
Experimenting sensitivity‑based
anonymization framework in apache spark
Mohammed Al‑Zobbi*  , Seyed Shahrestani and Chun Ruan

Introduction
Big data evolution has formed new software tools and techniques to accelerate the
processing speed, and increase the scalability. The new tools targeted many big data
applications such as data analytics. The analytics has manifested some security con-
cerns, as a reason for big data publicity prominence. In general, big data is more ben-
eficial when it is shared among multiple entities. This means many organizations from
different fields need to access this data for multiple purposes [1]. They all analyze,
mine, and output statistical results. However, exposing any private data to public view
carries a high-security risk. Personal re-identification is the focus of researchers since
decades. In data analytics, adversaries can easily re-identify and violate some private

Abstract 

One of the biggest concerns of big data and analytics is privacy. We believe the
forthcoming frameworks and theories will establish several solutions for the privacy
protection. One of the known solutions is the k-anonymity that was introduced for
traditional data. Recently, two major frameworks leveraged big data processing and
applications; these are MapReduce and Spark. Spark data processing has been attract‑
ing more attention due to its crucial impacts on a wide range of big data applications.
One of the predominant big data applications is data analytics and anonymization.
We previously proposed an anonymization method for implementing k-anonymity in
MapReduce processing framework. In this paper, we investigate Spark performance in
processing data anonymization. Spark is a fast processing framework that was imple‑
mented in several applications such as: SQL, multimedia, and data stream. Our focus
is the SQL Spark, which is adequate for big data anonymization. Since Spark operates
in-memory, we need to observe its limitations, speed, and fault tolerance on data size
increase, and to compare MapReduce to Spark in processing anonymity. Spark intro‑
duces an abstraction called resilient distributed datasets, which reads and serializes a
collection of objects partitioned across a set of machines. Developers claim that Spark
can outperform MapReduce by 10 times in iterative machine learning jobs. Our experi‑
ments in this paper compare between MapReduce and Spark. The overall results show
a better performance for Spark’s processing time in anonymity operations. However, in
some limited cases, we prefer to implement the old MapReduce framework, when the
cluster resources are limited and the network is non-congested.

Keywords:  Spark, Anonymization, Big data, k-Anonymity, MapReduce, Sensitivity, SQL
spark

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Al‑Zobbi et al. J Big Data (2018) 5:38
https://doi.org/10.1186/s40537-018-0149-0

*Correspondence:
m.alzobbi@westernsydney.
edu.au
School of Computing,
Engineering
and Mathematics, Western
Sydney University, Locked
Bag 1797 Penrith NSW 2751
Kingswood Campus, Sydney,
NSW, Australia

http://orcid.org/0000-0002-3479-1854
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-018-0149-0&domain=pdf

Page 2 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

information. The information may contain sensitive information about patients, bank
agents, census, or any other private information [2].

The previously mentioned methods focused on developing algorithms to determine
the best cut of the taxonomy tree, the optimal values of k, and/or the best option
of anonymization technique either by Top–Down Specialization (TDS) or by Bot-
tom–Up Generalization (BUG). Implementing these algorithms may require high
computation costs of continuous iterations with conditional statements, which means
multiple times of heavy scan for the whole data records. However, these algorithms
have ignored two main facts about big data processing; the first fact is that the key
success factors of parallel processing is a proper parallelization algorithm [3]. This
can be achieved by reducing the iteration to the minimal possible level. This is essen-
tial to avoid multiple scans for large data records. The major concern is not only
the time consumption, but the unexpected failure that arbitrarily occurs during big
data processing. The second fact is the changes that occur in data growth. With the
increased number of data records, data gain more similarity in attribute’s values. This
is apparent in our life activities. For instance, if we sit in a data hall with 100 peo-
ple, and the probability of finding a person’s age = 33 is 1%, then the probability of
finding the same age may go up to 10%, if the data hall contains 1000 people. This is
because people’s age range is between [0 and 100], so more people will increase the
value equivalency.

The previously mentioned facts are essential to understanding big data nature and
specifications. Applying heavy computation to a certain group of data records to find
out the best anonymization cut, or even to decide which attribute that we need to
anonymize, is inadequate. In big data, applying such techniques may not affect the
final results of statistical output. We even may ignore the small statistical value of
small decimal results. The statistical results follow the principle of estimation prospect,
which gives data miners a flexibility of approximating and rounding some numbers [4].
Therefore, pre-calculating the k value, and pre-determining the attributes needed to be
anonymized is an advantage. Generally, this non-accuracy will not dramatically affect
the data analytics results.

We introduce a novel anonymization method using Bottom–Up Generalization in
k-anonymity that can address the previous two facts about big data. The method uti-
lizes Multi-Dimensional Sensitivity-Based Anonymization for big data (MDSBA). The
main aim of our method is to improve the anonymization performance and to increase
the usefulness of anonymized data. MDSBA is not only an anonymization algorithm or
technique, but it provides a fine-grained access control for multi-level of user’s permis-
sions. MDSBA is further explained in “Background” section.

In this paper, we experiment our MDSBA approach in two different frameworks for
big data. We apply k-anonymity in MapReduce framework and compare it with Spark.
Spark is an in-memory cluster computing framework for processing and analyzing large
amounts of data. It exploits the increased size of hardware resources in CPU and RAM.
Nowadays, Spark is the most popular processing framework for big data, by providing
cost-effective and high scalable processes. MapReduce and Spark are both popular open
source cluster computing frameworks. These frameworks are used in big data for large-
scale data analytics, by applying parallel distributed processing tasks. Both frameworks

Page 3 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

provide programming API to users on managing major components of mapping, shuf-
fling, execution, and caching [5].

Our contribution in this paper is correlated to our previous experiments and
researches, which are part of the personal de-identification studies. This research is
one of a few studies that elaborated k-anonymity in MapReduce ecosystems. Moreover,
the paper introduced a novel method in de-identification by implementing MDSBA in
Apache Spark. This method proposes a state of the art for k-anonymity in big data. The
current k-anonymity methods do not propose real solutions in big data environment.
They suffer from lack of efficiency and scalability, and do not provide appropriate solu-
tions for big data over the cloud network such as granular access for data analytics.

To elaborate on these points, the rest of this paper is structured as follows. Four sec-
tions are presented in the rest of this paper as follows: “Background”, “Methods/experi-
mental”, “Results and discussion”, and “Conclusion”. In the “Background” section, the
paper describes some previously proposed methods in k-anonymity. The section con-
sists of the related previous work, followed by MDSBA structure and core method. The
subsection "Spark structure" describes Spark components and structure and sets the
scene for the next parts. We then summarize a general comparison of Spark and MapRe-
duce in subsection "MapReduce and Spark". This is followed by reasons and explana-
tions of choosing Spark framework over other available big data frameworks, such as
Flink or Storm, in subsection "Choosing Spark". In “Methods/experimental” section, a
general introduction for the Results and Discussion’ is presented. In subsection "Imple-
menting MDSBA in Spark", we explain the algorithm that is implemented to anonymize
data by MDSBA method. Part of this subsection describes the User-Defined Function
(UDF) implemented in the anonymization program. The last subsections explains the
method of comparing between MapReduce and Spark. The method includes the setup
of the university lab and a description of the dataset being used in the experiments. The
“Results and discussion” section sets an experimental comparison between Hadoop eco-
systems, presented by Pig script, and Spark, presented by Scala script. In “Conclusion”
section, we summarize the experiments results and findings.

Background
Related work

The K-anonymity method was initially proposed by Sweeney. K-anonymity suggests a
data generalization and suppression for Quasy-Identifier (Q-ID) [6]. The Q-ID involves
finding a group of attributes that can identify other tuples in the database. These identi-
fiers may not gain 100% of data, but the risk of predicting some data remains high. The
original k-anonymity method defines minimum generalization and maximum generali-
zation. It guarantees privacy when releasing any record by attaching each record to at
least k individuals, and this is correct even if the released records are connected to exter-
nal information. Any table is called k-anonymous if one tuple has Q-ID values, and at
least k − 1 equivalent records have Q-ID values. This means that the equivalence group
size on Q-ID is at least k [7].

Anonymization methods, based on k-Anonymity, have been widely employed to pre-
vent data re-identification [7]. Anonymization methods fall into two broad categories.
The first category constitutes of techniques that generalize data from the bottom of the

Page 4 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

taxonomy tree towards its top and are referred to as the Bottom–Up Generalization
(BUG) [8]. The second one is based on walking through the taxonomy tree from the top
towards the bottom, known as the Top–Down Specialization (TDS) [9]. TDS and BUG
methods were mainly developed for traditional data. Therefore, researchers upgraded
the old methods to suit the new operations of big data. The operations should consider
the parallel and distributed processing steps. Various methods of anonymization were
specifically designed for parallel distributed processing. However, most resolutions fall
short of a proper parallelization capability. The reason for this is further explained in this
review.

The previous BUG and TDS methods have also been implemented in big data
anonymization. A few amendments were applied to suit the big data frameworks regard-
ing parallelization and distribution. The core concept of k-anonymity is similar to the
previously mentioned methods. Similar techniques and algorithms are applied in both
cases of TDS and BUG. Let us study some of these anonymization methods to compare
the previously mentioned methods in traditional data and big data.

BUG was proposed recently for anonymization using MapReduce. Some of BUG algo-
rithms are Parallel BUG [10], and Hybrid BUG. Most BUG methods follow a similar
algorithm by implementing the BUG driver to leverage information gain and security
trade-off. The search metric computes the Information Loss per Privacy Gain (ILPG).
These equations measure the entropy and scores of each attribute. The algorithm gen-
erates a random number (ran). This number presents the number of random partition
for the dataset ( DSran ). Each sub-dataset is emitted to the MapReduce BUG (MRBUG)
driver for intermediate generalization. This generalization scans data, finds the equiva-
lent records < k and merges Q-IDs up to Anonymization Level 1 or 2—that is, AL1 or
AL2. This intermediate generalization is essential to reduce the final anonymization
computation. Finally, the datasets are scanned again and the search metric computes
ILPG again. For each sub-dataset, if < k, then the best generalization level is found and
set to inactive. The process keeps iterating and moving up the taxonomy tree until
k-anonymity is satisfied. As explained, the MRBUG driver operates twice—in intermedi-
ate and final. It first merges anonymization and then applies generalization. This algo-
rithm is found in [10–13].

Pandilakshmi et al. [12] proposed advanced BUG. Advanced BUG consists of the fol-
lowing steps: split data into smaller partitions, run the MRBUG driver on a partitioned
dataset, combine the anonymization levels of the partitioned dataset and apply gener-
alization to the original dataset [14]. Other anonymization methods use a hybrid com-
bination of BUG and TDS to anonymise data. A threshold value of k is determined by
several algorithms to distinguish BUG from TDS use. The proposed methods consider
that BUG is more suitable for small k values, while TDS is more suitable for larger k val-
ues [15]. Some hybrid methods were recently proposed for big data by Zhang et al. and
Irudayasamy et al. [10, 11, 16].

Since the evolution of MapReduce and parallel processing, Roy et al. presented a
data privacy model named Airavat [17]. This system was developed after investigat-
ing MapReduce and differential privacy. This approach has encouraged researchers to
redesign the available anonymization methods for MapReduce computability. The TDS
methods for big data were derived from the TDS proposed for traditional data. Minor

Page 5 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

corrections have been contributed to the early versions of the MapReduce framework.
One of the predominant methods is known as two-phase TDS.

Two-phase TDS depicts the two phases of map and reduce. The concept is very similar
to the previously explained TDS, which depends on generalizing all Q-ID attributes, and
calculating the entropy and score for each Q-ID. The highest Q-ID score will be special-
ized. This operation is iterated to find the best cut in the tree or in the interval. In the
first phase, dataset D is split into small chunks of data, Di. Di denotes any block of data,
where 1 ≤ i ≤ p . The value p denotes the number of blocks. An operation known as
MapReduce TDS (MRTDS) scans each data block in a subroutine in parallel to make full
use of the job-level parallelization of MapReduce. The MRTDS driver is an intermediate
anonymization level that specializes data without violating k-anonymity. The MRTDS
driver is applied once in each phase. In the first phase, the driver provides some sub-data-
sets of a kI value, where kI > k . The term kI denotes the intermediate anonymity param-
eter, which is usually given by anonymization experts. Formally, the MRTDS operates
multi-tasks on each data block for initial specialization by MRTDS

(

Di, k
I ,AL0

)

→ AL
|

i .
The anonymization level AL0 presents the top generalization level of the taxonomy tree,
which is usually given by (any). Specializing Q-ID attributes is applied as per the high-
est score attribute. Another program is known as Information Gain per Privacy Loss
(IGPL). The IGPL calculates the highest score for each specialized Q-ID attribute. This
technique is popular in most anonymization operations and algorithms.

After completing the intermediate anonymization, all (AL) values are aggregated and
the next phase is initiated. The second phase operates MRTDS again to produce the best
cut specialization. The algorithm is similar to the first phase algorithm. The second phase
receives data from the intermediate output as per the key-value of (key, list(count)). This
phase updates the IGPL results that were initiated in the first phase. Initially, the first
phase lists all best specializations for each data block. In the second phase, the speciali-
zation is validated or updated with a new specialization value. The validation is accom-
plished by attaining two conditions. First, the parent value of specialization should not
be a root—that is, it should not be (any). Second, the anonymity should be Ac(spec) > k .
Several iterations can determine the best specialization cut for the chosen Q-ID. The
IGPL updates the specialization list as per the information gain calculation, and the final
list of specialization is updated and emitted, so the data records are masked with this list
[18].

Multi‑dimensional sensitivity‑based anonymization

We introduce a novel anonymization method using BUG in k-anonymity that can cope
with the big data frameworks. The method does not only parallelize data for big data
frameworks, but also reduces the computation overhead of data iteration, by providing
pre-calculated k-anonymity parameters and pre-determined attributes for anonymiza-
tion. The MDSBA also supports the access control based on anonymization. This
imposes a granular anonymization based on user’s access level. MDSBA mimics role-
based access control by providing a granular security access for multi-user levels. The
granularity is gained by implementing three different techniques; the probability value of
Q-ID attributes, the ownership level k̄ , and the grouping method of Quasi Identifiers
(Q-ID). The Q-ID probability is an essential part on applying masking of taxonomy tree,

Page 6 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

interval or suppression [19]. The probability value is derived from the taxonomy tree
concept. The taxonomy tree T is propagated from the parent node w to the number of
child leaves ∑ν, so each parent node’s probability is P(w) = 1

∑

v
 . The intervals, also pre-

sented by probability values. The ownership level ( ̄k ) is a small value of k-anonymity. It is
a number given to each user on accessing data for analytics. This number indicates the
minimum number of equivalent Q-ID records, so k̄ is usually smaller than or equal k.
The larger value of k̄ implies a higher level of anonymization.

In order to parallelize massive size of data, and to support the anonymization granu-
larity, we logically divide the Quasi Identifiers (Q-ID) into small groups of two to four
Q-IDs, with one class attribute. Each Q-ID group, G(QID), is mapped to a business role
and given a fixed value of k. In such a way, users are given authorization rights to access
some Q-ID groups as per their given business role. Mapping Business roles and groups
were further discussed in this paper [20]. Let us study the following example, if two users,
user1 and user2, have requested to access the following Q-ID groups; G(QID)1 = {age,
job, suburb, salary(class)}, and the other Q-ID group, G(QID)2 = {admission_date, can-
cer_found(yes/No), diagnosis(class)}. G(QID)1 is mapped to Finance Manager, and given
a value of k = 30, and G(QID)2 is mapped to Doctor and given a value of k = 20. Sup-
pose that user1 was given a Doctor role, and user2 was given a Finance Manager role.
Each one of these users will be given a value of k̄ to represent the ownership level, which
provides an access granularity. The value of k̄ is assigned to users based on the service
level of agreement, the trust level, and other considerations. More details regarding k̄
assignments are available in a previous paper as mentioned here [21]. The value of k̄ is
an integer number with a pre-condition of 2 ≤ k̄ ≤ k. In our example, if the organiza-
tion of user1 and user2 is belong to one of the data owner’s partners, then users will be
given high access privileges, and the value of k̄ will be low. Users will be possibly given,
user1 → k̄ = 10 , and user2 → k̄ = 5.

Referring to the previous example, MDSBA pre-calculates the anonymization mask-
ing level based on the given value of k̄ . Mathematical equations are used to calculate
the sensitivity level ψ. The equations provide the minimum level of the taxonomy tree
on anonymizing Q-ID attributes. The equation is further described in here [22]. It also
provides the minimum interval length on anonymizing Q-ID attributes. These pre-
calculated data save the time of expensive computation to find the best cut and the
best interval. The pre-calculated values are essential in big data to reduce the process-
ing cost. The current anonymization methods spend considerable time calculating the
most accurate Q-ID for anonymization. MDSBA neglects this kind of accuracy; thus,
the pre-calculation of parameters is straightforward and does not require a high amount
of processing. It is apparent that reducing the computation cost may negatively affect
the information gain percentage. MDSBA was not proposed for traditional data size;
instead, it was developed to leverage large data size, where small changes in accuracy
may not affect the final statistical results. In addition, Pre-calculating the value of k is
accomplished by reasonably accurate mathematical equations such as linear regression
[21].

Moreover, every Q-ID Group is anonymized in a separate task. In each Q-ID group,
the anonymization algorithm is given the direction of the grouping sequence depending

Page 7 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

on the probability value of each Q-ID. In the previous example, the anonymization algo-
rithm will first group the whole three Q-ID attributes in G(QID)1 to filter out the fully-
equivalent records. The next stage, the anonymization algorithm will group the highest
two Q-ID probabilities. The Q-ID probability is pre-calculated as per the Q-ID values,
for instance the probability P(age) = 1/100, P(job) = 1/200, and P(suburb) = 1/400. It is
obvious that the highest two Q-ID probabilities are P(age) and P(job), while P(suburb) is
the lowest. Hence, the grouped Q-IDs will be ‘age’ and ‘job’ in the second stage, because
they have the highest probability values. In the final stage, the highest Q-ID probabil-
ity will be grouped. In our example, P(age) = 0.1 is the highest probability value, thus,
it will be grouped. On the other hand, suburb will be anonymized in the second stage,
while job and suburb will be anonymized in the final stage. The pre-chosen anonymiza-
tion masks depend on the data type of each attribute. For instance, the masking methods
of the previous example are intervals for age, and taxonomy trees for suburb and job. As
explained, it is clear that anonymization parameters are pre-calculated and determined
prior the anonymization process kickoff. In big data, this is essential to reduce the num-
ber of records scanning on each round.

Spark structure

Spark operations are different from the traditional MapReduce. Spark architecture is
implemented to increase process performance by using the maximum capabilities of the
available resources. For this reason, multiple jobs can run in parallel by implementing
applications, executors and active drivers. The traditional MapReduce splits each job
into many tasks, and each task is undertaken by a single process within each container,
so the process terminates when the task is completed. Every node consists of one JVM
core, unlike with Spark, where each worker node may consist of many cores, and each
core operates in one JVM, as shown in Fig. 1. The node may have many cores, depending
on the node capacity. Each core comprises one executor process that can run multiple

Fig. 1  Spark structure and job distribution: This Figure shows one worker with multiple executers. It shows
the NameNode and jobs dividing between executers. Each executer contains several JVM cores, which
utilizes the memory use

Page 8 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

tasks, and remains for the entirety of the Spark life. This structure accelerates the initia-
tion of the process and tasks. In addition, Spark consists of a process, known as an active
driver. This driver is used to manage the job flow and schedule tasks, and is located on
the master node. It interactively communicates with the executor of each node. If Spark
was deployed on top of YARN, the Spark driver can run over the cluster [23].

One of the negative aspects of Spark is the programming difficulties that programmers
may face. Spark operates in RAM, and programming with large data may cause Spark
to run out of heap memory because of the unnecessary RDD data collection caused by
the programmer algorithm. Programmers should have previous knowledge about Spark
core structure and jobs, such as partitions, nodes, serialization, JVM, executors, memory
and disk, shuffles, compressed files and columnar formats (parquet). They may need to
try various algorithms to deduce the most efficient one. This frustrating and time-con-
suming code may cause bugs during the program execution as soon as the data exceed
the maximum limit of resources. Usually, cached data that do not fit in the memory are
either spilled to the disk or recomputed when needed, as determined by the RDD’s stor-
age level. However, this does not prevent data growth bugs and overflow [24].

Anonymity in data analytics is an example of complex analytics, where anonymiza-
tion operations scan the data records many times during the filtration, aggregation and
masking operations. The anonymization process latency is considerably high; therefore,
batch processing tools are more efficient to deal with a large data size and long latency.
Big data tools were developed to accommodate both data batches and streams. The first
generations of MapReduce frameworks, such as Hadoop, were unable to process the
data stream. The next generation was developed based on Lambda architecture, which
was designed to handle both batch and stream processing methods. The Spark frame-
work structure attempts to trade-off between latency, throughput and fault-tolerance.
Most of the real-time frameworks follow a similar structure of storing temporary data
frames and tables in the memory, so most of the operations are completed without per-
forming I/O operation with disks, thereby decreasing latency [2].

MapReduce and Spark

Both the Spark and MapReduce frameworks are very similar in some core features.
Spark runs on Hadoop, on Mesos or standalone; hence, it is not possible to categorize
Spark as a non-MapReduce framework. The MapReduce core structure consists of
YARN and HDFS, and these two Hadoop native processes are used intensively in Spark.
They provide reliability, performance and scalability for Spark. It is worth mentioning
that two notable differences between MapReduce and Spark in processing MDSBA.

1.	 The first factor is that MapReduce wastes considerable time on I/O transmission
between memory and disks. The inefficiency of read/write from the disk and the high
latency in each operation are the major inhibitors in MapReduce. In contrast, Spark
operations are executed over a built-in memory, without a need for read/write on
disks [25]. Figure 2 illustrates a comparison of Hadoop and Spark. Spark’s in-mem-
ory cluster computing capabilities are high, which boosts performance, even with
the large data magnitude. The time difference between reading data from the disk
or from the memory is significant. A larger data size shows higher latency than a

Page 9 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

smaller data size when reading from disks. In addition, Spark implements a caching
technique to store data in the memory to minimize the disk I/O.

2.	 The second factor that enables Spark to operate more rapidly than Hadoop is the
advanced job execution engine. Both Spark and MapReduce convert a job into
a DAG of stages. The DAG theory is an old theory that represents any graph with
a collection of vertices connected by edges [26]. Graph theory was developed and
implemented in many fields, such as computer science and medical science. In
Hadoop and Spark, graph theory is used for scheduling tasks. Each job is presented
by a direct graph, which is a set of vertices connected by directed edges. Each vertex
in the graph represents one processor, and each edge represents a communication
link. The difference between Spark DAG and Hadoop DAG is the communication
link. In Hadoop, each processor reads all incoming messages from the in-edge (disk),
performs some computation, and writes messages to the out-edge (disk). The in-
edge and out-edge are presented by disk I/O, which causes major delays. Hence, two
stages can be processed at a time. In other words, there is no way to start at a vertex
in a DAG and follow a sequence of directed edges to return to the same vertex [27].
Hadoop creates a DAG with only two predefined stages: map and reduce. Developers
are forced to process their commands within one of these two stages. Based on this
core structure, complex jobs need to be split into two or more jobs to fulfil the two-
stage process. In contrast, Spark can accomplish the job with multiple stages, with-
out splitting the single job into many sub-jobs. This structure optimizes job sched-
uling and processing. For instance, if the processing algorithm contains read from
storage, filter and group, Spark can accomplish this algorithm in one job with three
stages of map, shuffle and reduce. In Hadoop, this would be divided into two jobs
of (map, shuffle) and (map, reduce) for each job. Data would be read from the disk,
filtered and stored back to the disk with the first job. Again, data would be read from
the disk, grouped and stored back to the disk.

Fig. 2  Comparison between Hadoop and Spark in dealing with memory and disks: Hadoop is slower than
Spark because it processes each task on two stages, map and reduce. Every two stages must output data to
the disk. On the other hand, Spark operates in-memory, therefore, it is faster

Page 10 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

Choosing Spark

There have been a considerable number of cluster computation engines available in
the market during the last decade, including Hadoop, Spark, Flink, Storm, Heron and
Samza. Storm is a viable framework in the big data industry, as it presents a real-time
processing engine that is able to stream SQL records from HDFS, Kafka, MongoDB and
Redis [28]. Storm is a popular framework worldwide, and is implemented in enterprise
company networks, such as Yahoo, Twitter, Flipboard and Yelp. It is written in Clojure
Language—the Lisp-like functional language. Moreover, the structural design of Storm
was built for the data stream, which means that the Storm process is continuous and
infinitive. However, Storm was not selected for data anonymization because it does not
process batching datasets—it only operates with data streaming—and anonymization
methods and operations are only applied to batching data. This is essential for grouping
and counting the number of equivalent records and masking the non-equivalent records.
These operations cannot induce adequate anonymization results in the data stream;
hence, Storm is not preferable in k-anonymity methods [29].

However, some hinders may degrade the efficiency of Spark. As aforementioned, if
the data size does not fit the total memory size of the cluster, then Spark uses disks to
spill data. This action causes a higher delay on disk I/O, which is a similar delay fac-
tor in the Hadoop framework. Therefore, the Spark cluster always needs a large mem-
ory size to leverage the best performance. The average amount of processed data
should be considered when building the Spark cluster because Spark has the capabil-
ity of caching RDD in memory. Developers benefit from this feature to avoid disk
I/O; however, caching features requires a sufficiently large memory size. For instance,
if the Spark cluster is expected to analyze a data size of 3 TB, then Spark uses up to
60% of the total configured executor memory to cache RDDs. If data analyzers decided
to cache half of the 3 TB in-memory at once, there should be enough memory space
to accommodate this large data size. In this scenario, a Spark cluster with 20 workers
and 128 GB memory for each worker is enough to cache 1.5 TB. A rough calculation
is 20× 128× 0.6 = 1536GB ≈ 1.5TB . As explained earlier, the Spark cluster infrastruc-
ture should consist of powerful servers and fast connectors between workers and stor-
age units. Therefore, VMs connected to storage nodes by iSCSi are not a suitable choice
for building a Spark cluster. Spark requires physical or non-virtual servers. In addition,
network connections between servers and storages should be through direct access con-
nection, such as SAS or SATA.

Methods/experimental
Spark has many advantages over Hadoop ecosystems. It mitigates latencies and increases
performance. For instance, Pig divides jobs into small tasks, and, for each task, Pig reads
data from HDFS, and returns data to HDFS once the process is completed. This in/out
consumes considerable time, and is unlike Spark, which implements an RDD. RDD is the
main distinguishing feature of Spark. RDD divides jobs into many DAG stages, and, for
each stage, Spark reprocesses RDD in the memory without referring to the disk. Spark
may perform many times faster than MapReduce.

In this chapter, Pig’s and Spark’s performances are evaluated in MDSBA. To conduct a
detailed evaluation, Spark’s transformation and functions used in anonymization should

Page 11 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

be properly defined. All Spark scripts are coded by Scala program. Some functions and
transformations operate faster than others. For example, inner join transformation com-
mands may require a high computational cost. MDSBA was proposed for big data pro-
cessing frameworks. Its core concept is applying optimized anonymization procedures
and algorithms by splitting data into small tasks, so they can be parallelized among the
cluster nodes.

In big data processing, the reduce phase is expensive because it involves data parti-
tioning, data serialization and de-serialization, data compression and disk I/O. These
operations require data transfer over the network to aggregate data over multiple
nodes. Leveraging any application’s behavior should consider the size of data transfer-
ring between nodes during the reduce phase [30]. In data anonymization, the reduce
phase is presented by SQL grouping commands, which causes high shuffling processes.
To reduce the groupBy effect in the anonymization application, a filtration command is
initiated to split data logically as per nominal values. This type of split reduces the per-
formance degradation caused by the shuffling process. This reduces the amount of shuf-
fling among cluster nodes during the reduce stage.

Implementing MDSBA in Spark

The previous anonymization techniques, such as BUG and TDS, were supposed to
work efficiently in parallel distributed processing. Technically, anonymizing data with
these algorithms may negatively create data overflow without considering the cluster
resources and capabilities. For instance, Fig. 3 illustrates a comparison of the TDS and
MDSBA algorithms. In the TDS algorithm, the data flow may negatively affect paral-
lelization. First, grouping all records without filtering data is inefficient. This is experi-
mentally proven in Spark Tuning in MBA Section. Second, most TDS operational steps
should be executed in UDF, which degrades the algorithm performance. Spark and
Pig are unable to run intensive computations and conditional iterations without UDF.
Therefore, UDF is embedded in the script’s codes to execute complicated operations.
However, using UDF in most anonymization steps inhibits the performance of Hadoop
and Spark. The operations of UDF are executed in a black box, and are not related to
Spark or Hadoop frameworks. This is also true in Pig operations. UDF does not use the
resources of YARN; instead, it uses the resources of locally installed JVM. Therefore,
implementing Spark with such an algorithm is inefficient.

In MDSBA, UDF was embedded in Spark and Pig scripts, but with a minimal size of
data processing. As explained in the next section, the anonymization is applied on fewer
attributes at a time. This technique controls and minimizes the size of data flowing to
the UDF. The UDF is executed in a local JVM beyond the source manager’s control—a
memory pool located outside the Spark JVMs. Therefore, there is a need to reduce the
amount of data flowing outside the Spark JVMs [24]. Moreover, the anonymized Q-ID in
TDS is volatile. This means that the specialization is applied to different Q-ID attributes
in each group of records. The chosen attribute for specialization is the attribute with
the highest score value [9]. Calculating the highest attribute score for each group is an
expensive computation process. In contrast, in MDSBA, the anonymized Q-ID is pre-
determined based on the Q-ID probability. This saves a considerable amount of com-
putation time. This solution may not provide the best optimal anonymization for all

Page 12 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

anonymized groups in the dataset, however, we may sacrifice some information gain to
benefit data processing performance.

Figure 3 compares TDS and MDSBA in anonymizing data. The TDS algorithm involves
various iterations when calculating the best cut and scores. This type of iteration is inef-
ficient for big data, and even worse when using UDF, where the program executes the
UDF code outside the Spark framework. Further, the UDF program needs to iterate a
large size of arrays. The UDF executes almost all anonymization processes; thus, there is
no real benefit from a parallel distributed system. In contrast, MDSBA implements UDF
with a limited data size flow. As shown in Fig. 3, UDF use was reduced to minimal opera-
tions. UDF reads only a few data attributes to apply some masking operations. The data
size flowing to the UDF is relatively small.

User‑defined Functions in MDSBA
MDSBA implements user-defined functions in different locations. This is essential for
two main purposes: anonymizing and ungrouping. In anonymizing, three masking types
of interval, taxonomy tree and suppression are implemented. These are the only avail-
able types of masking for anonymization, and are used by all anonymization methods.
Figure 4 shows the algorithm for anonymizing any numerical group. In Scala, the group

Fig. 3  Comparison between the anonymization algorithms of MDSBA and TDS: MDSBA reduces the
dependencies on UDF by reducing the iteration steps. TDS requires many iterations to determine the best
cut. This improves the scalability and performance of MDSBA

Page 13 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

of objects can be a list or sequence. Minimizing the amount of data when accessing
the UDF program is essential to reduce the processing cost and avoid data overflow, as
described before.

It is difficult to predict the failure of non-Spark JVM; therefore, we must keep data
flow to the lowest level. For instance, installing JVM in any computer may take up to
25% of the total memory. This size can be reconfigured and enlarged if needed. If the
Spark worker memory is large enough to fit the data size, then the external JVM that
handles the UDF may be able to handle up to 25% of the data size located in Spark. The
size of the UDF heap memory is not the only obstacle—the complex iteration with sev-
eral IF statements can be another cumbersome factor that degrades the data processes.

Input: list={a1,a2,a3,…..an}, a R: list is in ascending order
Variables definitions
var length_of_list=lists.size
var minimum=list(0)-list(0)%5
var range=1 / psi
var medium=minimum + range
Processes
//Loop to anonymize numerical
Do While object < length_of_list

object=object +1 //counter for objects in the list
//1. The main IF statement

IF list(object) >= minimum AND list(object) < medium THEN
rep=rep+1 //counter for objects within the interval

END IF
//2. Include the last few objects in the list within the same range

Count_remained_objects= length_of_list – object
IF Count_remained_objects < k_dash THEN

medium=list(length_of_list-1)+(5-list(length_of_list-1)%5)

rep=rep + Count_remained_objects
object=object + Count_remained_objects

END IF
//3. Jump to the object that full fill k_dash

IF rep < k_dash THEN
Remain_to_k_dash= k_dash – rep

medium=list(object+ Remain_to_k_dash-1)+(5-list(object+ Remain_to_k_dash-1)%5)
IF medium – minimum < range THEN

medium =minimum + range
END IF

rep=rep + Remain_to_k_dash+1
object=object + Remain_to_k_dash

END IF
//4. Get the next object

IF list(object) > list(object-1) THEN
FOR I =0 TO rep

all_intervals=all_intervals+"["+minimum+" - "+medium+"[,"
NEXT I

minimum = medium
medium=medium + range

rep = 0 //reset the counter
END IF

END WHILE
Output: list={[A1-B1[,[A2-B2[,[A3-B3[,…,[An-Bn[}

Fig. 4  Algorithm illustrates the numerical values anonymization: Anonymization can be applied to textual
and/or numerical attributes. Here in this algorithm, the numerical anonymization is denoted by an interval
that replaces one digital value

Page 14 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

MDSBA implements a swift algorithm to anonymize data with the minimum number of
iterations.

To understand the anonymization algorithm in UDF, let us study the following
example; a list of numerical values is given as: a list = {2,3,4,6,12,12,12,18,25,26,26,
30}, with k̄ = 5. The algorithm anonymizes this list as per ψ value. If ψ = 0.2, then the
range = 1/0.2 = 5. The values are arranged in an ascending order. Referring to Fig. 4, the
algorithm consists of four sections. The algorithm:

	 1.	 Initiates some values; length_of_list = 10, minimum = 2 − (2 mod 5) = 0, and
medium = 0+5 = 5.

	 2.	 Starts reading the first object in the list, (2).
	 3.	 Section 1: IF statement, since the statement is true, then the counter is incremented,

rep = 1.
	 4.	 Section 2: The next IF statement, in Sect. 2, will be skipped, since the object list has

not reached the end of it.
	 5.	 Section 3: In the third IF statement, the algorithm jumps by 4 objects since Remain_

to_k_dash = k_dash – rep = 4.
	 6.	 Section 3: The next number from the list will be 12, and the other parameters will be

incremented for the next loop, rep = 1 + 4 + 1 = 6 and object = 5. Also, the medium
value has been updated up to 15.

	 7.	 Section 4: Proceeding to the fourth statement, it is clear that the 6th list number is
also 12, so the statement result is false, and the loop continues the second loop with
object = 6.

	 8.	 Section 1: In the second iteration, the first section increments rep up to rep = 7, and
reads the value 12, while the sections two, three, and four are skipped.

	 9.	 Similarly, the third loop increments rep by rep = 8. In the third iteration, the number
18 exceeds the range, and the program skips to the fourth section.

	10.	 This is the first time that the fourth statement is true, and the string of all_intervals
is generated by an iterated loop of 8 times, so the results will be new_list{[0–15[,[0–
15[,[0–15[,[0–15[,[0–15[,[0–15[,[0–15[}.

	11.	 In the fourth section the loop generates the new list, and both minimum and maxi-
mum are updated by minimum = 15, and maximum = 15 + 5 = 20.

	12.	 The next loop updates the medium up to 35, so the final new list is updated by:
{[0–15[,[0–15[,[0–15[,[0–15[,[0–15[,[0–15[,[0–15[,[15–35[,[15–35[,[15–35[,[15–
35[,[15–35[}.

In a similar algorithm, we can mask data with taxonomy trees as explained in Addi-
tional file 1: Appendix S1. The aim of this algorithm is reducing the size of data flowing
to the UDF program. This is implemented by masking fewer attributes at a time, then
attaching the rest of the data tuples, to the anonymized attributes. We may roughly
estimate the size of ten data records by 1 KB, while the size of one attribute of the ten
records may not exceed the 20 bytes. This shows that the actual data size flowing to the
UDF file may not exceed one-third of the total data size. For this reason, data process-
ing in UDF is not expectedly expensive. Figure 5, shows two algorithms implemented by
Pig and Spark. Both are quite similar with minor differences in the data flow between

Page 15 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

memory and disk. Spark does not need a disk read/write operation. The fully equivalent
records (SG) are stored at disks in both programs, as a final output. The semi-equivalent
records (SSG) are stored at the disk in Pig program only, as a temporary output. This is
the major difference between both programs. Moreover, Pig is not provided with a built-
in UDF capability, therefore, an external program, such as Java, should handle the UDF

Fig. 5  Anonymization algorithms in Pig and Spark: very similar anonymization algorithms in Pig and Scala.
Only minor differences between them

Page 16 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

operations. Unlike Spark SQL, which provides a UDF built-in capability by defining a
Scala function.

In Spark algorithm, we faced challenges of concatenating the anonymized data with
the rest of the attributes in the table. For instance, if a table T contains the following
attributes of T = {A,B,C,D}. The anonymization process has finished masking the attrib-
ute A, and transformed it to a, that is A → a. Hence, the anonymized attribute {a} needs
to be concatenated with the rest of the attributes {B,C,D}, so the new table TA will be
TA = {a,B,C,D}. In Scala’s implementation of DataFrames, there is no direct way to zip
two DataFrames into one. We can simply work around this limitation by adding indices
to each row of the data frames. Then, we inner join DataFrame by these indices. Addi-
tional file 2: Appendix S2 presents a full Scala program including UDF.

However, all join operations are known as Cartesian join, which require high num-
ber of shuffling between nodes. Therefore, join operation is very expensive, and it is
not recommended by Spark developers. Thus, we implemented another way of concat-
enating without creating an independent DataFrame. To understand the concept of this
UDF script, let us give the following example, four Q-ID attributes and one non-Q-ID
attribute, Teacher, are presented in Table 1. On grouping the records by three attrib-
utes (CLASS, SCHOOL, and LEVEL), TEACHER and MARK collect multiple values in
arrays. The script calls the anonymization UDF to anonymize the marks, and concat-
enates the rest of the attributes in one table. This can be implemented through (withCol-
umn) command. The command syntax is;

Table 1 should be ungrouped for storing or possible further processing. This format
of grouped records cannot be easily managed for computation or statistical operations.
Ungrouping the grouped data can be accomplished in various ways. The best-found way
was creating another UDF that is able to map every sequence to a wrapped array, and
rotate the direction of the wrapped array. The aim is converting Tables 1, 2 format. It is
clear that the three Q-ID attributes are repeated according to the number of grouped
objects in MARK and TEACHER.

The Ungrouping algorithm reads each wrapped array, counts the number of objects,
and maps each array with indices. Each wrapped array has a various number of objects;
therefore we need to define a function that can update the array size on each wrapped
array. Scala defines functions by using (val) or (def) command. In our case, we imple-
ment (def), so the command can update the number of array objects, with the following
syntax;

val anonymize_MARK = Grouped_QID.withColumn
(

′′MARK ′′, AnonUDF
(

$′′MARK ′′
))

.select
(

′′TEACHER′′, ′′CLASS′′, ′′SCHOOL′′, ′′LEVEL′′, ′′MARK ′′
)

.

Table 1  Grouped and anonymized table

Q-ID group

Teacher Class School Level Mark

Jones, Khan, Steve A School 1 1 [70–80], [70–80], [70–80]

Mark. Jane B School 2 2 [90–95], [90–95]

Page 17 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

def assertSameSize(arrs:Seq[_]*) = {assert(arrs.map(_.size).distinct.size==1,"sizes differ")}.
This definition is called by the UDF that is able to rotate the direction of the arrays with
the following command:

val ungroup = udf((xa:Seq[String],xb:Seq[String],xc:Seq[String],xd:Seq[String],xe:Seq[Integer]) => {
assertSameSize(xa,xb,xc,xd,xe)
xa.indices.map(i=> (xa(i),xb(i),xc(i),xd(i),xe(i)))

})

The above UDF ungroups Table 1, and expands the wrapped array to the format of
Table 2. In this example, the anonymization UDF outputs the range of marks in one
string of values MARK = {[70–80], [70–80], [70–80]}. This string should be converted to
a wrapped array before ungrouping it. Converting a string to an array, in Scala, is imple-
mented by the command split(col(MARK)). As noticed, implementing the fastest algo-
rithm relies on several trials of execution before choosing the best method. In general,
programming in big data should be carefully considered. This is quite similar to pro-
gramming multi-task programs on a single computer with multiple processors. The pro-
gram may not gain any advantage of the multi-core processor without a proper
algorithm. For instance, an operation of total = a + b + c + d will run in one core only,
while the rest of the cores are in ideal states. The same operation can be completed
faster, if the algorithm was amended by tot1 = a + b, tot2 = c + d, and total = tot1 + tot2.
Splitting the single operation to three operations of tot1, tot2, and total, enhances the
performance and leverages the parallel processing on multiple cores. However, the oper-
ation of the total will be completed on one core only. The final result of the total will wait
for the parallel operations of tot1 and tot2 to be completed. This operation is known as a
sequence operation, which causes the major delay in algorithms [3]. Applying the similar
concept to parallel distributed operation mimics the mapping and reducing operations.
Reduce is a sequence operation that waits for the mapping completion, and before the
shuffling operation start-up. More shuffling leads to a higher operating cost.

The operation of the grouping process is implemented by the built-in transformation
command “groupBy”. Alternatively, Scala permits the SQL embedded commands, so
the grouping can be implemented in either way of groupBy or Select query. However,
groupBy was found to be more efficient in performance wise. Each data tuple or record
contains many attributes. As described before, MDSBA creates small Q-ID groups,
which includes two to four attributes only. Also, each data record may consist of several
G(QID), classes, and non-Quasi attributes. For this reason, we need to groupBy each
G(QID) independently, while the rest of the attributes must be aggregated and concat-
enated with the anonymized G(QID).

Table 2  Illustrates the new state after ungrouping records

Teacher Q-ID group

Class School Level Mark

Jones A School 1 1 [70–80]

Khan A School 1 1 [70–80]

Steve A School 1 1 [70–80]

Mark B School 2 2 [90–95]

Jane B School 2 2 [90–95]

Page 18 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

Comparison of MapReduce and Spark in processing MDSBA

We conducted experiments to compare between Hadoop ecosystem and Spark in
processing MDSBA. The experiments aimed to measure the performance of the old
MapReduce framework and the new Spark framework o conducting data anonymity.
The performance includes the computation cost, and scalability of each. Since Spark is
a distributed in-memory platform, we need to observe Spark’s behavior on data growth.
Eventually, Spark was developed for the new powerful servers that are provided with a
large size of memory, and a considerable number of CPU cores. Spark is a memory con-
sumer and CPU intensive operator; therefore, each worker should contain a reasonable
size of memory and cores. Usually memory size on each worker starts from 16 GB, with
two quad-core processors. However, the required size of memory and processor in each
worker of the cluster depends on three main factors, these are: the data size, the time
required to complete the job, and the number of workers and masters within the cluster.

Experiment setup
We setup our lab at our university, which includes seven virtual machines, with one
master and six workers. Each node contains 4 core CPUs of Intel(R) Xeon(R) CPU
@ 2.40 GHz, with a physical memory of 8 GB, and the operating system is CentOS 7.
Both Spark and Hadoop were setup on the same cluster. Spark 2.1 was setup on Apache
Hadoop 2.7. Also, Pig was setup on the NameNode to run the Pig Latin script. We cre-
ated two different scripts programmed in Pig Latin and Scala. Both scripts must output
similar results. To save resources, we executed Pig script first, then Scala script after the
completion of Pig script. Adult data [31] was deployed for the experiments. Data was
randomly enlarged up to seven different sizes, and these are 2 GB, 5 GB, 7 GB, 10 GB,
15 GB, 20 GB and 30 GB. The size of data sets was chosen related to the limited available
resources in our cluster.

The first experiment aimed to compare the processing time between Spark and
Pig. Both scripts are designed to read the data files, filter data by class value, group,
anonymize and ungroup. The program concept is similar to the algorithm described in
Fig. 5. Spark was setup with a total of five workers with 10 cores. The cores are distrib-
uted as two cores and 4 GB memory per worker node. The five nodes have 20 GB of
memory, with a total of 10 executers.

In the second experiment, one more worker was added to observe Spark’s behavior
with the large hardware capacity. The worker node consists of 8 GB memory and two
core processors. The previous experiment was conducted by 5 workers and one master,
while this experiment was conducted by 6 workers instead. The sixth worker was added
to both Pig and Spark clusters. It showed a dramatic increase in Spark performance,
which was expected. Figure 7 illustrates the same datasets with the extra worker added
to Spark domain and Pig domain. Spark’s processing time showed a slight degradation,
when data size exceeded 20 GB. However, the overall performance was better than using
five workers only.

Page 19 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

Datasets chosen in the experiments
In both experiments we used adult data taken from UCI Machine Learning Repository.
The attributes include {AGE, JOB, MARITAL_STATUS, EDU, SOCIAL, RACE, SEX,
POSITION, COUNTY, COUNTRY, SALARY}. Attributes are divided into three groups
of Q-IDs. The first Q-ID group is G(QID)1 = {AGE, JOB, MARITAL_STATUS,EDU},
where EDU is the class attribute. The second group is G(QID)2 = {SOCIAL, RACE,
SEX, POSITION}, where POSITION is the class attribute. And finally, the third group
is G(QID)3 = {COUNTY, COUNTRY, SALARY}, where SALARY is the class. For this
experiment, we only anonymized group G(QID)1, by grouping Q-IDs for {AGE, JOB,
MARITAL_STATUS} in the first stage, then {JOB, MARITAL_STATUS}, in the second
stage, and finally {MARITAL_STATUS} only in the third stage. Table 3 shows the dataset
attributes and G(QID) groups.

This dataset was chosen based on various considerations. This dataset contains a con-
siderable number of personal attributes. This creates a larger number of Q-IDs, which
enables an appropriate aggregation for G(QID) groups. In addition, this dataset has been
used in many previous methods and experiments proposed by researchers. Thus, it is
worthwhile employing similar datasets for its prominence in data anonymization.

Adult dataset was enlarged up to seven different sizes by using MySql code, which is
retrieved and modified from github [32]. This randomly created data mimics the real-
world data, by constructing a random sampling. The sampling was implemented by
calculating the normal distribution for each Q-ID attribute and a class. The normal dis-
tribution was calculated first for the original Adult data. Then data range is assigned for
randomness by giving each 100 values a different range. The data ranges were chosen to
resemble the normal distribution value for the original data. We followed similar process
that was described here [33].

Results and discussion
The results with 5 workers showed a large contrast in processing time between both
scripts. Figure 6 showed the processing time for various data sizes. Spark is much
faster than Pig in the relatively smaller data size. The relativity is described by compar-
ing the data size with the memory size. In the proper memory size, Spark may reach up
to 8× faster than Pig. On data size growth, Spark performance degrades dramatically,
so the processing time becomes similar to Pig on data size = 15 GB. More data growth
showed better performance for Pig speed in comparison to Spark. Pig does not speed
up processes on data growth, but its processing time grows up steadily. On the contrast,
the discrete line in Fig. 6 shows an exponential growth for the Spark processing time.
SQL Spark consumes more processing time, when the memory is not large enough in

Table 3  Adult dataset and G(QID) groups used in the below experiments

All attributes G(QID)1 G(QID)2 G(QID)3

AGE, JOB, MARITAL_STATUS, EDU, SOCIAL, RACE,
SEX, POSITION, COUNTY, COUNTRY, SALARY​

AGE, JOB, MARITAL_
STATUS, EDU

SOCIAL, RACE, SEX,
POSITION

COUNTY,
COUNTRY,
SALARY​

Class: EDU Class: POSITION Class: SALARY​

Page 20 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

comparison with the data size. For instance, when data size = 30 GB, the process time
was around 432 min, which is much larger than Pig process time, which was around
350 min.

The results with 6 workers show that Spark performs better than the previous experi-
ment. However, Pig processes showed slight progresses if compared with Spark’s perfor-
mance. Figure 7 illustrates a high progress and a dramatic decrease of Spark’s processing
time, specially when data size exceeded 3 GB. Spark’s process improvement is due to its

Fig. 6  Comparison in process-time between Pig and Scala scripts with 5 workers: This is the first experiment
where 5 workers and one master are used. The experiment showed a good performance for Spark, when data
size is smaller than 15 GB. Pig gains better performance when data size increases dramatically in comparison
with the available memory

Fig. 7  Comparison in process-time between Pig and Scala scripts with 6 workers: This is the second
experiment where 6 workers and one master are used. The experiment showed a good performance
for Spark, when data size is smaller than 20 GB. Pig gains better performance when data size increases
dramatically in comparison with the available memory

Page 21 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

structure and in-memory operations. MapReduce is prone to network congestion during
map or shuffle phases. Spark reduces this negative impact by reducing the data trans-
mission between disks and memory. This feature is essential in the transmission of the
network.

The impact of network congestion on Pig performance

Having many trials of experiments with Pig; several tasks took much longer time
before throwing errors and terminating the tasks. The engineering structure of
MapReduce and Spark is similar to handling the slow tasks. They both implement
a speculative execution, which tags any task that takes longer on average than the
other tasks from the same job. It clones this slow task and runs it on another node. It
will not stop the slow task, but rather run another copy in parallel. This is beneficial
in large clusters, whereas small clusters may lose their available resources. However,
our university network is not dedicated to MapReduce structure, and suffers from a
high network congestion most of the day. In both cases of enabling or disabling Pig’s
speculative execution, we experienced an almost similar delay in some tasks. There-
fore, we repeated each experiment several times, mainly, in running Pig script. The
failure jobs where repeated and excluded from the comparison time. The failure per-
centage of processing tasks in Pig script was around 4%, which increases with the data
growth. Many factors may cause this congestion, such as university virtual environ-
ment and connection types between storages and virtual machines. Big data clusters
rely on direct access connection (DAC) between nodes and storages. Also, the virtual
environment is not recommended for big data structure. Figure 8 shows 319 tasks
that were executed by Pig script for various data size. The tasks belong to more than
15 jobs with an average processing time between 10 s to 18 min for the successful

Fig. 8  A number of 319 Pig script tasks, including repeated tasks: Pig script operates between disks and
memory. This creates many interruptions in the busy network. Therefore, the fail percentages in Pig tasks is
high. The failure percentage increases parallel with the data size increase

Page 22 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

tasks. The shown pulses represent the failure tasks after long processing time. The
failure tasks increase in parallel with the data size increase.

Spark tuning in MDSBA

Tuning Spark is one of the hardest tasks on managing Spark cluster. This requires
knowledge, experience, and several experiments. There are no clear instructions
on tuning Spark to gain the best performance. Our focus here is on anonymization
operations only. Different tasks and applications may require different steps of tuning.
In MDSBA, our focus is grouping, ungrouping, and masking data. These three main
operations should be organized properly to give the best possible performance. Both
ungrouping and masking require UDF programs. In masking, the algorithms should
consider the least number of iteration and the smallest size of data. It was explained
earlier the importance of reducing the data flowing to the UDF. We experimented
several tuning techniques and configurations. Two main tuning concepts are found;
these are: filter/group, and cache data.

In SQL grouping, we experimentally found that filtering data, and then grouping it,
may reduce the grouping time and enhance the performance. Hence, we need to filter
and then group data, rather than jumping to the GROUP command first. It is apparent
that grouping data records can replace the command FILTER, so technically, we can
group any records without the need for filtering them first. However, to reduce the
number of shuffling times and leverages the parallelization, it is better to filter records
first. For a better understanding, let us consider a set of passenger’s records as shown
in Table 4. If the grouping command included the attributes of; Depart, Arrive, and
Flight, then the grouping results can be {ATL, DXB, (Adult, Child), K380}. We also
gain similar results if we use filter command first. For instance, if we filter the records
with the class value = K380, then data size will be reduced to two records instead of
three. Using filter/group commands conclude the same results as using group com-
mand alone. However, in performance-wise they are not similar.

Figure 9 shows the processing time difference between grouping data after filtra-
tion, and grouping data without filtration. Initial data Filtration increases the program
performance, and it is beneficial when the attribute values are known, so they can
be hardcoded by programmers. In MDSBA, attribute values are pre-added automati-
cally in early preparation stages. MDSBA framework consists of three main services
core, initializer, and anonymizer. The Scala script is generated in the Initializer stage
by reading dataset parameters and users’ access parameters from two different XML
files. User’s XML file is received from the federation service, while dataset XML file is
previously uploaded by data owners to the service provider’s servers, parallel with the
dataset. MDSBA framework is further explained here [20].

Table 4  Passenger’s records example

Depart Arrive Passenger type Flight

ATL DXB Adult K380

HND SYD Adult D120

ATL DXB Child K380

Page 23 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

The second tuning in Spark is data caching. The percentage of the failure tasks in
Spark script was much lower than in Pig script. The percentage was even lower, when
using persist command on reading data from disks. As mentioned before, the (persist)
command caches the data in memory. Developers may assign the (persist), if data will
be read many times for multiple tasks. Our comparison between (persist) and non-per-
sist commands showed a tangible difference in performance between them. We imple-
mented persist command after reading a dataset from the disk. Figure 10 shows a large
difference between both cases, where using (persist) reduces the processing time of
tasks. The (persist) command is part of Spark tuning to increase the performance effi-
cacy. However, the command is not recommended when the data size is larger than the
available memory. If the data size is larger than the memory, then the overloaded mem-
ory will be spilled to the disk. Figure 10 illustrates the performance comparison between

Fig. 9  Process time between filter/group and group only: comparison between using filter and without filter
in the algorithm. It was proven that filter can improve the processing performance

Fig. 10  Performance comparison between caching and non-caching data: also, caching improves the
performance. Caching stores big part of the data in-memory, which accelerate the process

Page 24 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

(persist) and non-persist. The time processing contrast increases with the increase of the
data size.

These two steps of tuning make a considerable difference in anonymization perfor-
mance by MDSBA. Before tuning Spark, it is essential to building a robust Spark clus-
ter and nodes. The hardware infrastructure is the major factor for big data operations
success and performance. As mentioned earlier, the memory size of each worker, the
number of cores, the number of workers, and the network connection between work-
ers and storages, should be large enough to accommodate the massive size of data. Data
anonymization and analytics are heavy processes that require a powerful and large clus-
ter specifications.

Conclusion
With the recent big data’s revolutionary growth, various processing frameworks were
developed. Some of these frameworks best fit streaming data, while others can be applied
to batch data. In this paper, we experimented two of these popular frameworks for our
k-anonymity method. Both of Pig and Spark were examined in MDSBA anonymization
process. Our aim was paving a reliable ground for MDSBA state-of-the-art anonymi-
zation with the most reliable performance. The experiments show few hurdles in each
framework. However, Spark is faster in processing MDSBA, and more fault tolerant as
an in-memory operations framework. In congested networks, Spark reduces data trans-
mission between memory and disks on serializing data with RDD. Spark can be many
times faster than Pig MapReduce in anonymization. To avoid SQL Spark performance
degradation, the memory should be larger than the processed data. SQL Spark boosts
performance on the large size of memory. Other Spark’s tuning methods that may lever-
age the anonymization performance are; UDF algorithm, filter/group commands, and
caching data in memory. On the other side, MapReduce is an old framework that can
perform better when memory resources are quite small. This is conditioned by the net-
work traffic and congestion level. MapReduce may operate on small memory resources,
but it requires non-busy network, because it relies on a heavy transmission between
memory and disks. In the conclusion, It is recommended to implement MDSBA in
Spark framework, however, the cluster infrastructure must be prepared well, by provid-
ing enough memory and processor resources for each node.

Our future research will focus on finding a proper method for data stream anonymi-
zation. In big data, streaming is an essential type in most data applications. The current
anonymization method of MDSBA does not support the data stream anonymization.
Most recent big data frameworks provide complete solutions for the data stream. We
may need to amend the current MDSBA method to cope with the continuous data
streaming.

Additional files

Additional file 1. Taxonomy masking algorithm.

Additional file 2. Anonymizing numerical data by Scala programming.

https://doi.org/10.1186/s40537-018-0149-0
https://doi.org/10.1186/s40537-018-0149-0

Page 25 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

Abbreviations
k̄ : ownership level; BUG: bottom–up generalization; HDFS: Hadoop distributed file system; MDSBA: multi-dimensional
sensitivity-based anonymization; NG: non-equivalent group; Q-ID: quasi Identifier; SG: fully-equivalent Group; SSG: semi-
equivalent Group; TDS: top-down specialization; UDF: user-defined function; ψ: sensitivity level.

Authors’ contributions
MA-Z wrote the main manuscript and the diagrams. CR participated in the set-up of the experiments and output results.
SS reviewed and amended the manuscript scientifically, grammatically, and general text structure. All authors read and
approved the final manuscript.

Acknowledgements
This research was conducted in Western Sydney University Labs. We are grateful for the technical support and establish‑
ment of the Hadoop domain. Special thanks are due to Mr. Guang Hui Deng.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Our experiments utilize three different standard datasets. These are: Adults data: taken from UCI machine learning ftp://
ftp.ics.uci.edu/pub/machine-learning-databases/adult/adult.data.

Funding
The research works reported in this paper are part of the first author’s Ph.D. degree pursued at Western Sydney Univer‑
sity. The second and third authors are the supervisors of those works. The Australian government partially covers the
funding for that degree under the Research Training Scheme (RTS).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 June 2018 Accepted: 4 October 2018

References
	1.	 Chen H, Chiang RH, Storey VC. Business intelligence and analytics: From big data to big impact. MIS quarterly.

2012;36:1165–88.
	2.	 Guller M. Big data analytics with spark. A practitioner’s guide to using spark for large scale data analysis. The expert’s

voice in Spark. Berkeley: Apress; 2015. p. 2015. https​://doi.org/10.1007/978-1-4842-0964-6.
	3.	 Kirk DB, Wen-Mei WH. Programming massively parallel processors: a hands-on approach. Morgan kaufmann. 2016
	4.	 Govindaraju V. Big data analytics. Oxford: Elsevier Science; 2015. p. 2015.
	5.	 Shi J, Qiu Y, Minhas UF, Jiao L, Wang C, Reinwald B, Özcan F. Clash of the titans: mapreduce vs. spark for large scale

data analytics. Proc VLDB Endow. 2015;8:2110–21.
	6.	 Motwani R, Xu Y. Efficient algorithms for masking and finding quasi-identifiers. Proc Conf Very Large Data Bases.

2007;2007:83–93.
	7.	 Sweeney L. Achieving-anonymity privacy protection using generalization and suppression international journal of

uncertainty. Fuzz Knowl Based Syst. 2002;10:571–88. https​://doi.org/10.1142/S0218​48850​20016​5X.
	8.	 Ke Wang PS, Yu S, Chakraborty S. Bottom–up generalization: a data mining solution to privacy protection. USA.

2004. https​://doi.org/10.1109/icdm.2004.10110​.
	9.	 Fung BCM, Wang K, Yu PS. Top-down specialization for information and privacy preservation. USA. 2005. https​://doi.

org/10.1109/icde.2005.143.
	10.	 Irudayasamy A, Arockiam L. Parallel bottom–up generalization approach for data anonymization using map reduce

for security of data in public cloud Indian. J Sci Technol. 2015;8:1. https​://doi.org/10.17485​/ijst/2015/v8i22​/79095​.
	11.	 Irudayasamy A, Arockiam L. Scalable multidimensional anonymization algorithm over big data using map reduce

on public cloud. J Theor Appl Inf Technol. 2015;74:221–31.
	13.	 Pandilakshmi K, Banu GR. An advanced bottom up generalization approach for big data on cloud. Int J Comput

Algor. 2014;3:1054–9.
	13.	 Balusamy M, Muthusundari S Data anonymization through generalization using map reduce on cloud. In: 2014

international conference on computer communication and systems. IEEE. 2014, p. 039–42. https​://doi.org/10.1109/
icccs​.2014.70681​64.

	14.	 Pandilakshmi K, Banu GR. An advanced bottom up generalization approach for big data on cloud. 2014;3:1054–9.
	15.	 Zhang X, Liu C, Yang C, Chen J, Nepal S, Dou W. A hybrid approach for scalable sub-tree anonymization over big

data using MapReduce on cloud. 2014;80:1008–20. https​://doi.org/10.1016/j.jcss.2014.02.007.
	16.	 Mehta BB, Rao UP. Privacy preserving big data publishing: a scalable k-anonymization approach using MapReduce.

IET Softw. 2017;11:271–6. https​://doi.org/10.1049/iet-sen.2016.0264.
	17.	 Roy I, Setty ST, Vitaly A, Emmettwitchel S. Airavat: security and privacy for MapReduce CiteSeer. 2010. https://doi.

org/10.1.1.188.8573.
	18.	 Zhang X, Yang LT, Liu C, Chen J. A scalable two-phase top-down specialization approach for data anonymization

using MapReduce on cloud. IEEE Trans Parallel Distrib Syst. 2014. https​://doi.org/10.1109/tpds.2013.48.
	19.	 Rajeev Motwani YX (2007) Efficient Algorithms for Masking and Finding Quasi-Identifiers.

https://doi.org/10.1007/978-1-4842-0964-6
https://doi.org/10.1142/S021848850200165X
https://doi.org/10.1109/icdm.2004.10110
https://doi.org/10.1109/icde.2005.143
https://doi.org/10.1109/icde.2005.143
https://doi.org/10.17485/ijst/2015/v8i22/79095
https://doi.org/10.1109/icccs.2014.7068164
https://doi.org/10.1109/icccs.2014.7068164
https://doi.org/10.1016/j.jcss.2014.02.007
https://doi.org/10.1049/iet-sen.2016.0264
https://doi.org/10.1109/tpds.2013.48

Page 26 of 26Al‑Zobbi et al. J Big Data (2018) 5:38

	20.	 Al-Zobbi M, Shahrestani S, Ruan C (2017) Implementing A Framework for Big Data Anonymity and Analytics Access
Control. In: 2017 IEEE Trustcom/BigDataSE/ICESS. 2017, p. 873–80. https​://doi.org/10.1109/trust​com/bigda​tase/icess​
.2017.325.

	21.	 Al-Zobbi M, Shahrestani S, Ruan C (2017) Towards optimal sensitivity-based anonymization for big data. In: 2017
27th international telecommunication networks and applications conference (ITNAC). 2017. p. 1–6. https​://doi.
org/10.1109/atnac​.2017.82153​71.

	22.	 Al-Zobbi M, Shahrestani S, Ruan C. Sensitivity-based anonymization of big data. In: Local computer networks work‑
shops (LCN Workshops), 2016 IEEE 41st conference 2016. 2016; p. 58–64. https​://doi.org/10.1109/lcn.2016.029.

	23.	 Shoro AG, Soomro TR. Big data analysis: apache spark perspective. Glob J Comput Sci Technol. 2015;15. https​://
compu​terre​searc​h.org/index​.php/compu​ter/artic​le/view/1137

	24.	 Frampton M. Mastering apache spark. Birmingham: Packt Publishing Ltd; 2015. pp. 163–270.
	25.	 Gopalani S, Arora R. Comparing apache spark and map reduce with performance analysis using K-means. Int J

Comput Appl. 2015. https​://doi.org/10.5120/19788​-0531.
	26.	 West DB. Introduction to graph theory, vol. 2. Upper Saddle River: Prentice hall; 2001.
	27.	 Low Y, Gonzalez JE, Kyrola A, Bickson D, Guestrin CE, J Hellerstein. Graphlab: a new framework for parallel machine

learning arXiv preprint. 2014. arXiv​:14082​041.
	28.	 Chodorow K. MongoDB. Sebastopol: O’Reilly Media; 2010.
	29.	 Abbasi MA. Learning apache spark 2. 1st ed. Birmingham: Packt Publishing; 2017. p. 2017.
	30.	 Li M, Tan J, Wang Y, Zhang L, Salapura V (2015) Sparkbench: a comprehensive benchmarking suite for in memory

data analytic platform spark. In: Proceedings of the 12th ACM international conference on computing frontiers.
2015. p. 53. https​://doi.org/10.1145/27428​54.27472​83.

	31.	 Becker RK. Adults Data. 1996. ftp://ftp.ics.uci.edu/pub/machine-learning-databases.
	32.	 Halstead B. MYSQL: generate calendar table. github, github. 2012
	33.	 Reiter JP. Satisfying disclosure restrictions with synthetic data sets. J Off Stat. 2002;18:531.

https://doi.org/10.1109/trustcom/bigdatase/icess.2017.325
https://doi.org/10.1109/trustcom/bigdatase/icess.2017.325
https://doi.org/10.1109/atnac.2017.8215371
https://doi.org/10.1109/atnac.2017.8215371
https://doi.org/10.1109/lcn.2016.029
https://computerresearch.org/index.php/computer/article/view/1137
https://computerresearch.org/index.php/computer/article/view/1137
https://doi.org/10.5120/19788-0531
http://arxiv.org/abs/14082041
https://doi.org/10.1145/2742854.2747283

	Experimenting sensitivity-based anonymization framework in apache spark
	Abstract
	Introduction
	Background
	Related work
	Multi-dimensional sensitivity-based anonymization
	Spark structure
	MapReduce and Spark
	Choosing Spark

	Methodsexperimental
	Implementing MDSBA in Spark

	User-defined Functions in MDSBA
	Comparison of MapReduce and Spark in processing MDSBA

	Experiment setup
	Datasets chosen in the experiments
	Results and discussion
	The impact of network congestion on Pig performance
	Spark tuning in MDSBA

	Conclusion
	Authors’ contributions
	References

