
Clustering large datasets using K‑means
modified inter and intra clustering (KM‑I2C)
in Hadoop
Chowdam Sreedhar1*  , Nagulapally Kasiviswanath2 and Pakanti Chenna Reddy3

Introduction
In the recent years, datasets generated by machines have been large in terms of vol-
ume and have been globally distributed [1]. Big data can be described based on vari-
ous characteristics (namely volume, velocity, variety, veracity, value and volatility). Big
data include datasets that are large and difficult to manage, acquire, store, analyse and
visualize. A dataset can be defined as a collection of related sets of information that can
have individual or multidimensional attributes. Large datasets include massive volumes
of data such that traditional database management systems cannot manage them. Big
data has become popular due to their ability to manage structured, unstructured and
semi-structured data sources and formats [2] through the use of advanced data intensive
technologies. The increased size of datasets has boosted demand for efficient clustering
techniques that satisfy memory use, document processing and execution time require-
ments. An issue related to big data concerns the grouping of objects such that data of
the same group are more similar than those of the other groups or clusters. Applica-
tions of big data are used in telecommunications, healthcare, bioinformatics, banking,

Abstract 

Big data has become popular for processing, storing and managing massive volumes
of data. The clustering of datasets has become a challenging issue in the field of big
data analytics. The K-means algorithm is best suited for finding similarities between
entities based on distance measures with small datasets. Existing clustering algo-
rithms require scalable solutions to manage large datasets. This study presents two
approaches to the clustering of large datasets using MapReduce. The first approach,
K-Means Hadoop MapReduce (KM-HMR), focuses on the MapReduce implementation
of standard K-means. The second approach enhances the quality of clusters to produce
clusters with maximum intra-cluster and minimum inter-cluster distances for large
datasets. The results of the proposed approaches show significant improvements in the
efficiency of clustering in terms of execution times. Experiments conducted on stand-
ard K-means and proposed solutions show that the KM-I2C approach is both effective
and efficient.

Keywords:  Clustering, Big data, Hadoop, MapReduce, Scalability

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Sreedhar et al. J Big Data (2017) 4:27
DOI 10.1186/s40537-017-0087-2

*Correspondence:
csrgprec@gmail.com
1 Faculty of Computer
Science and Engineering,
G Pulla Reddy Engineering
College, Kurnool, India
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-4098-1440
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-017-0087-2&domain=pdf

Page 2 of 19Sreedhar et al. J Big Data (2017) 4:27

marketing, biology, insurance, city planning, earthquake studies, web document classifi-
cation and transport services.

Clustering is an important tool for data mining and knowledge discovery. The objec-
tive of clustering is to find meaningful groups of entities and to differentiate clusters
formed for a dataset. Traditional K-means clustering works well when applied to small
datasets. Large datasets must be clustered such that every other entity or data point in
the cluster is similar to any other entity in the same cluster. Clustering problems can
be applied to several clustering disciplines [3]. The ability to automatically group simi-
lar items enables one to discover hidden similarities and key concepts while combin-
ing a large amount of data into a few groups. This enables users to comprehend a large
amount of data. Clusters can be classified as homogeneous and heterogeneous clusters.
In homogeneous clusters, all nodes have similar properties. Heterogeneous clusters are
used in private data-centres in which nodes have different characteristics and in which it
may be difficult to distinguish between nodes [4].

Clustering methods require the application of more precise definitions of observation
and cluster similarities. When grouping is based on attributes, it is natural to employ
familiar concepts of distance. A problem with this procedure is associated with the
measurement of distances between clusters comprising of two or more observations.
Unlike existing conventional statistical methods, most clustering algorithms do not
rely on statistical distributions of data and thus can be helpful to apply when little prior
knowledge exists on a certain issue [5]. McCallum et al. [6] described how the number of
iterations can be reduced by partitioning a dataset into overlapping subsets and by only
iterating data objects within overlapping areas.

When using flat file formats, data objects are represented as vectors in n-dimensional
space that each describe an object, and this object is characterized by n attributes, each
of which has a single value. Almost all existing data analysis and data mining tools such
as clustering tools, inductive learning tools, and statistical analysis tools assume that
datasets to be analysed are represented through a structured file format. The well-known
inductive learning environment [7] and a similar decision tree based rule induction algo-
rithm [8], as well as conceptual clustering algorithms (e.g., COBWEB [9], AutoClass [10,
11], and ITERATE [12]) and statistical packages, make this assumption. Issues of scal-
ability are becoming a major concern when applying clustering algorithms as datasets
increase in size; most are computationally expensive in terms of space and time. There is
a need to manage such large volumes of data and to cluster them easily for data analytics
while minimizing maximum inter-cluster distances and managing large datasets. Fur-
thermore, such algorithms should be efficient, scalable and highly accurate.

The K-means clustering algorithm is a popular unsupervised clustering technique used
to identify similarities between objects based on distance vectors suited to small data-
sets. Currently, datasets generated by sources such as Wikipedia, meteorological depart-
ments, telecommunications systems, and sensors are so large that traditional K-means
clustering algorithms are no longer able to group related objects to develop meaningful
insights. There is a need to enhance clustering algorithms to suit large datasets. Hadoop
was designed to store datasets that can be scaled up to the petabyte level. Hence, the
present work develops a clustering solution using Hadoop.

Page 3 of 19Sreedhar et al. J Big Data (2017) 4:27

We apply the Hadoop MapReduce standard K-means clustering algorithm to manage
large datasets and introduce a new metric for similarity measurements such that the dis-
tances between objects exhibit high levels of intra-cluster similarity and low levels of
inter-cluster similarity.

The remainder of this study is organized as follows. Popular distance metrics and
the need for Hadoop are discussed in “Background”. Approaches recently developed to
improve clustering results are discussed in “Related work”. The proposed KM-HMR and
KM-I2C algorithms are described in “Proposed work”. An extensive set of experiments
on the datasets along with a comparison of existing and proposed solutions is presented
in “Experimental evaluation”. Finally, conclusions and future work are discussed in
“Conclusions”.

Background
Applications based on similarity measures include the following: data mining [13],
image processing [14], and document clustering [15]. The most popular continuous dis-
tance metric is the Euclidean distance. City-block measures partition based on a central
median [16].

The following are popular distance metrics used in various clustering techniques:

a.	 Euclidean distance.
b.	 Manhattan distance.
c.	 Minkowski distance.
d.	 Jaccard distance.

Euclidean distance is defined as:

where, i = (xi1, xi2,…, xin) and j = (xj1, xj2,…, xjn) are two n-dimensional data objects.
The Manhattan (or city-block) distance, is defined as:

where, i = (xi1, xi2,…, xin) and j = (xj1, xj2,…, xjn) are two n-dimensional data objects.
The Minkowski distance, is defined as:

where, i = (xi1, xi2,…, xin) and j = (xj1, xj2,…, xjn) are two n-dimensional data objects.
The Jaccard distance computes similarity between two sets of concepts as follows:

Jaccard distance measure is defined as the size of intersection divided by size of union
of datasets. |U ∩ A| is the number of concepts in the intersection of U and A; |U ∪ A|
represents the number of concepts in the union of U and A. It is a measure of similarity

(1)d
(

i, j
)

=

√

(xi1 − xj1)2 + (xi2 − xj2)2 + · · · + (xin − xjn)2

(2)d
(

i, j
)

=
∣

∣(xi1 − xj1)
∣

∣+
∣

∣(xi2 − xj2)
∣

∣+ · · · +
∣

∣(xin − xjn)
∣

∣

(3)d
(

i, j
)

=
(∣

∣xi1 − xj1
∣

∣p +
∣

∣ xi2 − xj2
∣

∣p + · · · +
∣

∣ xin − xjn
∣

∣p
)

1/p

(4)J (U ,A) =
|U ∩ A|

|U ∪ A|

Page 4 of 19Sreedhar et al. J Big Data (2017) 4:27

for the two datasets U, A which is used to find binary differences between two or more
objects. Summary of the various distance metrics used in clustering is shown in Table 1.

Hadoop was created by Doug Cutting in 2005 and has its origins in Apache Nutch,
an open source Internet search engine. Apache Hadoop is an open source iteration of
MapReduce, which is a framework designed for the in-depth analysis and processing
of large volumes of data. Hadoop can analyse complex data of various formats such as
structured, semi-structured and unstructured data across several machines. Examples
of unstructured data include books, journals, documents and metadata. Structured data
include quantitative facts such as numbers and dates. Xml and json documents are con-
sidered as an examples for semi-structured data. Hadoop manages its own file system,
the Hadoop distributed file system (HDFS), which replicates data to several nodes to
ensure the availability of data. Large collections of unstructured data must be managed
using a better clustering algorithm with high levels of intra-cluster similarity and with
low levels of inter-cluster similarity to derive insights. Applications using unstructured
data include, for instance, porphyry copper deposit datasets [17].

Hadoop and Spark serve the same purpose of processing large datasets. Spark is an
open source platform that can execute map and reduce jobs several times faster than
Hadoop. The overall performance of a particular platform cannot be based on a single
criterion [18]. Hadoop offers the following advantages over Spark. Spark’s performance
is mainly hindered by the fact that it executes more map and reduce tasks than Hadoop
and this can affect resources and node workloads when running clustering jobs. Spark
uses a considerable amount of memory to shuffle files written onto disks because it does
not manage its own file management system [19]. Hadoop may be used over Spark for
the other following reasons: low-cost hardware, lower latency value, and the capacity to
manage large datasets with the help of an HDFS.

In this work, we use Hadoop instead of Spark to enhance overall performance levels
over a reasonable execution period using low-cost machines whereby data operations
and reporting requirements are static and where data are processed via batch processing.

Table 2 illustrates the benefits of Hadoop technologies relative to traditional rela-
tional database management systems. Hadoop is best known for offering two main fea-
tures: HDFS and MapReduce. Other sub-projects of Hadoop technologies include the
following:

• • Pig [20]: A high-level data flow language and execution framework for parallel com-
putation.

Table 1  Summary of distance metrics

Distance metric Equation Explanation

Euclidean distance D(i, j) =
√

∑n
i=1 |Xi− Yi|2 Popular distance metric used. Suitable for small datasets

Manhattan distance D(i, j) =
∑n

i=1 |Xi−Yi| Distance based on an absolute value. Measures each partition
based on the mediancentre. Suitable for compact clusters

Minkowski distance
D(i, j) =

p

√

∑d
i=1 |Xi−Yi|p

Features with large values and variances tend to dominate
other features. Suitable for numeric datasets

Jaccard distance J(U, A) = |U∩A|
|U∪A|

Used as a measure of similarity. Generally applied to binary
values to measure distances between objects

Page 5 of 19Sreedhar et al. J Big Data (2017) 4:27

• • Zookeeper [21]: A high-performance coordination service for distributed applica-
tions.

• • HCatalog [22]: A table and storage management service for Hadoop data.
• • Hive [23]: An SQL-like interface for data stored.
• • Avro [24]: A language-neutral data serialization system and language-independent

scheme associated with read and write operations.
• • HBASE [25]: An open-source non-relational distributed database that runs on top of

an HDFS that affords Hadoop with Bigtable-line capabilities.
• • Chukwa [26]: An open-source tool for monitoring the Hadoop cluster.

A MapReduce job splits a dataset into chunks of data such that map tasks are pro-
cessed in a parallel manner. The framework sorts the outputs of maps, which are then
input to reduce the number of tasks involved. Inputs and outputs of a job are stored in
a file system. The framework manages scheduling tasks, monitors tasks and re-executes
failed tasks. The HDFS is a distributed file system that uses master/slave architecture
and that is capable of storing large volumes of data. MapReduce jobs are executed on
a cluster of nodes while carrying out large-scale data operations that are scalable and
feasible to execute in a reasonable amount of time for complex or large datasets. MapRe-
duce works in parallel with several clusters of computers, making it easy to scale to large
datasets.

Related work
MapReduce programming is designed for computer clusters. MapReduce applications
can process large datasets using several low-cost machines referred to as clusters. Indi-
vidual computers in a cluster are often referred to as nodes in that cluster. MapReduce
involves two main broad computational stages (a map phase and reduce phase) that are
applied in sequence on large volumes of data. The map function applies to each line of
data and breaks data into chunks to form key-value pairs. A reducer function is then
applied to all key-value pairs sharing the same key.

Robson et al. [27] focus on problems faced when clustering large datasets(e.g., obtain-
ing efficient clusters over better execution times for large datasets) and propose a parallel
clustering (ParC) method for data partitioning that leverages data localities in MapRe-
duce to cluster large datasets. When clustering large datasets, parallel processing is best
suited to Hadoop MapReduce due to its capacity to divide large datasets into chunks

Table 2  Need for Hadoop technology

Traditional RDBMS Hadoop MapReduce

Size To gigabytes Extends to petabytes

Processing Realtime and batch Batch

Updates Reads and writes many times Writes once and reads many times

Structure Static schema Dynamic schema

Integrity High Low

Scaling Non-linear Linear

Page 6 of 19Sreedhar et al. J Big Data (2017) 4:27

and to store them in worker nodes while an algorithm is applied to the data where it is
stored. Best of both Worlds (BoW) is an adaptive technique used to dynamically select
the best ways to minimize costs. The top ten eigenvectors of Twitter stored as an adja-
cency matrix have been considered and experiments conducted using proposed solu-
tions reveal good results. ParC focuses on two issues: minimizing I/O costs and reducing
costs related to networks. In developing a good clustering algorithm, speedup and scale
up processes are two major issues that must be exploited through parallelism techniques
to generate efficient clustering algorithms.

Parallel K-means clustering based on MapReduce [28] clusters large datasets and
applies a K-means clustering algorithm via the Hadoop MapReduce framework suited
for large datasets. Applying the Fast K-means clustering algorithm through MapReduce
has been proposed. The mean values of data points in clusters are used to measure clus-
ter similarities and MapReduce computes distances between data points simultaneously.
The map function stores input datasets in an HDFS which is used to assign data objects
or points to the closest centre and which reduces functions in updating calculated cen-
tres based on the Euclidean distance. The results have been analysed based on various
sizes of datasets, better results have been achieved with increasing dataset size. The
Fast K-means algorithm is suited to large datasets but for a good clustering algorithm
addressing large datasets, cluster efficiency and inter-cluster and intra-cluster measures
should be considered apart from execution times and should be scaled up to meet input
data size requirements.

Chen [29] proposed the use of MapReduce-based soft clustering for large datasets.
A divide and conquer approach is used to split large amounts of data into chunks and
the MapReduce model causes each of map and reduce phase to work in independent
of other running map and reduce phases which are run in parallel. Clustering quality
metrics have not been considered and evaluations based on different workloads (dataset
size) should also be conducted. To overcome this drawback, a two-phase K-means (TPK)
method [30] that can efficiently process large volumes of data has been introduced.

Chu et al. [31] applied a big data parallel programming technique involving K-means
clustering through the MapReduce framework. Xia et al. [32] proposed a parallel
K-means optimization algorithm (Par3PKM) implemented through the MapReduce
framework. As a distance metric used in Par3PKM, the Euclidean distance is employed
to calculate distances between data points or objects and cluster centroids. Paralleliza-
tion and optimization techniques can cluster large datasets through MapReduce. The
parallel CoMK-means clustering algorithm [33] uses MapReduce to distribute input
data across several slave nodes by using an HDFS to overcome large dataset clustering
instabilities.

The clustering of large bio-informatics datasets [34] focuses on gene sequence analy-
ses conducted via the MapReduce framework. The sizes of bioinformatics datasets range
from a few gigabytes to several petabytes depending on the genes of living creatures
and plants. In addressing large volumes of data, clustering plays a vital role in analys-
ing a particular pattern and in finding similarities between two different genes. With

Page 7 of 19Sreedhar et al. J Big Data (2017) 4:27

such volumes of data, parallelism serves as the only means to generate efficient clus-
tering results. The expressed sequence tag (EST) [35] is a clustering tool used to group
sequences originating from the same gene to form clusters so that they are similar to
the representative. As a drawback of EST clustering, when finding similarities within the
same cluster and between two different clusters from genetic datasets, good inter-cluster
and intra-clustering measures must be used.

Fang et al. [36] used large-scale meteorological datasets and an MK-means algorithm
applied through MapReduce to manage meteorological information stored in high-cost
servers over several years. Optimal K-centroids were calculated using the standard dis-
tance measure of similarity and the Euclidean distance. The performance of MK-means
is investigated for different datasets of different sizes. Stability and scalability were found
to be two major factors considered in MK-means. The MK-means clustering algorithm
is limited in terms of the quality of clusters and distance metric efficiency.

Tsai et al. [37] propose a MapReduce black hole (MRBH) for leveraging the strength
of the black hole algorithm through the MapReduce framework to accelerate clustering
processes.

Proposed work
The proposed work involves two approaches: K-means Hadoop MapReduce (KM-
HMR) and K-means modified inter and intra clustering (KM-I2C). The following section
describes the proposed algorithms for efficient clustering.

K‑means Hadoop MapReduce (KM‑HMR)
Algorithm 1 describes KM-HMR, a MapReduce implementation of K-means that can
find clusters faster than standard K-means clustering methods. KM-HMR focuses on
the MapReduce implementation of standard K-means, which serves as a framework for
parallelization problems (e.g., clustering) that takes advantage of localities of data and
which involves two major phases: a map phase and a reduce phase. The MapReduce
job involves splitting a dataset into parts of a fixed sized referred to as chunks, which
are consumed by a single map. The map phase calculates the distances between each
object and each cluster and assigns each object to its nearest cluster. One map task is
created for each input split and is executed by map functions for each record of the input
split. The input split size is set to 128 MB and can the split size can be set to the size of
an HDFS block. The distance metric used in KM-HMR is the Euclidean distance. The
objects that belong to the same cluster are sent to reduce phase. The reduce phase calcu-
lates the new cluster centroids for the next MapReduce job. Figure 1 depicts the overall
flow of KM-HMR. Cluster centroids produced at the end of an initial iteration are stored
in an old cluster file and are tested for the appearance of new cluster centroids with each
iteration. When new cluster centroid values are obtained, new cluster centroid values

Page 8 of 19Sreedhar et al. J Big Data (2017) 4:27

are updated in a new file and the number of iterations is increased by one. This process
is repeated until no more changes in cluster centroid values are found, and this state is
referred to as convergence. The final output clusters are stored in a result file. Table 3
describes notation used in Algorithm 1.

Dataset

Block 1 Block nBlock 3Block 2

Map Phase
Assign Clusters

Map Phase
Assign Clusters

Map Phase
Assign Clusters

Map Phase
Assign Clusters

Reduce Phase
recenter centroids

Reduce Phase
recenter centroid

it < Mi

?

Change in
cluster

centroid

Reduce Phase
Calculate centroid

Iterate un�l
either
convergence or
Mi is reached

False

True

. . .

Fig. 1  KM-HMR flow

Page 9 of 19Sreedhar et al. J Big Data (2017) 4:27

To improve the efficiency of the clustering stage, we used the KM-HMR algorithm
and the large datasets described in “Datasets” section. Large datasets provided as input
were divided into chunks and stored in the HDFS. We selected K data points and objects
passed as initial cluster centres and updated the centroid of every cluster after a cluster
completed several iterations. The map phase involved receiving a sequence file contain-
ing initial cluster centres and forms as keyvalue (k,v) pairs. In this phase, the distances
between data objects and each cluster were computed using the Euclidean distance. The
standard K-means clustering algorithm is suited for application to small datasets and
structured data. When datasets are large in size in terms of volume and contain unstruc-
tured data, data processing and result generate take a considerable amount of time and

Table 3  Notations used in Algorithm 1

Notation Description

It Number of iterations

ic Initial centroid

D Dataset

k Number of clusters

oc Previous centroid values

nc New cluster centroid values

Result Final result

select() Function for selecting data based on the k value

input() Function for data file uploading

job.mapper() Map function

job.reducer() Reduce function

write() Function for writing centroid values to a file

read() Function for reading centroid values to a file

update() Function for testing for updated centroid values

Algorithm 1. KM-HMR
Input:

O : { o1,o2,o3,…..on}; set of objects/entities to be clustered
K : K clusters (number of clusters)
Mi: Maximum number of iterations

Output:
Final output clusters

KM-HMR(data)
it 0
for each datapointdϵ D do

ic select(k, d)
input(d)
write(ic)

oc ic
while (true)

call to job.mapper()
call to job.reducer()

nc = read()
// repeat until convergence
if update((nc, oc) > 0)
oc = nc

Else
update nc to result

it++
result = read()

Page 10 of 19Sreedhar et al. J Big Data (2017) 4:27

KM-HMR makes an attempt to process faster within a reasonable execution time. The
proposed KM-HMR achieves the above goal of processing large volumes of data in par-
allel with the MapReduce programming model.

K‑means modified inter and intra clustering (KM‑I2C)
All techniques used to cluster datasets using the K-means algorithm for estimating the
number of clusters suffer from deficiencies of cluster similarity measures in forming dis-
tinct clusters. A good clustering algorithm must produce high-quality clusters with high
levels of intra-cluster similarity and with low levels of inter-cluster similarity. The KM-
I2C algorithm divides distinct clusters in datasets into sub clusters based on inter-cluster
and intra-cluster similarities. Clusters formed maximize inter-cluster distances and min-
imize intra-cluster distances. The quality of clustering results is dependent on similarity
and implementation measures. The KM-I2C algorithm uses a set of ‘O’ data points in a
dataset ‘D’ and an initial number of clusters ‘k’.

Algorithms 2 and 3 describing algorithmic steps of the map and reduce phases of
KM-I2C.

The KM-I2C algorithm follows similar KM-HMR steps as those of Hadoop MapRe-
duce. In KM-I2C, distance metrics of the Ie (inter-cluster distance) and the Ia (intra-
cluster distance) are used as similarity and dissimilarity measures. The new distance
measures Ie and Ia are calculated as follows:

The new distance measure Inter cluster distance is calculated as follows:

Algorithm 2: Map phase
Input:

N dimensional data objects (n1,n2, n3,....nm) in each mapper
K: K clusters (number of clusters)
Initial cluster centroids c1,c2,c3,c4,....ck

Output:
output list <k, v>

list_new: New centroid list
v = 0
list_new = 0
for all d ϵ D

for all ciϵ M do
bi ← Ǿ where bi represents the centroid closest to the data object
Ie ∞
Ia ∞
for all oiϵ O do

l(oi) ← ECD(oi,oj) j ϵ {1,2,3,...k}
it ← 0
b ← 0

repeat
for each eiϵ E do

minDist ← ECD (oi, cj) j ϵ {1,2,3,...k}
if (curr_centr = 0 or l (oi) < minDist) then

update Ie using equation (5)
else

update Ia using equation (6)
bi ← bi+1
it ← it+1
create an output list <k, v> with each object and the centroid cluster that it belongs to
repeat until convergence

Page 11 of 19Sreedhar et al. J Big Data (2017) 4:27

where Ie is the Inter cluster distance, O1 and O2 are data points in Cluster 1 and Cluster
2, respectively, and Ai represents the ith data point in Cluster 1 and the jth data point in
clusters A and B, respectively.

(5)Ie =
1

2





�O1
i=1

�O2
j=1

�

Ai − Bj
�2

O1 ∗ O2





(6)Ia =
1

2





�O1+O2
i,j=1

�

Ai − Bj
�2

(O1+ O2) ∗ (O1+ O2− 1)





Algorithm 3: Reduce phase
Input:

(k,v): key, value pair where key=l(oi),
value = objects assigned to centroids by mappers
Ol: output list from mappers

Output:
list_new: New centroid list(Nc)

list_new = 0

Nc Ǿ
for all x ϵ Ol

centroid x.key
data object x.value

Nc dataobject
for all ciϵ M do

Nc Ǿ
Sum_objects Ǿ
Num_objects Ǿ

for all oiϵ O do
Sum_Objects + = Object

Num_object++
Nc (Sum_objects/Num_objects)
Outputlist Nc list Ս Nc
Return Nc

Algorithm 2 describes the map phase of the proposed KM-I2C algorithm and Algo-
rithm 3 describes reduce phase of the proposed KM-I2C algorithm. The input dataset
is stored locally in the HDFS as a 〈k, v〉 pair where k is the key and v is the value for a
given record in dataset D. The input dataset is distributed across several mappers. In
the map phase, each map task is read in a shared file containing all cluster centroids. A
cluster centroid file can typically be stored in a Hadoop distributed cache. Map tasks are
read from a small number of input data points. It assigned each data point to the cluster
whose centroid is closest to the data. The map phase then produces intermediate 〈key,
value〉 pairs, which are grouped automatically by the Hadoop system in preparation for
the reduce phase. The final output is stored in an Nc file.

Experimental evaluation
The Hadoop cluster is a special parallel computational cluster that includes a master
node and several slave nodes. For a given dataset, a file is split into numerous com-
ponents equal to the block size set for the HDFS cluster (which is 64 MB by default).
Several experiments were conducted on various datasets to evaluate the quality and

Page 12 of 19Sreedhar et al. J Big Data (2017) 4:27

scalability of our proposed algorithms. To evaluate the performance of the KM-I2C algo-
rithm, we compared it to other algorithms (e.g., standard K-means and KM-HMR).

Experiments were conducted on a cluster of one master node acting as a NameNode
and on ten slave nodes acting as DataNodes as described in Table 4. VMware virtual
nodes are used in the CentOS 6.3 operating system.

A master node acts as a Namenode and JobTracker via an Intel Core i3—5005U CPU
2.66 GHz with a RAM capacity of 8 GB and with four processor cores. Slave or worker
nodes are defined as Datanodes and TaskTrackers with an Intel Core i3—5005U CPU
2.66 GHz configuration and with a specified RAM capacity and two processor cores.
The VMWare Workstation is used to create slave nodes from virtual machines. JDK 1.8.0
with CentOS operating system is used in our experiments.

Key configurations of the Hadoop environment modify conf/master files according
to the specified number of slave nodes involved. Namenode and JobTracker are config-
ured under a conf/hadoop-site.xml file and necessary changes are made to other Hadoop
configuration files such as hadoop-default.xml and hadoop-core.xml. Experiments were
conducted on a varied number of Datanodes and with various block sizes to evaluate the
performance of the proposed algorithms.

Datasets
Table 5 describes the datasets used in our experiment. Project Gutenberg (PG) consists
of approximately 50,000 free ebooks downloaded from [38]. PG contains approximately
3000 English documents written by 142 authors and makes an effort to create and dis-
tribute ebooks of mostly public domain documents. Unstructured data refers to infor-
mation that does not have a predefined data model and is not organized in a pre-defined
manner. We selected this dataset due to the reason that there is no clearly defined
observation and variables (rows and columns). Analysing the document manually is an
impossible task. Clustering makes it easier for grouping of documents according to their
similarities. We applied the implementation method to the subset of PG documents. All
of the proposed algorithms were run with document sets of different sizes taken from

Table 4  Experimental setup

Node CPU No. of cores RAM (GB)

MN: master node Intel i3 5005U 4 8

SN_A: slave node 1–3 Intel i3 5005U 2 2

SN_B: slave node 4–6 Intel i3 5005U 2 2

SN_C: slave node 7–10 Intel i3 5005U 2 1

Table 5  Datasets description

Dataset Size (GB) Description

DS_A: million song dataset 300 Collection of 53 audio features and metadata

DS_B: US climate reference network (USCRN) 200 Collected from 143 stations to maintain high quality
climate observations

DS_C: Project Gutenberg 110 Includes over 50,000 free ebooks

Page 13 of 19Sreedhar et al. J Big Data (2017) 4:27

the above dataset to generate effective clustering results. Categories of focus include
the following: audio, music, entertainment, children, education, comics, crafts, finance,
health and markets. This dataset was used to investigate and explore documents to con-
duct a cluster analysis of unstructured data with better execution times.

The US climate reference network (USCRN) [39] is a systematic and sustained net-
work of climate monitoring stations with sites across the United States. Approximately
114 stations are equipped with high-quality devices that measure temperatures, precipi-
tation levels, soil conditions and wind speeds. The purpose of this dataset is to obtain
high-quality climatic observations for monitoring climatic patterns. The million song
dataset (MSD) [40] is a collection of audio features and metadata available through the
Amazon Public Dataset that can be attached to an Amazon EC2 virtual machine to run
experiments. The MSD is an unstructured dataset that contains information on approxi-
mately 1 million songs with 53 features and is approximately 300 GB in size. We have
considered the subset of the entire datasets in our experiment. The split size of the com-
plete dataset is based on the total input file size divided by the number of map tasks
launched. The number of mappers is based on the number of input splits made. In the
MapReduce framework, the split size of input files and of InputFormat describes input
specifications for a MapReduce job. InputFormat used in MapReduce is directly propor-
tional to the number of files and to the total number of blocks of input files. The default
split size is the size of the HDFS block size. We can control the split size by applying
the mapred.min.split.size parameter available through hadoop-site.xml. In this work, we
used the HDFS block size of 128 MB as the split size.

Figure 2 compares the execution times of the proposed algorithms for document sets
of the PG dataset. As the number of documents to be clustered increases, the time dedi-
cated to standard K-means exceeds that used for the proposed solution. Parallel pro-
cessing is essential in processing large volumes of data. In this experiment, we only
considered some documents of a subset of the PG dataset. Table 6 shows the clustering
results for Project Gutenberg. The proposed KM-HMR takes less time to employ than
the standard K-means algorithm due to its processing of large datasets through several
different machines. The proposed KM-I2C takes less time to employ than the standard
K-means and KM-HMR. KM-HMR uses the Euclidean distance as a similarity meas-
ure, and in our proposed KM-I2C we use inter and intra-clustering measures to obtain

0

10

20

30

40

50

60

70

200 400 600 800 1000

E
xe

cu
tio

n
T

im
e

(m
in

ut
es

)

Number of Documents

Standard KM

KM-HMR

KM-I2C

Fig. 2  Comparison of execution times with number of documents

Page 14 of 19Sreedhar et al. J Big Data (2017) 4:27

efficient and high-quality clusters with high levels of intra-cluster similarity and low lev-
els of inter-cluster similarity to obtain valuable insights from large datasets.

One of the most complex problems associated with clustering concerns is identifying
the optimal number of clusters. Unfortunately, there is no general theoretical solution
used to find the optimal number of clusters for a dataset. The silhouette coefficient (SC)
[41, 42] is used to validate the optimal number of clusters and the degree of inter- and
intra-clustering cohesiveness. The SC is a dimensionless quantity valued at −1 to 1. Neg-
ative values are undesirable and values closer to 1 denote an overall measure of goodness
for a cluster. The SC value can be obtained by the following steps:

1.	 For object d, calculate ad, the average distance to all other objects in the cluster, using
inter- and intra-clustering equations used in the proposed work.

2.	 For object d and any cluster that does not contain the object, the object’s average dis-
tance (bd) is calculated for all objects in a cluster.

3.	 For the dth object, the SC is given by:

Table 7 compares the performance of the proposed model to that of the KM-HMR and
KM-I2C algorithms when applied to the USCRN dataset. Parallel K-means worked well
with the datasets studied over a reasonable amount of time due to inherent levels of data
parallelism. In TPK, an overhead resulted after splitting the algorithm into two phases.
KM-I2C performed better in terms of execution time, as clusters formed in less time
than when using the other existing clustering techniques. Average lengths of time used
for each cluster indicate that with parallelization, the proposed clustering algorithm was
more efficient than the single node standard K-means clustering method. Through the
experiment, we found that block sizes should depend upon the input datasets employed.

(7)Sc(d) =
(bd − ad)

max(ad, bd)

Table 6  Clustering results

Broad categories Subcategories formed/total

KM-I2C KM-HMR Standard K-means

Digital audio 21/22 19/22 15/22

Space 26/28 17/28 14/28

Education 61/64 51/64 42/64

Entertainment 50/52 40/52 30/52

Table 7  Comparisons of total execution periods (s)

Parallel K-means Standard K-means KM-HMR KM-I2C

4320.14 4502.18 4214.16 3876.23

3880.23 4025.06 3705.29 3518.34

3691.18 3907.12 3519.12 3412.49

Average 3963.85 4144.78 3812.85 3602.35

Page 15 of 19Sreedhar et al. J Big Data (2017) 4:27

When the block size is too small, the number of collaborations involved can increase,
affecting performance results and disabling opportunities for parallelization.

Figures 3 and 4 show the execution times of five clusters for the datasets (DS_A, DS_B,
and DS_C) considered in this work for KM-HMR and KM-I2C respectively. As the size
of datasets increases, time used by KM-I2C improved relative to the used via the stand-
ard K-means and KM-HMR methods. The x-axis shows the number of virtual machines
used and the y-axis shows the amount of time taken to cluster the datasets in seconds.
The results illustrate the superiority of the proposed algorithm when applied to different
parameters relative to the traditional algorithm. The execution time is another measure
used to compare the two algorithms. We have improved the clustering response time
with respect to Hadoop’s characteristics. Effects of the number of nodes used on the
clustering algorithms were also studied for the same set of data objects. Scalability levels
were tested by increasing the number of nodes used for execution while maintaining the
same datasets and the same number of nodes but while varying the dataset sizes.

Figures 5 and 6 show execution times dedicated for varied numbers of clusters (ten
clusters for KM-HMR and KM-I2C respectively) and using a specified number of virtual
machines. The more parallel processing was executed, the less time was taken for algo-
rithm execution. KM-I2C generated better execution times than the other algorithms.

0
1000
2000
3000
4000
5000
6000
7000
8000

T
im

e i
n

se
c

Number of machines

Number of clusters: 5

DS_A

DS_B

DS_C

Fig. 3  Execution time comparison with five clusters for KM-HMR

0

500

1000

1500

2000

2500

3000

3500

Single
node

VM=2 VM=4 VM=5 VM=8 VM=10

T
im

e i
n

se
c

Number of machines

Number of clusters: 5

DS_A

DS_B

DS_C

Fig. 4  Execution time comparison with five clusters for KM-I2C

Page 16 of 19Sreedhar et al. J Big Data (2017) 4:27

KM-HMR and KM-I2C are comparable in terms of execution time with KM-HMR per-
forming better than the standard K-means algorithm and with KM-I2C generating bet-
ter results than the KM-HMR algorithm. This was expected, as KM-I2C uses inter and
intra-cluster distances rather than Euclidean distances to perform the benchmark. We
also measured execution times of the proposed clustering algorithms against those of
the standard K-means clustering algorithms.

Figures 7 and 8 show execution times dedicated for varied numbers of clusters (15
clusters for KM-HMR and KM-I2C respectively). The execution time is a key facet of
a successful clustering technique. The proposed KM-HMR and KM-I2C algorithms are
better suited for clustering large datasets via MapReduce than the standard K-means
clustering algorithm. Effects of the dimensionality of data on time taken were computed.
To obtain more conclusive results from our comparisons, the number of processes used
for sum computations was varied for each series of runs. To generate efficient results,
the K-means dependency of the number of clusters was determined for different varia-
tions of cluster numbers.

0
1000
2000
3000
4000
5000
6000
7000

T
im

e i
n

se
c

Number of machines

Number of clusters: 10

DS_A

DS_B

DS_C

Fig. 5  Execution time comparison with ten clusters for KM-HMR

0
500
1000
1500
2000
2500
3000
3500

T
im

e i
n

se
c

Number of machines

Number of clusters: 10

DS_A

DS_B

DS_C

Fig. 6  Execution time comparison with ten clusters for KM-I2C

Page 17 of 19Sreedhar et al. J Big Data (2017) 4:27

Conclusions
Clustering is a challenging issue that is heavily shaped by data used and problems con-
sidered. The proposed algorithms show improvements in terms of execution time.
Hadoop can compute map and reduce jobs in parallel to cluster large datasets effec-
tively and efficiently. The main objective of this work was to accelerate and scaleup large
datasets to obtain efficient high-quality clusters. The standard K-means method is the
most popular clustering method due to its simplicity and reasonable execution efficiency
when applied to small datasets. A clustering approach should however also maintain
cluster efficiency levels when large datasets are involved by considering inter and intra-
clustering distances between data objects in a dataset. We have introduced a KH-HMR
algorithm to make use of parallelization tools through Hadoop and to obtain better exe-
cution times than those of the standard K-means approach. We have developed a novel
KM-I2C algorithm by making modifications to the clustering distance metric. We, in
turn, have developed an efficient and more effective method relative to other clustering
techniques. Future work should enhance the performance of map and reduce jobs to suit
large datasets. The performance of Hadoop can be enhanced by using multilevel queues
for the efficient scheduling of jobs suitable for large datasets.
Authors’ contributions
CS: prepared manuscript and contributed two major algorithms: KM-HMR and KM-I2C and had been made extensive
study on the literature. Introduced new distance metric which is able to produce clusters at a faster rate when compared
with the other clustering techniques. NK: conception and design of the study. PCR: analysis and interpretation of data. All
authors read and approved the final manuscript.

0

1000

2000

3000

4000

5000

6000

Single
node

VM=2 VM=4 VM=5 VM=8 VM=10
Ti

m
e

in
 se

c

Number of machines

Number of clusters: 15

DS_A

DS_B

DS_C

Fig. 7  Execution time comparison with 15 clusters for KM-HMR

0

500

1000

1500

2000

2500

Single
node

VM=2 VM=4 VM=5 VM=8 VM=10

Ti
m

e
in

 se
c

Number of machines

Number of clusters: 15

DS_A

DS_B

DS_C

Fig. 8  Execution time comparison with 15 clusters for KM-I2C

Page 18 of 19Sreedhar et al. J Big Data (2017) 4:27

Authors’ information
Sreedhar C, is currently working as Associate Professor in Department of Computer Science and Engineering at G Pulla
Reddy Engineering College, Kurnool, India. His research includes Big Data, Network Communications. He has 13 years of
teaching experience and published 19 papers in various International Journals/Conferences.

Kasiviswanath is currently working as Professor and Head in the Department of Computer Science and Engineer-
ing at G Pulla Reddy Engineering College, Kurnool, India. He has over 20 years teaching experience. His research areas
include Computer Networks, Security and Big data. To his credit, he published around 25 papers in various International
Journals/Conferences.

Chenna Reddy is currently working as Professor in the Department of Computer Science and Engineering at Jawaha-
rlal Nehru Technological University Anantapur, Anantapuram, India. He is high profiled, worked and working as Director
and various esteemed capacities at University level.

Author details
1 Faculty of Computer Science and Engineering, G Pulla Reddy Engineering College, Kurnool, India. 2 Department
of Computer Science and Engineering, G Pulla Reddy Engineering College, Kurnool, India. 3 Department of Computer
Science and Engineering, Jawaharlal Nehru Technological University Anantapur, Anantapuram, India.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data will not be shared at this moment, as the datasets are for use in extension for my research work. Complete results
and datasets of my research work will be shared in github.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 June 2017 Accepted: 29 August 2017

References
	1.	 De Camargo RY, Goldchleger A, Kon F. InteGrade: a tool for executing parallel applications on a grid for opportunis-

tic computing. In: Proceedings of 23th Brazilian symposium on computer networks. 2005.
	2.	 Sreedhar C, Kasiviswanath N, Reddy PC. A survey on big data management and job scheduling. Int J Comput Appl.

2015;130(13):41–49.
	3.	 Gonzalez TF. Clustering to minimize the maximum intercluster distance. Theor Comput Sci. 1985;38:293–306.
	4.	 Han J. Data mining: concepts and techniques. San Francisco: Morgan Kaufmann Publishers Inc.; 2005. ISBN

1558609016.
	5.	 Babuska R. Fuzzy clustering. http://homes.di.unimi.it/~valenti/SlideCorsi/Bioinformatica05/Fuzzy-Clustering-lecture-

Babuska.pdf. Accessed 4 Jan 2016.
	6.	 McCallum A, Nigam K, Ungar LH. Efficient clustering of high-dimensional datasets with application to reference

matching. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining.
2000. p. 169–78.

	7.	 Quinlan JR. Programs for machine learning. San Francisco: Morgan Kaufmann Publishers Inc; 1993. ISBN
1-55860-238-0.

	8.	 Domingos P. Linear-time rule induction. In: Proceedings of knowledge discovery and data mining (KDD-96), Port-
land, Oregon. 1996.

	9.	 Fisher D. Knowledge acquisition via incremental conceptual clustering. Mach Learn J. 1987;2(2):139–72.
	10.	 Cheeseman P, Stutz J. Bayesian classification (AutoClass): theory and results. In: Advances in knowledge discovery

and data mining, 1996. p. 153–80. ISBN: 0-262-56097-6.
	11.	 Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R, editors. Cambridge: AAAI/MIT Press; 1996. p. 153–80.
	12.	 Biswas G, Weinberg J, Li C. ITERATE: a conceptual clustering method for knowledge discovery in databases. In:

Braunschweig B, Day R, editors. Innovative applications of artificial intelligence in the oil and gas industry. 1995.
	13.	 Das G, Mannila H, Ronkainen P. Similarity of attributes by external probes. In: Proceedings of the fourth international

conference on knowledge discovery and data mining KDD’98. New York: AAAI Press; 1998. p. 23–9.

http://homes.di.unimi.it/%7evalenti/SlideCorsi/Bioinformatica05/Fuzzy-Clustering-lecture-Babuska.pdf
http://homes.di.unimi.it/%7evalenti/SlideCorsi/Bioinformatica05/Fuzzy-Clustering-lecture-Babuska.pdf

Page 19 of 19Sreedhar et al. J Big Data (2017) 4:27

	14.	 Ortega M, Rui Y, Chakrabarti K, Mehrotra S, Huang T. Supporting ranked boolean similarity queries in mars. IEEE Trans
Knowl Data Eng. 1998;10(6):905–25.

	15.	 Dhillon IS, Modha DS. Concept decompositions for large sparse text data using clustering. Mach Learn.
2001;42(1):143–75.

	16.	 Mao J, Jain AK. Self-organizing network for hyperellipsoidal clustering (HEC). Proc IEEE Neural Netw. 1994;5:2967–72.
	17.	 Shanley RJ, Mahtab MA. Delineation and analysis of clusters in orientation data. J Int Assoc Math Geol.

1974;8(1):9–23.
	18.	 Sreedhar C, Kasiviswanath N, Reddy PC. A novel multilevel queue based performance analysis of Hadoop job sched-

ulers. Indian J Sci Technol. 2016;9(44). doi:10.17485/ijst/2016/v9i44/96414
	19.	 haimov N, Malony A, Canon S, Iancu C, Ibrahim KZ, Srinivasan J. Scaling spark on HPC systems. In: Proceedings of

25th ACM international symposium on high-performance parallel and distributed computing. 2016. p. 97–110.
	20.	 Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig latin: a not-so-foreign language for data processing. In:

Proceedings of 2008 ACM SIGMOD international conference on management of data. 2008. p. 1099–110.
	21.	 Hunt P, Konar M, Junqueira FP, Reed B. ZooKeeper: wait free coordination for internet-scale systems. In: Proceedings

of USENIX conference. 2010.
	22.	 Wadkar S, Siddalingaiah M. HCatalog and Hadoop in the enterprise. In: Proceedings of Apache Hadoop 2014;

Apress, Berkeley, CA.
	23.	 Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R. Hive: a warehousing solution

over a map-reduce framework. J VLDB Endow. 2009;2(2):1626–9.
	24.	 Vohra D. Apache Avro. Book of practical Hadoop ecosystem. 2016. p. 303–23.
	25.	 Shastry K, Madhyastha S, Kumar S, Bresniker KM, Battas G. Transaction support for HBase. In: Proceedings of interna-

tional conference on management of data. 2014. p. 117–20.
	26.	 Wadkar S, Siddalingaiah M. Apache Ambari. Book of Pro Apache Hadoop. 2014. p. 399–401.
	27.	 Ferreira Cordeiro RL, Traina Junior C, Machado Traina AJ, López J, Kang U, Faloutsos C. Clustering very large multi-

dimensional datasets with MapReduce. In: Proceedings of KDD’11, ACM, California, August 21–24. 2011.
	28.	 Zhao W, Ma H, He Q. Parallel K-means clustering based on MapReduce. In: CloudCom 2009, LNCS 5931. Berlin:

Springer; 2009. pp. 674–9.
	29.	 Chen M. Soft clustering for very large data sets. Comput Sci Netw Secur J. 2017;17(11):102–8.
	30.	 Pham DT, Dimov SS, Nguyen CD. A two-phase K-means algorithm for large datasets. Mech Eng Sci J.

2004;218(10):1269–73.
	31.	 Chu C-T, Kim SK, Lin Y-A. Map-reduce for machine learning on multicore. In: Proceedings of the 20th annual confer-

ence on neural information processing systems (NIPS’06), Vancouver, Canada. 2006. p. 281–8.
	32.	 Xia D, Wang B, Li H, Li Y, Zhang Z. A distributed spatial–temporal weighted model on MapReduce for short-term

traffic flow forecasting. J Neurocomput. 2016;179(C):246–63.
	33.	 Chao L, Yan Y, Tonny R. A parallel Cop-K means clustering algorithm based on MapReduce framework. Adv Intell Soft

Comput J. 2011;123:93–102.
	34.	 Wang C, Guo M, Liu Y. EST clustering in large dataset with MapReduce. In: Proceedings of pervasive computing,

signal processing and applications, Sept 2010. 2010.
	35.	 Zhang LD, Yuan DJ, Zhang JW, Wang SP and Zhang QF. A new method for EST clustering. J Yi chuan xue bao = Acta

genetica Sinica. 2003.
	36.	 Fang W, Sheng VS, Wen X, Pan W. Meteorological data analysis using MapReduce. Sci World J. 2014;2014.

doi:10.1155/2014/646497
	37.	 Tsai CW, Hsieh CH, Chiang MC. Parallel black hole clustering based on MapReduce. In: Proceedings of IEEE interna-

tional conference on systems, man and cybernetics. 2015.
	38.	 https://www.gutenberg.org/. Accessed 10 Aug 2016.
	39.	 Palecki MA, Lawrimore JH, Leeper RD, Bell JE, Embler S, Casey N. US climate reference network processed data from

USCRN database version 2. 2015.
	40.	 Bertin-Mahieux T, Ellis DP, Whitman B, Lamere P. The million song dataset. In: Proceedings of the 12th International

conference on music information. Retrieval (ISMIR 2011). 2011.
	41.	 Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl

Math. 1987;20:53–65.
	42.	 Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis. New York: Wiley; 1990.

http://dx.doi.org/10.17485/ijst/2016/v9i44/96414
http://dx.doi.org/10.1155/2014/646497
https://www.gutenberg.org/

	Clustering large datasets using K-means modified inter and intra clustering (KM-I2C) in Hadoop
	Abstract
	Introduction
	Background
	Related work
	Proposed work
	K-means Hadoop MapReduce (KM-HMR)
	K-means modified inter and intra clustering (KM-I2C)
	Experimental evaluation
	Datasets
	Conclusions
	Authors’ contributions
	References

