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Introduction
Millions of Americans are admitted to hospitals each year. A significant number of these 
individuals are readmitted within 30-days, and many of those readmissions are avoid-
able. The Center for Health Information and Analysis estimates unplanned readmissions 
to cost $26 billion annually [1]. Recent US legislation has begun to penalize hospitals 
which have excess readmissions. The Hospital Readmission Reduction Program (HRRP) 
aims to reduce payments to hospitals which have an excess of avoidable readmissions 
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[2]. The Centers for Medicare and Medicaid Services (CMS) are tasked with identifying 
avoidable readmissions and penalizing hospitals using a set of defined formulas. These 
penalties often exceed potential reimbursement and have motivated hospitals to work 
towards readmission reduction [3].

Many strategies for reducing unplanned readmissions exist. One potential strategy 
is to provide patient education and follow-up. This method can be applied equally to 
all patients. Researchers at a US hospital found that patients often do not fill prescrip-
tion medications prescribed during hospital visits [4]. To address this problem, patients 
are now encouraged to have their prescriptions filled directly at hospital pharmacies. 
Researchers found this method to drastically increases patient compliance. Although 
simple methods have been found to be effective, the number of hospitals penalized for 
excess readmissions has held steady for several years [5]. Clearly, there is a need for more 
research into reducing unplanned readmissions.

Patients often require a home healthcare professional to largely mitigate the risk of all 
cause 30-day readmission. Ideally, all patients would receive a home healthcare profes-
sional after hospital discharge. This would be prohibitively expensive and an ineffective 
use of limited resources, so this is not a feasible option. A more effective use of resources 
would be through identification of potential patient readmissions using statistical analy-
sis. This has been an area of active research since the introduction of HRRP [6]. Statisti-
cal analysis allows resources to be used more effectively. Current systems often produce 
binary classification and are not well suited for Decision Support Systems (DSS). If 
resources are available to send a home healthcare professional to a single patient, but 
there are two patients classified as potential readmissions, additional information is 
required. A probability of readmission may be desirable in this instance. However, binary 
classification systems often do not inherently offer this additional information.

Many current systems are additionally known to have poor discriminative ability. 
LACE, a popular readmission system, has been found to produce a c-statistic as low as 
0.55 [7]. Systems trained using localized hospital data often fare better, but rarely pro-
duce c-statistic scores greater than 0.7 [6]. Although c-statistic is a popular statistical 
measure for Hospital Readmission Prediction Systems (HRPS), it may not be the most 
appropriate. C-statistic traditionally assumes equal misclassification cost, which is rarely 
true for hospital readmission. When cost formulas and criteria are available, the quality 
of the model can be evaluated using these formulas directly rather than using a proxy 
measure. Research from Baechle et al. [8] found the correlation between c-statistic and 
hospital readmission cost to be low (cor = − 0.21). C-statistic serves as a poor proxy for 
cost, yet few researchers have incorporated cost into readmission models [9, 10].

Our proposed HRPS directly incorporates HRRP cost formulas. HRRP penalties are 
not constant per patient, but instead based on a rate. Sorting patients by probability of 
readmission allows hospitals to choose a threshold for which to intervene based on avail-
able resources. Hospitals attempting to reduce HRRP penalties may use target readmis-
sion rates set by CMS to decide how to allocate resources. Exceeding CMS target rates 
does not result in a refund or negative penalty [2]. Probability of readmission and poten-
tial costs are presented, forming the basis of a Clinical Decision Support System (CDSS). 
This methodology allows hospital staff to incorporate domain knowledge into the final 
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determination of resource allocation. The proposed methodology, MinCost, may allow 
hospitals to optimize available resources to reduce HRRP penalties.

Background
Current HRPS utilizing statistically driven methods fall into two categories. The first cat-
egory are systems which build hospital agnostic models. These models are built once and 
may predict readmission for any patient at any hospital. A popular system by researchers 
at Yale University is freely available online at readmissionscore.org. This system consists 
of a simple questionnaire to be completed by medical staff. Using c-statistic as the pri-
mary evaluation metric, the benchmark score for heart failure (HF) patients is 0.61 [11]. 
This system is considered to have poor discriminative ability, but has been popular with 
clinical staff due to its simplicity. LACE is a similar readmission scoring system which 
accounts for length of stay (L), acuity of admission (A), comorbidity (C), and emergency 
room frequency (E) [12]. Although LACE initially showed improvements over systems 
devised by Yale (c-statistic = 0.7), additional research has found this model to vary in 
quality when presented with differing hospitals. Few researchers have obtained a c-sta-
tistic near 0.7 [13] and some researchers report results as low as 0.55 [7]. Clearly, models 
created given a set of data and assumptions do not perform well when those assump-
tions change.

A second expanding area of research uses machine learning models tailored to each 
hospital [14]. While these methods may require more work to implement, they often 
perform better due to localization issues. Feature distribution may differ greatly among 
hospitals and localizing models eliminates those concerns.

Machine learning

Many machine learning algorithms have been used for the creation of HRPS. Logistic 
regression (LR) is a regression model whose dependent variable is categorical. Boulding 
et al. [15] have used LR to predict readmission using patient satisfaction as independ-
ent variables. Greenwald et  al. [16] also successfully used LR for predicting readmis-
sion using physical function, cognitive status, and psychosocial support. Support vector 
machines (SVM) are another binary linear classifier which attempt to maximize the 
margins of classification. Research by Braga et al. used SVM to predict readmission for 
intensive care patients, while Sushmita et al. have used SVM for prediction of all-cause 
readmission [9, 17]. Decision trees have also been successfully used for the prediction of 
patient readmission [18]. Naïve Bayes (NB) classifiers are simple probabilistic classifiers 
which use Bayes’ theorem to classify instances. NB assumes conditional independence 
between features. Although this assumption is often not true, NB remains a useful clas-
sifier and is often used in text classification [19]. Researchers using unstructured text as 
a data source have seen good results using NB for predicting readmission [10, 20].

HRPS utilizing machine learning often produce a binary classification. Algorithms use 
training data to create a model which will classify new instances as either readmission or 
non-readmission, based on the evidence provided. This may be problematic, as patients 
with a high risk of readmission may be assigned the same classification prediction as 
those whose readmission risk is considerably lower. If resources are available to send a 
home healthcare professional to a single patient, but there are two patients classified as 
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potential readmissions, additional information is required. However, binary classifica-
tion systems often do not inherently offer additional information such as probability of 
readmission. This shortcoming limits the use of a HRPS within a CDSS.

Performance evaluation

The most common evaluation metric of HRPS performance is c-statistic [6]. C-statistic 
is defined as the area under a receiver operating characteristic (ROC) curve. ROC curves 
are graphical plots that illustrate the performance of a binary classifier as its discrimina-
tion threshold is varied. The plot compares performance of the true positive rate (TPR) 
and false positive rate (FPR) for various thresholds of classification. A survey by Kansa-
gara et al. [6] reviewed many HRPS using c-statistic as the primary performance metric 
and few perform better than 0.7. Small data samples are often cited as a primary rea-
son for poor model performance. However, models created using The United Kingdom’s 
National Health Service (NHS), using millions of patients, [21] performed similarly to a 
model created using 1029 patients [22].

The current use of c-statistic as an evaluation metric for HRPS has shown to produce 
inconsistent results. Researchers have argued that c-statistic is often used inappropri-
ately to measure the performance of classification systems [23]. Assumptions about 
misclassification cost and uniform distribution within classes may not be true and com-
parison of classification systems using c-statistic may produce incoherent results [24]. 
Although cost as a performance metric may offer a clear alternative to c-statistic, its use 
in HRPS has been limited.

Data sources

Data sources for readmission models can be categorized into structured and unstruc-
tured data [25]. Structured data is generally stored in a relational database and con-
tains information such as demographics and ICD-9 or ICD-10 codes. Current systems 
described by Kansagara et  al. [6] commonly use structured data as the primary data 
source. The main advantage to using structured data is that once extracted from a sys-
tem, little work needs to be done to convert the data into a form usable by supervised 
machine learning algorithms. Unstructured data is often represented in the form of 
clinical notes or discharge summaries. These are often written in natural language such 
as English and allow the medical professional to completely describe their thoughts 
regarding patient status. Systems using structured data may potentially lose information 
if there is no predefined input for an observation. However, unstructured data is often 
difficult to convert to a format usable by supervised machine learning algorithms. The 
field of natural language processing (NLP) can often be of assistance in structuring natu-
ral language to a usable format. Although unstructured data as a primary data source for 
hospital readmission systems has historically seen little adoption, advances in clinical 
NLP have helped increase adoption among researchers [10, 20, 26–29].

Clinical NLP software

Apache cTAKES is an open source Clinical NLP tool created and maintained by the 
Mayo Clinic [30]. Apache cTAKES annotates clinical notes using domain specific dic-
tionaries and clinically trained NLP models. Core to cTAKES is the Unified Medical 
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Language System (UMLS), a set of dictionaries and vocabularies maintained by the 
National Library of Medicine (NLM) [31]. UMLS allows cTAKES to annotate notes 
using vocabularies assembled by domain experts and enables cTAKES to separate clini-
cal and non-clinical terms. Many diseases, symptoms, and medications have variations 
in spelling, abbreviations, and usage. UMLS provides a normalization ID known as the 
Concept ID (CID) which allows terms to be reduced to their base components. Many 
variants of the same feature will often confuse machine learning models and merging 
terms that have the same semantic meaning strengthens the model and increases perfor-
mance. Figure 1 illustrates many lexical variants of asthma normalized to a single CID.

Methodology
Data

The data for this research consists of 1248 discharge summaries containing chronic 
obstructive pulmonary disease (COPD) as a primary diagnosis. Unstructured data was 
chosen as a primary data source, due to the ease of extraction from Electronic Health 
Record (EHR) systems. Discharge summaries and classification labels were available 
as Microsoft Word documents. Apache cTAKES was used to annotate discharge sum-
maries and normalize medications, diseases, and symptoms to a UMLS CID. Figure 2 
illustrates the most frequently occurring terms in this dataset. A total of 1018 UMLS 
normalized terms have been identified and extracted from this dataset using Apache 
cTAKES.

Annotations are converted to a bag-of-words representation, where each annotation 
in the corpus is a feature and the presence of an annotation in an instance is the value 
of that feature. Given the discharge summaries. The patient has asthma and diabetes 
and Jane Doe was found to have COPD and asthma, Table 1 illustrates the bag-of-words 
representation using medical terms discovered by cTAKES. In this example, the classifi-
cation label is true for the first instance (the patient was readmitted within 30 days) and 
false for the second instance (patient was not readmitted within 30 days).

The bag-of-words representation of unstructured text is inherently unable to detect 
the presence of a missing value. A missing value in the context of a clinical note would 

Fig. 1  Illustration of similar terms normalizing to a UMLS Concept ID
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imply a medical professional omitted text (either intentionally or intentionally). The 
value of a term which is present is be represented as the number one and the value of a 
term which is not present is represented as the number zero. The omission of a term in 
unstructured text is assumed to be purposeful and missing values, whether intentional 
or unintentional, are represented by the number zero.

Machine learning

Many HRPS use binary classification labels when predicting readmission [9, 14, 17, 
32–35]. However, staffing resources are often limited and a probability of readmission 
is potentially more useful. Sorting a group of patients by readmission probability allows 
patients with the highest readmission probability to be allotted the greatest number of 

Fig. 2  Frequently occurring terms in discharge summaries

Table 1  Example bag-of-words representation

Asthma Diabetes COPD Readmission

Discharge summary #1 1 1 0 True

Discharge summary #2 1 0 1 False
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resources. Though many supervised machine learning algorithms have the ability to 
coerce classification distribution, the NB machine learning algorithm naturally produces 
posterior probabilities without coercion [19]. Therefore, NB can be used to sort patients 
by likelihood of readmission. This is useful when resources are limited and an optimal 
subset of patients must be selected to minimize penalties.

Additional classifiers were considered, but early experimentation often resulted in 
models which classified all instances as positive. This may be due to the high cost of 
readmission or resulting coercion of posterior probabilities. Since these classifiers 
offered no useful predictive abilities, NB was chosen as the primary classifier.

HRRP cost

CMS has made available the formulas for which HRRP penalties are calculated [2]. The 
cost consists of two primary components: Diagnostic Related Group (DRG) amount and 
excess readmissions ratio (ERR). DRG is calculated using many variables, including case 
mix index, labor share, wage index, non-labor share, cost of living adjustments, tech-
nology payments, and total number of Medicare cases. Few of these variables can be 
affected administratively and for modeling purposes considered unchangeable. ERR is 
defined as follows

Expected readmissions rate is the target readmissions rate which CMS has assigned a given 
hospital. Using national readmission statistics and regression models, this is the rate which 
the average hospital would obtain, given a hospital’s patient demographics and disease dis-
tribution. Predicted readmissions rate is related to the actual readmissions rate obtained by 
a hospital. A risk adjustment is performed and predicted readmissions rate is the product 
of the actual rate and risk adjustment. Expected readmissions rate is considered constant 
as it is set by CMS. However, predicted readmissions rate can be lowered by lowering the 
actual readmission rate. The final penalty for a given DRG is calculated by CMS as follows

Modeling cost

Table 2 defines the variables used in cost modeling.
ERR can be expanded and risk adjustment factored out. Risk adjustment is the fraction 

of actual readmissions between [0,1] for which a hospital is responsible.

Each hospital has a set of patients for which the ground truth readmissions status is 
known. This is due either to 30-days having lapsed or the patient having experienced 
readmission. These patients are denoted P and R respectively. By definition, ρ̂ = R

P and 
can be expanded in our equation.

(1)ERR =
Predicted readmissions rate

Expected readmissions rate
− 1.

(2)Cost = (DRG)(ERR).

(3)Cost = (C)

(

ωρ̂

ρ
− 1

)

(4)Cost = (C)





ω

�

R
P

�

ρ
− 1




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When a new patient is added to our model and the ground truth readmission status 
is known to be a readmission, R increases by 1, P increases by 1, and the DRG increases 
by the cost of that patient. The expected rate ρ remains unaffected as this is set by CMS. 
The total cost is then calculated as follows.

As new patients enter the hospital, the ground truth readmission label will not be 
known for up to 30 days. However, an estimate can be calculated using the probability of 
readmission. Therefore, a new patient entering the current cost estimation model can be 
assigned a probability of readmission pr.

Additional patients may be admitted before ground truth readmission status is known 
for previous patients. As patients enter the hospital, the model increases by N patients 
and the sum of readmission probabilities 

∑N
i=1

pr. The final cost estimation for HRRP 
penalties is below:

ERR may be useful in some instances and is defined by:

(5)Cost =
�

C + Cnp

�
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�
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(8)
ERR =

ω

(

R+
∑N

i=1
pr

P+N

)

ρ
− 1.

Table 2  Variable definitions in cost model

C Total cost of Diagnostic Related Group (DRG)

Cnp Total cost of DRG for new patient(s) under analysis

ω Risk adjustment factor

R Number of readmissions for current fiscal period

P Number of total patients in DRG for current fiscal period

ρ Expected rate

ρ̂ Predicted rate

pr Probability of needing readmission

N Number of new patients under consideration

Ns Number of new patients to select for intervention

ps Probability of intervention success

c̄t Average cost of patient intervention (i.e. home healthcare professional)
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Optimal patient intervention

Given a set of N patients, it is desirable to choose the smallest subset for which to send 
a home healthcare professional. This analysis can often be done as a nightly batch pro-
cess to gather a sufficiently large number of patients for calculation. Before processing 
begins, patients must have readmission probability assigned using NB, then sorted by 
probability of readmission. Patients with the highest probability of readmission are ana-
lyzed first.

The net cost of patient intervention must include the possibility that intervention may 
not work. Internal statistics regarding the effectiveness of patient intervention may be 
collected and is represented by ps. Assuming N patients, of which we intervene for Ns, 
we can define ERR(Ns) as follows:

where (1 − ps)Ns represents the probable number of readmissions that will still occur 
even though a home healthcare professional has been assigned. Ns can be increased iter-
atively until either ERR ≤ 0 or there are no additional patients to analyze. If ERR ≤ 0, no 
additional HRRP penalties are incurred and resources for preventing readmission can 
be diverted elsewhere. Figure 3 describes the process for finding the optimal number of 
patients in which to select for intervention.

Cost estimates may additionally incorporate the average cost of a home healthcare 
professional, represented as c̄t. Assuming Ns interventions, the current total cost of 
intervention will be the following:

(9)
ERR(Ns) =

ω

(

R+(1−ps)Ns+
∑N

i=Ns
p
(i)
r

P+N

)

ρ
− 1

Fig. 3  Flowchart of selecting optimal number of patients for which to provide post-discharge care
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This represents the total cost of intervention given N patients and Ns interventions. Since 
the patients have been sorted by decreasing order of readmission probability and num-
ber of patients in analysis is constant, it is possible to iteratively increase the number 
of patients to intervene until a minimum cost is achieved. When ERR(Ns) ≤ 0, no addi-
tional cost savings are possible as CMS does not refund medical facilities for exceeding 
expected rates. No penalties will be incurred, but the cost of sending a home health-
care professional remains. If the cost of c̄t is very high or set of patients very unlikely to 
require readmission, a minimum cost where ERR(Ns) > 0 is possible. This scenario indi-
cates that patients are unlikely to need readmission and cost of intervention high. In this 
case, it is less expensive to pay HRRP penalties than to intervene. Due to the generally 
high cost of HRRP penalties, this scenario is rare.

Framework

An overview of the framework is shown in Fig. 4. Discharge summaries are gathered and 
sent to Apache cTAKES for annotation. Once annotated, features are extracted using the 
bag-of-words representation. This representation allows discharge summaries to be used 
with the NB machine learning algorithm, which predicts the probability of readmission. 
These probabilities are then sent to the MinCost algorithm which attempts to identify 
the costliest patients.

Results
Two baseline methodologies were chosen for comparison. The first baseline uses the NB 
classifier ignoring cost and performing traditional classification. Most systems reviewed 
by Kansagara et al. use a similar method of classification which ignores cost. The second 
baseline method assumes to intervene on all patients using a home healthcare profes-
sional. This method is known as all-intervention (AI). Stratified tenfold cross validation 
is performed on all comparative methodologies. Cost is reported as total cost for each 
stratified fold analysis, not per patient. Due to sampling methods, these costs are relative 
and meant to be compared with baseline methods. These are not to be taken as absolute 
costs of a typical hospital.

Obtaining a low penalty by intervening in a small number of patients is desired. This 
allows limited staffing resources to be used elsewhere. Success rate of intervention and 
other starting assumptions are shown in Tables  3 and 4. These starting assumptions 
were reached using domain expertise of typical home healthcare costs and the estimated 

(10)Cost
(Ns) = (C + Cnp)

(

ERR(Ns)
)

+ c̄tNs.

Fig. 4  Block diagram of framework
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readmission rates from two hospitals with differing patient demographics. These start-
ing assumptions have been used successfully in previous research [8].

As shown in Fig.  5, baseline classification selects many more patients than neces-
sary for readmission intervention. Average ERR for MinCost is − 0.001, however aver-
age ERR for baseline classification is −  0.04. Many patients for baseline classification 
would have received a home healthcare professional, while not actually lowering penal-
ties. Compared to binary NB classification, MinCost significantly lowers net cost when 
all factors are taken into consideration (shown in Fig. 6). These results are statistically 
significant using a paired t test, where p < 0.01 in all instances. The AI baseline meth-
odology is shown in Table  5 to have significantly larger costs than all other methods. 
Table 6 illustrates the cost savings of MinCost vs baseline methods. The average penalty 
for MinCost is 51.93% lower than classification and 90.07% lower than AI. Assumptions 
C and D are shown to have the greatest cost savings, suggesting that hospitals with high 
readmission rates may benefit most from MinCost.

In some cases, reaching a zero ERR may not be possible due to a high initial ERR or 
small number of new patients under analysis. Assumption A is modified to use a high 
initial ERR (ρ̂ = 0.148) and under this assumption, Fig. 7 shows NB classification to stop 
classifying patients for intervention far before optimal. When reaching a zero ERR is 
not possible, it may be most reasonable to send follow-up care to all or most of those 
patients in the DRG due to high costs of penalty. In this case, MinCost is reduced to 
the AI baseline. In practice, a medical facility may choose to initially only intervene in 
extremely high risk patients, while accumulating a pool of medium-to-high risk patients 
for calculation.

Table 3  Initial variable assumptions for all scenarios

C $10,000,000

Cnp $10,000 * N

ω 1

P 1000

c̄t $800

Table 4  Variable values used for each assumption scenario

Assumption R ρ ρ̂ ps

A 143 0.14 0.143 0.90

B 143 0.14 0.143 0.97

C 205 0.20 0.205 0.90

D 205 0.20 0.205 0.97
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Conclusions
Our system for minimizing HRRP penalties has shown that simply using binary read-
mission classification systems is often not sufficient. Though readmission classification 
systems may provide some insight to medical facilities with no statistical readmission 
reduction strategy in place, integrating cost into machine learning models has shown 
to significantly reduce cost by optimally selecting only those patients in greatest need of 
intervention. Our system also gives additional control and insight to staff in determining 
which patients will receive valuable resources. Probability of readmission and potential 
cost are often more useful than binary class labels which lack the ability to prioritize. 
Future work intends to further analyze the effect of cost analysis during various stages of 
care and improve patient readmission probability models.

Fig. 5  Comparison of MinCost and binary classification patient selection percentage for each assumption 
scenario
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Fig. 6  Comparison of MinCost and binary classification patient cost for each assumption scenario

Table 5  Cost results averaged over tenfold for each assumption scenario

Assumption MinCost Classification AI

A $11,920 $18,640 $96,720

B $11,040 $18,640 $96,720

C $6720 $18,640 $96,720

D $6160 $18,640 $96,720

Table 6  Percentage cost difference for MinCost vs baseline methodologies

Assumption Classification (%) AI (%)

A − 36.05 − 87.67

B − 40.77 − 88.58

C − 63.94 − 93.05

D − 66.95 − 93.63

Average − 51.93 − 90.07
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