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Abstract 

Background:  Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease 
that affects airflow to the lungs. Discovering the co-occurrence of COPD with other 
diseases, symptoms, and medications is invaluable to medical staff. Building co-occur-
rence indexes and finding causal relationships with COPD can be difficult because 
often times disease prevalence within a population influences results. A method which 
can better separate occurrence within COPD patients from population prevalence 
would be desirable. Large hospital systems may potentially have tens of millions of 
patient records spanning decades of collection and a big data approach that is scalable 
is desirable. The presented method, Co-Occurring Evidence Discovery (COED), presents 
a methodology and framework to address these issues.

Methods:  Natural Language Processing methods are used to examine 64,371 deidenti-
fied clinical notes and discover associations between COPD and medical terms. Apache 
cTAKES is leveraged to annotate and structure clinical notes. Several extensions to 
cTAKES have been written to parallelize the annotation of large sets of clinical notes.   A 
co-occurrence score is presented which can penalize scores based on term prevalence, 
as well as a baseline method traditionally used for finding co-occurrence.  These scoring 
systems are implemented using Apache Spark. Dictionaries of ground truth terms for 
diseases, medications, and symptoms have been created using clinical domain knowl-
edge. COED and baseline methods are compared using precision, recall, and F1 score.

Results:  The highest scoring diseases using COED are lung and respiratory diseases. 
In contrast, baseline methods for co-occurrence rank diseases with high population 
prevalence highest. Medications and symptoms evaluated with COED share similar 
results.  When evaluated against ground truth dictionaries, the maximum improve-
ments in recall for symptoms, diseases, and medications were 0.212, 0.130, and 0.174. 
The maximum improvements in precision for symptoms, diseases, and medications 
were 0.303, 0.333, and 0.180. Median increase in F1 score for symptoms, diseases, and 
medications were 38.1%, 23.0%, and 17.1%. A paired t-test was performed and F1 score 
increases were found to be statistically significant, where p < 0.01.

Conclusion:  Penalizing terms which are highly frequent in the corpus results in better 
precision and recall performance. Penalizing frequently occurring terms gives a better 
picture of the diseases, symptoms, and medications co-occurring with COPD. Using a 
mathematical and computational approach rather than purely expert driven approach, 
large dictionaries of COPD related terms can be assembled in a short amount of time.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a family of diseases associated with 
reduced airflow to the lungs. Over time, patients will experience decreasing airflow as well 
as increasing inflammation of the tissues that line the airway. The National Institutes of 
Health (NIH) estimates that approximately 24 million Americans have COPD, with many 
not even being aware [1]. Though the disease primarily affects smokers, COPD may also 
occur in those genetically predisposed or due to air pollution. COPD has no known cure.

Historically, many medical professionals diagnosed COPD as chronic bronchitis or 
emphysema. More recently, diseases characterized by chronic cough with sputum produc-
tion and increasing shortness of breath are encompassed in the blanket diagnosis of COPD 
[2]. This means that COPD often co-occurs with related lung diseases. However, many dis-
eases that co-occur with COPD are not contained within the family of COPD diseases. 
For example, hypertension often co-occurs with COPD because smoking increases the risk 
for both diseases [3]. Other diseases such as asthma may also affect the lungs and have a 
high co-occurrence with COPD. Additionally, many medications not specifically created 
for COPD treatment are highly correlated with COPD. Aspirin has been shown to help in 
the treatment of COPD patients and is often prescribed by medical professionals [4].

The discovery of co-occurring diseases, symptoms, and medications can be useful to 
researchers and medical professionals. Researchers have shown interest in developing 
clinical guidelines which consider multimorbidities [5, 6]. Indexes exist which measure 
the likelihood of patient death based upon which diseases are present [7]. Building these 
indexes using a computational approach by algorithmically discovering co-occurring 
diseases, symptoms, and medications would greatly expand their accuracy and coverage.

Currently, no standard set of ground-truth terms exists for evaluating the performance 
of COPD co-occurrence analysis. The contribution of our work is (1) proposed method-
ology and manual creation of an expert reviewed dictionary and (2) proposition of new 
mathematical formulas and big data computational framework for finding COPD related 
terms. After the ground truth dictionary has been created, it is evaluated using precision 
and recall against traditional methods for finding disease and term co-occurrence.

Background
Clinical data sources

The past several years has seen an increase in the electronic storage of patient records 
using Electronic Health Records (EHR). Data is typically stored in two formats: struc-
tured and unstructured. Structured data is stored in a form which can be directly queried 
and results returned as a normalized data structure. Structured data includes ICD-10 
codes and patient demographics. ICD-10 codes are commonly used for billing purposes 
and may not include a complete picture of the patient. Additionally, these billing codes 
may be assigned based on financial reimbursement incentives rather than accuracy [8].

Clinical notes written by medical professionals during the treatment and discharge of 
patients are considered unstructured data. These notes often contain more information 
than ICD-10 codes because they are dictated for the purpose comprehensive patient 
documentation rather than billing purposes [9]. Medical professionals can quickly dic-
tate large amounts of unstructured information without the conversion losses a struc-
tured system would incur. However, these notes have the disadvantage that they cannot 
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be easily queried. The field which processes such unstructured data, or natural language, 
is known as Natural Language Processing (NLP).

Clinical NLP

The medical domain has been an early adopter of NLP. Unlike many domains which use 
general NLP techniques, clinical NLP systems attempt to incorporate domain knowl-
edge in order to increase the quality of extracted information. A common practice in 
NLP is stemming, which attempts to find the root of a word. This technique can poten-
tially increase the quality of extracted data, but general techniques such as the Porter 
stemmer have limited use in the clinical domain [10]. Variants of common English terms 
often contain no more than an additional prefix or suffix. Clinical term variants may be 
medication brand names of the same generic drug or diseases which may have different 
common names internationally. Additional concerns exist such as extracting numeric 
values and units of laboratory results, identification of family histories vs patient history, 
and negation of findings. These concerns have led to the development of domain specific 
clinical NLP systems spanning back many decades.

LSP–MLP

The Linguistic String Project–Medical Language Processor (LSP–MLP) is the oldest 
traceable NLP system directed at information extraction from clinical notes. LSP began 
in 1965 for the purposes of developing an English language parser that could process sci-
entific literature [11]. Researchers attempted to structure text in a way that could be eas-
ily queried and was an early question–answer system. The NIH funded an expansion of 
LSP to be applied to clinical notes. This research resulted in the MLP system. MLP was 
aimed at supplementing LSP with domain specific knowledge to increase the quality of 
information. LSP–MLP does not appear to be under active development or maintenance 
and has not seen any related research papers published in over a decade.

Many of the NLP techniques used by LSP–MLP have been superseded by research-
ers outside of the clinical domain. Modern approaches typically use statistical methods 
for the identification of parts of speech, sentence boundaries, and other structure. LSP 
attempts to structure language using grammars. Modern systems additionally make use 
of controlled medical vocabularies which are developed independently by organiza-
tions such as the National Library of Medicine (NLM). Additionally, LSP–MLP is fragile 
because it depends on the syntactic structure of the text rather than semantic meaning.

MedLEE

The Medical Language Extraction and Encoding System (MedLEE) originated as a sys-
tem to structure radiology reports. MedLEE eventually evolved as a general purpose 
clinical NLP system [12]. MedLEE was created without the help of additional NLP 
libraries and frameworks. Modern clinical NLP systems often use Commercial off the 
shelf (COTS) NLP tools such as UIMA, GATE, and OpenNLP to prevent duplication of 
efforts. MedLEE has improved in recent years to include medical vocabularies from the 
National Library of Medicine’s Unified Medical Language System (UMLS). UMLS con-
tains medical terms from many data sources in a standardized format.
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Apache cTAKES

The Clinical Text Analysis and Extraction System (cTAKES) represents the latest 
advancements in clinical NLP. The project began as a cooperative effort between IBM 
and the Mayo Clinic to annotate diseases, medications, laboratory, and anatomical loca-
tions in clinical notes [13]. cTAKES is built on top of IBM’s Unstructured Information 
Management Architecture (UIMA). Key to UIMA are the concepts of annotators and 
the Common Analysis System (CAS). Annotators are code written by system users 
which analyzes documents and attempts to record structure. Figure  1 shows a typical 
UIMA pipeline.

Although cTAKES and UIMA provide useful features, both tools are designed to be 
used document-at-a-time. This limits the use in document aggregation. Analyzing the 
frequency of disease occurrence in a document corpus would not be possible with a 
UIMA annotator. Annotations which use frequency counts would need system exten-
sions. Our research makes use of Apache cTAKES and has written the code necessary to 
annotate document aggregations.

HITEx

The Health Information Text Extraction (HITEx) is an information extraction system 
aimed at general purpose processing of medical texts. The system departs from previous 
works as it uses a component based architecture based on the GATE framework [14]. 
The use of GATE allowed researchers to focus solely on domain specific concerns rather 
than low level tasks such as tokenization and sentence segmentation. This project has 
stalled and not published new research since 2006.

The highest layer of HITEx is the UMLS concept mapper which maps medical terms 
to UMLS concepts. This subsystem uses both exact string matching and fuzzy match-
ing through truncation and normalization. The system has been used successfully as 
a hybrid system combining ICD-9 structured data and unstructured clinical notes. In 
addition to basic NLP tasks, HITEx contains modules capable of discerning the patient’s 
primary diagnosis and smoking status.

Zeng et al. [14] have created a system to assist in the detection of co-morbidities in 
clinical notes. This system primarily uses HITEx to assist in the finding of co-morbidi-
ties. The existence of COPD and another disease in a clinical note is considered a comor-
bidity. This methodology is common in the determination of co-occurring diseases. 
However, this methodology may not be ideal. Diseases which occur with high prevalence 
in a general population will statistically also co-occur with high frequency independent 
of COPD status. Ideally, penalizing diseases, medications, and symptoms which occur 
with high frequency in a general population would allow a more accurate picture. While 

Fig. 1  Common UIMA pipeline for annotating documents
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such penalizations have been greatly researched in the Information retrieval (IR) com-
munity [15], few have attempted to adapt these methods to clinical NLP [16].

Clinical big data

Data mining of clinical data has been well studied since the emergence of the field. How-
ever, big data approaches have been far less studied. A review by Herland et  al. [17] 
documents several big data systems. Current clinical big data systems are often built 
for the purpose of supervised machine learning tasks. In practice, many medical profes-
sionals use Clinical Decision Support Systems (CDSS). These allow the practitioner to 
make conclusions rather than relying on algorithmic classification. Many classification 
algorithms provide evidence which is difficult to interpret. Medical professionals may 
be uncomfortable diagnosing patients without clearly interpretable results. Aggregated 
data, summary statistics, and similar patients are examples of common information pre-
sented to medical professionals using a CDSS. Big data approaches in CDSS have seen 
little research to date.

Our research attempts to create a computational framework for the discovery of co-
occurring diseases, medications, and symptoms in COPD patients. COPD was chosen 
because it is tangential to many lung diseases. Clinical notes are used as the primary 
data source due to a potentially high yield of information. Several NLP techniques are 
employed in this framework in an effort to maximize the information captured within 
these notes. With the emergence of electronic patient record databases, many large sys-
tems containing big data are now available. Examples of these are the Veterans Affairs 
(VA) hospital system and England’s National Health Service (NHS). Our methodology 
uses a big data approach to finding co-occurring evidence and is validated using a data-
set containing approximately 64,000 instances. Due to rarity of access to databases as 
large as the VA system, this dataset was the largest available to our research group. How-
ever, the methodology was designed with big data techniques as the foundation. It can 
be employed by organizations such as the VA hospital system without scalability issues. 
Although an increasing number of researchers are using NLP with clinical notes as a 
data source [18, 19], few have explored COPD clinical notes [14] and there is no docu-
mented evidence in Google Scholar of this methodology applied to big data.

Methodology
The Apache Hadoop ecosystem is leveraged for COED. Hadoop Distributed Filesystem 
(HDFS) is used for the storage and distribution of deidentified patient discharge sum-
maries. Apache Spark is utilized for MapReduce operations and the pyspark python 
interface is used for programming. Documents are represented as Resilient Distrib-
uted Datasets (RDD). Apache cTAKES is used for the extraction of medical terms from 
unstructured clinical notes. cTAKES offers several UIMA pipelines and UMLS fast-
dictionary-lookup is used as the primary pipeline. Disease, medication, and symptom 
annotations are stored, excluding annotations marked “history” and those that have 
been negated. UMLS Concept IDs (CID) are extracted from each annotation and used as 
the primary term identifier.

The data used for this study is comprised of 64,371 deidentified patient discharge sum-
maries. 0.0894 of these contain COPD as either a primary diagnosis or contributing 
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factor. The average clinical note contains 20.6 disease, symptom, or medication men-
tions. Discharge summaries span 6  years of collection. Diseases and medications may 
have several spelling variations and abbreviations in common usage. Figure 2 shows sev-
eral variations for hypertensive disease normalized to a common CID. Normalization to 
a common ID is necessary as variations in the same disease will lower aggregate counts. 
Splitting aggregate counts of diseases will result in diseases with lower than appropriate 
representation in search rankings.

The UMLS dictionaries used in this research are Snomed-CT, NCI Thesaurus, MeSH, 
and ICD-9. Table 1 outlines a brief description of each dictionary. Many terms are iden-
tified in multiple dictionaries and there exists a large amount of redundancy in coverage. 
UMLS CIDs are valid across dictionaries and it is possible to normalize a term discov-
ered in multiple dictionaries to single CID. The use of multiple dictionaries assists in 
expanding coverage of common abbreviations and variants in spelling.

Fig. 2  Normalization of hypertension and its variants to a single UMLS CID

Table 1  Summary of dictionaries used by cTAKES

Dictionary Description

Snomed-CT [20] Snomed-CT is a set of clinical terms maintained by the International Health Terminology 
Standards Development Organization (IHTSDO). The development of Snomed-CT dates 
back to 1965 and is known for its comprehensive coverage of clinical terms. SNOMED-
CT consists of concepts, descriptions, and relationships and can be used for semantic 
processing

NCI Thesaurus [21] The National Cancer Institute (NCI) Thesaurus was created to assist in research systems 
made available by NCI. It covers clinical terminology regarding cancers, findings, drugs, 
therapies, anatomy, genes, and many other cancer research related terms. NCI thesaurus 
offers a partial model as to how these subjects relate to each other and aims to provide 
a common system for cancer researchers to communicate

MeSH [22] Medical Subject Headings (MeSH) is an NLM controlled vocabulary used for indexing 
articles on NIH’s pubmed. Additionally, relationships between terms are provided which 
can act as a thesaurus

ICD-9 [23, 24] International Classification of Diseases (ICD) is a coding system designed for classification 
of diseases and disorders. ICD is maintained by the World Health Organization (WHO) 
and ICD-9 is the ninth revision of the system. In the United States, ICD-9 has seen 
popular usage in medical billing. The system has been adopted by many organizations, 
including the centers for disease control for reporting mortality and morbidity statistics 
[25]



Page 7 of 18Baechle et al. J Big Data  (2017) 4:9 

Co‑occurrence evidence discovery framework

An overview of COED is described in Fig. 3. When a document arrives for annotation, it 
passes through the Apache cTAKES pipeline. The pipeline begins with generalized NLP 
tasks such as tokenization before reaching clinical NLP tasks such as UMLS dictionary 
lookup. After the document is annotated, it is serialized and held until all document 
annotations for the dataset are complete. COED then runs corpus-at-a-time processing 
using the following components.

Aggregator—Gathers annotations into a single data file suitable for processing. In the 
Hadoop ecosystem, this is a tab separated file with one line per document.

Analyzer—Documents are counted and terms mapped to COPD and non-COPD 
lookup tables. Each document is considered a COPD document if COPD was the pri-
mary diagnosis. Terms contained within the same document are considered to be COPD 
terms and counts incremented within the lookup table. Documents that do not contain 
COPD as a primary diagnosis are mapped to the non-COPD lookup table in a similar 
fashion. Terms may exist in both tables. These term counts are later used with Eq. 5 to 
calculate COED scores.

Fig. 3  A non-parallelized outline of COED
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Score—The scoring mechanism then scores each term using equations and parameters 
outlined in the next section.

Ranker—Scores are then ranked and recombined with UMLS definitions for user 
accessible output.

A big data prospective of COED is contained in Fig. 4. Raw documents are stored in 
HDFS. Extensions to cTAKES have been written which allow cTAKES to run as a dae-
mon. The daemon waits for a signal to annotate a new document. This signal is delivered 
using ZeroMQ, a message queue system. Due to the high initial startup time of cTAKES 
(up to several minutes), this daemon is separately installed on slave servers and runs per-
sistently. cTAKES annotators annotate a single document and store the resulting infor-
mation in HDFS. Each annotator processes a single document at a time, but annotators 
may run independently because annotations exist independently of other documents.

After all annotations are complete, annotations are aggregated to a spark compatible 
file and a signal is sent to the second phase. COED runs as a series of map and reduce 
tasks. Word counts are performed for COPD and non-COPD documents. Results are 
stored in two separate RDDs and reduced by key using the add callback function. The 
two RDDs are then joined using the pyspark join() method creating a merged RDD of 
form [K,(V1,V2)]. Each term is then scored using Eq. 5 and then sorted by value using a 
custom sort function. No final reduce operation is required as the previous reduce has 
ensured distinct keys. Results are then outputted to a file for further analysis.

Score

Co-occurrence of diseases, medications, and symptoms with COPD is traditionally cal-
culated as follows and serves as our baseline co-occurrence method.

Fig. 4  Big data version of COED as implemented in the Hadoop ecosystem using Apache Spark
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where DCOPD is the set of documents containing COPD as a diagnosis and t is the term 
which co-occurrence is to be calculated. This measurement however, prefers terms 
which occur frequently in the corpus. For example, research shows arthritis to have a 
great deal of co-occurrence with COPD [26]. However, arthritis tends to have a great 
deal of co-occurrence with many diseases as it occurs in one in five American adults 
[27]. The primary causes of both diseases are different and risk factors largely independ-
ent. Terms which appear often in the document corpus should therefore be penalized, as 
shown in Eq. 3.

As the frequency of the term increases in the corpus of documents, the co-occurrence 
is penalized. This can be helpful in the discovery of terms unique to COPD. However, 
this will also give a great amount of co-occurrence weight to rare diseases only found 
in COPD patients. In many cases, a more desirable result would be a lower weighting of 
COPD specific terms. Adding a parameter for the penalization of rare terms follows.

Many variants of this score are possible. The variant primarily used in this research 
looks at COPD vs non-COPD documents instead of COPD vs all documents. DCOPD is 
defined as the set of documents which do not contain COPD as a primary or contribut-
ing diagnosis. λ = 2 is used for experimentation.

Evaluation

In order to analyze the performance of retrieved results, a ground truth dictionary of terms 
was created. 107 diseases, 62 medications, and 46 symptoms were chosen using evidence 
based approaches. Many criteria were considered when selecting medical terms. Terms 
which were directly related to COPD such as bronchitis and cough were chosen. Addition-
ally, terms which may not be directly associated with COPD, but have strong common risk 
factors, such as smoking were chosen. Terms which contain weak associations with com-
mon risk factors were not chosen. Smoking is known to exacerbate many diseases such as 
kidney disease by hardening arteries and reducing blood flow to organs. However, smok-
ing is not the primary cause of kidney disease therefore kidney disease not chosen. Table 2 
contains a sample of disease, medication, and symptom ground truth terms.

(1)fCOPD(t,DCOPD) =

∣

∣{d ∈ DCOPD : t ∈ d}
∣

∣

|DCOPD|

(2)fall(t,D) =

∣

∣{d ∈ D : t ∈ d}
∣

∣

|D|

(3)f (t,D,DCOPD) =
fCOPD(t,DCOPD)

fall(t,D)

(4)f (t,D,DCOPD) =
fCOPD(t,DCOPD)

�

fall(t,D)

(5)f
(

t,DCOPD,DCOPD

)

=
fCOPD(t,DCOPD)

�

fCOPD(t,DCOPD)
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Precision and recall were used at the primary performance metrics. Relevant terms 
are those defined in the ground truth dictionary and retrieved terms are those found 
by using both baseline and COED methods. The number of relevant terms is fixed for 
each category of medical terms. However, the number of retrieved terms is varied where 
10 ≤ n ≤ relevent terms and n ∈ Z. Precision and recall are defined in Eqs. 6 and  7.

Results
Diseases and disorders

A sample of the highest scoring diseases is shown in Table 3. The baseline method shows 
diseases which have a high population prevalence (such as diabetes), to occur higher in the 
baseline method than COED. Additionally, respiratory failure is a more appropriate high-
est rank term than hypertension. Diseases with a high population prevalence may still rank 
high in COED. For example, diabetes ranks as the fifth highest term. However, the goal of 
COED is not to completely eliminate frequently occurring diseases from retrieval results. 
COED aims to rank them lower by penalizing their prevalence in the general population.

(6)precision =
|
{

relevent terms
}

∩
{

retrieved terms
}

|

|{retrieved terms}|

(7)recall =
|
{

relevent terms
}

∩
{

retrieved terms
}

|

|{relevent terms}|

Table 2  Selection of ground-truth terms

Disease/disorders Symptoms Medications

Chronic lung disease Distressed breathing Spririva

Bullous emphysema Wheezing Advair

Pulmonary congestion Smoking Oxygen

Bronchitis Chest pains Albuterol

Acute respiratory failure Cough Combivent

Asthmas Reflux Prednisone

Gastro esophageal reflux Crackle Atrovent

Carcinoma of lung Clubbing (morphologic abnormality) Medrol

Pneumonia Carbon dioxide, increased level Duoneb

Congestive heart failure Deficiencies, oxygen Daliresp

Table 3  Selection of top ten results for diseases and disorders

Rank Baseline COED

1 Hypertension Respiratory failure

2 Diabetes mellitus Hypertension

3 Coronary disease Pneumonia

4 Heart fibrillation Congestive heart failure

5 Arteriopathic disease Diabetes mellitus

6 Congestive heart failure Chronic respiratory failure

7 Pneumonia Acute respiratory distress

8 Respiratory failure Acute chronic respiratory failure

9 Anemia Chronic respiratory insufficiency

10 Kidney disease Heart fibrillation
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Precision and recall were higher in comparison to the baseline method as shown 
in Figs.  5 and 6. As the number of terms increased, the difference in recall slightly 
increased. The difference in precision was greatest when the number of terms was low. 
Additionally, F1 score for COED was higher than baseline, as shown in Fig. 7. A paired t 
test was performed against F1 scores for COED and baseline. The resulting p value was 
p < 0.01, showing a statistically significant increase in F1 score for COED. Finally, the 
percentage increase of F1 score is shown in Fig. 8 as a box and whisker plot. The median 
increase was for COED F1 score was 23.0%, a considerable increase.

Fig. 5  Comparison of disease recall for baseline and COED methodologies

Fig. 6  Comparison of disease precision for baseline and COED methodologies

Fig. 7  Comparison of disease F1 score for baseline and COED methodologies
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Symptoms

A sample of the highest scoring symptoms is shown in Table  4. The baseline method 
returned the top scoring term as pain while COED returned a breathing condition. Addi-
tionally, COED returned smoking, a direct known cause of COPD, in the top results. 
Allergies are very common and appear in the baseline methodology but do not appear in 
the selection of COED results. Precision and recall were generally higher in comparison 
to the baseline method as shown in Figs. 9 and 10. However, in some instances, these 
two metrics were equal. The difference in precision and recall were generally largest for 
a high number of terms retrieved. F1 score results shown in Figs. 11 and 12 additionally 
show similar increases. The median F1 score for symptoms was 38.1%, another consider-
able increase. A paired t-test was performed against F1 score results and p < 0.01.

Fig. 8  Box and whisker plot of the percentage increase of F1 scores for baseline vs COED methodologies. 
Median percentage increase for disease F1 score is 23.0%
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Medications

A sample of the highest scoring medications is shown in Table 5. The baseline method 
has chosen Aspirin as the highest scoring medication. However, Aspirin is a very com-
mon medication and population prevalence causes it to be highly ranked. COED has 
chosen Spriva, a popular medicine to treat bronchospasms caused by COPD. In contrast 
to diseases and symptoms, COED and baseline methods are much more similar in pre-
cision and recall value, as shown in Figs. 13 and 14. F1 score is similar for less than 26 
terms and median increase only 17.1%, as shown in Figs. 15 and 16. These increases are 

Table 4  Selection of top ten results for symptoms

Rank Baseline COED

1 Pain NOS Dyspneas

2 Dyspneas Oxygen supply

3 MG body Wheezings

4 Normal skin Pain NOS

5 Chest pains MG body

6 Cough Respiratory insufficiency

7 Allergies Smoker

8 Arterial tension Decreased air entry

9 Edema Cough

10 Atrial fibrillations Normal skin

Fig. 9  Comparison of symptoms recall for baseline and COED methodologies

Fig. 10  Comparison of symptoms precision for baseline and COED methodologies
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Fig. 12  Box and whisker plot of the percentage increase of F1 scores for baseline vs COED methodologies. 
Median percentage increase for symptoms F1 score is 38.1%

Fig. 11  Comparison of symptoms F1 score for baseline and COED methodologies
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smaller than disease and symptoms. However, the increases were still found to be statis-
tically significant at p < 0.01.

Conclusions
As shown in the results, penalizing terms which are highly frequent in the corpus results 
in better precision and recall performance. Penalizing frequently occurring terms gives 
a better picture of the diseases, symptoms, and medications co-occurring with COPD. 
Using a mathematical and computational approach rather than purely expert driven 

Table 5  Selection of top ten results for medications

Rank Baseline COED

1 Aspirin Spiriva

2 Albuterol Advair

3 Oxygen Oxygen

4 Advair Albuterol

5 Prednisone Combivent

6 Marevan Prednisone

7 Lisinopril Atrovent

8 Medrol Medrol

9 Combivent Duoneb

10 Spiriva Daliresp

Fig. 13  Comparison of medication recall for baseline and COED methodologies

Fig. 14  Comparison of medication precision for baseline and COED methodologies
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Fig. 15  Comparison of medication F1 score for baseline and COED methodologies

Fig. 16  Box and whisker plot of the percentage increase of F1 scores for baseline vs COED methodologies. 
Median percentage increase for medication F1 score is 17.1%
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approach, large dictionaries of COPD related terms can be assembled in a short amount 
of time. Additionally, localized data may return slightly different results based on patient 
population. This allows dictionaries to be created on a per-hospital basis rather than 
nationally, which may not account for localized concerns.

Future work intends to expand this methodology to other diseases to increase con-
fidence in results. Many diseases do not contain ground truth dictionaries for the 
purposes of information retrieval analysis and must be created using similar methodol-
ogy. Finally, we intend to integrate the software into an EHR system directly for ana-
lytical feedback to medical professionals about their patient population. This can serve 
as a decision support system to assist medical staff in developing patient treatment 
procedures.
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