and then the variance of the response value within
the neighborhood is calculated. The hypothesis of CANOVA “similar neighbor predic-
tor values lead to similar response values” is tested for smaller value of statistic “within
neighborhood sum square” compared to “random expectation”. Since, a statistic “within
neighborhood variance” does not follow any familiar distribution, its significance is
tested by permutation test. The grid of a larger K has more power on slow-varying func-
tions, while a smaller K has more power on quick-oscillating functions depending on
the data. The suggested choice for the neighborhood structure of the dataset is #/20
[20]. CANOVA is related to local regression (like, K nearest neighbor (kNN) regression),
and CANOVA can be viewed as an analogy of the model fitness test of the kNN model
as Pearson’s correlation coefficient can be viewed as the model fitness test of a linear
regression model. This method reduce algorithm complexity to O(nlogn+np) by order-
ing the data values of response with respect to the ordered value of predictors, and can

easily explore the non linear correlation between two continuous variable.

Maximal information criterion (MIC)

MIC is an equitable maximal information-based non-parametric exploration (MINE)
statistic for identifying and classifying relationships. This implies, in addition to measur-
ing association, MIC measures non-linear relation between two random variables, and
the degree of linear relation between variables having functional relationships. In gen-
eral, with sufficient sample size it captures all type of functional relationships even that
are not well modelled. MIC assigns a score measures strength of relationship in a rage of
0 to 1, where a score of 0 to statistically independent variables, and a score of 1 in prob-
ability for noiseless functional relationships. For large data set with many variables (Big
data) which contain important and undiscovered relationships, MINE helps in identify-
ing and characterizing structures in data for variable selection or dimension reduction
purpose [21].
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Pearson correlation coefficient

The Pearson correlation coefficient is the most commonly used correlation method to
measure a two-way linear correlation, calculated by dividing covariance of two variables
by the product of their standard deviations: Its value is represented by (rxy) in a range
between — 1 and 1. If the points (x;,y;) are in a perfect straight line and the slope of that
line is positive, (1) = 1. If the points are in a perfect straight line and the slope is negative,
(rxy) = — L. If there is no systematic relation between X and Y at all, (rxy) =0, and (ryy) dif-
fers from zero only because of random variation in the sample points.

Coefficient of determination which is the square of Pearson correlation between a
response and an explanatory variable (R,%y = fy) represents the fraction of the total var-
iance around the mean value y that is explained by the linear relation between x; and y.
Therefore, using (Rfcy) as a variable ranking criterion enforces a ranking according to good-
ness of linear fit of individual variables. However, Pearson correlation measures only linear
dependency between variables [22].

Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient is non-linear rank based non-parametric test of
correlation. Its value is between — 1 and 1 and interpreted in the same way as Pearson cor-
relation coefficient for ranked variables. Spearman’s rank correlation coefficient state an
alternative hypothesis of the correlation between two variables corresponds to a monotonic
function.

Stepwise variable selection

Backward elimination or Forward selection or Stepwise elimination can be used to select
variable in the model. Backward elimination starts using all variable and variables with high
P-value or above critical value are removed until the rest are significant. Forward selection
starts with no variable and the variable not in the model with P-value less than critical value
are inserted until the left are not significant. Stepwise elimination is the combination of
them, variables are added or removed earlier in the process and the process chose the best
collection of variable which maximize model fitness. Stepwise elimination is not exactly
dependent on P-value rather it consider the importance of the variable in the model, this
results the method to be more power full in prediction. Hence, Stepwise elimination is used
to measure the interaction effect of predictors on response variable base on minimum AIC
criterion [23].

Lasso variable selection

Lasso minimises the residual sum of square subject to the sum of the absolute value of the
coefficients less than a constant. Lasso is help full to improve prediction accuracy by reduc-
ing large variance made by OLS trough shrinking some coefficients to zero. In this study,
lasso variable selection method is applied at optimum lambda (which is in range of 1 stand-
ard deviation of minimum lambda) [24].
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Dimension reduction methods

Principal factor and factor score analysis

Principal component analysis is helpful to describes the variance-covariance structure
between the set of variables through a few uncorrelated new latent variables called princi-
pal components. However, the lack of correlation between principal components dose not
reflect the natural correlation present on represented real variables. Therefore, a method that
allow relatively slight correlation between components, like factor analysis, is preferable. fac-
tor analysis is can be applied after the number of components needed is decided to construct
principal factors and factor scores. The decision for number of principal component needed
can be done by considering the bend of the scree plot for principal components variances,
the variance or eigenvalue of the principal component greater than one, the proportion of
the total variation a counted by principal components, and subject matter consideration
on principal factors composition [1]. The factor model for the random variables vector Y’
= [Y1, Y, ... Y,]with mean vector u and covariance matrix X is given as follow:

Y =upu+ AF +¢,
where A is p x k matrix of unknown constants called loadings, F is a k x 1 vector of
common factors and ¢ is a p x p diagonal matrix of specific factors. The estimates
needed from this model are: covariance between factors and variables: Cov(F,Y) = L
or Cov(Y;, F) = l;j, Communality: hi2 = Z]l;l lizj, and Uniqueness: ¢; = Var(Y;) — hl2 for
i,j=1,23,..p.

The i communality (h?) indicates the portion of the variance of ¥; explained by k
common factors and i uniqueness (¢;) indicates the portion of variance of Y (Var(Y;) )
explained by the i specific factors. Estimated principal factors are constructed by linear
combination of variables and their corresponding loadings.

p
oy =) liYi
i=1

From the result of factor model the estimated factor scores are also constructed by linear
combination of original variables having relatively large loading on the factor.

)4

f=YljYi

i=1

where /;; = 1if the variable i have relatively large loading on the factor j, else /;; = 0 [2].

Model

Linear regression

For the data consist of a random response variable Y (number of employer in an enterprise)
and k = 81 fixed explanatory variables, X1, X», ..., Xy with sample of size n = 179, linear
regression is used to fit the parameter estimates and find out influential factors which deter-
mine number of employer in an enterprise. The relationship between Y and Xi, Xa, ..., X
is formulated as a linear model:

Y=80+BX1+ -+ BXi +e€ (1)
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where Bo, B1, . . ., Br are constants referred to as regression model coefficients and € is a
random disturbance.

It is assumed that Y is approximately a linear function of the X’s, and € measures the
discrepancy in that approximation or € contains no systematic information for determin-
ing Y that is not already captured by the X’s [25].

Logistic regression

Enterprise development status is a binary response variable with measured values Y = 1

(achieved expected progress) or Y = 0 (not achieved expected progress). Which is mod-

elled by logistic regression model. This model is used to show the relationship between

p(y) and x’s for the random component have binomial distribution where 0 < p(y) < 1.
The mean and variance of the p(y) is np and np(1 — p) respectively, where

ePotPrXi+-+Br Xk
pO) = 1 + ePotPrXi++Bi Xk

Logistic regression makes no assumption about the distributions of the independent
variables. They do not have to be normally distributed, linearly related or of equal vari-
ance with each group. In this study, logistic regression is used to find out the influen-
tial factors from suggested predictors of enterprise development status. The influence of
determinant factors are assessed individually and component wise on enterprise devel-
opment status. It is modelled as follow:

logit(p) = po + BX 2)
where X is a matrix of independent variable, or principal factors, or factor scores in the
model, B is vector of coefficients of the model, and fy is intercept of the model [26].

Result and discussion

Linear regression result for the number of employment using all 81 literature suggested
factors showed in Appendix: Tables 12, 13, 14, 15, 16 and 17reveals that only 10 vari-
ables are significant (those are, h4, h3, IF4, IF8, Grouping, X15.29, X50.65, ed0, ed1,
and emp_male) with 0.9992 adjusted R-squared, and similarly the result in Appendix:
Tables 12, 13, 14, 15, 16 and 17 for logistic regression of development status of enterprise
indicates none of the predictors are significant out of 81 factors. To address this problem
variable selection and dimension reduction methods are applied to find out the real pre-
dictors of a response by removing variable redundancy, and complexity of having large
number of variable.

Variable selection

The result of tests for the relation between number of employment in enterprise and
predictors indicated in Table 2 reveals that, number of employers in an enterprise is sig-
nificantly related at 95% confidence level with 40 explanatory variables out of 81 predic-
tors listed in Appendix: Tables 12, 13, 14, 15, 16 and 17. Specifically, this result suggested
that, as the number of employer in an enterprise increase, employment by gender is
proportional, employment by eduction category is also significantly increased mainly
employer with primary education is employed largely, and employment by age category
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is significantly increased for category between 30-49 and 50-65. But, the number of
employer between age category 15 to 29 is decreases as the number of employer in an
enterprise increases. Enterprise created by group, employer taking specific education or
training on entrepreneurship, employer graduate from TVET are significantly directly
correlated with the growth of enterprise’s employability. Apparently, having relation with
entrepreneurs for advise like as friend and any one in contact is negatively correlated
with number of employment in an enterprise. The result also indicate current capital and
Government investment policy motivation by Land are significantly directly correlated
with number of employment in an enterprise. The influence of religion, traditionalism
(cultural tackle), problems related to the legal licensing, telecommunication problems,
and lack of necessary and timely marketing information have significant direct correla-
tion with the number of employers in an enterprise. The problem of keep up with litera-
ture, get information from customers, get information from suppliers, get information
from banks, and get information from commercial cooperation is higher as number of
employment in an enterprise increases. The development status of an enterprise have
significant have negative correlation with the number of employers in an enterprise. In
addition, Starting capital, educational level, experience in self-employment, manage-
rial experience, financial experience (financing the business), experience in the sector,
firm duration, experience in business, corruption, number of employers on age category
above 65, having entrepreneurs in the family, type of MSEs (micro or small), and expe-
rience as an employee have significant association with number of employment in an
enterprise.

CANOVA helps to detect the relation exist between a continuous and categorical vari-
able (only CANOVA with k = 10 detects type of MSEs has significant correlation with
number of employment in an enterprise increases, and CANOVA have high power to
detect the correlation exist between In5 (get information from suppliers) and number
of employment in an enterprise increases). However, almost all significant variables
detected by CANOVA are detected by Pearson or Spearman’s correlation coefficient,
mainly by Spearman’s correlation coefficient. MIC also detects some non linear rela-
tion between some continuous variable with high power (Currk, Empo, X15.29, X30.49,
emp_male, and emp_Female.

The result of tests for the relation between the development status of an enterprise and
explanatory variables indicated in Table 3 reveals that, the development status of enter-
prise is significantly related at 95% confidence level with 28 explanatory variables out
of 81 predictors listed in Appendix: Tables 12, 13, 14, 15, 16 and 17. This result specifi-
cally suggested that, enterprise created by group, employer with age between 15 to 29,
employer taking specific education or/and training on entrepreneurship, and employer
graduate from TVET are significantly directly correlated with the development of an
enterprise’s. The development status of an enterprise is directly significantly correlated
with level of education, an enterprise with employer graduated from high school, col-
lage or University. The influence of religion, and electric power or energy problem also
increases with development status of an enterprise. The influence of availability of raw
material, fear of failure, environmental conditions, problems related to the legal licens-
ing are less on development of an enterprise. The development status of an enterprise
have significant direct correlation with the current number of employers in an enterprise
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and even at the start-up. The development of an micro enterprise enterprise is better
than small enterprise. There is also an evidence of starting a business in group could
bring a better development than an individual owned business, similarly male owned
enterprises are more successful. Government investment policy motivation by land has
also direct significant correlation with development of an enterprise. So government
investment policy motivation is helpful for success of an enterprise. Having experience
in the sector (your business), financial experience (financing the business), working by
business plan, employment growth goal (the desire/want to employee), managerial skills,
and experience in business have direct significant correlation with development of an
enterprise. Mainly, formal managerial skills and financial experience have significant
correlation with the development of an enterprise. In addition, bad experience of own
have significant association with the development of an enterprise. The result indicated
that, only CANOVA for k = 2 find out entrepreneurs activeness on business services
is significantly negatively correlated with development status of an enterprise. MIC
detected some non-linear relation with high power (Currk, MSEs, and Category). How-
ever, almost all significant variables detected by CANOVA are detected by Pearson or
Spearman’s correlation coefficient, mainly by Spearman’s correlation coefficient.

Conclusion based on statistical power, the result from association and correlation
analysis suggested that, CANOVA more efficiently detects continuous—continuous, and
continuous-categorical non-linear or non-monotonic relation. Spearman’s correlation
coefficient more efficiently detects a continuous—continuous or a continuous-categori-
cal monotonic relationship. Pearson correlation coefficient more efficiently detects the
relation between continuous variables. MIC more efficiently detects non-linear or non-
monotonic continuous-continuous relation. Chi-square test of independence efficiently
detects relation between a continuous with a continuous, and categorical with categori-
cal variables, but the non linear or non monotonic relation between a continuous with a
categorical are not well detected. On the other hand, the results from stepwise and lasso
variable selection method in Table 5 shows that, 31 variables are detected significantly
as predictor for number of employment in an enterprise, and from which eleven of them
are new predictors comparing to the result in association and correlation methods given
in Table 2. The result using this method in Table 7 also indicates that 21 variables are sig-
nificantly detected as predictors for development status of an enterprise and from which
eleven of them are new predictors comparing to the result in association and correlation
methods given in Table 3. Since, association and correlation can not detect the relation
due to interaction effect. Similarly, some of non-causal relation between a predictor and
response are not detected by lasso and stepwise variable selection methods are detected
by correlation and association methods. Specifically, twenty new variables are selected
as predictor for number of employment in an enterprise and nineteen new variables are
selected as predictor for development status of an enterprise.

Model result from selected variables

Linear regression

1. Influencing factors affecting number of employment in an enterprise are assessed
based on casual linear relation with significantly related (correlated or/union asso-
ciated) predictors Table 2. Significant variables are selected based on Stepwise
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elimination with minimum AIC criterion, and by lasso variable selection method.
Stepwise elimination bring less number of significant variables comparing to lasso
variable selection. However, both method have their own input, stepwise elimina-
tion brings three new variables (edl, ed3, h3) those are not significant by lasso,
and lasso method also brings five new variables (h2, Category, Empy, ed2, number
of employer from 50 to 65) those are not significant by stepwise elimination. The
selected variables by both methods are separately modelled, and the result in Table 4
reveals IF8, grouping, number of employer from age 15-29 and 30-49, emp_male,
emp_female, and h4 are significant for both methods, where ed0, ed1, h3, and num-
ber of employer aged above 65 are only significant by stepwise elimination, similarly
h2 and number of employer from age from 50 to 65 are only significant by lasso
method. Finally, the variables selected by both methods are merged and the result
for reduced model reveals a greater number of significant variables with equivalent
model fitness as indicated in Table 4. The significance of all variables included in
reduced model, unlike the lasso and stepwise selected variables, is an indication of
lower multicollinearity between incorporated variables. This implies that, the pre-
dictors of number of employment in an enterprise should be the selected variable in
reduced model.

2. Here, influencing factors affecting number of employment in an enterprise
are assessed using all literature suggested factors in Table 5 by regression method
(stepwise elimination and lasso variable selection). Significant factors are selected
based on Stepwise elimination with minimum AIC criterion, and by lasso variable
selection method at optimum lambda (which is in range of 1 standard deviation of
minimum lambda). Unlike, the above result Table 4, regression of variables selected
by stepwise elimination brings more number of significant variables comparing to
variables selected by lasso method. However, both method have their own input
in variable selection, stepwise elimination bring threaten new variables (c3, c6, h3,
IF1, s3, s4, Inl, In2, In3, In7, In10, edl1, and ed3), where five of them are not sig-
nificant, but the removal of insignificant variables (IF1, s3, s4, In7 and In10) result
in reduction of multiple R-squared and adjusted R-squared from 0.9946 to 0.9942,
and 0.9937 to 0.9935 respectively. In addition, two significant variables Inl and In3
become insignificant. So these variables are potential variable and have to stay in
the model. On the other hand, lasso method brings eight new variables (h2, h14,
IF3, Category, Empo, X30.49, ed2, emp_female) of which three of them are only sig-
nificant. The removal of insignificant variables (h14, IF3, Category, Empo, and ed2),
resulted in reduction of multiple R-squared and adjusted R-squared from 0.9938 to
0.9932, and 0.9931 to 0.9928 respectively. However, there is no significant variable
became insignificant due to the removal of those variables. This is an indication that
stepwise elimination considers the gain due to interaction effect but it can result
in multicollinearity, where as lasso method removes multicollinearity and the gain
due to interaction effect is not considered. Due to the advantages of lasso method
on controlling multicollinearity and stepwise elimination in considering interaction
effect, variables selected by both stepwise elimination and lasso method are merged,
and the result for reduced model reveals a greater number of significant variables
with equivalent model fitness as indicated in Table 5.
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Logistic regression

1. Influencing factors affecting development status of an enterprise are assessed based
on casual relation of significantly related (correlated or/union associated) predictors
Table 3. Significant variables in the model are selected based on stepwise elimination
with minimum AIC criterion, and lasso method at minimum lambda. Stepwise elimina-
tion does brings more variables at lower AIC than lasso method. However, both method
have their own input in variable selection, stepwise elimination bring 14 new variables
and of eight of them are significant variables (Grouping, IF8, StartK, IF9, IF5, s1, s2, and
In4), and lasso method does bring six new variables (X15.29, ed2, h10, I[F14, and s4). The
variables selected by both methods are merged and the result for reduced model reveals
a greater number of variables in the model with equivalent model fitness as indicated
in Table 6, and reflects that, Grouping, IF8, IF10, CurrK, StartK, IF9, IF5, s1, MSEs, s2,
In4, and {5 are significant factors on development status of an enterprise where ed1, Cat-
egory, h2, h10, c11, In6, h3, and h4 are potential factors.

2. Influencing factors affecting development status of an enterprise are assessed using
all literature suggested factors Table 7. Significant variables in the model are selected
based on stepwise elimination at minimum AIC criterion, and by lasso variable selection
method at minimum lambda. As a result stepwise elimination does brings more vari-
ables at lower AIC than lasso method. However, predictors selected by lasso method are
only significant. The result for reduced model contains more variable with lower AIC,
but none of the variables are significant. Hence, lasso variable selection dose in better
power.

As conclusion Comparison of the results for reduced linear regressions model of vari-
ables selected by association and correlation method Table 4 with variables selected by
regression method Table 5 revealed that, the earlier method does bring one new variable
(emp_male) and the latter one does bring eight new variables (those are, IF6, X50.65,
3, ¢6, Inl, In2, In3, and In7) with greater adjusted R-squared. This reveals that, based
on the number of significant variables and model fitness (based on adjusted R-squared
value), variables selected by lasso and stepwise elimination are taken as predictors of
number of employer in an enterprise, those are listed on Table 5. Specifically, number
of employer in an enterprise has significant casual relation with full self-employment,
previous habitat is urban, Graduated from TVET, taken specific education/training on
entrepreneurship, having other income source, environmental conditions, religion, con-
tact with entrepreneurs in networks may be socially, visiting Bazaar, taking businesses
courses, reading literatures on business, get information about business from commer-
cial cooperation, Working MSEs in group, employers with education back ground who
can not read and write, and who complete primary education, high females employment,
high number of employer age between 15 to 29, 30 to 49, and above 65, and low number
of employer aged between 50 to 65.

On the other hand, for categorical response variable “development status of an enter-
prise” the result in Tables 6 and 7 indicates that, more significant number of variables
are find out by association and correlation methods, where non of variables are signif-
icant by lasso and stepwise methods with some more AIC value (with more informa-
tion lost). Hence, the predictors for development status of an enterprise are variables
listed in Table 6. Specifically development of an enterprise status has significant casual
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relation with working MSEs in group, religion, telecommunication problems, tradition-
alism (cultural tackle), current capital, corruption, entrepreneurs in the family, entre-
preneurs in the friends, get information from customers, government investment policy
motivation by land, and status of MSEs is being small. The development of an enterprise
status is potentially related with employers with primary education, category of MSEs,
year of experience in business, environmental conditions, educational level, Graduated
from TVET, Specific education/training on entrepreneurship, and financial experience
(financing the business).

Hence, lasso and stepwise variable selection methods are suggested for continuous
response variable, and association and correlation methods are suggested for categorical
response variable; or alternatively, variable selection method by combing both associa-
tion, correlation, and regression method can bring a better result.

Dimension reduction

Explanatory factor analysis were applied using varimax rotation on principal compo-
nents to reduce variable dimension for a purpose of avoiding complexity due to hav-
ing large number of variables with out losing the needed information. Based on a result
indicated in Appendix: Tables 12, 13, 14, 15, 16 and 17, 11 principal components each
having a minimum of variance equal to 2, which accounts for 50.8% of the total vari-
ation in data set were taken by considering the subject matter and the bend point of a
scree-plot of principal components shown in Fig. 1 too. And then, factor elements with
at least 0.3 score (loading) are selected. Specifically, Factor 1 is related to Human and
starting capital, Factor 2 contrasts potential input of an enterprise with influencing fac-
tors, Factor 3 contrasts an enterprise getting information from partners with an idolised
enterprise, Factor 4 is related to knowledge on business mainly by training, education or
courses, Factor 5 contrasts own business input with partner support, Factor 6 contrasts
policy related influencing functors to Human capital, Factor 7 contrasts Entrepreneurs
act for success of an enterprise with Entrepreneurs social resource, Factor 8 related to
number of employer in an enterprise per categories of gender, education, and age, Factor
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Fig. 1 Plot for number of principal components verses variance accounted
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9 contrasts own contribution with partners, Factor 10 contrasts entrepreneurs nature
with enterprise status, Factor 11 contrasts number of employers per category with entre-
preneurs potential.

Model result for dimension reduction

Linear regression

The linear regression result for the number of employer in an enterprise based on factor
scores reveals Table 8, factor 5 (contrasts of own business input with partner support),
factor 6 (contrasts of policy related influencing functors to Human capital), factor 8 (var-
iables related to Number of employer in an enterprise per categories of gender), factor
10 (contrasts of entrepreneurs nature with enterprise status), and factor 11 (contrasts
number of employers per category with entrepreneurs potential) have significant affect
on number of employer in an enterprise and those factors explain 82% of the variation in
mean number of employer in an enterprise.

The linear regression result for number of employer in an enterprise based on prin-
cipal factor reveals Table 9, principal factor 5 (contrasts of own business input with
partner support), principal factor 6 (contrasts of policy related influencing functors to
human capital), principal factor 7 (contrasts entrepreneurs act for success of an enter-
prise with entrepreneurs social resource), principal factor 9 (contrasts own contribution
with partners), principal factor 10 (contrasts of entrepreneurs nature with enterprise sta-
tus), and principal factor 11 (contrasts number of employers per category with entre-
preneurs potential) are the significant factors those explain 85% of the variation in mean
number of employer in an enterprise.

The result from regression analysis using facto score and principal factor indi-
cates that regression analysis using principal factor gain more model fitness with one
more factor. Even though, four factors are significant by both methods, factor 8 is

Table 8 Linear regression of number of employer in an enterprise based on factor scores

Full model Reduced model by stepwise elimination

Coefficients Estimate  Std. tvalue Pr(> |t) Coefficients Estimate Std.error tvalue Pr(> |t
error

(Intercept) 0.762 1441 0.529 0.597 (Intercept) 1133 0.706 1.605 0.110

x1 —0.002 0.013 —0.115 0.909 x1 Removed

x2 0.007 0.013 0.528 0.598 X2 Removed

x3 0.042 0.082 0.516 0.606 X3 Removed

x4 0.000 0.000 0442 0.659 x4 Removed

x5 —0.257 0.026 —10.063 0.000 x5 —0.257 0.025 —10.269  0.000

x6 0.245 0.022 11.289 0.000 X6 0.243 0.021 11.575 0.000

x7 0.014 0.096 0.144 0.886 x7 Removed

x8 0.936 0.067 13.954 0.000 x8 0.938 0.065 14.354 0.000

x9 —0.106 1.070 —0.099 0.921 x9 Removed

x10 0.000 0.000 1.864 0.064 x10 0.000 0.000 2.019 0.045

x11 0.066 0.025 2623 0.010 x11 0.065 0.024 2667 0.008

Multiple R-squared 0.821 Multiple R-squared 0.820

Adjusted R-squared 0.810 Adjusted R-squared 0815

F-statistic 69.820 F-statistic 158.000

P-value <22e—-16 P-value <22e-16
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Table 9 Linear regression of number of employer in an enterprise based on principal
factors

Full model Reduced model by stepwise elimination

Coefficients Estimate Std.error  tvalue Pr(> |t)) Coefficients Estimate Std.error tvalue Pr(> [t]

(Intercept) 0.762 1441 0.529 0.597 (Intercept) 0.793 0.284 2788 0.006
x1 — 0.002 0.013 —0.115 0.909 x1 Removed

x2 0.007 0013 0.528 0.598 x2 Removed

x3 0.042 0.082 0516 0.606 x3 Removed

x4 0.000 0.000 0.442 0.659 x4 Removed

x5 — 0257 0.026 —10.063 0.000 x5 0.132 0.035 3.765 0.000
X6 0.245 0.022 11.289 0.000 X6 0.270 0.021 12963 0.000
X7 0.014 0.096 0.144 0.886 X7 0.067 0.025 2.741 0.007
x8 0.936 0.067 13.954 0.000 x8 Removed

x9 —0.106 1.070 —0099 0921 X9 —0.134 0.023 —5.781  0.000
x10 0.000 0.000 1.864 0.064 x10 1.066 0.041 25716 0.000
x11 0.066 0.025 2623 0.010 x11 0313 0.056 5612 0.000
Multiple R-squared 0.853 Multiple R-squared 0.852

Adjusted R-squared 0.844 Adjusted R-squared 0.847

F-statistic 88.280 F-statistic 164.700

P-value <22e—-16 P-value <22e-16

only significant by factor score based regression, and factor 7 and 9 are only signifi-
cant by principal factor based regression. Since, the result from principal factor based
regression brings little gain in model fitness with complex composition (since it con-
sider all variables than factor scores, that makes difficult to relate principal factors to
real component) comparing to factor score based regression, the factor score based
regression is more preferable.

Logistic regression

The logistic regression result for development status based on factor score reveals
Table 10, factor 4 (related to knowledge on business mainly by training), factor 7
(contrasts Entrepreneurs act for success of an enterprise with Entrepreneurs social
resource), and factor 10 (contrasts of entrepreneurs nature with enterprise status) are
the significant factors with AIC of 183.16.

The logistic regression result for principal factor of development status reveals
Table 11, principal factor 2 (contrasts potential input of an enterprise with Influenc-
ing factors), principal factor 3 (contrasts an enterprise getting information from part-
ners with an idolised enterprise), principal factor 8 (Variables related to Number of
employer in an enterprise per categories of gender), principal factor 9 (contrasts own
contribution with partners), principal factor 10 (contrasts of entrepreneurs nature
with enterprise status), and principal factor 11 (contrasts number of employers per
category with entrepreneurs potential) are the significant factors with AIC of 128.348.

The result from logistic regression analysis using factor score and principal fac-
tor indicates that logistic regression analysis using principal factor brings more sig-
nificant factors. Principal factor based logistic regression give 6 significant factors,
where factor score based logistic regression brings 3 significant factors with lower
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Table 10 Logistic regression for development status of enterprise based on factor scores

Full model Reduced model by stepwise elimination

Coefficients Estimate Std.error zvalue Pr(> |z|) Coefficients Estimate Std.error zvalue Pr(> |z|

(Intercept) — 22437 16134 —1.3907 0.1643 (Intercept) 0.215 0.796 0.270 0.787
x1 0.0154 0.0136 1.1350 0.2564 x1 Removed

x2 - 00181 0.0149 — 12202 02224 x2 —0.033 0.019 - 1714 0087
x3 —0.0056  0.0895 —0.0627  0.9500 x3 0.000 0.000 1.293 0.196
x4 0.0000 0.0000 1.7467 0.0807 x4 Removed

x5 0.1070 0.0404 2.6505 0.0080 x5 —0.802 0.468 - 1714 0086
x6 —0.0761 0.0375 — 20286 0.0425 x6 0.000 0.000 4.382 0.000
x7 —0.1203  0.1006 —1.1960 0.2317 x7 Removed

x8 —0.0083 00723 —0.1153  0.9082 x8 Removed

x9 — 04450 11683 — 03809 0.7033 x9 Removed

x10 0.0000 0.0000 4.9160 0.0000 x10 0.000 0.000 —3.980 0.000
x11 0.0702 0.0447 1.5701 0.1164 x11 Removed

AIC 192.040 AIC 183.160

Table 11 Logistic regression for development status of enterprise based on principal
factors

Full model Reduced model by stepwise elimination

Coefficients Estimate  Std.error zvalue Pr(> |z]) Coefficients Estimate Std.error zvalue Pr(> |z|)

(Intercept) — 2.897 0933 —3.107 0.002 (Intercept) — 2.365 0.440 —5.380 0.000
x1 0.017 0.016 1.023 0.306 X1 Removed

x2 —0.092 0.044 —2099 0036 x2 —0.110 0.041 — 2680 0.007
X3 — 0.069 0.070 —0981 0327 X3 —0.076 0.042 —1.822 0.068
x4 —0.026 0.050 — 0514 0.608 x4 Removed

X5 —0.091 0.114 —0799 0424 x5 Removed

X6 —0.161 0.119 — 1351 0177 X6 Removed

X7 0.138 0.129 1.070 0.285 X7 Removed

x8 —0217 0.122 —1.783 0.075 x8 —0.201 0.080 —2502 0012
x9 0.138 0.051 2725 0.006 x9 0.090 0.029 3.092 0.002
x10 —0.151 0.139 —1.087 0277 x10 —0.258 0.095 — 2724 0.006
x11 0.448 0.176 2.541 0.011 x11 0.523 0.125 4171 0.000
AIC 134.680 AIC 128340

AIC comparatively. Hence, principal factor based logistic regression is suggestible.
Therefore, principal factor is applied in dimension reduction for a response variable
is development status of an enterprise, and factor score based regression is applied in
dimension reduction for a response variable is number of employers in an enterprise.

Conclusion

Regression analysis result using all literature suggested factors shows that none of the
predictors for development status of an enterprise are significant, and only 10 predic-
tors for the number of employer in an enterprise are significant out of 81 factors. As
a result variable selection and dimension reduction methods are applied to assess the
real predictors of a response by removing variable redundancy, and complexity of having
much variable. Analysis for variable selection is done using correlation and association

Page 25 of 44
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methods, and regression (lasso and stepwise variable selection) methods. Related vari-
able selection using association and correlation methods based on statistical power
indicates that: CANOVA is more efficiently detects the non-linear or non-monotonic
correlation between a continuous—continuous and a continuous-categorical variables.
As Wang et al. [20] indicates the relation between continuous variables is well detected
with more power, even if the number of significantly detected variables is smaller. Where
as Spearman’s correlation coefficient more efficiently detects a continuous—continuous
and a continuous—categorical monotonic correlation, and Pearson correlation coeffi-
cient more efficiently detects the linear correlation between continuous variables, this
result is supported by literatures [20, 22]. In addition, MIC more efficiently detects a
non-linear or non-monotonic relation between continuous variables [21]. More ever,
Chi-square test of independence efficiently detects relation between a continuous with a
continuous, and categorical with categorical variables, but the non linear or non mono-
tonic relation between a continuous with a categorical are not well detected. Tsai et al.
[27] also suggested Chi-square in pre-processing step during data mining.

The result also reveals that, the relation between the predictor and response due to
interaction effect not detected by correlation and association methods are detected by
lasso and stepwise variable selection methods. Specifically, eleven new predictors for the
number of employment in an enterprise, and 11 new predictors for development sta-
tus of an enterprise are significantly detected by lasso and stepwise variable selection
methods only. Similarly, some non-causal relation between the predictor and response
are not detected by lasso and stepwise variable selection methods are also detected by
correlation and association methods. Specifically, twenty new variables are significantly
detected as predictor for the number of employment in an enterprise and nineteen new
variables are significantly detected as predictor for development status of an enterprise
by correlation and association methods only. In general, as result of Tables 2 and 5 for a
continuous response variable “number of employer in an enterprise’, and Tables 3 and 7
for a categorical response variable “ development status of an enterprise’, 51 predictors
for the number of employment in an enterprise, and 40 predictors for development sta-
tus of an enterprise are significantly detected. The result in literature [3, 4, 6, 7] does sup-
port the methodology applied is more general and efficient in grassing possible factors.

The result mainly indicates that, regressing the response variable “number of employer
in an enterprise” based on variables selected by lasso and stepwise method does bring
greater model fitness (based on adjusted R-squared value) than variables selected by
association and correlation methods. Similarly, regressing the response variable “devel-
opment status of an enterprise” based on variables selected by association and correla-
tion methods does bring 12 significant variables, where none of variables are significant
by lasso and stepwise elimination. Hence, lasso and stepwise variable selection methods
are suggested for continuous response variable “number of employment in an enter-
prise’, and association and correlation methods are suggested for categorical response
variable “development status of an enterprise”; or alternatively filtering variables by
regression, correlation and association methods and merging them for further analysis
is also suggestible.

On the other hand, the result from principal factor based regression for the number of
employers in an enterprise shows that, the gain in model fitness is small with complex
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composition comparing to factor score based regression. But the result from logistic
regression analysis for development status of an enterprise using factor score and prin-
cipal factor indicates that logistic regression analysis using principal factor brings more
significant number of factors with smaller information lost. Therefore, principal factor is
preferred and applied in dimension reduction for a categorical response variable “devel-
opment status of an enterprise’, and factor score is preferred and applied in dimension
reduction for a continuous response variable “number of employers in an enterprise”

The comparison of results from variable selection and dimension reduction methods
indicated that, variable selection methods brings more gain in model fitness than dimen-
sion reduction methods. Hence, the suggested variable selection methods are more pre-
ferred than dimension reduction methods, and applied to find out predictors and reveals
the following results.

Number of employer in an enterprise has significant casual relation with full self-
employment, previous habitat is urban, Graduated from TVET, taken specific education/
training on entrepreneurship, having other income source, environmental conditions,
religion, contact with entrepreneurs in networks may be socially, visiting Bazaar, tak-
ing businesses courses, reading literatures on business, get information about business
from commercial cooperation, Working MSEs in group, employers with education back
ground who can not read and write, and who complete primary education, high females
employment, high number of employer age between 15 to 29, 30 to 49 and above 65, and
low number of employer aged between 50 to 65.

Development of an enterprise status has significant casual relation with working MSEs
in group, religion, telecommunication problems, traditionalism (cultural tackle), current
capital, corruption, entrepreneurs in the family, entrepreneurs in the friends, get infor-
mation from customers, government investment policy motivation by land, and status of
MSEs is being small. The development of an enterprise status is potentially related with
employers with primary education, category of MSEs, year of experience in business,
environmental conditions, educational level, graduated from TVET, specific education/
training on entrepreneurship, and financial experience (financing the business).

In general, the suggested variable selection methods are recommended when small
number of variables are studied, and the suggested dimension reduction methods are
recommended for large number of variant variables (Big data case).

Future work

In this paper the measures for relation between variables are suggested based on the
nature of variable. The relation due to interaction effect need more efficient method than
stepwise elimination method which can consider the importance of each variable inter-
action effect in addition to model improvement. Due to current and recent need in Big
data, a general comprehensive variable filtering and selection method should be a future
work.
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Table 15 Variance of principal components

Principal components Standard deviation Proportion Cumulative Variance of Pc
(Pc) of variance proportion

PC1 2.702 0.090 0.090 7.302
PC2 2427 0.073 0.163 5.889
PC3 2.360 0.069 0232 5570
PC4 2.207 0.060 0.292 4.870
PC5 1.759 0.038 0.330 3.093
PC6 1.681 0.035 0.365 2.824
PC7 1622 0.032 0.397 2632
PC8 1.546 0.030 0427 2.389
PC9 1.523 0.029 0455 2320
PC10 1.494 0.028 0483 2231
PC11 1423 0.025 0.508 2.025
PC12 1.374 0.023 0.531 1.887
PC13 1.341 0.022 0.553 1.798
PC14 1.286 0.020 0574 1.653
PC15 1.271 0.020 0.594 1616
pPC16 1.239 0.019 0613 1.534
PC17 1.191 0018 0.630 1417
pC18 1.174 0.017 0.647 1.379
PC19 1.165 0.017 0.664 1357
pPC20 1.125 0.016 0.680 1.266
PC21 1.100 0.015 0.695 1.211
PC22 1.058 0014 0.708 1.119
pPC23 1.042 0.013 0.722 1.086
PC24 1.018 0013 0.735 1.036
pPC25 1.017 0.013 0.747 1.034
pPC26 0.997 0.012 0.760 0.993
PC27 0972 0.012 0.771 0.945
pC28 0.955 0.011 0.783 0912
PC29 0933 0.011 0.793 0.871
PC30 0918 0.010 0.804 0.843
PC31 0.888 0.010 0.813 0.789
PC32 0.879 0.010 0.823 0.772
PC33 0.869 0.009 0.832 0.756
PC34 0.847 0.009 0.841 0.717
PC35 0.835 0.009 0.850 0.698
PC36 0.829 0.008 0.858 0.688
PC37 0810 0.008 0.866 0.656
pC38 0.789 0.008 0.874 0.622
PC39 0.769 0.007 0.881 0.592
PC40 0.755 0.007 0.888 0.571
PC41 0.734 0.007 0.895 0.539
pC42 0.716 0.006 0.901 0512
pPC43 0.704 0.006 0.908 0.496
PC44 0.690 0.006 0913 0476
pPC45 0.686 0.006 0919 0471
PC46 0.664 0.005 0.925 0441
pC47 0.660 0.005 0.930 0435
pC48 0.634 0.005 0.935 0.402
PC49 0617 0.005 0.940 0.380

Page 38 of 44



Wubetie J Big Data (2019) 6:17

Table 15 (continued)

Principal components Standard deviation Proportion Cumulative Variance of Pc
(Pc) of variance proportion

PC50 0.602 0.004 0.944 0.362
PC51 0.598 0.004 0.949 0.358
PC52 0578 0.004 0.953 0.334
PC53 0.557 0.004 0.957 0.310
PC54 0.547 0.004 0.960 0.299
PC55 0.541 0.004 0.964 0.293
PC56 0.521 0.003 0.967 0.272
PC57 0.503 0.003 0.970 0.253
pPC58 0.483 0.003 0973 0.234
PC59 0466 0.003 0976 0.217
PCe0 0450 0.003 0.978 0.202
PC61 0.440 0.002 0.981 0.194
PC62 0420 0.002 0.983 0177
pCe63 0414 0.002 0.985 0171
PCo4 0410 0.002 0.987 0.168
PC65 0.394 0.002 0.989 0.155
pCe6 0.385 0.002 0.991 0.148
PC67 0372 0.002 0.993 0.138
pCe8 0353 0.002 0.994 0.125
PC69 0329 0.001 0.995 0.108
PC70 0.299 0.001 0.997 0.089
PC71 0.280 0.001 0.998 0.078
PC72 0.271 0.001 0.998 0.074
PC73 0.226 0.001 0.999 0.051
PC74 0.162 0.000 0.999 0.026
PC75 0.149 0.000 1.000 0.022
PC76 0.122 0.000 1.000 0.015
PC77 0.077 0.000 1.000 0.006
pPC78 0.068 0.000 1.000 0.005
PC79 0.043 0.000 1.000 0.002
PC80 0.000 0.000 1.000 0.000
PC81 0.000 0.000 1.000 0.000
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