
Clustering categorical data based on the
relational analysis approach and MapReduce
Yasmine Lamari*  and Said Chah Slaoui

Introduction
Over the past decade, the amount of information accumulated every second has become
a treasure of inestimable value. Social media sites, sensors, transactions records and
many other sources that come from everywhere are behind the Big Data phenomenon.
Consequently, considerable efforts have been devoted to exploring such massive data in
order to gain the maximum benefit from this treasure. To cope with the huge volume of
data, various parallel programming frameworks have recently emerged.

Clearly, MapReduce is the most prominent model for problems of large-scale data
processing. It was proposed by Dean and Ghemawat [1] at Google where it was suc-
cessfully used for various purposes. The strengths of this model are summarized in the
fact that it allows automatic parallelism and distribution. In addition to the fault-tolerant
mechanism that helps in overcoming failures, it provides also tools to manage the status,
monitoring, and load balancing. The locality optimization is ensured by storing data on
local disks to avoid network bandwidth consumption. Thereby, MapReduce allows us to
focus on the problem rather than on complex details of parallel programming.

Recently, the research studies in data mining are increasingly interested in the concept
of parallel programming. Data mining covers a wide variety of data analysis procedures,
including the classification, the regression, the clustering, and so on. In this paper, we

Abstract 

The traditional methods of clustering are unable to cope with the exploding volume
of data that the world is currently facing. As a solution to this problem, the research is
intensified in the direction of parallel clustering methods. Although there is a variety
of parallel programming models, the MapReduce paradigm is considered as the most
prominent model for problems of large scale data processing of which the clustering.
This paper introduces a new parallel design of a recently appeared heuristic for hard
clustering using the MapReduce programming model. In this heuristic, clustering is
performed by efficiently partitioning categorical large data sets according to the rela-
tional analysis approach. The proposed design, called PMR-Transitive, is a single-scan
and parameter-free heuristic which determines the number of clusters automatically.
The experimental results on real-life and synthetic data sets demonstrate that PMR-
Transitive produces good quality results.

Keywords:  Categorical data, Clustering, MapReduce, Relational analysis approach

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

METHODOLOGY

Lamari and Slaoui ﻿J Big Data (2017) 4:28
DOI 10.1186/s40537-017-0090-7

*Correspondence:
lamari.yasmine@gmail.com
Department of Computer
Science, Faculty of Science
of Rabat, Mohammed V
University, 1014RP, Rabat,
Morocco

http://orcid.org/0000-0001-7726-896X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-017-0090-7&domain=pdf

Page 2 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

focus on the clustering procedure, which aims to partition data into groups of similar
objects fulfilling the conditions of the maximizing the similarity between objects in the
same group, and the minimization of the similarity between objects in different groups
[2]. In order to solve this problem, we propose PMR-Transitive, which is a new parallel
heuristic based on the MapReduce programming model of a recently appeared method,
named Transitive heuristic [3]. In this heuristic, clusters are obtained by partitioning
categorical large data sets according to the relational analysis approach [4]. The rela-
tional analysis approach provides a mathematical formalism where the problem of clus-
tering takes the form of a linear program with n2 integer attributes (with n the number of
instances). Heuristics are the most convenient solution to produce satisfactory cluster-
ing results in the fastest time, particularly in the context of Big Data, where the number
of instances is large and the response time is a critical factor. Since the original heuris-
tic is sequential, it needs to be adjusted to the MapReduce model. This paper provides
a detailed description of the new design based on the key methods of the MapReduce
model, namely, Map and Reduce. And advantageously, most steps which produce high
computational costs involved in Transitive heuristic can be processed in parallel.

The remainder of this paper is organized as follows: "Motivation and related work",
presents briefly the MapReduce model and some related work. In "Relational analysis
approach", the problem statement is formalized. The overview of the Transitive heuris-
tic and its new version based on MapReduce are described in "Transitive heuristic" and
"MapReduce-based implementation of transitive" respectively. Subsequently, the experi-
mental results are presented in "Results and discussion". Finally, conclusions and propo-
sitions for future studies are drawn briefly in "Conclusions".

Motivation and related work
With the continuous increase of the data volume, the traditional methods of clustering
have reached their limitations giving rise to the parallel clustering. In this section, we
review the MapReduce frameworks and some related clustering algorithms.

MapReduce [1] is considered one of the most prominent programming models for
problems of large scale data processing of which the cluster analysis. It consists of two
phases: Map and Reduce. The Map phase is responsible for filtering and sorting, while
the Reduce phase is in charge of summarizing the outputs of the previous phase. The
Map function receives records from the input files as key-value pairs and produces inter-
mediate key-value pairs. When the Map phase is completely finished, the Reduce phase
starts. Each Reducer works on the values of a specific intermediate key and produces
one final value for the same key.

There are several implementations of the MapReduce programming model. Hadoop
offers the most popular framework in Java. Authored by Apache Software Foundation,
the project includes modules enabling a reliable and scalable distributed computing
as an open source framework. For the qualities that it provides, namely, its organized
architecture, scalability, cost effectiveness, flexibility and resilience to failure, Hadoop
MapReduce framework is used for the implementation of the proposed method.

Since there are several MapReduce-based clustering algorithms, we mention in this
section only a few relevant works such as the PKMeans [5] algorithm. PKMeans is a
MapReduce-based implementation of the k-means algorithm. It is designed with a single

Page 3 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

MapReduce job, in which the Map function is responsible for the assignment of each
sample to the nearest center, and the Reduce function is responsible for updating the
new centers. In addition to the combiner function which aggregates partially the values
of the points assigned to the same cluster in order to Reduce the communication cost.
The experiments, which have been performed in a cluster of four nodes, demonstrate
that this approach can process large data sets.

In 2011, He et al. [6] proposed the MR-DBSCAN algorithm, which is a MapReduce-
based implementation of the well-known DBSCAN algorithm. The proposed parallel
method consists of four steps. In the first step, the size and the general spatial distribu-
tion of the total records are summarized, then, a list of dimensional index indicated an
approximate grid partitioning is generated for the next step. The second step performs
the main DBSCAN process for each subspace divided by the partition profile. The third
step handles the cross border issues when merging the subspaces. At the end, a clus-
ter ID mapping, from local clusters to global one, is built for the entire data set based
on pairs lists collected from the previous step. Then, the local ID’s are changed by the
global ones for points from all partitions in order to produce a united output. The exper-
iments, which have been performed in a cluster of 13 nodes, demonstrated that the MR-
DBSCAN is efficient on large data sets since it was tested with data sets up to 50.4 GB.

In the same context, Kim et al. [7] suggested a new density-based clustering algo-
rithm, called DBCURE, in addition to its parallel version, called DBCURE-MR, which is
implemented using the MapReduce programming model. DBCURE acts as DBSCAN by
reiterating two steps. The first step selects an unvisited point in the data set which is con-
sidered as a seed and then inserts it to the seed set. In the second step, all points that are
density-reachable from the seed set are retrieved. This process produces clusters one at a
time and stops when the seed set becomes empty, contrary to its parallel version, which
finds several clusters at the same time by treating each core point in parallel through
four steps. The first step is responsible for the estimation of the neighborhood covari-
ance matrices and it is performed using two MapReduce algorithms. The second step
performs the computation of ellipsoidal τ-neighbourhoods and it is performed using two
other MapReduce algorithms. The third step discovers core clusters, which is done by a
single MapReduce algorithm. Finally, the last step is responsible for the merge of core
clusters and it is performed with a single MapReduce algorithm. The experiments, which
were performed in a cluster of 20 nodes with data sets reaching 0.5 GB, demonstrated
that the proposed approach scales up well with the MapReduce programming model.

Most the proposed MapReduce-based clustering algorithms focused on the k-means
and the DBSCAN methods which deal only with numerical data (points). It is therefore
not obvious to compare the results produced by the PMR-Transitive, which operates on
categorical data (records), with such methods. So in terms of quality, we suggest com-
paring the clustering results obtained by the proposed method with two serial cluster-
ing algorithms well-known for clustering categorical data, which are the MMR [8] and
some enhanced versions of k-modes [9]. The MMR (Min-Min-Roughness) algorithm is
based on the rough set theory, which requires the number of clusters as an input and
uses a new similarity method based on the roughness concept to produce stable results.
This algorithm is distinguished by the ability to handle uncertainty in the clustering pro-
cess. Bai and Liang proposed to use the between-cluster information to improve the

Page 4 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

effectiveness of some existing versions of the k-modes algorithm. Clustering results of
categorical data sets have demonstrated that the improvements brought to the k-modes
algorithms are effective and scalable.

The PMR-Transitive, which is proposed in this paper, is a new parallel design of the
Transitive heuristic implemented using the Hadoop MapReduce framework. As men-
tioned in the "Introduction" section, the Transitive heuristic is a fast heuristic which
finds clusters by partitioning categorical large data sets according to the relational
analysis approach. The proposed method presents some relevant points; it processes
categorical large data sets rapidly, without any prior settings or sampling method, and
guarantees a good quality solution in a reasonable time. Indeed, contrary to other algo-
rithms, the number of clusters is automatically detectable by the Transitive heuristic and
its new parallel design.

Relational analysis approach
The relational analysis approach is a mathematical data analysis model used in different
fields including clustering. It was conceived by J F Marcotorchino and P Michaud in the
late 1970s at the IBM European Center of Applied Mathematics [4]. The relational analy-
sis is defined as an optimization problem under linear constraints of the Condorcet’s cri-
terion. The detailed mathematical representation of the relational analysis approach can
be found in [10]. In this subsection, we review some basic notions of this model, since it
is the basis of the proposed parallel method and its original version.

Let E = {1, 2, ..., n} be the data set of n instances described by the set V = {v1, v2, ..., vk}
of k categorical attributes. We denote by vl(i) the value domain of the categorical attrib-
ute vl for the instance i.

To each attribute vl is assigned a matrix Cl of general term cl(i, j) with (i, j) ∈ E2:

where cl(i, j) =
{

1 if vl(i) = vl(j)
0 otherwise

Then, the following matrix, which is called the collective table or the table of Con-
dorcet, is deduced:

where c(i, j) =
∑k

l=1 cl(i, j)

In other words, c(i, j) is the number of attributes for which the instances i and j share
the same value domain.

In the relational analysis approach, a partition of the data set E is represented by the
matrix Y:

where y(i, j) =
{

1 if iRj
0 otherwise

 R is an equivalence relation.

(1)Cl =
(

cl(i, j)
)

1≤i≤n,1≤j≤n
.

(2)C =
(

c(i, j)
)

1≤i≤n,1≤j≤n
.

(3)Y =
(

y(i, j)
)

1≤i≤n,1≤j≤n
.

Page 5 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

Theoretically, the problem proposed by the relational analysis approach, which needs
to be solved, is formulated as the following: find the best partition , which represents the
clustering result, by optimizing the Condorcet’s criterion [11] accordance with the con-
straints defining an equivalence relation.

The model of linear programming, which results from the relational analysis approach,
is given below:

The original Transitive heuristic and its new parallel design, which is the subject of this
paper, are based on the relational analysis model. This choice is mainly made for the
qualities that this model presents when applied to clustering. Indeed, when applying this
formalism, a good quality clustering result can be achieved without defining the maxi-
mum number of clusters. In addition to the good quality partitions which are guaran-
teed by the concept of the paired comparisons concept.

Transitive heuristic
The purpose of the Transitive heuristic is to transform a structure of covering, which is
not transitive, into a transitive solution. In this section, we present the overview of Tran-
sitive heuristic and we formalize the definitions and concepts related to this method.

Preliminary

Let M = {m1,m2, ...,mq} be the set formed by all value domain of the k categorical
attributes. Then we denote by M(i) the set of values terms for the instance i.

Profile definition

A profile is a vector constructed from the complete disjunctive coding of an instance i.

The profile of the instance i is defined by:

Through to the concept of the profile, one can easily find the term c(i, j) previously
described in the relational analysis approach:

By adopting this technique, we avoid the computation of the Cl matrices, and conse-
quently the C matrix described in the previous section. Nonetheless, c(i, j) quantities

(4)C(Y) =
∑

i

∑

j

c(i, j) y(i, j)+ c(i, j) y(i, j).

(5)



























MaxC(Y)

Y : partition of the set E
∀ i ∈ E, y(i, i) = 1(Reflexivity)

∀ (i, j) ∈ E2, y(i, j)− y(j, i) = 0(Symmetry)

∀ (i, j, k) ∈ E3, y(i, j)+ y(j, k)− y(i, k) ≤ 1(Transitivity)

∀ (i, j) ∈ E2, y(i, j) ∈ {0, 1}(Binary)

(6)Pr(i,m) =
{

1 if m ∈ M(i)
0 otherwise

(7)P(i) =(Pr(i,m))1≤m≤q .

(8)c(i, j) =P(i) · P(j).

Page 6 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

are widely involved in the Transitive heuristic to perform the coefficient computation
and in particular for calculating the contribution function. This calls into question the
usefulness of the transformation of categorical data into binary data using the complete
disjunctive coding. In order to simplify calculating c(i, j) without needing any transfor-
mation of the original data and Reduce significantly the computational time, we propose
the following way:

Thus, c(i, j) is the cardinal of the set formed by the intersection of the two sets of values
of the terms for instances i and j.

Cluster definition

Using a representative r ∈ E, which is a random instance selected from the data set, we
define its corresponding cluster Clr by:

with coef (i, r) = c(i, r)− c(i, r).

The representative element is the generator of the cluster; it helps to speed up the heu-
ristic in the phase of separation of non-disjoint clusters. Indeed, it allows calculating the
similarity of a shared instance with the representative of each cluster, instead of calculat-
ing the similarity with all the instances contained in the cluster.

Contribution function

The contribution of an instance i to a cluster Clr is defined as follows:

Computing the contribution using the above formula consumes a lot of time since the
disjunctive table is calculated as often as there are instances in the cluster. Reducing the
computational time of the contribution function can be done by restricting comparison
of the instance solely to the cluster representative r:

Overview of transitive heuristic

The process of the Transitive heuristic is shown in Fig. 1. This heuristic consists of four
main steps: initialization, construction, intersection, and evaluation.

Firstly, in order to build the first cluster, a random instance, called representative, is
selected randomly and used to cluster instances which resemble it using the coefficient
function. All identifiers of clustered instances are saved in order to avoid selecting a new
representative which is already clustered for the next iterations.

The repetition of iterations can generate fuzzy clustering. So in order to have distinc-
tive clusters, the intersection of clusters is calculated. Then, for each shared instance a
decision of the suitable cluster is made. This decision consists of computing the contri-
bution of the shared instance based on the representatives of clusters. Then, the highest

(9)c(i, j) =|M(i) ∩M(j)|.

(10)Clr ={i ∈ E / coef (i, r) > 0}.

(11)cont(i,Clr) =
∑

j∈Clr

coef (i, j).

(12)cont(i,Clr) =coef (i, r).

Page 7 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

value means that the corresponding representative is the closest to the shared instance
in where it will be kept and removed from the others.

By virtue of its suitable features, Transitive heuristic provides good quality results in
reasonable computing time and that without using the traditional sampling methods or
even the setting of input parameters, such as the number of clusters, thresholds, and
other parameters. However, in its serial version, it cannot take advantage of the distrib-
uted systems to process big data. To make the Transitive heuristic run in a parallel envi-
ronment, some adjustments are necessary that we will discuss in the next section.

MapReduce‑based implementation of transitive
The new design of Transitive heuristic based on the MapReduce framework is illustrated
in Fig. 2. Multiple mappers run in parallel and produce partial clustering. Then, a single
reducer runs and transforms the initially obtained partitions into a final result of hard
clustering.

Map‑function

The Map function performs an initial clustering of the input data block. It gathers the
input instances (pairs) in clusters using the Condorcet’s criterion as a similarity measure

Start

Select a random and untreated representative from
the data set.

End

Gather all instances in the data set which are similar
to the representative using the Condorcet’s criterion.

Evaluate the contribution value of shared instances.

Compute intersection
of the current cluster and all

existing clusters.

Intersection ≠ Ø

Update the status of clustered instances to avoid
selecting a new representative already clustered.

Separate clusters by keeping the shared instances in
the closest cluster and removing them from others.

Check if all instances
of the data set
are clustered.

True

False

Intersection = Ø

Fig. 1  The flowchart of the Transitive heuristic

Page 8 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

and it allows the instances to belong to more than one cluster. Then, it recalculates the
representatives of clusters in the initial solution (partition). The representative of a clus-
ter is calculated on the basis of the frequency of occurrence of features in the cluster.
When the mapper is complete, it returns as an intermediate result a fuzzy clustering of
the received part of the input file that will be refined later in the Reduce phase.

The Map function outputs a collection of cluster structures. Each cluster structure
contains the representative instance and only the identifiers of the instances that are
members of the cluster with their similarity scores. The similarity scores are useful in the
Reduce phase because they avoid the recalculations of similarities in the evaluation of
the contribution of shared instances. This technique allows dispensing with the data of
clusters’ members in the Reduce phase, thus, we decrease the amount of data sent from
the Map phase to the Reduce phase. The pseudo code of the function of the Map phase
is given below.

Algorithm 1 Map (key, value)
Input: < k, v > pair, k: the identifier of the instance, v: the corresponding data record.
Output: < ki, vi > pair, ki: the data record of the cluster’s representative, vi: the members of the

cluster (only their identifiers and similarity scores).
1: Initialize clusters: a collection to save the discovered clusters;
2: for each cluster in clusters do
3: sim ← Compute Condorcet Score(cluster.representative,v);
4: if sim > 0 then
5: Add k and sim to cluster.members;
6: Update cluster.representative;
7: end if
8: end for
9: if < k, v > does not resemble any existing cluster then
10: Add a new cluster to clusters with v as representative, k as member, 1 as similarity score;
11: end if
12: When the mapper is complete, output < ki, vi > pair for each cluster in clusters;

Reduce‑function

The clusters produced during the Map phase of each host may share some instances.
However, the aim of the proposed method is to produce a hard clustering. The Reduce
phase is responsible for the separation of clusters. This is achieved by computing the
intersection of clusters in order to determine the shared members. Then, for each shared

M1

M2

Mn

R1

Reducer separates the input
partitions in order to

produce hard clustering

Mappers produce initial
partitions then compute the
representatives of clusters

MapReduce job

Fig. 2  The design of PMR-Transitive using a single MapReduce job

Page 9 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

member we compare its similarity to the clusters in which it belongs. This information
lies in the similarity scores of this member. In fact, the higher score indicates that the
corresponding cluster is the most suitable for the shared member, and in which it will be
kept in this cluster and removed from all others. This process stops when all clusters are
disjointed.

In this proposed parallel design of Transitive heuristic, we considered a single reducer,
and therefore it can be thought that this is expensive in term of run time. But the Reduce
phase involves merely some comparisons between the members of clusters and there is
no need to recalculate the similarities between members and representatives. And so,
we obtain clusters which are consistent and accurate as a final steady result. The pseudo
code of the function of the Reduce phase is given below.

Algorithm 2 Reduce (key, value)
Input: < k, v > pair, k: the data record of the representative, v: the members of the cluster.
Output: < ki, vi > pair, ki: the identifier of the cluster, vi: the corresponding members.
1: Initialize clusters: a collection to save the final clusters;
2: index ← 1;
3: if clusters = ∅ then
4: Add a new cluster to clusters with index as identifier, v as members;
5: index ← 1;
6: else
7: for each cluster in clusters do
8: intersect ← v ∩ cluster.members;
9: if intersect �= ∅ then
10: for each member in intersect do
11: Keep member in the cluster corresponding to the highest similarity score;
12: end for
13: end if
14: end for
15: if v = ∅ then
16: Add a new cluster to clusters with index as identifier, v as members;
17: index ← index+ 1;
18: end if
19: end if
20: When the reducer is complete, output < ki, vi > pair for each cluster in clusters;

Discussion

Some noteworthy adjustments were brought to the original Transitive heuristic to match
the MapReduce programming model:

• • Unlike Transitive heuristic, the selection of representatives of clusters in PMR-Tran-
sitive is not carried out in a random way. In fact, the first key-value pair introduced
to the Map function is considered to be an initial representative. The next inputs that
follow are either added to existing clusters, or considered as initial representatives
that will be updated after the construction step, and so on.

• • In the Transitive heuristic, the initialization step takes place before the construc-
tion step. Indeed, first the representative is selected, and then its cluster is built. The
PMR-Transitive shifts those steps because of the forsaken random selection and
which is not applied to the MapReduce framework.

• • In the Transitive heuristic, the representatives are instances that are selected ran-
domly from the data set, while in the PMR-Transitive heuristic they are fictive and
computed based on the profile of the cluster’s members.

Page 10 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

• • Another important point, it concerns the fact that Transitive heuristic is an iterative
method, while the proposed parallel design is a single-pass heuristic.

Results and discussion
In this section, we evaluate the quality of clustering results and the performance of
PMR-Transitive regarding some commonly used categorical real-life and synthetic data
sets. The clustering result is assessed by the purity (also called accuracy) measure, the
normalized mutual information (NMI), and the adjusted rand index (ARI) [12].

The performance experiments were run on a single node, which has a quad-core pro-
cessor of 3.60 GHz and 8 GB of memory and using Hadoop version 2.2.0 and Java 1.7.0.
The size of blocks used for the experiments is 64 MB.

Clustering evaluation metrics

Purity

The purity of a cluster i measures the extent to which this contains objects of a single
class and it is defined as:

where ni denotes the size of the cluster i, nki is the number of instances that are correctly
assigned in the cluster i, and k denotes the dominant class in the cluster i. Then, the
overall purity is defined as:

where k denotes the number of clusters.

Normalized mutual information

The normalized mutual information is bounded in [0, 1], and like the purity measure, it
should be maximized:

where I(Pi,Ph) is the mutual information of the produced partition and the ground truth
partition and it is calculated as follows:

where ni and nh are the sizes of the cluster i and the class h respectively, and nhi denotes
the number of instances in the cluster i, which belong to the class h. E(Pi) and E(Ph) rep-
resent the entropy of the produced partition and the ground truth partition, and N is the
total number of instances in the data set.

(13)Pi =
nki
ni

.

(14)P =
1

k

k
∑

i=1

Pi.

(15)NMI =
I(Pi,Ph)√
E(Pi)E(Ph)

.

(16)I(Pi,Ph) =
∑

i

∑

h

nhi
N

log
Nnhi
ninh

.

Page 11 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

Adjusted rand index

The adjusted rand index [13] is also bounded in [0, 1] and it is defined as:

where Pi represents the produced partition and Ph represents the ground truth partition,
nhi denotes the number of instances that belong to the class h in the cluster i , ni denotes
the sizes of the cluster i, nh denotes the size of the class h, and N is the total number of
instances in the data set.

Data sets description

All real-life data sets used in the experiments were retrieved from UCI Machine Learn-
ing Repository [14]. Table 1 presents a brief description of the categorical data sets used
in the experiments.

Clustering results

These experiments measure the quality of the clustering results. We show in detail the
partitions obtained when using the real-life data sets described above.
Table 2 contains the clustering results obtained when applying the PMR-Transitive
method to the soybean data set. 5 clusters have been discovered, of which four reached
the maximum purity value. It is noteworthy that the number of clusters discovered by
the PMR-Transitive is very close to the number of classes (four diseases) in the soybean
data set. The obtained partition contains only one incorrectly clustered instance (in clus-
ter four). Thus, the overall purity of the clustering result is 97%.

Table 3 contains the clustering results obtained when applying the PMR-Transitive
method to the zoo data set. 7 clusters have been discovered, of which two reached the

(17)

ARI(Pi,Ph) =

∑

i,h

(

nhi
2

)

−
[

∑

i

(

ni
2

)

∑

h

(

nh
2

)]/(

N
2

)

1
2

[

∑

i

(

ni
2

)

+
∑

h

(

nh
2

)]

−
[

∑

i

(

ni
2

)

∑

h

(

nh
2

)]/(

N
2

) .

Table 1  Description of real-life data sets

Data set Size Number of attributes Number of classes Missing values

Soybean 47 35 4 No

Zoo 101 17 7 No

Mushroom 8124 22 2 Yes

Table 2  Clustering result of PMR-Transitive applied to the soybean data set

Cluster Size Distribution Purity

C1 C2 C3 C4

1 10 10 0 0 0 1

2 10 0 10 0 0 1

3 9 0 0 9 0 1

4 7 0 0 1 6 0.85

5 11 0 0 0 11 1

Page 12 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

maximum purity value. Once again, the number of clusters discovered by the proposed
method corresponds to the number of classes in the zoo data set. In the obtained parti-
tion, 92 instances are correctly assigned giving 91% as overall purity.

Table 4 contains the clustering results obtained when applying the PMR-Transitive
method to the mushroom data set. 16 clusters have been discovered, of which 13 reached
the maximum purity value. As reported in [3], the number of clusters discovered by the
Transitive heuristic is 14 for this data set. The clusters 6, 12, and 13 in Table 4 are also
observed in the result of the original method.

Table 5 shows the evaluation of clustering results of PMR-Transitive according to
the purity, the NMI, and the ARI metrics. When the results are assessed using the ARI
measure, the number of clusters must meet the number of classes in the clustering parti-
tion recognized as the ground truth in order to maximize the value of ARI. This is not
applicable for the PMR-Transitive heuristic since it automatically detects the number of
clusters. This explains why the values of ARI decrease somewhat.

Table 3  Clustering result of PMR-Transitive applied to the zoo data set

 Cluster Size Distribution Purity

C1 C2 C3 C4 C5 C6 C7

1 42 41 0 1 0 0 0 0 0.98

2 5 0 4 1 0 0 0 0 0.80

3 17 0 16 0 0 0 1 0 0.94

4 17 0 0 3 13 1 0 0 0.76

5 3 0 0 0 0 3 0 0 1

6 5 0 0 0 0 0 5 0 1

7 12 0 0 0 0 0 2 10 0.83

Table 4  Clustering result of PMR-Transitive applied to the mushroom data set

 Cluster Size Distribution Purity

C1 C2

1 2010 1937 73 0.96

2 768 768 0 1

3 307 307 0 1

4 89 48 41 0.54

5 185 185 0 1

6 192 192 0 1

7 17 17 0 1

8 48 48 0 1

9 963 706 257 0.73

10 1719 0 1719 1

11 291 0 291 1

12 36 0 36 1

13 1296 0 1296 1

14 7 0 7 1

15 8 0 8 1

16 188 0 188 1

Page 13 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

When the MMR [8], the ROCK [15], and the Squeezer [16] algorithms are applied to
the mushroom data set, they produce 20 clusters, 21 clusters, and 24 clusters, respec-
tively, which are fairly large. While the proposed method outperforms these cluster-
ing algorithms in term of the number of clusters discovered compared to the quality of
clustering.

Figure 3 presents a comparison of the overall purity obtained by applying the proposed
method using the real-life data sets described above. For comparison purposes, we pre-
sent some results reported in [8] and [9] concerning, respectively, the performance of
the MMR algorithm and some enhanced k-modes versions applied to the same data sets
used to assess the quality of results produced by the proposed method.

The original Transitive heuristic outperforms its new parallel version, PMR-Transitive,
as to the mushroom data set. This can be explained by the fact that the Transitive heuris-
tic is a multiple scan method, while the PMR-Transitive is a single-scan method. How-
ever, it must not be forgotten that the results produced by the original method represent
the best in 100 runs, since the random start of the Transitive heuristic produces a dif-
ferent solution for each run, while the proposed method reaches good quality results,
stable, and reproducible.

In general, the performance of the proposed method and its predecessor is better than
the results obtained with the MMR and the k-modes algorithms, except for the soybean

Table 5  Evaluation of clustering results of PMR-Transitive according to the purity, NMI,
and ARI metrics

Data set Purity NMI ARI

Soybean 0.97 0.95 0.78

Zoo 0.91 0.85 0.88

Mushroom 0.96 0.82 0.44

0

10

20

30

40

50

60

70

80

90

100

Soybean Zoo Mushroom

PMR-Transitive Transitive

MMR Huang's k-modes

Weighted k-modes Ng's k-modes

O
ve

ra
ll

pu
ri

ty
 (%

)

Data sets
Fig. 3  Comparison of PMR-Transitive with transitive, MMR, and k-modes algorithms on real-life data sets

Page 14 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

data set, where the enhanced Ng’s k-modes algorithm produces a high-quality result
reaching 99% of purity.

It should be noted that Transitive and its new parallel design are different from other
methods of clustering categorical data, including, MMR and k-modes, regarding some
relevant points. First, PMR-Transitive is a free parameter method, which determines
automatically the number of clusters. Second, the proposed method operates on the
entire data set and does not use any kind of data sampling or any data preprocessing.

Performance results

In this section, we evaluate the performance of the proposed method. For this purpose,
we have generated synthetic data sets, which their sizes vary from 1 to 10 MB.
Figure 4 presents a comparison of the end-to-end running time of the Transitive heuris-
tic and its proposed parallel design. The PMR-Transitive method achieved a speedup up
to 8× over the original sequential method on large data sets.

As described in "MapReduce-based implementation of transitive", PMR-Transitive is
designed with multiple parallel Map tasks and a single Reduce task that may appear as
a bottleneck. However, Fig. 5 shows that more the size of the data set is large, more the
time consumed by the Reduce task decreases.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

2 4 6 8 10

Transitive
PMR-
Transitive

R
un

ni
ng

 ti
m

e
(in

 se
co

nd
)

Data sets (in MB)
Fig. 4  Running time comparison between the proposed method and the Transitive heuristic

0

10

20

30

40

50

60

2 4 6 8 10

Map
Reduce

Data sets (in MB)

R
un

ni
n

tim
e

(in
 se

co
nd

)

Fig. 5  Running times of the Map and the Reduce phases for different synthetic data sets

Page 15 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

Conclusions
In this paper, we presented a new parallel clustering design of a recently appeared
method, named Transitive heuristic. The proposed method processes large categorical
data based on the relational analysis approach. We described in detail Transitive heuris-
tic and its new parallel design, named PMR-Transitive, and then we discussed the adjust-
ments that were brought to the original heuristic in order to adapt it to the MapReduce
framework. Finally, we evaluated the quality of the clustering results produced while
using real-life data sets. The results demonstrate that both methods, transitive and PMR-
Transitive, are efficient and produce clusters of good quality.

In our future work, we plan to extend the PMR-Transitive heuristic to manage multi-
ple data types and to treat outliers while keeping its characteristics and benefits. We also
hope to test this method on a multi-nodes cluster environment in order to evaluate its
performance with respect to Big Data.
Authors’ contributions
SCS first proposed the design of the original serial method, which is called Transitive. YL carried out its implementa-
tion and evaluation. Additionally, she suggested the parallel implementation of the Transitive heuristic as a single-pass
method using the MapReduce model. Both authors read and approved the manuscript.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The real-life data sets supporting the conclusions of this article are available in [UCI Machine Learning Repository. http://
archive.ics.uci.edu/ml].

The synthetic data sets supporting the conclusions of this article were produced using the generator available in
[The datgen Dataset Generator. http://www.datasetgenerator.com]

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 August 2017 Accepted: 18 September 2017

References
	1.	 Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. In: Proceedings of the 6th conference

on symposium on operating systems design and implementation: 06–08 December 2004; San Francisco. Berkeley:
USENIX Association. 2004. p. 137–50.

	2.	 Berkhin P. A survey of clustering data mining techniques. In: Kogan J, Nicholas C, Teboulle M, editors. Grouping
multidimensional data. Heidelberg: Springer; 2006. p. 25–71.

	3.	 Slaoui SC, Lamari Y. Clustering of large data based on the relational analysis. In: Proceedings of the international con-
ference on intelligent systems and computer vision. 25–26 March 2015; Fez. Washington: IEEE Computer Society.
2015. p. 1–7.

	4.	 Michaud P, Marcotorchino JF. Modèles d’optimisation en analyse des données relationnelles. Math Sci Hum.
1979;67:7–38.

	5.	 Zhao W, Ma H, He Q. Parallel k-means clustering based on mapreduce. In: Proceedings of the first international
conference on Cloud Computing. 1–4 December 2009; Beijing. Heidelberg: Springer-Verlag. 2009. p. 674–79.

	6.	 He Y, Tan H, Luo W, Mao H, Ma D, Feng S, Fan J. Mr-dbscan: an efficient parallel density-based clustering algorithm
using mapreduce. In: Proceedings of the 17th international conference on parallel and distributed systems: 7–9
December 2011; Tainan. Washington: IEEE Computer Society. 2011. p. 473–80.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.datasetgenerator.com

Page 16 of 16Lamari and Slaoui ﻿J Big Data (2017) 4:28

	7.	 Kim Y, Shim K, Kim M-S, Lee JS. Dbcure-MR: an efficient density-based clustering algorithm for large data using
mapreduce. Inf Syst. 2014;42:15–35.

	8.	 Parmar D, Wu T, Blackhurst J. MMR: an algorithm for clustering categorical data using rough set theory. Data Knowl
Eng. 2007;63(3):879–93.

	9.	 Bai L, Liang J. The k-modes type clustering plus between-cluster information for categorical data. Neurocomputing.
2014;133:111–21.

	10.	 Ah-Pine J, Marcotorchino JF. Overview of the relational analysis approach in data-mining and multi-criteria decision
making. In: Usmani ZUH, editor. Web intelligence and intelligent agents. Rijeka: InTech; 2010. p. 325–46.

	11.	 Michaud P. Condorcet—a man of the avant-garde. Appl Stoch Models Data Anal. 1987;3(3):173–89.
	12.	 Manning CD, Raghavan P, Schütze H. Evaluation in information retrieval. In: Introduction to information retrieval.

New York: Cambridge University Press. 2008. p. 151–75.
	13.	 Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2(1):193–218.
	14.	 UCI Machine Learning Repository: data sets. https://archive.ics.uci.edu/ml/datasets.html.
	15.	 Guha S, Rastogi R, Shim K. Rock: a robust clustering algorithm for categorical attributes. Inf Syst. 2000;25(5):345–66.
	16.	 He Z, Xu X, Deng S. Squeezer: an efficient algorithm for clustering categorical data. J Comput Sci Technol.

2002;17(5):611–24.

https://archive.ics.uci.edu/ml/datasets.html

	Clustering categorical data based on the relational analysis approach and MapReduce
	Abstract
	Introduction
	Motivation and related work
	Relational analysis approach
	Transitive heuristic
	Preliminary
	Profile definition
	Cluster definition
	Contribution function

	Overview of transitive heuristic

	MapReduce-based implementation of transitive
	Map-function
	Reduce-function
	Discussion

	Results and discussion
	Clustering evaluation metrics
	Purity
	Normalized mutual information
	Adjusted rand index

	Data sets description
	Clustering results
	Performance results

	Conclusions
	Authors’ contributions
	References

