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Introduction
Over the past decade, the amount of information accumulated every second has become 
a treasure of inestimable value. Social media sites, sensors, transactions records and 
many other sources that come from everywhere are behind the Big Data phenomenon. 
Consequently, considerable efforts have been devoted to exploring such massive data in 
order to gain the maximum benefit from this treasure. To cope with the huge volume of 
data, various parallel programming frameworks have recently emerged.

Clearly, MapReduce is the most prominent model for problems of large-scale data 
processing. It was proposed by Dean and Ghemawat [1] at Google where it was suc-
cessfully used for various purposes. The strengths of this model are summarized in the 
fact that it allows automatic parallelism and distribution. In addition to the fault-tolerant 
mechanism that helps in overcoming failures, it provides also tools to manage the status, 
monitoring, and load balancing. The locality optimization is ensured by storing data on 
local disks to avoid network bandwidth consumption. Thereby, MapReduce allows us to 
focus on the problem rather than on complex details of parallel programming.

Recently, the research studies in data mining are increasingly interested in the concept 
of parallel programming. Data mining covers a wide variety of data analysis procedures, 
including the classification, the regression, the clustering, and so on. In this paper, we 
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focus on the clustering procedure, which aims to partition data into groups of similar 
objects fulfilling the conditions of the maximizing the similarity between objects in the 
same group, and the minimization of the similarity between objects in different groups 
[2]. In order to solve this problem, we propose PMR-Transitive, which is a new parallel 
heuristic based on the MapReduce programming model of a recently appeared method, 
named Transitive heuristic [3]. In this heuristic, clusters are obtained by partitioning 
categorical large data sets according to the relational analysis approach [4]. The rela-
tional analysis approach provides a mathematical formalism where the problem of clus-
tering takes the form of a linear program with n2 integer attributes (with n the number of 
instances). Heuristics are the most convenient solution to produce satisfactory cluster-
ing results in the fastest time, particularly in the context of Big Data, where the number 
of instances is large and the response time is a critical factor. Since the original heuris-
tic is sequential, it needs to be adjusted to the MapReduce model. This paper provides 
a detailed description of the new design based on the key methods of the MapReduce 
model, namely, Map and Reduce. And advantageously, most steps which produce high 
computational costs involved in Transitive heuristic can be processed in parallel.

The remainder of this paper is organized as follows: "Motivation and related work", 
presents briefly the MapReduce model and some related work. In "Relational analysis 
approach", the problem statement is formalized. The overview of the Transitive heuris-
tic and its new version based on MapReduce are described in "Transitive heuristic" and 
"MapReduce-based implementation of transitive" respectively. Subsequently, the experi-
mental results are presented in "Results and discussion". Finally, conclusions and propo-
sitions for future studies are drawn briefly in "Conclusions".

Motivation and related work
With the continuous increase of the data volume, the traditional methods of clustering 
have reached their limitations giving rise to the parallel clustering. In this section, we 
review the MapReduce frameworks and some related clustering algorithms.

MapReduce [1] is considered one of the most prominent programming models for 
problems of large scale data processing of which the cluster analysis. It consists of two 
phases: Map and Reduce. The Map phase is responsible for filtering and sorting, while 
the Reduce phase is in charge of summarizing the outputs of the previous phase. The 
Map function receives records from the input files as key-value pairs and produces inter-
mediate key-value pairs. When the Map phase is completely finished, the Reduce phase 
starts. Each Reducer works on the values of a specific intermediate key and produces 
one final value for the same key.

There are several implementations of the MapReduce programming model. Hadoop 
offers the most popular framework in Java. Authored by Apache Software Foundation, 
the project includes modules enabling a reliable and scalable distributed computing 
as an open source framework. For the qualities that it provides, namely, its organized 
architecture, scalability, cost effectiveness, flexibility and resilience to failure, Hadoop 
MapReduce framework is used for the implementation of the proposed method.

Since there are several MapReduce-based clustering algorithms, we mention in this 
section only a few relevant works such as the PKMeans [5] algorithm. PKMeans is a 
MapReduce-based implementation of the k-means algorithm. It is designed with a single 
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MapReduce job, in which the Map function is responsible for the assignment of each 
sample to the nearest center, and the Reduce function is responsible for updating the 
new centers. In addition to the combiner function which aggregates partially the values 
of the points assigned to the same cluster in order to Reduce the communication cost. 
The experiments, which have been performed in a cluster of four nodes, demonstrate 
that this approach can process large data sets.

In 2011, He et al. [6] proposed the MR-DBSCAN algorithm, which is a MapReduce-
based implementation of the well-known DBSCAN algorithm. The proposed parallel 
method consists of four steps. In the first step, the size and the general spatial distribu-
tion of the total records are summarized, then, a list of dimensional index indicated an 
approximate grid partitioning is generated for the next step. The second step performs 
the main DBSCAN process for each subspace divided by the partition profile. The third 
step handles the cross border issues when merging the subspaces. At the end, a clus-
ter ID mapping, from local clusters to global one, is built for the entire data set based 
on pairs lists collected from the previous step. Then, the local ID’s are changed by the 
global ones for points from all partitions in order to produce a united output. The exper-
iments, which have been performed in a cluster of 13 nodes, demonstrated that the MR-
DBSCAN is efficient on large data sets since it was tested with data sets up to 50.4 GB.

In the same context, Kim et  al. [7] suggested a new density-based clustering algo-
rithm, called DBCURE, in addition to its parallel version, called DBCURE-MR, which is 
implemented using the MapReduce programming model. DBCURE acts as DBSCAN by 
reiterating two steps. The first step selects an unvisited point in the data set which is con-
sidered as a seed and then inserts it to the seed set. In the second step, all points that are 
density-reachable from the seed set are retrieved. This process produces clusters one at a 
time and stops when the seed set becomes empty, contrary to its parallel version, which 
finds several clusters at the same time by treating each core point in parallel through 
four steps. The first step is responsible for the estimation of the neighborhood covari-
ance matrices and it is performed using two MapReduce algorithms. The second step 
performs the computation of ellipsoidal τ-neighbourhoods and it is performed using two 
other MapReduce algorithms. The third step discovers core clusters, which is done by a 
single MapReduce algorithm. Finally, the last step is responsible for the merge of core 
clusters and it is performed with a single MapReduce algorithm. The experiments, which 
were performed in a cluster of 20 nodes with data sets reaching 0.5 GB, demonstrated 
that the proposed approach scales up well with the MapReduce programming model.

Most the proposed MapReduce-based clustering algorithms focused on the k-means 
and the DBSCAN methods which deal only with numerical data (points). It is therefore 
not obvious to compare the results produced by the PMR-Transitive, which operates on 
categorical data (records), with such methods. So in terms of quality, we suggest com-
paring the clustering results obtained by the proposed method with two serial cluster-
ing algorithms well-known for clustering categorical data, which are the MMR [8] and 
some enhanced versions of k-modes [9]. The MMR (Min-Min-Roughness) algorithm is 
based on the rough set theory, which requires the number of clusters as an input and 
uses a new similarity method based on the roughness concept to produce stable results. 
This algorithm is distinguished by the ability to handle uncertainty in the clustering pro-
cess. Bai and Liang proposed to use the between-cluster information to improve the 
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effectiveness of some existing versions of the k-modes algorithm. Clustering results of 
categorical data sets have demonstrated that the improvements brought to the k-modes 
algorithms are effective and scalable.

The PMR-Transitive, which is proposed in this paper, is a new parallel design of the 
Transitive heuristic implemented using the Hadoop MapReduce framework. As men-
tioned in the "Introduction" section, the Transitive heuristic is a fast heuristic which 
finds clusters by partitioning categorical large data sets according to the relational 
analysis approach. The proposed method presents some relevant points; it processes 
categorical large data sets rapidly, without any prior settings or sampling method, and 
guarantees a good quality solution in a reasonable time. Indeed, contrary to other algo-
rithms, the number of clusters is automatically detectable by the Transitive heuristic and 
its new parallel design.

Relational analysis approach
The relational analysis approach is a mathematical data analysis model used in different 
fields including clustering. It was conceived by J F Marcotorchino and P Michaud in the 
late 1970s at the IBM European Center of Applied Mathematics [4]. The relational analy-
sis is defined as an optimization problem under linear constraints of the Condorcet’s cri-
terion. The detailed mathematical representation of the relational analysis approach can 
be found in [10]. In this subsection, we review some basic notions of this model, since it 
is the basis of the proposed parallel method and its original version.

Let E = {1, 2, ..., n} be the data set of n instances described by the set V = {v1, v2, ..., vk} 
of k categorical attributes. We denote by vl(i) the value domain of the categorical attrib-
ute vl for the instance i.

To each attribute vl is assigned a matrix Cl of general term cl(i, j) with (i, j) ∈ E2:

where cl(i, j) =
{

1 if vl(i) = vl(j)
0 otherwise

Then, the following matrix, which is called the collective table or the table of Con-
dorcet, is deduced:

where c(i, j) =
∑k

l=1 cl(i, j)

In other words, c(i, j) is the number of attributes for which the instances i and j share 
the same value domain.

In the relational analysis approach, a partition of the data set E is represented by the 
matrix Y:

where y(i, j) =
{

1 if iRj
0 otherwise

 R is an equivalence relation.

(1)Cl =
(

cl(i, j)
)

1≤i≤n,1≤j≤n
.

(2)C =
(

c(i, j)
)

1≤i≤n,1≤j≤n
.

(3)Y =
(

y(i, j)
)

1≤i≤n,1≤j≤n
.
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Theoretically, the problem proposed by the relational analysis approach, which needs 
to be solved, is formulated as the following: find the best partition , which represents the 
clustering result, by optimizing the Condorcet’s criterion [11] accordance with the con-
straints defining an equivalence relation.

The model of linear programming, which results from the relational analysis approach, 
is given below:

The original Transitive heuristic and its new parallel design, which is the subject of this 
paper, are based on the relational analysis model. This choice is mainly made for the 
qualities that this model presents when applied to clustering. Indeed, when applying this 
formalism, a good quality clustering result can be achieved without defining the maxi-
mum number of clusters. In addition to the good quality partitions which are guaran-
teed by the concept of the paired comparisons concept.

Transitive heuristic
The purpose of the Transitive heuristic is to transform a structure of covering, which is 
not transitive, into a transitive solution. In this section, we present the overview of Tran-
sitive heuristic and we formalize the definitions and concepts related to this method.

Preliminary

Let M = {m1,m2, ...,mq} be the set formed by all value domain of the k categorical 
attributes. Then we denote by M(i) the set of values terms for the instance i.

Profile definition

A profile is a vector constructed from the complete disjunctive coding of an instance i.

The profile of the instance i is defined by:

Through to the concept of the profile, one can easily find the term c(i,  j) previously 
described in the relational analysis approach:

By adopting this technique, we avoid the computation of the Cl matrices, and conse-
quently the C matrix described in the previous section. Nonetheless, c(i,  j) quantities 

(4)C(Y ) =
∑

i

∑

j

c(i, j) y(i, j)+ c(i, j) y(i, j).

(5)



























MaxC(Y )

Y : partition of the set E
∀ i ∈ E, y(i, i) = 1(Reflexivity)

∀ (i, j) ∈ E2, y(i, j)− y(j, i) = 0(Symmetry)

∀ (i, j, k) ∈ E3, y(i, j)+ y(j, k)− y(i, k) ≤ 1(Transitivity)

∀ (i, j) ∈ E2, y(i, j) ∈ {0, 1}(Binary)

(6)Pr(i,m) =
{

1 if m ∈ M(i)
0 otherwise

(7)P(i) =(Pr(i,m))1≤m≤q .

(8)c(i, j) =P(i) · P(j).
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are widely involved in the Transitive heuristic to perform the coefficient computation 
and in particular for calculating the contribution function. This calls into question the 
usefulness of the transformation of categorical data into binary data using the complete 
disjunctive coding. In order to simplify calculating c(i, j) without needing any transfor-
mation of the original data and Reduce significantly the computational time, we propose 
the following way:

Thus, c(i, j) is the cardinal of the set formed by the intersection of the two sets of values 
of the terms for instances i and j.

Cluster definition

Using a representative r ∈ E, which is a random instance selected from the data set, we 
define its corresponding cluster Clr by:

with coef (i, r) = c(i, r)− c(i, r).

The representative element is the generator of the cluster; it helps to speed up the heu-
ristic in the phase of separation of non-disjoint clusters. Indeed, it allows calculating the 
similarity of a shared instance with the representative of each cluster, instead of calculat-
ing the similarity with all the instances contained in the cluster.

Contribution function

The contribution of an instance i to a cluster Clr is defined as follows:

Computing the contribution using the above formula consumes a lot of time since the 
disjunctive table is calculated as often as there are instances in the cluster. Reducing the 
computational time of the contribution function can be done by restricting comparison 
of the instance solely to the cluster representative r:

Overview of transitive heuristic

The process of the Transitive heuristic is shown in Fig. 1. This heuristic consists of four 
main steps: initialization, construction, intersection, and evaluation.

Firstly, in order to build the first cluster, a random instance, called representative, is 
selected randomly and used to cluster instances which resemble it using the coefficient 
function. All identifiers of clustered instances are saved in order to avoid selecting a new 
representative which is already clustered for the next iterations.

The repetition of iterations can generate fuzzy clustering. So in order to have distinc-
tive clusters, the intersection of clusters is calculated. Then, for each shared instance a 
decision of the suitable cluster is made. This decision consists of computing the contri-
bution of the shared instance based on the representatives of clusters. Then, the highest 

(9)c(i, j) =|M(i) ∩M(j)|.

(10)Clr ={i ∈ E / coef (i, r) > 0}.

(11)cont(i,Clr) =
∑

j∈Clr

coef (i, j).

(12)cont(i,Clr) =coef (i, r).
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value means that the corresponding representative is the closest to the shared instance 
in where it will be kept and removed from the others.

By virtue of its suitable features, Transitive heuristic provides good quality results in 
reasonable computing time and that without using the traditional sampling methods or 
even the setting of input parameters, such as the number of clusters, thresholds, and 
other parameters. However, in its serial version, it cannot take advantage of the distrib-
uted systems to process big data. To make the Transitive heuristic run in a parallel envi-
ronment, some adjustments are necessary that we will discuss in the next section.

MapReduce‑based implementation of transitive
The new design of Transitive heuristic based on the MapReduce framework is illustrated 
in Fig. 2. Multiple mappers run in parallel and produce partial clustering. Then, a single 
reducer runs and transforms the initially obtained partitions into a final result of hard 
clustering.

Map‑function

The Map function performs an initial clustering of the input data block. It gathers the 
input instances (pairs) in clusters using the Condorcet’s criterion as a similarity measure 

Start

Select a random and untreated representative from 
the data set.

End

Gather all instances in the data set which are similar 
to the representative using the Condorcet’s criterion.

Evaluate the contribution value of shared instances.

Compute intersection 
of the current cluster and all 

existing clusters. 

Intersection ≠ Ø

Update the status of clustered instances to avoid 
selecting a new representative already clustered.

Separate clusters by keeping the shared instances in 
the closest cluster and removing them from others.

Check if all instances 
of the data set
are clustered. 

True

False

Intersection = Ø

Fig. 1  The flowchart of the Transitive heuristic
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and it allows the instances to belong to more than one cluster. Then, it recalculates the 
representatives of clusters in the initial solution (partition). The representative of a clus-
ter is calculated on the basis of the frequency of occurrence of features in the cluster. 
When the mapper is complete, it returns as an intermediate result a fuzzy clustering of 
the received part of the input file that will be refined later in the Reduce phase.

The Map function outputs a collection of cluster structures. Each cluster structure 
contains the representative instance and only the identifiers of the instances that are 
members of the cluster with their similarity scores. The similarity scores are useful in the 
Reduce phase because they avoid the recalculations of similarities in the evaluation of 
the contribution of shared instances. This technique allows dispensing with the data of 
clusters’ members in the Reduce phase, thus, we decrease the amount of data sent from 
the Map phase to the Reduce phase. The pseudo code of the function of the Map phase 
is given below.

Algorithm 1 Map (key, value)
Input: < k, v > pair, k: the identifier of the instance, v: the corresponding data record.
Output: < ki, vi > pair, ki: the data record of the cluster’s representative, vi: the members of the

cluster (only their identifiers and similarity scores).
1: Initialize clusters: a collection to save the discovered clusters;
2: for each cluster in clusters do
3: sim ← Compute Condorcet Score(cluster.representative,v);
4: if sim > 0 then
5: Add k and sim to cluster.members;
6: Update cluster.representative;
7: end if
8: end for
9: if < k, v > does not resemble any existing cluster then
10: Add a new cluster to clusters with v as representative, k as member, 1 as similarity score;
11: end if
12: When the mapper is complete, output < ki, vi > pair for each cluster in clusters;

Reduce‑function

The clusters produced during the Map phase of each host may share some instances. 
However, the aim of the proposed method is to produce a hard clustering. The Reduce 
phase is responsible for the separation of clusters. This is achieved by computing the 
intersection of clusters in order to determine the shared members. Then, for each shared 

M1

M2

Mn

R1

Reducer separates the input 
partitions in order to 

produce hard clustering

Mappers produce initial 
partitions then compute the 
representatives of clusters

MapReduce job

Fig. 2  The design of PMR-Transitive using a single MapReduce job
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member we compare its similarity to the clusters in which it belongs. This information 
lies in the similarity scores of this member. In fact, the higher score indicates that the 
corresponding cluster is the most suitable for the shared member, and in which it will be 
kept in this cluster and removed from all others. This process stops when all clusters are 
disjointed.

In this proposed parallel design of Transitive heuristic, we considered a single reducer, 
and therefore it can be thought that this is expensive in term of run time. But the Reduce 
phase involves merely some comparisons between the members of clusters and there is 
no need to recalculate the similarities between members and representatives. And so, 
we obtain clusters which are consistent and accurate as a final steady result. The pseudo 
code of the function of the Reduce phase is given below.

Algorithm 2 Reduce (key, value)
Input: < k, v > pair, k: the data record of the representative, v: the members of the cluster.
Output: < ki, vi > pair, ki: the identifier of the cluster, vi: the corresponding members.
1: Initialize clusters: a collection to save the final clusters;
2: index ← 1;
3: if clusters = ∅ then
4: Add a new cluster to clusters with index as identifier, v as members;
5: index ← 1;
6: else
7: for each cluster in clusters do
8: intersect ← v ∩ cluster.members;
9: if intersect �= ∅ then
10: for each member in intersect do
11: Keep member in the cluster corresponding to the highest similarity score;
12: end for
13: end if
14: end for
15: if v = ∅ then
16: Add a new cluster to clusters with index as identifier, v as members;
17: index ← index+ 1;
18: end if
19: end if
20: When the reducer is complete, output < ki, vi > pair for each cluster in clusters;

Discussion

Some noteworthy adjustments were brought to the original Transitive heuristic to match 
the MapReduce programming model:

• • Unlike Transitive heuristic, the selection of representatives of clusters in PMR-Tran-
sitive is not carried out in a random way. In fact, the first key-value pair introduced 
to the Map function is considered to be an initial representative. The next inputs that 
follow are either added to existing clusters, or considered as initial representatives 
that will be updated after the construction step, and so on.

• • In the Transitive heuristic, the initialization step takes place before the construc-
tion step. Indeed, first the representative is selected, and then its cluster is built. The 
PMR-Transitive shifts those steps because of the forsaken random selection and 
which is not applied to the MapReduce framework.

• • In the Transitive heuristic, the representatives are instances that are selected ran-
domly from the data set, while in the PMR-Transitive heuristic they are fictive and 
computed based on the profile of the cluster’s members.
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• • Another important point, it concerns the fact that Transitive heuristic is an iterative 
method, while the proposed parallel design is a single-pass heuristic.

Results and discussion
In this section, we evaluate the quality of clustering results and the performance of 
PMR-Transitive regarding some commonly used categorical real-life and synthetic data 
sets. The clustering result is assessed by the purity (also called accuracy) measure, the 
normalized mutual information (NMI), and the adjusted rand index (ARI) [12].

The performance experiments were run on a single node, which has a quad-core pro-
cessor of 3.60 GHz and 8 GB of memory and using Hadoop version 2.2.0 and Java 1.7.0. 
The size of blocks used for the experiments is 64 MB.

Clustering evaluation metrics

Purity

The purity of a cluster i measures the extent to which this contains objects of a single 
class and it is defined as:

where ni denotes the size of the cluster i, nki  is the number of instances that are correctly 
assigned in the cluster i, and k denotes the dominant class in the cluster i. Then, the 
overall purity is defined as:

where k denotes the number of clusters.

Normalized mutual information

The normalized mutual information is bounded in [0, 1], and like the purity measure, it 
should be maximized:

where I(Pi,Ph) is the mutual information of the produced partition and the ground truth 
partition and it is calculated as follows:

where ni and nh are the sizes of the cluster i and the class h respectively, and nhi  denotes 
the number of instances in the cluster i, which belong to the class h. E(Pi) and E(Ph) rep-
resent the entropy of the produced partition and the ground truth partition, and N is the 
total number of instances in the data set.

(13)Pi =
nki
ni

.

(14)P =
1

k

k
∑

i=1

Pi.

(15)NMI =
I(Pi,Ph)√
E(Pi)E(Ph)

.

(16)I(Pi,Ph) =
∑

i

∑

h

nhi
N

log
Nnhi
ninh

.
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Adjusted rand index

The adjusted rand index [13] is also bounded in [0, 1] and it is defined as:

where Pi represents the produced partition and Ph represents the ground truth partition, 
nhi  denotes the number of instances that belong to the class h in the cluster i , ni denotes 
the sizes of the cluster i, nh denotes the size of the class h, and N is the total number of 
instances in the data set.

Data sets description

All real-life data sets used in the experiments were retrieved from UCI Machine Learn-
ing Repository [14]. Table 1 presents a brief description of the categorical data sets used 
in the experiments.

Clustering results

These experiments measure the quality of the clustering results. We show in detail the 
partitions obtained when using the real-life data sets described above.
Table  2 contains the clustering results obtained when applying the PMR-Transitive 
method to the soybean data set. 5 clusters have been discovered, of which four reached 
the maximum purity value. It is noteworthy that the number of clusters discovered by 
the PMR-Transitive is very close to the number of classes (four diseases) in the soybean 
data set. The obtained partition contains only one incorrectly clustered instance (in clus-
ter four). Thus, the overall purity of the clustering result is 97%.

Table  3 contains the clustering results obtained when applying the PMR-Transitive 
method to the zoo data set. 7 clusters have been discovered, of which two reached the 

(17)

ARI(Pi,Ph) =

∑

i,h

(

nhi
2

)

−
[

∑

i

(

ni
2

)

∑

h

(

nh
2

)]/(

N
2

)

1
2

[

∑

i

(

ni
2

)

+
∑

h

(

nh
2

)]

−
[

∑

i

(

ni
2

)

∑

h

(

nh
2

)]/(

N
2

) .

Table 1  Description of real-life data sets

Data set Size Number of attributes Number of classes Missing values

Soybean 47 35 4 No

Zoo 101 17 7 No

Mushroom 8124 22 2 Yes

Table 2  Clustering result of PMR-Transitive applied to the soybean data set

Cluster Size Distribution Purity

C1 C2 C3 C4

1 10 10 0 0 0 1

2 10 0 10 0 0 1

3 9 0 0 9 0 1

4 7 0 0 1 6 0.85

5 11 0 0 0 11 1
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maximum purity value. Once again, the number of clusters discovered by the proposed 
method corresponds to the number of classes in the zoo data set. In the obtained parti-
tion, 92 instances are correctly assigned giving 91% as overall purity.

Table  4 contains the clustering results obtained when applying the PMR-Transitive 
method to the mushroom data set. 16 clusters have been discovered, of which 13 reached 
the maximum purity value. As reported in [3], the number of clusters discovered by the 
Transitive heuristic is 14 for this data set. The clusters 6, 12, and 13 in Table 4 are also 
observed in the result of the original method.

Table  5 shows the evaluation of clustering results of PMR-Transitive according to 
the purity, the NMI, and the ARI metrics. When the results are assessed using the ARI 
measure, the number of clusters must meet the number of classes in the clustering parti-
tion recognized as the ground truth in order to maximize the value of ARI. This is not 
applicable for the PMR-Transitive heuristic since it automatically detects the number of 
clusters. This explains why the values of ARI decrease somewhat.

Table 3  Clustering result of PMR-Transitive applied to the zoo data set

 Cluster Size Distribution Purity

C1 C2 C3 C4 C5 C6 C7

1 42 41 0 1 0 0 0 0 0.98

2 5 0 4 1 0 0 0 0 0.80

3 17 0 16 0 0 0 1 0 0.94

4 17 0 0 3 13 1 0 0 0.76

5 3 0 0 0 0 3 0 0 1

6 5 0 0 0 0 0 5 0 1

7 12 0 0 0 0 0 2 10 0.83

Table 4  Clustering result of PMR-Transitive applied to the mushroom data set

 Cluster Size Distribution Purity

C1 C2

1 2010 1937 73 0.96

2 768 768 0 1

3 307 307 0 1

4 89 48 41 0.54

5 185 185 0 1

6 192 192 0 1

7 17 17 0 1

8 48 48 0 1

9 963 706 257 0.73

10 1719 0 1719 1

11 291 0 291 1

12 36 0 36 1

13 1296 0 1296 1

14 7 0 7 1

15 8 0 8 1

16 188 0 188 1
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When the MMR [8], the ROCK [15], and the Squeezer [16] algorithms are applied to 
the mushroom data set, they produce 20 clusters, 21 clusters, and 24 clusters, respec-
tively, which are fairly large. While the proposed method outperforms these cluster-
ing algorithms in term of the number of clusters discovered compared to the quality of 
clustering.

Figure 3 presents a comparison of the overall purity obtained by applying the proposed 
method using the real-life data sets described above. For comparison purposes, we pre-
sent some results reported in [8] and [9] concerning, respectively, the performance of 
the MMR algorithm and some enhanced k-modes versions applied to the same data sets 
used to assess the quality of results produced by the proposed method.

The original Transitive heuristic outperforms its new parallel version, PMR-Transitive, 
as to the mushroom data set. This can be explained by the fact that the Transitive heuris-
tic is a multiple scan method, while the PMR-Transitive is a single-scan method. How-
ever, it must not be forgotten that the results produced by the original method represent 
the best in 100 runs, since the random start of the Transitive heuristic produces a dif-
ferent solution for each run, while the proposed method reaches good quality results, 
stable, and reproducible.

In general, the performance of the proposed method and its predecessor is better than 
the results obtained with the MMR and the k-modes algorithms, except for the soybean 

Table 5  Evaluation of  clustering results of  PMR-Transitive according to  the purity, NMI, 
and ARI metrics

Data set Purity NMI ARI

Soybean 0.97 0.95 0.78

Zoo 0.91 0.85 0.88

Mushroom 0.96 0.82 0.44
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Fig. 3  Comparison of PMR-Transitive with transitive, MMR, and k-modes algorithms on real-life data sets
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data set, where the enhanced Ng’s k-modes algorithm produces a high-quality result 
reaching 99% of purity.

It should be noted that Transitive and its new parallel design are different from other 
methods of clustering categorical data, including, MMR and k-modes, regarding some 
relevant points. First, PMR-Transitive is a free parameter method, which determines 
automatically the number of clusters. Second, the proposed method operates on the 
entire data set and does not use any kind of data sampling or any data preprocessing.

Performance results

In this section, we evaluate the performance of the proposed method. For this purpose, 
we have generated synthetic data sets, which their sizes vary from 1 to 10 MB.
Figure 4 presents a comparison of the end-to-end running time of the Transitive heuris-
tic and its proposed parallel design. The PMR-Transitive method achieved a speedup up 
to 8× over the original sequential method on large data sets.

As described in "MapReduce-based implementation of transitive", PMR-Transitive is 
designed with multiple parallel Map tasks and a single Reduce task that may appear as 
a bottleneck. However, Fig. 5 shows that more the size of the data set is large, more the 
time consumed by the Reduce task decreases.
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Fig. 4  Running time comparison between the proposed method and the Transitive heuristic
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Conclusions
In this paper, we presented a new parallel clustering design of a recently appeared 
method, named Transitive heuristic. The proposed method processes large categorical 
data based on the relational analysis approach. We described in detail Transitive heuris-
tic and its new parallel design, named PMR-Transitive, and then we discussed the adjust-
ments that were brought to the original heuristic in order to adapt it to the MapReduce 
framework. Finally, we evaluated the quality of the clustering results produced while 
using real-life data sets. The results demonstrate that both methods, transitive and PMR-
Transitive, are efficient and produce clusters of good quality.

In our future work, we plan to extend the PMR-Transitive heuristic to manage multi-
ple data types and to treat outliers while keeping its characteristics and benefits. We also 
hope to test this method on a multi-nodes cluster environment in order to evaluate its 
performance with respect to Big Data.
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