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Introduction
Big data evolution has formed new software tools and techniques to accelerate the 
processing speed, and increase the scalability. The new tools targeted many big data 
applications such as data analytics. The analytics has manifested some security con-
cerns, as a reason for big data publicity prominence. In general, big data is more ben-
eficial when it is shared among multiple entities. This means many organizations from 
different fields need to access this data for multiple purposes [1]. They all analyze, 
mine, and output statistical results. However, exposing any private data to public view 
carries a high-security risk. Personal re-identification is the focus of researchers since 
decades. In data analytics, adversaries can easily re-identify and violate some private 
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information. The information may contain sensitive information about patients, bank 
agents, census, or any other private information [2].

The previously mentioned methods focused on developing algorithms to determine 
the best cut of the taxonomy tree, the optimal values of k, and/or the best option 
of anonymization technique either by Top–Down Specialization (TDS) or by Bot-
tom–Up Generalization (BUG). Implementing these algorithms may require high 
computation costs of continuous iterations with conditional statements, which means 
multiple times of heavy scan for the whole data records. However, these algorithms 
have ignored two main facts about big data processing; the first fact is that the key 
success factors of parallel processing is a proper parallelization algorithm [3]. This 
can be achieved by reducing the iteration to the minimal possible level. This is essen-
tial to avoid multiple scans for large data records. The major concern is not only 
the time consumption, but the unexpected failure that arbitrarily occurs during big 
data processing. The second fact is the changes that occur in data growth. With the 
increased number of data records, data gain more similarity in attribute’s values. This 
is apparent in our life activities. For instance, if we sit in a data hall with 100 peo-
ple, and the probability of finding a person’s age = 33 is 1%, then the probability of 
finding the same age may go up to 10%, if the data hall contains 1000 people. This is 
because people’s age range is between [0 and 100], so more people will increase the 
value equivalency.

The previously mentioned facts are essential to understanding big data nature and 
specifications. Applying heavy computation to a certain group of data records to find 
out the best anonymization cut, or even to decide which attribute that we need to 
anonymize, is inadequate. In big data, applying such techniques may not affect the 
final results of statistical output. We even may ignore the small statistical value of 
small decimal results. The statistical results follow the principle of estimation prospect, 
which gives data miners a flexibility of approximating and rounding some numbers [4]. 
Therefore, pre-calculating the k value, and pre-determining the attributes needed to be 
anonymized is an advantage. Generally, this non-accuracy will not dramatically affect 
the data analytics results.

We introduce a novel anonymization method using Bottom–Up Generalization in 
k-anonymity that can address the previous two facts about big data. The method uti-
lizes Multi-Dimensional Sensitivity-Based Anonymization for big data (MDSBA). The 
main aim of our method is to improve the anonymization performance and to increase 
the usefulness of anonymized data. MDSBA is not only an anonymization algorithm or 
technique, but it provides a fine-grained access control for multi-level of user’s permis-
sions. MDSBA is further explained in “Background” section.

In this paper, we experiment our MDSBA approach in two different frameworks for 
big data. We apply k-anonymity in MapReduce framework and compare it with Spark. 
Spark is an in-memory cluster computing framework for processing and analyzing large 
amounts of data. It exploits the increased size of hardware resources in CPU and RAM. 
Nowadays, Spark is the most popular processing framework for big data, by providing 
cost-effective and high scalable processes. MapReduce and Spark are both popular open 
source cluster computing frameworks. These frameworks are used in big data for large-
scale data analytics, by applying parallel distributed processing tasks. Both frameworks 
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provide programming API to users on managing major components of mapping, shuf-
fling, execution, and caching [5].

Our contribution in this paper is correlated to our previous experiments and 
researches, which are part of the personal de-identification studies. This research is 
one of a few studies that elaborated k-anonymity in MapReduce ecosystems. Moreover, 
the paper introduced a novel method in de-identification by implementing MDSBA in 
Apache Spark. This method proposes a state of the art for k-anonymity in big data. The 
current k-anonymity methods do not propose real solutions in big data environment. 
They suffer from lack of efficiency and scalability, and do not provide appropriate solu-
tions for big data over the cloud network such as granular access for data analytics.

To elaborate on these points, the rest of this paper is structured as follows. Four sec-
tions are presented in the rest of this paper as follows: “Background”, “Methods/experi-
mental”, “Results and discussion”, and “Conclusion”. In the “Background” section, the 
paper describes some previously proposed methods in k-anonymity. The section con-
sists of the related previous work, followed by MDSBA structure and core method. The 
subsection "Spark structure" describes Spark components and structure and sets the 
scene for the next parts. We then summarize a general comparison of Spark and MapRe-
duce in subsection "MapReduce and Spark". This is followed by reasons and explana-
tions of choosing Spark framework over other available big data frameworks, such as 
Flink or Storm, in subsection "Choosing Spark". In “Methods/experimental” section, a 
general introduction for the Results and Discussion’ is presented. In subsection "Imple-
menting MDSBA in Spark", we explain the algorithm that is implemented to anonymize 
data by MDSBA method. Part of this subsection describes the User-Defined Function 
(UDF) implemented in the anonymization program. The last subsections explains the 
method of comparing between MapReduce and Spark. The method includes the setup 
of the university lab and a description of the dataset being used in the experiments. The 
“Results and discussion” section sets an experimental comparison between Hadoop eco-
systems, presented by Pig script, and Spark, presented by Scala script. In “Conclusion” 
section, we summarize the experiments results and findings.

Background
Related work

The K-anonymity method was initially proposed by Sweeney. K-anonymity suggests a 
data generalization and suppression for Quasy-Identifier (Q-ID) [6]. The Q-ID involves 
finding a group of attributes that can identify other tuples in the database. These identi-
fiers may not gain 100% of data, but the risk of predicting some data remains high. The 
original k-anonymity method defines minimum generalization and maximum generali-
zation. It guarantees privacy when releasing any record by attaching each record to at 
least k individuals, and this is correct even if the released records are connected to exter-
nal information. Any table is called k-anonymous if one tuple has Q-ID values, and at 
least k − 1 equivalent records have Q-ID values. This means that the equivalence group 
size on Q-ID is at least k [7].

Anonymization methods, based on k-Anonymity, have been widely employed to pre-
vent data re-identification [7]. Anonymization methods fall into two broad categories. 
The first category constitutes of techniques that generalize data from the bottom of the 
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taxonomy tree towards its top and are referred to as the Bottom–Up Generalization 
(BUG) [8]. The second one is based on walking through the taxonomy tree from the top 
towards the bottom, known as the Top–Down Specialization (TDS) [9]. TDS and BUG 
methods were mainly developed for traditional data. Therefore, researchers upgraded 
the old methods to suit the new operations of big data. The operations should consider 
the parallel and distributed processing steps. Various methods of anonymization were 
specifically designed for parallel distributed processing. However, most resolutions fall 
short of a proper parallelization capability. The reason for this is further explained in this 
review.

The previous BUG and TDS methods have also been implemented in big data 
anonymization. A few amendments were applied to suit the big data frameworks regard-
ing parallelization and distribution. The core concept of k-anonymity is similar to the 
previously mentioned methods. Similar techniques and algorithms are applied in both 
cases of TDS and BUG. Let us study some of these anonymization methods to compare 
the previously mentioned methods in traditional data and big data.

BUG was proposed recently for anonymization using MapReduce. Some of BUG algo-
rithms are Parallel BUG [10], and Hybrid BUG. Most BUG methods follow a similar 
algorithm by implementing the BUG driver to leverage information gain and security 
trade-off. The search metric computes the Information Loss per Privacy Gain (ILPG). 
These equations measure the entropy and scores of each attribute. The algorithm gen-
erates a random number (ran). This number presents the number of random partition 
for the dataset ( DSran ). Each sub-dataset is emitted to the MapReduce BUG (MRBUG) 
driver for intermediate generalization. This generalization scans data, finds the equiva-
lent records < k and merges Q-IDs up to Anonymization Level 1 or 2—that is, AL1 or 
AL2. This intermediate generalization is essential to reduce the final anonymization 
computation. Finally, the datasets are scanned again and the search metric computes 
ILPG again. For each sub-dataset, if < k, then the best generalization level is found and 
set to inactive. The process keeps iterating and moving up the taxonomy tree until 
k-anonymity is satisfied. As explained, the MRBUG driver operates twice—in intermedi-
ate and final. It first merges anonymization and then applies generalization. This algo-
rithm is found in [10–13].

Pandilakshmi et al. [12] proposed advanced BUG. Advanced BUG consists of the fol-
lowing steps: split data into smaller partitions, run the MRBUG driver on a partitioned 
dataset, combine the anonymization levels of the partitioned dataset and apply gener-
alization to the original dataset [14]. Other anonymization methods use a hybrid com-
bination of BUG and TDS to anonymise data. A threshold value of k is determined by 
several algorithms to distinguish BUG from TDS use. The proposed methods consider 
that BUG is more suitable for small k values, while TDS is more suitable for larger k val-
ues [15]. Some hybrid methods were recently proposed for big data by Zhang et al. and 
Irudayasamy et al. [10, 11, 16].

Since the evolution of MapReduce and parallel processing, Roy et  al. presented a 
data privacy model named Airavat [17]. This system was developed after investigat-
ing MapReduce and differential privacy. This approach has encouraged researchers to 
redesign the available anonymization methods for MapReduce computability. The TDS 
methods for big data were derived from the TDS proposed for traditional data. Minor 
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corrections have been contributed to the early versions of the MapReduce framework. 
One of the predominant methods is known as two-phase TDS.

Two-phase TDS depicts the two phases of map and reduce. The concept is very similar 
to the previously explained TDS, which depends on generalizing all Q-ID attributes, and 
calculating the entropy and score for each Q-ID. The highest Q-ID score will be special-
ized. This operation is iterated to find the best cut in the tree or in the interval. In the 
first phase, dataset D is split into small chunks of data, Di. Di denotes any block of data, 
where 1 ≤ i ≤ p . The value p denotes the number of blocks. An operation known as 
MapReduce TDS (MRTDS) scans each data block in a subroutine in parallel to make full 
use of the job-level parallelization of MapReduce. The MRTDS driver is an intermediate 
anonymization level that specializes data without violating k-anonymity. The MRTDS 
driver is applied once in each phase. In the first phase, the driver provides some sub-data-
sets of a kI value, where kI > k . The term kI denotes the intermediate anonymity param-
eter, which is usually given by anonymization experts. Formally, the MRTDS operates 
multi-tasks on each data block for initial specialization by MRTDS

(

Di, k
I ,AL0

)

→ AL
|

i . 
The anonymization level AL0 presents the top generalization level of the taxonomy tree, 
which is usually given by (any). Specializing Q-ID attributes is applied as per the high-
est score attribute. Another program is known as Information Gain per Privacy Loss 
(IGPL). The IGPL calculates the highest score for each specialized Q-ID attribute. This 
technique is popular in most anonymization operations and algorithms.

After completing the intermediate anonymization, all (AL) values are aggregated and 
the next phase is initiated. The second phase operates MRTDS again to produce the best 
cut specialization. The algorithm is similar to the first phase algorithm. The second phase 
receives data from the intermediate output as per the key-value of (key, list(count)). This 
phase updates the IGPL results that were initiated in the first phase. Initially, the first 
phase lists all best specializations for each data block. In the second phase, the speciali-
zation is validated or updated with a new specialization value. The validation is accom-
plished by attaining two conditions. First, the parent value of specialization should not 
be a root—that is, it should not be (any). Second, the anonymity should be Ac(spec) > k . 
Several iterations can determine the best specialization cut for the chosen Q-ID. The 
IGPL updates the specialization list as per the information gain calculation, and the final 
list of specialization is updated and emitted, so the data records are masked with this list 
[18].

Multi‑dimensional sensitivity‑based anonymization

We introduce a novel anonymization method using BUG in k-anonymity that can cope 
with the big data frameworks. The method does not only parallelize data for big data 
frameworks, but also reduces the computation overhead of data iteration, by providing 
pre-calculated k-anonymity parameters and pre-determined attributes for anonymiza-
tion. The MDSBA also supports the access control based on anonymization. This 
imposes a granular anonymization based on user’s access level. MDSBA mimics role-
based access control by providing a granular security access for multi-user levels. The 
granularity is gained by implementing three different techniques; the probability value of 
Q-ID attributes, the ownership level k̄ , and the grouping method of Quasi Identifiers 
(Q-ID). The Q-ID probability is an essential part on applying masking of taxonomy tree, 
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interval or suppression [19]. The probability value is derived from the taxonomy tree 
concept. The taxonomy tree T is propagated from the parent node w to the number of 
child leaves ∑ν, so each parent node’s probability is P(w) = 1

∑

v
 . The intervals, also pre-

sented by probability values. The ownership level ( ̄k ) is a small value of k-anonymity. It is 
a number given to each user on accessing data for analytics. This number indicates the 
minimum number of equivalent Q-ID records, so k̄ is usually smaller than or equal k. 
The larger value of k̄ implies a higher level of anonymization.

In order to parallelize massive size of data, and to support the anonymization granu-
larity, we logically divide the Quasi Identifiers (Q-ID) into small groups of two to four 
Q-IDs, with one class attribute. Each Q-ID group, G(QID), is mapped to a business role 
and given a fixed value of k. In such a way, users are given authorization rights to access 
some Q-ID groups as per their given business role. Mapping Business roles and groups 
were further discussed in this paper [20]. Let us study the following example, if two users, 
user1 and user2, have requested to access the following Q-ID groups; G(QID)1 = {age, 
job, suburb, salary(class)}, and the other Q-ID group, G(QID)2 = {admission_date, can-
cer_found(yes/No), diagnosis(class)}. G(QID)1 is mapped to Finance Manager, and given 
a value of k = 30, and G(QID)2 is mapped to Doctor and given a value of k = 20. Sup-
pose that user1 was given a Doctor role, and user2 was given a Finance Manager role. 
Each one of these users will be given a value of k̄ to represent the ownership level, which 
provides an access granularity. The value of k̄ is assigned to users based on the service 
level of agreement, the trust level, and other considerations. More details regarding k̄ 
assignments are available in a previous paper as mentioned here [21]. The value of k̄ is 
an integer number with a pre-condition of 2 ≤ k̄ ≤ k. In our example, if the organiza-
tion of user1 and user2 is belong to one of the data owner’s partners, then users will be 
given high access privileges, and the value of k̄ will be low. Users will be possibly given, 
user1 → k̄ = 10 , and user2 → k̄ = 5.

Referring to the previous example, MDSBA pre-calculates the anonymization mask-
ing level based on the given value of k̄ . Mathematical equations are used to calculate 
the sensitivity level ψ. The equations provide the minimum level of the taxonomy tree 
on anonymizing Q-ID attributes. The equation is further described in here [22]. It also 
provides the minimum interval length on anonymizing Q-ID attributes. These pre-
calculated data save the time of expensive computation to find the best cut and the 
best interval. The pre-calculated values are essential in big data to reduce the process-
ing cost. The current anonymization methods spend considerable time calculating the 
most accurate Q-ID for anonymization. MDSBA neglects this kind of accuracy; thus, 
the pre-calculation of parameters is straightforward and does not require a high amount 
of processing. It is apparent that reducing the computation cost may negatively affect 
the information gain percentage. MDSBA was not proposed for traditional data size; 
instead, it was developed to leverage large data size, where small changes in accuracy 
may not affect the final statistical results. In addition, Pre-calculating the value of k is 
accomplished by reasonably accurate mathematical equations such as linear regression 
[21].

Moreover, every Q-ID Group is anonymized in a separate task. In each Q-ID group, 
the anonymization algorithm is given the direction of the grouping sequence depending 
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on the probability value of each Q-ID. In the previous example, the anonymization algo-
rithm will first group the whole three Q-ID attributes in G(QID)1 to filter out the fully-
equivalent records. The next stage, the anonymization algorithm will group the highest 
two Q-ID probabilities. The Q-ID probability is pre-calculated as per the Q-ID values, 
for instance the probability P(age) = 1/100, P(job) = 1/200, and P(suburb) = 1/400. It is 
obvious that the highest two Q-ID probabilities are P(age) and P(job), while P(suburb) is 
the lowest. Hence, the grouped Q-IDs will be ‘age’ and ‘job’ in the second stage, because 
they have the highest probability values. In the final stage, the highest Q-ID probabil-
ity will be grouped. In our example, P(age) = 0.1 is the highest probability value, thus, 
it will be grouped. On the other hand, suburb will be anonymized in the second stage, 
while job and suburb will be anonymized in the final stage. The pre-chosen anonymiza-
tion masks depend on the data type of each attribute. For instance, the masking methods 
of the previous example are intervals for age, and taxonomy trees for suburb and job. As 
explained, it is clear that anonymization parameters are pre-calculated and determined 
prior the anonymization process kickoff. In big data, this is essential to reduce the num-
ber of records scanning on each round.

Spark structure

Spark operations are different from the traditional MapReduce. Spark architecture is 
implemented to increase process performance by using the maximum capabilities of the 
available resources. For this reason, multiple jobs can run in parallel by implementing 
applications, executors and active drivers. The traditional MapReduce splits each job 
into many tasks, and each task is undertaken by a single process within each container, 
so the process terminates when the task is completed. Every node consists of one JVM 
core, unlike with Spark, where each worker node may consist of many cores, and each 
core operates in one JVM, as shown in Fig. 1. The node may have many cores, depending 
on the node capacity. Each core comprises one executor process that can run multiple 

Fig. 1  Spark structure and job distribution: This Figure shows one worker with multiple executers. It shows 
the NameNode and jobs dividing between executers. Each executer contains several JVM cores, which 
utilizes the memory use
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tasks, and remains for the entirety of the Spark life. This structure accelerates the initia-
tion of the process and tasks. In addition, Spark consists of a process, known as an active 
driver. This driver is used to manage the job flow and schedule tasks, and is located on 
the master node. It interactively communicates with the executor of each node. If Spark 
was deployed on top of YARN, the Spark driver can run over the cluster [23].

One of the negative aspects of Spark is the programming difficulties that programmers 
may face. Spark operates in RAM, and programming with large data may cause Spark 
to run out of heap memory because of the unnecessary RDD data collection caused by 
the programmer algorithm. Programmers should have previous knowledge about Spark 
core structure and jobs, such as partitions, nodes, serialization, JVM, executors, memory 
and disk, shuffles, compressed files and columnar formats (parquet). They may need to 
try various algorithms to deduce the most efficient one. This frustrating and time-con-
suming code may cause bugs during the program execution as soon as the data exceed 
the maximum limit of resources. Usually, cached data that do not fit in the memory are 
either spilled to the disk or recomputed when needed, as determined by the RDD’s stor-
age level. However, this does not prevent data growth bugs and overflow [24].

Anonymity in data analytics is an example of complex analytics, where anonymiza-
tion operations scan the data records many times during the filtration, aggregation and 
masking operations. The anonymization process latency is considerably high; therefore, 
batch processing tools are more efficient to deal with a large data size and long latency. 
Big data tools were developed to accommodate both data batches and streams. The first 
generations of MapReduce frameworks, such as Hadoop, were unable to process the 
data stream. The next generation was developed based on Lambda architecture, which 
was designed to handle both batch and stream processing methods. The Spark frame-
work structure attempts to trade-off between latency, throughput and fault-tolerance. 
Most of the real-time frameworks follow a similar structure of storing temporary data 
frames and tables in the memory, so most of the operations are completed without per-
forming I/O operation with disks, thereby decreasing latency [2].

MapReduce and Spark

Both the Spark and MapReduce frameworks are very similar in some core features. 
Spark runs on Hadoop, on Mesos or standalone; hence, it is not possible to categorize 
Spark as a non-MapReduce framework. The MapReduce core structure consists of 
YARN and HDFS, and these two Hadoop native processes are used intensively in Spark. 
They provide reliability, performance and scalability for Spark. It is worth mentioning 
that two notable differences between MapReduce and Spark in processing MDSBA.

1.	 The first factor is that MapReduce wastes considerable time on I/O transmission 
between memory and disks. The inefficiency of read/write from the disk and the high 
latency in each operation are the major inhibitors in MapReduce. In contrast, Spark 
operations are executed over a built-in memory, without a need for read/write on 
disks [25]. Figure 2 illustrates a comparison of Hadoop and Spark. Spark’s in-mem-
ory cluster computing capabilities are high, which boosts performance, even with 
the large data magnitude. The time difference between reading data from the disk 
or from the memory is significant. A larger data size shows higher latency than a 
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smaller data size when reading from disks. In addition, Spark implements a caching 
technique to store data in the memory to minimize the disk I/O.

2.	 The second factor that enables Spark to operate more rapidly than Hadoop is the 
advanced job execution engine. Both Spark and MapReduce convert a job into 
a DAG of stages. The DAG theory is an old theory that represents any graph with 
a collection of vertices connected by edges [26]. Graph theory was developed and 
implemented in many fields, such as computer science and medical science. In 
Hadoop and Spark, graph theory is used for scheduling tasks. Each job is presented 
by a direct graph, which is a set of vertices connected by directed edges. Each vertex 
in the graph represents one processor, and each edge represents a communication 
link. The difference between Spark DAG and Hadoop DAG is the communication 
link. In Hadoop, each processor reads all incoming messages from the in-edge (disk), 
performs some computation, and writes messages to the out-edge (disk). The in-
edge and out-edge are presented by disk I/O, which causes major delays. Hence, two 
stages can be processed at a time. In other words, there is no way to start at a vertex 
in a DAG and follow a sequence of directed edges to return to the same vertex [27]. 
Hadoop creates a DAG with only two predefined stages: map and reduce. Developers 
are forced to process their commands within one of these two stages. Based on this 
core structure, complex jobs need to be split into two or more jobs to fulfil the two-
stage process. In contrast, Spark can accomplish the job with multiple stages, with-
out splitting the single job into many sub-jobs. This structure optimizes job sched-
uling and processing. For instance, if the processing algorithm contains read from 
storage, filter and group, Spark can accomplish this algorithm in one job with three 
stages of map, shuffle and reduce. In Hadoop, this would be divided into two jobs 
of (map, shuffle) and (map, reduce) for each job. Data would be read from the disk, 
filtered and stored back to the disk with the first job. Again, data would be read from 
the disk, grouped and stored back to the disk.

Fig. 2  Comparison between Hadoop and Spark in dealing with memory and disks: Hadoop is slower than 
Spark because it processes each task on two stages, map and reduce. Every two stages must output data to 
the disk. On the other hand, Spark operates in-memory, therefore, it is faster
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Choosing Spark

There have been a considerable number of cluster computation engines available in 
the market during the last decade, including Hadoop, Spark, Flink, Storm, Heron and 
Samza. Storm is a viable framework in the big data industry, as it presents a real-time 
processing engine that is able to stream SQL records from HDFS, Kafka, MongoDB and 
Redis [28]. Storm is a popular framework worldwide, and is implemented in enterprise 
company networks, such as Yahoo, Twitter, Flipboard and Yelp. It is written in Clojure 
Language—the Lisp-like functional language. Moreover, the structural design of Storm 
was built for the data stream, which means that the Storm process is continuous and 
infinitive. However, Storm was not selected for data anonymization because it does not 
process batching datasets—it only operates with data streaming—and anonymization 
methods and operations are only applied to batching data. This is essential for grouping 
and counting the number of equivalent records and masking the non-equivalent records. 
These operations cannot induce adequate anonymization results in the data stream; 
hence, Storm is not preferable in k-anonymity methods [29].

However, some hinders may degrade the efficiency of Spark. As aforementioned, if 
the data size does not fit the total memory size of the cluster, then Spark uses disks to 
spill data. This action causes a higher delay on disk I/O, which is a similar delay fac-
tor in the Hadoop framework. Therefore, the Spark cluster always needs a large mem-
ory size to leverage the best performance. The average amount of processed data 
should be considered when building the Spark cluster because Spark has the capabil-
ity of caching RDD in memory. Developers benefit from this feature to avoid disk 
I/O; however, caching features requires a sufficiently large memory size. For instance, 
if the Spark cluster is expected to analyze a data size of 3  TB, then Spark uses up to 
60% of the total configured executor memory to cache RDDs. If data analyzers decided 
to cache half of the 3  TB in-memory at once, there should be enough memory space 
to accommodate this large data size. In this scenario, a Spark cluster with 20 workers 
and 128 GB memory for each worker is enough to cache 1.5 TB. A rough calculation 
is 20× 128× 0.6 = 1536GB ≈ 1.5TB . As explained earlier, the Spark cluster infrastruc-
ture should consist of powerful servers and fast connectors between workers and stor-
age units. Therefore, VMs connected to storage nodes by iSCSi are not a suitable choice 
for building a Spark cluster. Spark requires physical or non-virtual servers. In addition, 
network connections between servers and storages should be through direct access con-
nection, such as SAS or SATA.

Methods/experimental
Spark has many advantages over Hadoop ecosystems. It mitigates latencies and increases 
performance. For instance, Pig divides jobs into small tasks, and, for each task, Pig reads 
data from HDFS, and returns data to HDFS once the process is completed. This in/out 
consumes considerable time, and is unlike Spark, which implements an RDD. RDD is the 
main distinguishing feature of Spark. RDD divides jobs into many DAG stages, and, for 
each stage, Spark reprocesses RDD in the memory without referring to the disk. Spark 
may perform many times faster than MapReduce.

In this chapter, Pig’s and Spark’s performances are evaluated in MDSBA. To conduct a 
detailed evaluation, Spark’s transformation and functions used in anonymization should 



Page 11 of 26Al‑Zobbi et al. J Big Data  (2018) 5:38 

be properly defined. All Spark scripts are coded by Scala program. Some functions and 
transformations operate faster than others. For example, inner join transformation com-
mands may require a high computational cost. MDSBA was proposed for big data pro-
cessing frameworks. Its core concept is applying optimized anonymization procedures 
and algorithms by splitting data into small tasks, so they can be parallelized among the 
cluster nodes.

In big data processing, the reduce phase is expensive because it involves data parti-
tioning, data serialization and de-serialization, data compression and disk I/O. These 
operations require data transfer over the network to aggregate data over multiple 
nodes. Leveraging any application’s behavior should consider the size of data transfer-
ring between nodes during the reduce phase [30]. In data anonymization, the reduce 
phase is presented by SQL grouping commands, which causes high shuffling processes. 
To reduce the groupBy effect in the anonymization application, a filtration command is 
initiated to split data logically as per nominal values. This type of split reduces the per-
formance degradation caused by the shuffling process. This reduces the amount of shuf-
fling among cluster nodes during the reduce stage.

Implementing MDSBA in Spark

The previous anonymization techniques, such as BUG and TDS, were supposed to 
work efficiently in parallel distributed processing. Technically, anonymizing data with 
these algorithms may negatively create data overflow without considering the cluster 
resources and capabilities. For instance, Fig. 3 illustrates a comparison of the TDS and 
MDSBA algorithms. In the TDS algorithm, the data flow may negatively affect paral-
lelization. First, grouping all records without filtering data is inefficient. This is experi-
mentally proven in Spark Tuning in MBA Section. Second, most TDS operational steps 
should be executed in UDF, which degrades the algorithm performance. Spark and 
Pig are unable to run intensive computations and conditional iterations without UDF. 
Therefore, UDF is embedded in the script’s codes to execute complicated operations. 
However, using UDF in most anonymization steps inhibits the performance of Hadoop 
and Spark. The operations of UDF are executed in a black box, and are not related to 
Spark or Hadoop frameworks. This is also true in Pig operations. UDF does not use the 
resources of YARN; instead, it uses the resources of locally installed JVM. Therefore, 
implementing Spark with such an algorithm is inefficient.

In MDSBA, UDF was embedded in Spark and Pig scripts, but with a minimal size of 
data processing. As explained in the next section, the anonymization is applied on fewer 
attributes at a time. This technique controls and minimizes the size of data flowing to 
the UDF. The UDF is executed in a local JVM beyond the source manager’s control—a 
memory pool located outside the Spark JVMs. Therefore, there is a need to reduce the 
amount of data flowing outside the Spark JVMs [24]. Moreover, the anonymized Q-ID in 
TDS is volatile. This means that the specialization is applied to different Q-ID attributes 
in each group of records. The chosen attribute for specialization is the attribute with 
the highest score value [9]. Calculating the highest attribute score for each group is an 
expensive computation process. In contrast, in MDSBA, the anonymized Q-ID is pre-
determined based on the Q-ID probability. This saves a considerable amount of com-
putation time. This solution may not provide the best optimal anonymization for all 
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anonymized groups in the dataset, however, we may sacrifice some information gain to 
benefit data processing performance.

Figure 3 compares TDS and MDSBA in anonymizing data. The TDS algorithm involves 
various iterations when calculating the best cut and scores. This type of iteration is inef-
ficient for big data, and even worse when using UDF, where the program executes the 
UDF code outside the Spark framework. Further, the UDF program needs to iterate a 
large size of arrays. The UDF executes almost all anonymization processes; thus, there is 
no real benefit from a parallel distributed system. In contrast, MDSBA implements UDF 
with a limited data size flow. As shown in Fig. 3, UDF use was reduced to minimal opera-
tions. UDF reads only a few data attributes to apply some masking operations. The data 
size flowing to the UDF is relatively small.

User‑defined Functions in MDSBA
MDSBA implements user-defined functions in different locations. This is essential for 
two main purposes: anonymizing and ungrouping. In anonymizing, three masking types 
of interval, taxonomy tree and suppression are implemented. These are the only avail-
able types of masking for anonymization, and are used by all anonymization methods. 
Figure 4 shows the algorithm for anonymizing any numerical group. In Scala, the group 

Fig. 3  Comparison between the anonymization algorithms of MDSBA and TDS: MDSBA reduces the 
dependencies on UDF by reducing the iteration steps. TDS requires many iterations to determine the best 
cut. This improves the scalability and performance of MDSBA
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of objects can be a list or sequence. Minimizing the amount of data when accessing 
the UDF program is essential to reduce the processing cost and avoid data overflow, as 
described before.

It is difficult to predict the failure of non-Spark JVM; therefore, we must keep data 
flow to the lowest level. For instance, installing JVM in any computer may take up to 
25% of the total memory. This size can be reconfigured and enlarged if needed. If the 
Spark worker memory is large enough to fit the data size, then the external JVM that 
handles the UDF may be able to handle up to 25% of the data size located in Spark. The 
size of the UDF heap memory is not the only obstacle—the complex iteration with sev-
eral IF statements can be another cumbersome factor that degrades the data processes. 

Input: list={a1,a2,a3,…..an}, a R: list is in ascending order 
Variables definitions
var length_of_list=lists.size
var minimum=list(0)-list(0)%5
var range=1 / psi
var medium=minimum + range
Processes
//Loop to anonymize numerical
Do While object < length_of_list

object=object +1   //counter for objects in the list
//1. The main IF statement

IF list(object) >= minimum AND list(object) < medium THEN
rep=rep+1 //counter for objects within the interval

END IF
//2. Include the last few objects in the list within the same range

Count_remained_objects= length_of_list – object
IF Count_remained_objects < k_dash THEN

medium=list(length_of_list-1)+(5-list(length_of_list-1)%5)

rep=rep + Count_remained_objects
object=object + Count_remained_objects   

END IF
//3. Jump to the object that full fill k_dash

IF rep < k_dash THEN
Remain_to_k_dash= k_dash – rep

medium=list(object+ Remain_to_k_dash-1)+(5-list(object+ Remain_to_k_dash-1)%5)
IF medium – minimum < range THEN

medium =minimum + range
END IF

rep=rep + Remain_to_k_dash+1
object=object + Remain_to_k_dash

END IF
//4. Get the next object

IF list(object) > list(object-1) THEN
FOR I =0 TO rep 

all_intervals=all_intervals+"["+minimum+" - "+medium+"[,"
NEXT I

minimum = medium 
medium=medium + range

rep = 0 //reset the counter
END IF

END WHILE
Output: list={[A1-B1[,[A2-B2[,[A3-B3[,…,[An-Bn[}

Fig. 4  Algorithm illustrates the numerical values anonymization: Anonymization can be applied to textual 
and/or numerical attributes. Here in this algorithm, the numerical anonymization is denoted by an interval 
that replaces one digital value
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MDSBA implements a swift algorithm to anonymize data with the minimum number of 
iterations.

To understand the anonymization algorithm in UDF, let us study the following 
example; a list of numerical values is given as: a list = {2,3,4,6,12,12,12,18,25,26,26,
30}, with k̄ = 5. The algorithm anonymizes this list as per ψ value. If ψ = 0.2, then the 
range = 1/0.2 = 5. The values are arranged in an ascending order. Referring to Fig. 4, the 
algorithm consists of four sections. The algorithm:

	 1.	 Initiates some values; length_of_list = 10, minimum = 2  −  (2 mod 5) = 0, and 
medium = 0+5 = 5.

	 2.	 Starts reading the first object in the list, (2).
	 3.	 Section 1: IF statement, since the statement is true, then the counter is incremented, 

rep = 1.
	 4.	 Section 2: The next IF statement, in Sect. 2, will be skipped, since the object list has 

not reached the end of it.
	 5.	 Section 3: In the third IF statement, the algorithm jumps by 4 objects since Remain_

to_k_dash = k_dash – rep = 4.
	 6.	 Section 3: The next number from the list will be 12, and the other parameters will be 

incremented for the next loop, rep = 1 + 4 + 1 = 6 and object = 5. Also, the medium 
value has been updated up to 15.

	 7.	 Section 4: Proceeding to the fourth statement, it is clear that the 6th list number is 
also 12, so the statement result is false, and the loop continues the second loop with 
object = 6.

	 8.	 Section 1: In the second iteration, the first section increments rep up to rep = 7, and 
reads the value 12, while the sections two, three, and four are skipped.

	 9.	 Similarly, the third loop increments rep by rep = 8. In the third iteration, the number 
18 exceeds the range, and the program skips to the fourth section.

	10.	 This is the first time that the fourth statement is true, and the string of all_intervals 
is generated by an iterated loop of 8 times, so the results will be new_list{[0–15[,[0–
15[,[0–15[,[0–15[,[0–15[,[0–15[,[0–15[}.

	11.	 In the fourth section the loop generates the new list, and both minimum and maxi-
mum are updated by minimum = 15, and maximum = 15 + 5 = 20.

	12.	 The next loop updates the medium up to 35, so the final new list is updated by: 
{[0–15[,[0–15[,[0–15[,[0–15[,[0–15[,[0–15[,[0–15[,[15–35[,[15–35[,[15–35[,[15–
35[,[15–35[}.

In a similar algorithm, we can mask data with taxonomy trees as explained in Addi-
tional file 1: Appendix S1. The aim of this algorithm is reducing the size of data flowing 
to the UDF program. This is implemented by masking fewer attributes at a time, then 
attaching the rest of the data tuples, to the anonymized attributes. We may roughly 
estimate the size of ten data records by 1 KB, while the size of one attribute of the ten 
records may not exceed the 20 bytes. This shows that the actual data size flowing to the 
UDF file may not exceed one-third of the total data size. For this reason, data process-
ing in UDF is not expectedly expensive. Figure 5, shows two algorithms implemented by 
Pig and Spark. Both are quite similar with minor differences in the data flow between 
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memory and disk. Spark does not need a disk read/write operation. The fully equivalent 
records (SG) are stored at disks in both programs, as a final output. The semi-equivalent 
records (SSG) are stored at the disk in Pig program only, as a temporary output. This is 
the major difference between both programs. Moreover, Pig is not provided with a built-
in UDF capability, therefore, an external program, such as Java, should handle the UDF 

Fig. 5  Anonymization algorithms in Pig and Spark: very similar anonymization algorithms in Pig and Scala. 
Only minor differences between them
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operations. Unlike Spark SQL, which provides a UDF built-in capability by defining a 
Scala function.

In Spark algorithm, we faced challenges of concatenating the anonymized data with 
the rest of the attributes in the table. For instance, if a table T contains the following 
attributes of T = {A,B,C,D}. The anonymization process has finished masking the attrib-
ute A, and transformed it to a, that is A → a. Hence, the anonymized attribute {a} needs 
to be concatenated with the rest of the attributes {B,C,D}, so the new table TA will be 
TA = {a,B,C,D}. In Scala’s implementation of DataFrames, there is no direct way to zip 
two DataFrames into one. We can simply work around this limitation by adding indices 
to each row of the data frames. Then, we inner join DataFrame by these indices. Addi-
tional file 2: Appendix S2 presents a full Scala program including UDF.

However, all join operations are known as Cartesian join, which require high num-
ber of shuffling between nodes. Therefore, join operation is very expensive, and it is 
not recommended by Spark developers. Thus, we implemented another way of concat-
enating without creating an independent DataFrame. To understand the concept of this 
UDF script, let us give the following example, four Q-ID attributes and one non-Q-ID 
attribute, Teacher, are presented in Table  1. On grouping the records by three attrib-
utes (CLASS, SCHOOL, and LEVEL), TEACHER and MARK collect multiple values in 
arrays. The script calls the anonymization UDF to anonymize the marks, and concat-
enates the rest of the attributes in one table. This can be implemented through (withCol-
umn) command. The command syntax is;

Table 1 should be ungrouped for storing or possible further processing. This format 
of grouped records cannot be easily managed for computation or statistical operations. 
Ungrouping the grouped data can be accomplished in various ways. The best-found way 
was creating another UDF that is able to map every sequence to a wrapped array, and 
rotate the direction of the wrapped array. The aim is converting Tables 1, 2 format. It is 
clear that the three Q-ID attributes are repeated according to the number of grouped 
objects in MARK and TEACHER.

The Ungrouping algorithm reads each wrapped array, counts the number of objects, 
and maps each array with indices. Each wrapped array has a various number of objects; 
therefore we need to define a function that can update the array size on each wrapped 
array. Scala defines functions by using (val) or (def ) command. In our case, we imple-
ment (def ), so the command can update the number of array objects, with the following 
syntax;

val anonymize_MARK = Grouped_QID.withColumn
(

′′MARK ′′, AnonUDF
(

$′′MARK ′′
))

.select
(

′′TEACHER′′, ′′CLASS′′, ′′SCHOOL′′, ′′LEVEL′′, ′′MARK ′′
)

.

Table 1  Grouped and anonymized table

Q-ID group

Teacher Class School Level Mark

Jones, Khan, Steve A School 1 1 [70–80], [70–80], [70–80]

Mark. Jane B School 2 2 [90–95], [90–95]
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def assertSameSize(arrs:Seq[_]*) = {assert(arrs.map(_.size).distinct.size==1,"sizes differ")}.
This definition is called by the UDF that is able to rotate the direction of the arrays with 
the following command:

val ungroup = udf((xa:Seq[String],xb:Seq[String],xc:Seq[String],xd:Seq[String],xe:Seq[Integer]) => {
assertSameSize(xa,xb,xc,xd,xe)
xa.indices.map(i=> (xa(i),xb(i),xc(i),xd(i),xe(i)))

})

The above UDF ungroups Table  1, and expands the wrapped array to the format of 
Table  2. In this example, the anonymization UDF outputs the range of marks in one 
string of values MARK = {[70–80], [70–80], [70–80]}. This string should be converted to 
a wrapped array before ungrouping it. Converting a string to an array, in Scala, is imple-
mented by the command split(col(MARK)). As noticed, implementing the fastest algo-
rithm relies on several trials of execution before choosing the best method. In general, 
programming in big data should be carefully considered. This is quite similar to pro-
gramming multi-task programs on a single computer with multiple processors. The pro-
gram may not gain any advantage of the multi-core processor without a proper 
algorithm. For instance, an operation of total = a + b + c + d will run in one core only, 
while the rest of the cores are in ideal states. The same operation can be completed 
faster, if the algorithm was amended by tot1 = a + b, tot2 = c + d, and total = tot1 + tot2. 
Splitting the single operation to three operations of tot1, tot2, and total, enhances the 
performance and leverages the parallel processing on multiple cores. However, the oper-
ation of the total will be completed on one core only. The final result of the total will wait 
for the parallel operations of tot1 and tot2 to be completed. This operation is known as a 
sequence operation, which causes the major delay in algorithms [3]. Applying the similar 
concept to parallel distributed operation mimics the mapping and reducing operations. 
Reduce is a sequence operation that waits for the mapping completion, and before the 
shuffling operation start-up. More shuffling leads to a higher operating cost.

The operation of the grouping process is implemented by the built-in transformation 
command “groupBy”. Alternatively, Scala permits the SQL embedded commands, so 
the grouping can be implemented in either way of groupBy or Select query. However, 
groupBy was found to be more efficient in performance wise. Each data tuple or record 
contains many attributes. As described before, MDSBA creates small Q-ID groups, 
which includes two to four attributes only. Also, each data record may consist of several 
G(QID), classes, and non-Quasi attributes. For this reason, we need to groupBy each 
G(QID) independently, while the rest of the attributes must be aggregated and concat-
enated with the anonymized G(QID).

Table 2  Illustrates the new state after ungrouping records

Teacher Q-ID group

Class School Level Mark

Jones A School 1 1 [70–80]

Khan A School 1 1 [70–80]

Steve A School 1 1 [70–80]

Mark B School 2 2 [90–95]

Jane B School 2 2 [90–95]
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Comparison of MapReduce and Spark in processing MDSBA

We conducted experiments to compare between Hadoop ecosystem and Spark in 
processing MDSBA. The experiments aimed to measure the performance of the old 
MapReduce framework and the new Spark framework o conducting data anonymity. 
The performance includes the computation cost, and scalability of each. Since Spark is 
a distributed in-memory platform, we need to observe Spark’s behavior on data growth. 
Eventually, Spark was developed for the new powerful servers that are provided with a 
large size of memory, and a considerable number of CPU cores. Spark is a memory con-
sumer and CPU intensive operator; therefore, each worker should contain a reasonable 
size of memory and cores. Usually memory size on each worker starts from 16 GB, with 
two quad-core processors. However, the required size of memory and processor in each 
worker of the cluster depends on three main factors, these are: the data size, the time 
required to complete the job, and the number of workers and masters within the cluster.

Experiment setup
We setup our lab at our university, which includes seven virtual machines, with one 
master and six workers. Each node contains 4 core CPUs of Intel(R) Xeon(R) CPU 
@ 2.40 GHz, with a physical memory of 8 GB, and the operating system is CentOS 7. 
Both Spark and Hadoop were setup on the same cluster. Spark 2.1 was setup on Apache 
Hadoop 2.7. Also, Pig was setup on the NameNode to run the Pig Latin script. We cre-
ated two different scripts programmed in Pig Latin and Scala. Both scripts must output 
similar results. To save resources, we executed Pig script first, then Scala script after the 
completion of Pig script. Adult data [31] was deployed for the experiments. Data was 
randomly enlarged up to seven different sizes, and these are 2 GB, 5 GB, 7 GB, 10 GB, 
15 GB, 20 GB and 30 GB. The size of data sets was chosen related to the limited available 
resources in our cluster.

The first experiment aimed to compare the processing time between Spark and 
Pig. Both scripts are designed to read the data files, filter data by class value, group, 
anonymize and ungroup. The program concept is similar to the algorithm described in 
Fig. 5. Spark was setup with a total of five workers with 10 cores. The cores are distrib-
uted as two cores and 4  GB memory per worker node. The five nodes have 20  GB of 
memory, with a total of 10 executers.

In the second experiment, one more worker was added to observe Spark’s behavior 
with the large hardware capacity. The worker node consists of 8 GB memory and two 
core processors. The previous experiment was conducted by 5 workers and one master, 
while this experiment was conducted by 6 workers instead. The sixth worker was added 
to both Pig and Spark clusters. It showed a dramatic increase in Spark performance, 
which was expected. Figure 7 illustrates the same datasets with the extra worker added 
to Spark domain and Pig domain. Spark’s processing time showed a slight degradation, 
when data size exceeded 20 GB. However, the overall performance was better than using 
five workers only.
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Datasets chosen in the experiments
In both experiments we used adult data taken from UCI Machine Learning Repository. 
The attributes include {AGE, JOB, MARITAL_STATUS, EDU, SOCIAL, RACE, SEX, 
POSITION, COUNTY, COUNTRY, SALARY}. Attributes are divided into three groups 
of Q-IDs. The first Q-ID group is G(QID)1 = {AGE, JOB, MARITAL_STATUS,EDU}, 
where EDU is the class attribute. The second group is G(QID)2 = {SOCIAL, RACE, 
SEX, POSITION}, where POSITION is the class attribute. And finally, the third group 
is G(QID)3 = {COUNTY, COUNTRY, SALARY}, where SALARY is the class. For this 
experiment, we only anonymized group G(QID)1, by grouping Q-IDs for {AGE, JOB, 
MARITAL_STATUS} in the first stage, then {JOB, MARITAL_STATUS}, in the second 
stage, and finally {MARITAL_STATUS} only in the third stage. Table 3 shows the dataset 
attributes and G(QID) groups.

This dataset was chosen based on various considerations. This dataset contains a con-
siderable number of personal attributes. This creates a larger number of Q-IDs, which 
enables an appropriate aggregation for G(QID) groups. In addition, this dataset has been 
used in many previous methods and experiments proposed by researchers. Thus, it is 
worthwhile employing similar datasets for its prominence in data anonymization.

Adult dataset was enlarged up to seven different sizes by using MySql code, which is 
retrieved and modified from github [32]. This randomly created data mimics the real-
world data, by constructing a random sampling. The sampling was implemented by 
calculating the normal distribution for each Q-ID attribute and a class. The normal dis-
tribution was calculated first for the original Adult data. Then data range is assigned for 
randomness by giving each 100 values a different range. The data ranges were chosen to 
resemble the normal distribution value for the original data. We followed similar process 
that was described here [33].

Results and discussion
The results with 5 workers showed a large contrast in processing time between both 
scripts. Figure  6 showed the processing time for various data sizes. Spark is much 
faster than Pig in the relatively smaller data size. The relativity is described by compar-
ing the data size with the memory size. In the proper memory size, Spark may reach up 
to 8× faster than Pig. On data size growth, Spark performance degrades dramatically, 
so the processing time becomes similar to Pig on data size = 15 GB. More data growth 
showed better performance for Pig speed in comparison to Spark. Pig does not speed 
up processes on data growth, but its processing time grows up steadily. On the contrast, 
the discrete line in Fig. 6 shows an exponential growth for the Spark processing time. 
SQL Spark consumes more processing time, when the memory is not large enough in 

Table 3  Adult dataset and G(QID) groups used in the below experiments

All attributes G(QID)1 G(QID)2 G(QID)3

AGE, JOB, MARITAL_STATUS, EDU, SOCIAL, RACE, 
SEX, POSITION, COUNTY, COUNTRY, SALARY​

AGE, JOB, MARITAL_
STATUS, EDU

SOCIAL, RACE, SEX, 
POSITION

COUNTY, 
COUNTRY, 
SALARY​

Class: EDU Class: POSITION Class: SALARY​
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comparison with the data size. For instance, when data size = 30 GB, the process time 
was around 432  min, which is much larger than Pig process time, which was around 
350 min.

The results with 6 workers show that Spark performs better than the previous experi-
ment. However, Pig processes showed slight progresses if compared with Spark’s perfor-
mance. Figure 7 illustrates a high progress and a dramatic decrease of Spark’s processing 
time, specially when data size exceeded 3 GB. Spark’s process improvement is due to its 

Fig. 6  Comparison in process-time between Pig and Scala scripts with 5 workers: This is the first experiment 
where 5 workers and one master are used. The experiment showed a good performance for Spark, when data 
size is smaller than 15 GB. Pig gains better performance when data size increases dramatically in comparison 
with the available memory

Fig. 7  Comparison in process-time between Pig and Scala scripts with 6 workers: This is the second 
experiment where 6 workers and one master are used. The experiment showed a good performance 
for Spark, when data size is smaller than 20 GB. Pig gains better performance when data size increases 
dramatically in comparison with the available memory
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structure and in-memory operations. MapReduce is prone to network congestion during 
map or shuffle phases. Spark reduces this negative impact by reducing the data trans-
mission between disks and memory. This feature is essential in the transmission of the 
network.

The impact of network congestion on Pig performance

Having many trials of experiments with Pig; several tasks took much longer time 
before throwing errors and terminating the tasks. The engineering structure of 
MapReduce and Spark is similar to handling the slow tasks. They both implement 
a speculative execution, which tags any task that takes longer on average than the 
other tasks from the same job. It clones this slow task and runs it on another node. It 
will not stop the slow task, but rather run another copy in parallel. This is beneficial 
in large clusters, whereas small clusters may lose their available resources. However, 
our university network is not dedicated to MapReduce structure, and suffers from a 
high network congestion most of the day. In both cases of enabling or disabling Pig’s 
speculative execution, we experienced an almost similar delay in some tasks. There-
fore, we repeated each experiment several times, mainly, in running Pig script. The 
failure jobs where repeated and excluded from the comparison time. The failure per-
centage of processing tasks in Pig script was around 4%, which increases with the data 
growth. Many factors may cause this congestion, such as university virtual environ-
ment and connection types between storages and virtual machines. Big data clusters 
rely on direct access connection (DAC) between nodes and storages. Also, the virtual 
environment is not recommended for big data structure. Figure  8 shows 319 tasks 
that were executed by Pig script for various data size. The tasks belong to more than 
15 jobs with an average processing time between 10  s to 18  min for the successful 

Fig. 8  A number of 319 Pig script tasks, including repeated tasks: Pig script operates between disks and 
memory. This creates many interruptions in the busy network. Therefore, the fail percentages in Pig tasks is 
high. The failure percentage increases parallel with the data size increase
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tasks. The shown pulses represent the failure tasks after long processing time. The 
failure tasks increase in parallel with the data size increase.

Spark tuning in MDSBA

Tuning Spark is one of the hardest tasks on managing Spark cluster. This requires 
knowledge, experience, and several experiments. There are no clear instructions 
on tuning Spark to gain the best performance. Our focus here is on anonymization 
operations only. Different tasks and applications may require different steps of tuning. 
In MDSBA, our focus is grouping, ungrouping, and masking data. These three main 
operations should be organized properly to give the best possible performance. Both 
ungrouping and masking require UDF programs. In masking, the algorithms should 
consider the least number of iteration and the smallest size of data. It was explained 
earlier the importance of reducing the data flowing to the UDF. We experimented 
several tuning techniques and configurations. Two main tuning concepts are found; 
these are: filter/group, and cache data.

In SQL grouping, we experimentally found that filtering data, and then grouping it, 
may reduce the grouping time and enhance the performance. Hence, we need to filter 
and then group data, rather than jumping to the GROUP command first. It is apparent 
that grouping data records can replace the command FILTER, so technically, we can 
group any records without the need for filtering them first. However, to reduce the 
number of shuffling times and leverages the parallelization, it is better to filter records 
first. For a better understanding, let us consider a set of passenger’s records as shown 
in Table 4. If the grouping command included the attributes of; Depart, Arrive, and 
Flight, then the grouping results can be {ATL, DXB, (Adult, Child), K380}. We also 
gain similar results if we use filter command first. For instance, if we filter the records 
with the class value = K380, then data size will be reduced to two records instead of 
three. Using filter/group commands conclude the same results as using group com-
mand alone. However, in performance-wise they are not similar.

Figure  9 shows the processing time difference between grouping data after filtra-
tion, and grouping data without filtration. Initial data Filtration increases the program 
performance, and it is beneficial when the attribute values are known, so they can 
be hardcoded by programmers. In MDSBA, attribute values are pre-added automati-
cally in early preparation stages. MDSBA framework consists of three main services 
core, initializer, and anonymizer. The Scala script is generated in the Initializer stage 
by reading dataset parameters and users’ access parameters from two different XML 
files. User’s XML file is received from the federation service, while dataset XML file is 
previously uploaded by data owners to the service provider’s servers, parallel with the 
dataset. MDSBA framework is further explained here [20].

Table 4  Passenger’s records example

Depart Arrive Passenger type Flight

ATL DXB Adult K380

HND SYD Adult D120

ATL DXB Child K380
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The second tuning in Spark is data caching. The percentage of the failure tasks in 
Spark script was much lower than in Pig script. The percentage was even lower, when 
using persist command on reading data from disks. As mentioned before, the (persist) 
command caches the data in memory. Developers may assign the (persist), if data will 
be read many times for multiple tasks. Our comparison between (persist) and non-per-
sist commands showed a tangible difference in performance between them. We imple-
mented persist command after reading a dataset from the disk. Figure 10 shows a large 
difference between both cases, where using (persist) reduces the processing time of 
tasks. The (persist) command is part of Spark tuning to increase the performance effi-
cacy. However, the command is not recommended when the data size is larger than the 
available memory. If the data size is larger than the memory, then the overloaded mem-
ory will be spilled to the disk. Figure 10 illustrates the performance comparison between 

Fig. 9  Process time between filter/group and group only: comparison between using filter and without filter 
in the algorithm. It was proven that filter can improve the processing performance

Fig. 10  Performance comparison between caching and non-caching data: also, caching improves the 
performance. Caching stores big part of the data in-memory, which accelerate the process
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(persist) and non-persist. The time processing contrast increases with the increase of the 
data size.

These two steps of tuning make a considerable difference in anonymization perfor-
mance by MDSBA. Before tuning Spark, it is essential to building a robust Spark clus-
ter and nodes. The hardware infrastructure is the major factor for big data operations 
success and performance. As mentioned earlier, the memory size of each worker, the 
number of cores, the number of workers, and the network connection between work-
ers and storages, should be large enough to accommodate the massive size of data. Data 
anonymization and analytics are heavy processes that require a powerful and large clus-
ter specifications.

Conclusion
With the recent big data’s revolutionary growth, various processing frameworks were 
developed. Some of these frameworks best fit streaming data, while others can be applied 
to batch data. In this paper, we experimented two of these popular frameworks for our 
k-anonymity method. Both of Pig and Spark were examined in MDSBA anonymization 
process. Our aim was paving a reliable ground for MDSBA state-of-the-art anonymi-
zation with the most reliable performance. The experiments show few hurdles in each 
framework. However, Spark is faster in processing MDSBA, and more fault tolerant as 
an in-memory operations framework. In congested networks, Spark reduces data trans-
mission between memory and disks on serializing data with RDD. Spark can be many 
times faster than Pig MapReduce in anonymization. To avoid SQL Spark performance 
degradation, the memory should be larger than the processed data. SQL Spark boosts 
performance on the large size of memory. Other Spark’s tuning methods that may lever-
age the anonymization performance are; UDF algorithm, filter/group commands, and 
caching data in memory. On the other side, MapReduce is an old framework that can 
perform better when memory resources are quite small. This is conditioned by the net-
work traffic and congestion level. MapReduce may operate on small memory resources, 
but it requires non-busy network, because it relies on a heavy transmission between 
memory and disks. In the conclusion, It is recommended to implement MDSBA in 
Spark framework, however, the cluster infrastructure must be prepared well, by provid-
ing enough memory and processor resources for each node.

Our future research will focus on finding a proper method for data stream anonymi-
zation. In big data, streaming is an essential type in most data applications. The current 
anonymization method of MDSBA does not support the data stream anonymization. 
Most recent big data frameworks provide complete solutions for the data stream. We 
may need to amend the current MDSBA method to cope with the continuous data 
streaming.
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