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Abstract

In the era of big data, researchers interested in developing statistical models are chal-
lenged with how to achieve parsimony. Usually, some sort of dimension reduction
strategy is employed. Classic strategies are often in the form of traditional inference
procedures, such as hypothesis testing; however, the increase in computing capabili-
ties has led to the development of more sophisticated methods. In particular, sufficient
dimension reduction has emerged as an area of broad and current interest. While these
types of dimension reduction strategies have been employed for numerous data
problems, they are scantly discussed in the context of analyzing survey data. This paper
provides an overview of some classic and modern dimension reduction methods,
followed by a discussion of how to use the transformed variables in the context of
analyzing survey data. We highlight some of these methods with an analysis of health
insurance coverage using the US Census Bureau’s 2015 Planning Database.

Keywords: Big data, Central mean subspace, Flexible models, Official statistics,
Principal component analysis, Sufficient dimension reduction

Introduction

The explosion of big data has resulted in both a dramatic increase in the volume of avail-
able data and the possibilities of how to use that data. Federal databases—which are
based on survey data collected by federal agencies—are key sources of massive datasets
and crucial for ongoing research. The need by researchers to analyze not only public-use
data, but also restricted-use microdata, is often pivotal for addressing important
research questions. The growing demand for access to such data in the United States is
highlighted by the establishment of 27 Federal Statistical Research Data Centers', which
are partnerships between federal statistical agencies and leading research institutions in
the United States.

How big data can be leveraged in the construction of official statistics is a matter of
ongoing discussion [1]. However, there are major benefits to how big data from federal
databases, non-federal databases, or both, are used. For example, the Committee on
National Statistics assembled the Panel to Review the 2010 Census. The Panel suggested
more effective use of Census Bureau databases [2], which is consistent with the Cen-
sus Bureau’s increasing emphasis on accurate model-based predictions to conduct more
efficient and cost-effective surveys [3]. Another potential benefit is to improve mutual

! The number of centers stated is current as of September, 2017.
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government-citizen understanding [4], which in turn could improve the quality of sur-
vey data collected for federal databases.

Combining multiple federal databases, such as through record linkage techniques, can
help researchers address more refined questions and produce more powerful statistical
analyses. However, the resulting massive datasets often require the researcher to develop
and apply a sound strategy for handling an inherently high-dimensional problem. Estab-
lishing such a strategy is also necessary for the development and dissemination of offi-
cial statistics, which are based on survey data collected and stored in federal databases.
Dimension reduction techniques can be an effective approach for reducing the dimen-
sionality in big data, regardless of its source. However, there is little literature highlight-
ing the efficacy of dimension reduction techniques in the context of analyzing survey
data from federal databases. The focus of this paper fills this gap.

Lumley and Scott [5] state in the abstract of their paper, “Data from complex surveys
are being used increasingly to build the same sort of explanatory and predictive mod-
els used in the rest of statistics” For example, Gelman [6] discussed the broader issue
of survey weighting and regression modeling, with an application of building predic-
tive models using the Social Indicators Survey. The analysis also developed a multilevel
regression model, for which some of the standard estimation and inference proce-
dures in those models can be applied [7]. Lumley and Scott [5, 8] demonstrated build-
ing regression models—in particular, linear and generalized linear models—using data
from the National Health and Nutrition Examination Survey (NHANES). They also pro-
vided a thorough discussion about testing in such regression models being fit to survey
data. Young et al. [9] demonstrated the appropriateness of using zero-inflated regression
models for understanding housing unit adds or deletes in the United States based on the
Census Bureau’s Master Address File (MAF). In each of the above examples, inference
or variable selection procedures can be employed to determine the “best” predictor vari-
ables for the respective model. However, choosing the best strategy for selecting from a
large number of predictor variables can be challenging, especially in survey data where
multicollinearity is almost always an issue. One appealing approach for such settings is
to use dimension reduction.

We provide an analysis of data involving health insurance reform in the United States.
Health insurance reform is always a major, and oftentimes controversial, social and
political topic. One of the most significant efforts in recent years to health insurance
reform in the United States has been the Patient Protection and Affordable Care Act
(ACA), also known as “Obamacare” The ACA became effective in early 2010 with most
major provisions phased in by early 2014. The ACA has an individual mandate, which
requires each individual to buy insurance or pay a penalty if not covered by an employer-
sponsored health plan or other public insurance plan. While not impacted by the provi-
sions in the ACA, some individuals are covered under more than one health insurance
plan for various reasons; e.g., supplementing coverage with a secondary plan for services
not covered by their primary plan. Our example focuses on building models of health
insurance coverage across the United States.

This paper is organized as follows. In “Dimension reduction techniques” section, we
provide a review of principal component analysis, sufficient dimension reduction meth-
ods, and the associated algorithms. In “Flexible modeling with the transformed data”
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section, we discuss how dimension reduction methods can be applied to survey data
with many variables, and suggest some flexible modeling techniques that could be used
with the transformed data. In “Analyzing health insurance coverage using the 2015 plan-
ning database” section, we use dimension reduction to analyze health care coverage
based on survey data from the block-group-level 2015 Planning Database (PDB), which
contains selected 2010 Census and selected 2009-2013 5-year American Community
Survey (ACS) estimates. In “Conclusion” section, we discuss some of the conclusions
from this work. Finally, in “Summary” section, we summarize what has been presented
in this work as well as some general comments about dimension reduction methods.

Dimension reduction techniques

A major use of survey data is in the building of informative predictive models. For our
discussion, we consider regression models with a univariate response variable Y and a
p-dimensional vector of predictors X. In full generality, the goal of regression is to char-
acterize and infer about the conditional distribution of Y'|X. When p is large, a researcher
is often faced with two major challenges, which are especially relevant to the analysis of
survey data. First is that the values of the predictors are not controlled at levels as they
would be in a properly designed experiment, thus, multicollinearity is often present [10].
Second is that it is often desirable to reduce the number of predictor variables, such that
they are still informative about the response. These challenges can be addressed using
the methods we discuss in this section. We first present principal component analysis,
which is a classic and well-known multivariate procedure that can be used as a dimen-
sion reduction strategy. We then discuss more modern dimension reduction and suf-
ficient dimension reduction techniques, including sliced inverse regression [11], partial
sliced inverse regression [12], sliced average variance estimation [13], and principal Hes-
sian direction [14, 15].

Principal components

The idea in principal component analysis (PCA) is to transform the predictor variables
into linearly independent variables—or principal components—such that the first prin-
cipal component has the largest variance, the second principal component has the sec-
ond largest variance and is orthogonal to the first principal component, and so on. More
formally, let ¥ be the covariance matrix of X. We want to find p linear combinations of
X such that they are uncorrelated with each other. We construct these components such
that the first component’s variance is the maximum among all the linear combinations,
the second component’s variance is the second largest and uncorrelated to the first com-
ponent, the third component’s variance is the third largest and uncorrelated to both the
first and the second component, etc. In other words, we wish to find the appropriate
vectorsag, ay, . . ., a, such that the following holds:

« First principal component: PC; = aFfX, where aj such that Var(PC;) = afEal =
max||=1a’ Za;
+ Second principal component: PCp = aZTX, where Var(PCp) = aZTEag =

maxj4|=1 al Ta witha] Ta; = 0;
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+ pth Principal component: PC, = a;X, where Var(PC,) = a;Eap = max|,|—1a’ Za
witha) $a;j=0,j=1,...,p— 1.

The construction of the principal components are guaranteed by the following proposi-
tion, which is a condensed version of Result 8.1 in Johnson and Wichern [16]:

Proposition 1 Let (4;,n;) for i=1,.,p be the eigenstructure of %, where
J == 2y >0. Then the ith principal component is given by PC; = niTX, where
1 <i < p,and Var(PC;) = nI £n; = 2;,Cov(PC;, PCy) = 0 fori # k.

We can use, for example, the singular value decomposition of the covariance matrix
X to find the eigenvalues and eigenvectors. X is also referred to as the kernel matrix. For
consistency with notation used later, we denote Mpc = X as the kernel matrix for PCA.
This is estimated by M pC = 33, which is based on the sample data.

Principal component analysis is, perhaps, the oldest dimension reduction technique
that is still widely used today [17, 18]. Consequently, PCA has been applied to numerous
important data problems spanning a wide array of scientific fields. For example, PCA has
been used for facial image recognition in image analysis [19], for the analysis of hormone
profiles to assess the productivity of plants [20], and as part of a robust decision support
tool for facilitating industrial production scheduling [21]. PCA has been applied for vari-
ous survey data analyses, but due to the sometimes large number of binary or categorical
variables in such data, it does not always provide reliable results [22].

Sufficient dimension reduction

Formally, a dimension reduction is a function R(X) that maps X to a k-dimensional
subset of the reals such that k < p. Specifically, we let R(X) = BTX, where Bis a p x k
matrix. We say that a dimension reduction is sufficient if the distribution of Y|R(X) is
the same as that for Y|X, which is the original conditional distribution of interest in
regression models. Combining the notions of dimension reduction and sufficiency, suf-
ficient dimension reduction [11, 15, 23] is used to detect a lower dimension subspace of
the predictor space, such that the response variable is independent with the predictor
vectors providing all the information of this subspace.

Without loss of information, X can be replaced by nTX, where n € R? xd g < p. The
subspace spanned by the columns of y is called a dimension reduction subspace for the
regression of Y on X. The intersection of all dimension reduction subspaces is called the
central subspace (CS), which we denote by Sy|x with dimension d = dim(Sy)x). The
basis B € RP*4, d < p of the CS has the property that Y L X|BTX, which is to say that
the conditional distribution of Y|X is the same as the conditional distribution of Y |87 X.
Under mild conditions [23], the CS exists and is unique.

Sometimes, the mean function E(Y'|X) may be of primary interest instead of the con-
ditional distribution Y'|X. For such settings, Cook and Li [24] introduced the following.
Let B € R?*?4, d < p now be the basis for the subspace for Y L E(Y|X)|87X. This sub-
space is then called the mean dimension reduction subspace. The intersection of all mean
dimension reduction subspaces is called the central mean subspace (CMS), which we
denote by SE(Y\X)«
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For estimating the CS or the CMS, the following two conditions are assumed for many

dimension reduction methods:

1. Linearity condition E(X|PsX) is a linear function of X.
2. Constant variance-covariance matrix condition Var(X|PsX) is a non-random

matrix.

In the above, Ps is a projection matrix onto the subspace S, which is either Syx or
Sk(yx) for estimating the CS or CMS, respectively.

It is important to emphasize the fundamental difference between PCA and suffi-
cient dimension reduction. PCA reduces the number of predictors without consider-
ing the response variables, and choosing the number of principal components is not
done through any formal inference paradigm. However, the idea of sufficient dimen-
sion reduction is to attain a sufficient subspace, which includes all of the information we
need. There are asymptotic results for determining the number of dimensions in suffi-
cient dimension reduction. These asymptotic results are derived and/or discussed in the
references we cite for the dimension reduction techniques that we discuss below. Thus,
using PCA is somewhat limited because it does not consider the response variable(s),
nor does it have a formal inference mechanism for choosing the “best” number of prin-
cipal components.

Sliced inverse regression
E (Y|X) is a p-dimensional surface where, for now, we assume that all of the vari-
ables represented by the columns of X are continuous. The notion of inverse regres-
sion works with the curve computed by E (X|Y), which consists of p one-dimensional
regressions. Li [11] introduced sliced inverse regression (SIR), which involves divid-
ing the range of the response Y into H non-overlapping intervals called slices. Let-
ting ¥ = Var(X) and Z = >~ Y2(X — E(X)), we then see that Syix = 271/28y|z
[25]. Hence, we can work on the scale of Z. Moreover, under the linearity condition,
Seziy) C Syjz and S{Var[E(Z|Y)]} = Sg(zjy) [25]. Thus, we can form the kernel matrix
Msir = Var[E(Z]Y)].

Let x;, z;, and y; be the sample versions of their respective unobserved quantities. The
algorithm for SIR [11] is as follows:

1. Fori =1,...,n, standardize x; into z;, and divide y; into H slices. Let fh be the pro-
portion of the y;inslice s, h=1,...,H.

2. Compute the sample mean of z in each slice, and denote these by z, . . ., Zg.

3. Form the weighted variance-covariance matrix Mg = ZhH:1 fhihiz.

4. Find the eigenstructure of MSIR: (4i,mi),i=1,...,p. The d < p eigenvectors corre-
sponding to the 4 largest eigenvalues are the estimated directions of Sg(z)y). Then,
we transform back to the original X scale by calculating ,31 = f)‘l/zﬁl,l =1,...,d.

Li [11] contrasted SIR with PCA by noting that the sampling properties of SIR are easy
to understand and, thus, make subsequent inference using SIR fairly straightforward.
SIR also is developed naturally in the regression setting, whereas PCA has to be applied
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to the multivariate data consisting of only the predictors and then the response variables
are regressed against the transformed predictors; i.e., this approach is called principal
components regression. SIR has provided critical insight into various applications, such
as to understand the electrochemical process of aluminum smelter plants [26] and for
the purpose of direct marketing and new product design for managers of data-rich mar-
keting environments [27].

Partial sliced inverse regression
We next consider the case where X can consist of both continuous and categorical pre-
dictor variables. In order to accommodate this in a setup similar to SIR, we need to use
the notion of partial dimension reduction as introduced in Chiaramonte et al. [12]. Let
W be a categorical variable with K levels and define the partial central subspace relative
to X as the intersection of all subspaces spanned by € RP*4 such thatY L X|(»TX, W).
Denote the partial central subspace as S)‘ZX' The relationship between partial and condi-
tional dimension reduction is S%x = @2(:1 Sy, |x,, where Sy, x, is the CS conditioned
on level k and P is the direct sum.

For each level, the mean and covariance matrix of X; are p; and Xj, respec-
tively. We further assume that the covariance structures are the same across the

levels; ie, Xx = Zpo01, k=1,...,K. Now, letting Z; = 21;%2()(,% — ny) results in
S)‘Xx = p_o{;/lz @F_, Sv.iz;- Then, we can use SIR for each level to find the ker-

nel matrix M. After averaging these kernel matrices over different levels, we get
MY =S5 Pr(W = kM.

We now present the algorithm for calculating the sample version of MY and finding
the estimated directions for S}‘Xx‘

1. For each level k, k = 1,..., K, calculate X; and =, which are the sample mean and
sample variance-covariance of Xy, respectively. Moreover, calculate the common
sample variance-covariance matrix f]p,,ol = Zle %‘f]k and z; = f]};lo/lz (X — Xg),
= 1, ceey N

2. Apply the steps in the SIR algorithm to get the sample kernel matrix in each level k:

N N X N
My Then MV =370 "L M.

3. The first d eigenvectors, 71, . .., 14, of M W correspond to the d largest eigenvalues

A > Ay = --- > 4. These eigenvectors are the estimated directions of Sy|z. Then,

transform back to the original X scale by calculating B = ﬁ:;;;i/lz nml=1,...,d.

The literature on partial SIR has mostly focused on theoretical developments of the
approach [12, 28, 29]. However, the efficacy of partial SIR was demonstrated in an analy-
sis involving genomic data and clinically-relevant information in predicting survival of
diffuse large-B-cell lymphoma [30]. The utility of partial SIR was also briefly highlighted
in production and efficiency analyses of Norwegian electricity distribution networks
[31].

Sliced average variance estimate
One disadvantage of SIR is that it cannot detect symmetric structure of predictors; how-
ever, the sliced average variance estimate (SAVE) method [13] can find the directions,
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even in the presence of symmetric structures. Under the linearity and constant vari-
ance condition, I, — Var(Z|Y) € Sy|z, where I, is the p x p identity matrix. Hence,
Msave = Ell, — Var(Z|Y)]%.

The algorithm for SAVE [13] is as follows:

1. Fori =1,...,n, standardize x; into z; and divide y; into H slices. Let fh be the pro-
portion of the y;inslice s, h=1,...,H.

2. Compute the sample covariance of z in each slice, @(Z| Y =h).

3. Form the weighted covariance matrix MSAVE = Z;f:lfh[lp — \7a\r(Z| Y =)

4. Find the eigenstructure of MSAVE and take the first d eigenvectors, 91, . . ., 4. which
correspond to the d largest eigenvalues ;11 > :12 > .0 > ﬁd. These eigenvectors are
the estimated directions of Svar(z|y). Then, transform back to the original X scale by
calculating B =2"12%,1=1,...,d.

SAVE has also been used for various applications and different data structures. For
example, Bura and Pfeiffer [32] successfully used SAVE for class prediction of DNA
microarray data. They also provided a discussion of some visualizations that can be used
in such an analysis. SAVE has also been used as an effective tool in image analysis to dis-
tinguish between different facial expressions on the same person’s face [33].

Principal Hessian directions

SIR and SAVE are both inverse regression approaches; i.e., we treat Y as if it were the
independent variable and X as if it were the dependent variable. Another type of dimen-
sion reduction is the principal Hessian direction (PHD) method [14, 15], which is a
correlation (or joint) approach. Two common types of PHDs—of which there are oth-
ers—are calculated as follows:

1. Y-based PHDs: under the linearity and constant variance conditions, PHDs based on
the response yield the kernel matrix Mypyp = E{[Y — E(Y)]ZZT} c Sy|z.

2. Residual-based PHDs: PHDs based on the residuals yield the kernel matrix
M,ppp = E(€ZZT), wheree = Y —E(Y) — BTZ and B = Cov(Z, Y).

The algorithm for PHD is identical to that used for SIR and SAVE, except we use the
sample version of the kernel matrix corresponding to whichever of the PHDs above is of
interest.

PHD has also been used for other complex data problems. For example, Cheng and
Li [34] demonstrated the efficacy of using PHD in designed experiments having a
large number of factors, with particular attention given to factorial designs and rotat-
able response surface designs. Lue [35] used PHD in the context of a regression analysis
when the predictors are known to have measurement error. Lue et al. [36] showed how
an imputed-spline modification to PHD yields an effective framework for conducting
dimension reduction in survival regressions with censored data.
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Flexible modeling with the transformed data

When building a regression model for relating a response to a large number of predic-
tors, researchers often try fitting a multiple linear regression model first. Then, residual
diagnostics are assessed to identify potential outliers, high leverage values, and overall
goodness of fit. However, a multiple linear regression model is often too restrictive in
practice, especially when using survey data from federal databases. Greater flexibility
can be achieved using semiparametric regression models, like spline regression, general-
ized additive models, or partial linear models; see the texts by Ruppert et al. [37] and
Hardle et al. [38] for thorough treatments of semiparametric regression modeling. The
appropriateness of using such flexible models in big data settings has also been discussed
in Oswald and Putka [39] and Young et al. [40].

Flexible models have been used for a wide range of analyses involving survey data from
federal databases. For example, Rogers et al. [41] used cubic splines to develop migration
models based on data from the ACS. Kniesner and Li [42] developed a male labor sup-
ply functions using local linear kernel regression based on panel data from the Survey
of Income and Program Participation (SIPP). Gronniger [43] developed a partial linear
model relating mortality to body mass index and other health measures using the data
from the National Health Interview Survey (NHIS).

Each of the examples just highlighted had a large number of candidate predictor vari-
ables available from the respective survey. Many additional variables from these surveys
could have been investigated by the authors for their respective model. By employing
one of the dimension reduction methods discussed in “Dimension reduction techniques”
section, one could develop a model of the response variable Y as a function of the d
transformed predictor variables, X" = ﬁ?lTX, I =1,...,d. Then, the estimated model
could have better predictive ability. One example for developing such models is principal
components regression [44], which involves estimating a multiple linear regression model
for the relationship between Y and the Xj's, which were determined using PCA. While
using a multiple linear regression model in this setup is conceptually appealing, use of
visualizations may suggest the need for greater flexibility in the model. Pairwise scat-
terplots of Y versus each of X7, ..., X might reveal curvature or complex nonlinearities
in the relationship between some of the variables, which would suggest the need for a
semiparametric regression model.

The above framework is also possible when the data are from complex surveys, where
population members are not sampled with equal probability. Determining appropriate
survey weights is independent of the flexible modeling strategy employed with the trans-
formed variables. Survey weights can be obtained through traditional approaches, like
post-stratification and raking, or through more advanced procedures, like the flexible
model-based alternatives proposed in Elliott and Little [45]. These can then be incorpo-
rated in a weighted version of the chosen semiparametric regression model, which will
usually require solving a survey-weighted least squares problem [46] or implementing
something like a survey-weighted backfitting algorithm [47].
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Analyzing health insurance coverage using the 2015 planning database

Data

For our analysis, we use the 2015 Planning Database (PDB) [48], a publicly available
Census Bureau dataset that contains housing, demographic, socioeconomic, and Census
operational data. The variables and counts in the PDB are from the 2010 Census and
select 5-year estimates from the 2009-2013 ACS. The data are aggregated at the block-
group level. A census block is the smallest geographic unit used by the Census Bureau,
and a block group comprises multiple blocks, usually containing between 600 and 3000
people. The PDB comprises approximately 220,000 block groups.

Three separate response variables are investigated for our analysis: the number of peo-
ple with no health insurance coverage (Y1), the number of people with one type of health
insurance coverage (Y2), and the number of people with two or more types of health
insurance coverage (Y3). While these could be treated as a multivariate response, we will
analyze three separate models to be consistent with the dimension reduction procedures
in “Dimension reduction techniques” section, which were developed assuming a univar-
iate response. A total of 15 variables were identified as relevant candidate predictor vari-
ables. The descriptions from the PDB documentation for these variables are given in the
Additional files 1, 2.

There are a total of 220,354 records in the 2015 PDB for potential analysis. We first
excluded observations from the Commonwealth of Puerto Rico, which is often done
due to different laws and demographic considerations involving the Commonwealth; see
“Dimension reduction techniques” section of Young et al. [9] for an example of exclud-
ing Puerto Rico. The number of Puerto Rico records is 2594, which is about 1.18% of the
total number 2015 PDB records. We then omitted records that had missing values for
any of the variables under consideration. There are 8754 such records, which is about
3.98% of the total number of 2015 PDB records. This left us with 209,006 records for our
analysis. We then transformed the predictors using the maximum likelihood approach
of Box and Cox [49] in order to ensure that the linearity condition for dimension reduc-

tion is satisfied.

Analysis
The first part of our analysis focuses on reducing the dimension of our data. Each of the
dimension reduction techniques discussed in “Dimension reduction techniques” section
are able to be performed using functions available for the R programming language [50].
We first assess the presence of multicollinearity. Table 1 provides the variance inflation
factors (VIFs)—a measure of the severity of multicollinearity in an ordinary least squares
setting—for the 15 predictor variables. While we are not simply fitting linear models
for our analysis, the use of VIFs in this context still provides a reasonable assessment of

Table 1 Variance inflation factors for the 15 predictor variables

X 4.7301 X2 2.5689 X3 7.5692 X4 16.7708
Xs 14.5877 X6 2.0651 X7 6.6821 Xg 5.6688
Xs 5.7848 Xi0 10.4067 X1 3.8511 X12 2.0008

X13 2.1802 Xi4 10.3657 Xis 11.1770
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multicollinearity. Typically, VIF values greater than 10 indicate possible influence on the
least squares estimates [51, Chapter 9]. In Table 1, five variables exceed this threshold.
Two of these variables— X4 and X5—would be expected to yield high VIFs. They are both
measures of the number of ACS households with individuals who live “alone;” but the
former is in the context of those who live with non-relatives. While these could be essen-
tially measuring the same effect, we will retain both of these variables for the purpose of
demonstrating the efficacy of the different dimension reduction methods.

We use PCA to characterize those principal components explaining the most variation
among the dataset. While Johnson and Wichern [16] state that there is “no definitive
answer” to determine “how many components to retain,” we proceed to use a scree plot.
The scree plot consists of the principal components ordered according to their amount
of variability explained on the x-axis and the cumulative proportion of the variability
explained on the y-axis. The scree plot for the health insurance data is given in Fig. 1. We
use 0.90 as the threshold to determine the number of principal components to select.
Using this criterion, we select six principal components, which will be used for com-
parison with the subsequent analysis. These cumulative probabilities are also reported in
Table 2.

Principal component analysis does not depend on the response variable, so the
same six principal components would then be used as the predictors in the principal
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Fig. 1 Scree plot for PCA

Table 2 Cumulative proportions of variability explained using the PCA results

PC1 0.3355 pPC2 0.6055 PC3 0.7691 PC4 0.8422
PC5 0.8750 PCo 0.9055 PC7 0.9294 PC8 0.9456
PC9 0.9599 PC10 09717 PC1 0.9828 PC12 0.9907

PC13 0.9948 PC14 0.9978 PC15 1.0000
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components regression for each of the three responses. The sufficient dimension reduc-
tion methods do, however, take into consideration the value of the independent vari-
able. Thus, we could potentially find a different dimension for each of the three response
variables.

For each of the sufficient dimension reduction procedures, testing is done to deter-
mine the dimensions. These marginal tests, based on the work in Cook [52] and Shao
et al. [53], are also available in R. The tests are done sequentially, where we first test O
dimensions versus 1 dimension, 1 dimension versus 2 dimensions, etc. Based on these
tests, the dimensions selected for each of the sufficient dimension reduction procedures
are summarized in Table 3. The full test results are given in the Additional files 1, 2.

SAVE, yPHD, and rPHD did not reduce the number of dimensions much or at all.
Recall that partial SIR can be used when including categorical variables. A categorical
variable was constructed where we partitioned the 50 states and the District of Colom-
bia using the nine Census-designated geographical divisions [54]. The inclusion of this
categorical predictor only yielded a moderate reduction according to partial SIR. The
only sufficient dimension reduction procedure that noticeably reduces the dimension for
each of the three responses is SIR. Therefore, the remainder of our analysis will focus on
the results from PCA and SIR.

In order to use our results from PCA and SIR, we first transform the original predic-
tor variables using the computed principal components and directional vectors, respec-
tively. For each of the three responses, the coefficients for both methods are given in the
Additional files 1, 2. We then fit an additive model [55] to each response; i.e., we fit the

models
d
Ye=yo+ Y (X)) +e 1)
j=1

for k = 1,2, 3, where the f; are unknown smooth functions of the transformed data, dy is
the dimension for the PCA or SIR results, and yy is an intercept term. Thus, a total of six
additive models are estimated.

For each estimated additive model, approximate f-tests can be constructed to deter-
mine the significance of each smooth term. For each of the three additive models con-
structed using the PCA results, all six terms are highly significant at the o = 0.05 level.
For the SIR results we found the following:

Table 3 Dimensions chosen by the marginal tests for each of the five sufficient dimension
reduction methods

Method Y, Y, Y3
SIR 5 6 3
Partial SIR 12 12 11
SAVE 15 14 15
yPHD 14 15 14
rPHD 12 15 14
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+ When the response is the number of people with no insurance (Y1), the smoothing
term corresponding to the fourth dimension is not significant, with an approximate
p-value of 0.102.

+ When the response is the number of people with one insurance (¥3), the smoothing
term corresponding to the sixth dimension is not significant, with an approximate
p-value of 0.221.

+ When the response is the number of people with two or more insurances (¥3), all of
the smoothing terms are significant.

Thus, we drop the fourth and sixth terms from our models with Y; and Y> as the response,
respectively, and refit the additive models. The approximate tests for all of the remaining
terms yield significant results.

We also assessed the partial residual plots for each of the six fits. In the context of our
additive models, the partial residual plots help us assess the relationship between the
response variable and each smooth term, given that the other smooth terms are in the
model. Figures 2 and 3 are the partial residual plots for the additive models based on the
PCA predictors and SIR predictors, respectively, with Y7 the response. In Fig. 2, the addi-
tive model captures some curvature for the effects due to the first four principal com-
ponents (labeled as “dimensions”) in this fit. In Fig. 3, the additive model captures some
curvature for the effect due to the first dimension in this fit. Similar assessments can be
made for the remaining four additive models. The corresponding partial residual plots
are included in the Additional files 1, 2.

We next calculated the Bayesian information criterion (BIC) and adjusted R? values
to compare the estimated additive models for each response. These results are given in
Table 4. For each of the three responses, SIR yields the better BIC and adjusted R? val-
ues. While these measures do not provide direct comparisons between the models based
on the different responses, it is worth noting that the adjusted R? values for the models
with one insurance as a response (Y,) are quite high relative to the other models. This
indicates that there is little improvement that could be made to those estimated models
by adding another set of PCA-transformed or SIR-transformed predictors.

Finally, we also assess the residuals from the additive models at the state level. Figure 4
provides maps of the United States, where the states have been shaded according to the
mean of the residuals from the respective additive model built using the PCA-trans-
formed predictors (maps in the left column) and the SIR-transformed predictors (maps
in the right column). The three rows of maps correspond to those models for individuals
with no insurance (Y1), with only one insurance (Y3), and with more than one insurance
(Y3). Notice that each pair of maps for a given response (i.e., the maps within each row)
show similar distributions of the mean residuals at the state level. In particular, the maps
corresponding to the additive models for Y7 (Fig. 4a, b both show the same states with
larger positive residuals, which have darker shading. These states include Nevada, Texas,
Florida, and Alaska. The maps corresponding to the additive models for Y3 (Fig. 4c, d
both show that regions with larger negative residuals (lighter shading) appear mostly in
the Western states while regions with larger positive residuals (darker shading) appear
mostly in the Midwest. Finally, the maps corresponding to the additive models for Y3
(Fig. 4e, f both have shading indicating residuals with overwhelmingly small magnitude.
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Fig. 2 Partial residual plots for each of the PCA predictors when Y1 is the response

However, the one state indicated with a larger positive residual on both maps is Hawaii.
Overall, these maps indicate that both dimension reduction strategies yield similar
results for the models built for each of the three responses. Further improvements could

be explored using models that, for example, include a spatial component.

Conclusion

Survey data almost always suffers from multicollinearity. When a researcher is interested
in building a regression-type model using survey data, then this is bound to be an issue
that they have to address. Granted this is not something unique to survey data, but it
is an issue that is almost always present in survey data. Moreover, most survey data-
sets can be considered big data. Thus, there is a recognizable benefit to using dimension

Page 13 0of 19
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Table 4 BIC and adjusted R? values for each of the additive model fits using the trans-
formed predictors from PCA and SIR

Method Y, Y> Y3

PCA 2695444 2906673 2564298
0.494 0.847 0.495

SIR 2673141 2862496 2527463
0.545 0.876 0.577

reduction techniques when building regression-type models with large survey data-
sets. Specifically, it can help mitigate the problems with multicollinearity as well as help
reduce the dimensionality of the predictor variables under consideration.

We demonstrated the benefit of using dimension reduction procedures in the analy-
sis of health insurance coverage data. We clearly showed that SIR provided better esti-
mates over the other dimension reduction techniques investigated, including PCA. The
other dimension reduction techniques investigated—partial SIR, SAVE, yPHD, and
rPHD—did not reduce the dimensionality much for any of the three models we con-
structed. However, just like any other statistical analysis where you could have multiple
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Fig. 4 Residuals from the additive models with the PCA-transformed predictorsaY;, cY>, e Y3and the SIR-
transformed predictorsb Yy, d Y5, fY3

approaches to consider (e.g., different multiple comparisons procedures or different
kernel methods), we advocate that the analyst consider each of the different dimension
reduction procedures and then proceed to use various metrics and diagnostics to deter-
mine the best results. When taking the results from the respective dimension reduc-
tion procedure and using them in the model of interest, which for our application was
an additive model, we can then use standard criteria. In our analysis, we used the BIC
and adjusted R?, both of which are well-established and accepted criteria for helping to
choose between different models and assess goodness of fit. Other diagnostic plots can
be constructed, such as those based on the partial residuals of the estimated model. For
our application, this strategy resulted in us determining that SIR provided the best fit.
From the results, we were then able to model some of the regional differences in terms of
healthcare coverage.
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Overall, we believe that comparing the estimated models based on different dimension
reduction procedures will assist the analyst with determining the best procedure to use
for their particular data problem. However, there are a few limitations that should be
emphasized. One practical limitation is the availability of software. In our experience,
R provides the most extensive collection of dimension reduction procedures available,
many of which are in the dr package [56], but not all software have packages devoted to
the implementation of dimension reduction. Another limitation is in the utility of PCA.
PCA reduces the number of predictors without considering the response variable(s), and
choosing the number of principal components is not done through any formal inference
paradigm. Thus, the number of principal components must be chosen through a rule-of-
thumb, while the same principal components must be used if building different models
for multiple responses, as was the case for our health insurance analysis. Finally, the only
dimension reduction technique we presented that allows for binary or categorical vari-
ables is partial SIR. Since survey data tend to have a large number of such variables (e.g.,
socio-economic indicators and demographic variables), partial SIR would be the only
dimension reduction technique that can be directly applied to the data without requir-
ing the analyst to do some modification to the binary/categorical variables.

Summary

Dimension reduction strategies, like PCA and sufficient dimension reduction, are being
increasingly used in the era of big data. However, we believe that they are underutilized
in the analysis of survey data from large databases, at least in terms of the published
literature. We provided an overview of the more common dimension reduction tech-
niques, followed by how those results can be used in flexible regression models. We then
implemented that general strategy to analyze health insurance coverage data from the
US Census Bureau’s 2015 PDB.

The quantity of big data will continue to increase over time and this is true for data col-
lected from large surveys. We believe that dimension reduction techniques provide an
efficacious strategy for the analysis of survey data. However, it is important to acknowl-
edge some limitations with what we have discussed in this paper.

Principal component analysis is, of course, available in most statistical software and
data analytics packages. However, there is currently a limited selection of software
for performing sufficient dimension reduction techniques. But as we noted in “Analy-
sis” section, the sufficient dimension reduction techniques we employed were chosen
because of their availability in R.

After performing dimension reduction, the resulting principal components or direc-
tional vectors help us understand features of the data that explain the most variabil-
ity. However, the resulting transformed data has a more subjective interpretation. For
example, in PCA, suppose demographic variables are the major contributors to the first
principal component in an analysis. In this case, the analyst can attribute most of the
variability in the data as being driven by demographics. But sometimes the first princi-
pal component is comprised of a subset of seemingly unrelated variables, in which case

there might not be a clear interpretation.
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Additional files

Additional file 1. This includes additional tables and figures for the analysis involving the 2015 Planning Database.
Additional file 2. R Code. All of the R scripts used for the analysis in “Analyzing health insurance coverage using the
2015 planningdatabase” section.
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