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Background
The field of data mining and machine learning has been widely and successfully used in 
many applications where patterns from past information (training data) can be extracted 
in order to predict future outcomes [129]. Traditional machine learning is characterized 
by training data and testing data having the same input feature space and the same data 
distribution. When there is a difference in data distribution between the training data 
and test data, the results of a predictive learner can be degraded [107]. In certain sce-
narios, obtaining training data that matches the feature space and predicted data distri-
bution characteristics of the test data can be difficult and expensive. Therefore, there is 
a need to create a high-performance learner for a target domain trained from a related 
source domain. This is the motivation for transfer learning.

Transfer learning is used to improve a learner from one domain by transferring infor-
mation from a related domain. We can draw from real-world non-technical experiences 
to understand why transfer learning is possible. Consider an example of two people who 
want to learn to play the piano. One person has no previous experience playing music, 
and the other person has extensive music knowledge through playing the guitar. The 
person with an extensive music background will be able to learn the piano in a more effi-
cient manner by transferring previously learned music knowledge to the task of learning 
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to play the piano [84]. One person is able to take information from a previously learned 
task and use it in a beneficial way to learn a related task.

Looking at a concrete example from the domain of machine learning, consider the 
task of predicting text sentiment of product reviews where there exists an abundance 
of labeled data from digital camera reviews. If the training data and the target data are 
both derived from digital camera reviews, then traditional machine learning techniques 
are used to achieve good prediction results. However, in the case where the training data 
is from digital camera reviews and the target data is from food reviews, then the predic-
tion results are likely to degrade due to the differences in domain data. Digital camera 
reviews and food reviews still have a number of characteristics in common, if not exactly 
the same. They both are written in textual form using the same language, and they both 
express views about a purchased product. Because these two domains are related, trans-
fer learning can be used to potentially improve the results of a target learner [84]. An 
alternative way to view the data domains in a transfer learning environment is that the 
training data and the target data exist in different sub-domains linked by a high-level 
common domain. For example, a piano player and a guitar player are subdomains of a 
musician domain. Further, a digital camera review and a food review are subdomains of 
a review domain. The high-level common domain determines how the subdomains are 
related.

As previously mentioned, the need for transfer learning occurs when there is a limited 
supply of target training data. This could be due to the data being rare, the data being 
expensive to collect and label, or the data being inaccessible. With big data repositories 
becoming more prevalent, using existing datasets that are related to, but not exactly 
the same as, a target domain of interest makes transfer learning solutions an attractive 
approach. There are many machine learning applications that transfer learning has been 
successfully applied to including text sentiment classification [121], image classification 
[30, 58, 146], human activity classification [46], software defect classification [77], and 
multi-language text classification [145, 91, 144].

This survey paper aims to provide a researcher interested in transfer learning with an 
overview of related works, examples of applications that are addressed by transfer learn-
ing, and issues and solutions that are relevant to the field of transfer learning. This sur-
vey paper provides an overview of current methods being used in the field of transfer 
learning as it pertains to data mining tasks for classification, regression, and clustering 
problems; however, it does not focus on transfer learning for reinforcement learning (for 
more information on reinforcement learning see Taylor [112]). Information pertaining 
to the history and taxonomy of transfer learning is not provided in this survey paper, 
but can be found in the paper by Pan [84]. Since the publication of the transfer learn-
ing survey paper by Pan [84] in 2010, there have been over 700 academic papers writ-
ten addressing advancements and innovations on the subject of transfer learning. These 
works broadly cover the areas of new algorithm development, improvements to exist-
ing transfer learning algorithms, and algorithm deployment in new application domains. 
The selected surveyed works in this paper are meant to be diverse and representative 
of transfer learning solutions in the past 5 years. Most of the surveyed papers provide 
a generic transfer learning solution; however, some surveyed papers provide solutions 
that are specific to individual applications. This paper is written with the assumption the 
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reader has a working knowledge of machine learning. For more information on machine 
learning see Witten [129]. The surveyed works in this paper are intended to present a 
high-level description of proposed solutions with unique and salient points being high-
lighted. Experiments from the surveyed papers are described with respect to applied 
applications, other competing solutions tested, and overall relative results of the experi-
ments. This survey paper provides a section on heterogeneous transfer learning which, 
to the best of our knowledge, is unique. Additionally, a list of software downloads for 
various surveyed papers is provided, which is unique to this paper.

The remainder of this paper is organized as follows. “Definitions of transfer learning” 
section provides definitions and notations of transfer learning. “Homogeneous transfer 
learning” and “Heterogeneous transfer learning” sections provide solutions on homo-
geneous and heterogeneous transfer learning, “Negative transfer” section provides 
information on negative transfer as it pertains to transfer learning. “Transfer learn-
ing application” section provides examples of transfer learning applications. “Conclu-
sion and discussion” section summarizes and discusses potential future research work. 
Appendix provides information on software downloads for transfer learning.

Definitions of transfer learning
The following section lists the notation and definitions used for the remainder of this 
paper. The notation and definitions in this section match those from the survey paper 
by Pan [84], if present in both papers, to maintain consistency across both surveys. To 
provide illustrative examples of the definitions listed below, a machine learning applica-
tion of software module defect classification is used where a learner is trained to predict 
whether a software module is defect prone or not.

A domain D is defined by two parts, a feature space X  and a marginal probability 
distribution P(X), where X = {x1 , . . . , xn} ∈ X . For example, if the machine learning 
application is software module defect classification and each software metric is taken 
as a feature, then xi is the i-th feature vector (instance) corresponding to the i-th soft-
ware module, n is the number of feature vectors in X, X  is the space of all possible fea-
ture vectors, and X is a particular learning sample. For a given domain D, a task T  is 
defined by two parts, a label space Y, and a predictive function f(·), which is learned 
from the feature vector and label pairs {xi, yi} where xi ∈ X and yi ∈ Y. Referring to the 
software module defect classification application, Y is the set of labels and in this case 
contains true and false, yi takes on a value of true or false, and f(x) is the learner that 
predicts the label value for the software module x. From the definitions above, a domain 
D = {X , P(X)} and a task T =

{

Y , f (·)
}

. Now, DS is defined as the source domain data 
where DS =

{(

xS1, yS1
)

. . . ,
(

xSn, ySn
)}

, where xSi ∈ XS is the ith data instance of DS and 
ySi ∈ YS is the corresponding class label for xSi. In the same way, DT is defined as the tar-
get domain data where DT =

{(

xT1, yT1
)

. . . ,
(

xTn, yTn
)}

, where xTi ∈ XT  is the ith data 
instance of DT and yTi,∈ YT  is the corresponding class label for xTi. Further, the source 
task is notated as TS, the target task as TT , the source predictive function as fS(·), and the 
target predictive function as fT(·).

Transfer learning is now formally defined. Given a source domain DS with a corre-
sponding source task TS and a target domain DT with a corresponding task TT , trans-
fer learning is the process of improving the target predictive function fT(∙) by using the 
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related information from DS and TS, where DS �= DT or TS �= TT . The single source 
domain defined here can be extended to multiple source domains. Given the definition of 
transfer learning, since DS = {XS , P(XS)} and DT = {XT , P(XT)}, the condition where 
DS �= DT means that XS �= XT  and/or P(XS) �= P(XT). The case where XS �= XT  with 
respect to transfer learning is defined as heterogeneous transfer learning. The case where 
XS = XT  with respect to transfer learning is defined as homogeneous transfer learn-
ing. Going back to the example of software module defect classification, heterogeneous 
transfer learning is the case where the source software project has different metrics (fea-
tures) than the target software project. Alternatively, homogeneous transfer learning is 
when the software metrics are the same for both the source and the target software pro-
jects. Continuing with the definition of transfer learning, the case where P(XS) �= P(XT) 
means the marginal distributions in the input spaces are different between the source 
and the target domains. Shimodaira [107] demonstrated that a learner trained with 
a given source domain will not perform optimally on a target domain when the mar-
ginal distributions of the input domains are different. Referring to the software mod-
ule defect classification application, an example of marginal distribution differences is 
when the source software program is written for a user interface system and the tar-
get software program is written for DSP signaling decoder algorithm. Another possible 
condition of transfer learning (from the definition above) is TS �= TT , and it was stated 
that T =

{

Y , f (·)
}

 or to rewrite this, T = {Y , P(Y|X )}. Therefore, in a transfer learn-
ing environment, it is possible that YS �= YT  and/or P(YS|XS) �= P(YT|XT ). The case 
where P(YS|XS) �= P(YT|XT ) means the conditional probability distributions between 
the source and target domains are different. An example of a conditional distribution 
mismatch is when a particular software module yields different fault prone results in the 
source and target domains. The case of YS �= YT  refers to a mismatch in the class space. 
An example of this case is when the source software project has a binary label space of 
true for defect prone and false for not defect prone, and the target domain has a label 
space that defines five levels of fault prone modules. Another case that can cause dis-
criminative classifier degradation is when P(Ys) �= P(YT), which is caused by an unbal-
anced labeled data set between the source and target domains. The case of traditional 
machine learning is DS = DT and TS = TT . The common notation used in this paper is 
summarized in Table 1.

To elaborate on the distribution issues that can occur between the source and target 
domains, the application of natural language processing is used to illustrate. In natu-
ral language processing, text instances are often modeled as a bag-of-words where a 
unique word represents a feature. Consider the example of review text where the source 

Table 1  Summary of commonly used notation

Notation Description Notation Description

X Input feature space P (X) Marginal distribution

Y Label space P (Y|X) Conditional distribution

T Predictive learning task P (Y) Label distribution

Subscript S Denotes source DS Source domain data

Subscript T Denotes target DT Target domain data
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covers movie reviews and the target covers book reviews. Words that are generic and 
domain independent should occur at a similar rate in both domains. However, words 
that are domain specific are used more frequently in one domain because of the strong 
relationship with that domain topic. This is referred to as frequency feature bias and 
will cause the marginal distribution between the source and target domains to be dif-
ferent (P(XS) �= P(XT)). Another form of bias is referred to as context feature bias and 
this will cause the conditional distributions to be different between the source and tar-
get domains P(YS|XS) �= P(YT|XT ). An example of context feature bias is when a word 
can have different meanings in two domains. A specific example is the word “monitor” 
where in one domain it is used as a noun and in another domain it is used as a verb. 
Another example of context feature bias is with sentiment classification when a word 
has a positive meaning in one domain and a negative meaning in another domain. The 
word “small” can have a good meaning if describing a cell phone but a bad meaning if 
describing a hotel room. A further example of context feature bias is demonstrated in 
the case of document sentiment classification of reviews where the source domain con-
tains reviews of one product written in German and the target domain contains reviews 
of a different product written in English. The translated words from the source docu-
ment may not accurately represent the actual words used in the target documents. An 
example is the case of the German word “betonen”, which translates to the English word 
“emphasize” by Google translator. However, in the target documents the corresponding 
English word used is “highlight” (Zhou [144]).

Negative transfer, with regards to transfer learning, occurs when the information 
learned from a source domain has a detrimental effect on a target learner. More for-
mally, given a source domain DS, a source task TS, a target domain DT , a target task TT  , 
a predictive learner fT1(·) trained only with DT , and a predictive learner fT2(·) trained 
with a transfer learning process combining DT  and DS, negative transfer occurs when 
the performance of fT1(·) is greater than the performance of fT2(·). The topic of negative 
transfer addresses the need to quantify the amount of relatedness between the source 
domain and the target domain and whether an attempt to transfer knowledge from the 
source domain should be made. Extending the definition above, positive transfer occurs 
when the performance of fT2(·) is greater than the performance of fT1(·).

Throughout the literature on transfer learning, there are a number of terminology 
inconsistencies. Phrases such as transfer learning and domain adaptation are used to 
refer to similar processes. The following definitions will be used in this paper. Domain 
adaptation, as it pertains to transfer learning, is the process of adapting one or more 
source domains for the means of transferring information to improve the performance 
of a target learner. The domain adaptation process attempts to alter a source domain in 
an attempt to bring the distribution of the source closer to that of the target. Another 
area of literature inconsistencies is in characterizing the transfer learning process with 
respect to the availability of labeled and unlabeled data. For example, Daumé [22] and 
Chattopadhyay [14] define supervised transfer learning as the case of having abundant 
labeled source data and limited labeled target data, and semi-supervised transfer learn-
ing as the case of abundant labeled source data and no labeled target data. In Gong [42] 
and Blitzer [5], semi-supervised transfer learning is the case of having abundant labeled 
source data and limited labeled target data, and unsupervised transfer learning is the 
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case of abundant labeled source data and no labeled target data. Cook [19] and Feuz [36] 
provide a different variation where the definition of supervised or unsupervised refers 
to the presence or absence of labeled data in the source domain and informed or unin-
formed refers to the presence or absence of labeled data in the target domain. With this 
definition, a labeled source and limited labeled target domain is referred to as informed 
supervised transfer learning. Pan [84] refers to inductive transfer learning as the case of 
having available labeled target domain data, transductive transfer learning as the case 
of having labeled source and no labeled target domain data, and unsupervised transfer 
learning as the case of having no labeled source and no labeled target domain data. This 
paper will explicitly state when labeled and unlabeled data are being used in the source 
and target domains.

There are different strategies and implementations for solving a transfer learning prob-
lem. The majority of the homogeneous transfer learning solutions employ one of three 
general strategies which include trying to correct for the marginal distribution differ-
ence in the source, trying to correct for the conditional distribution difference in the 
source, or trying to correct both the marginal and conditional distribution differences in 
the source. The majority of the heterogeneous transfer learning solutions are focused on 
aligning the input spaces of the source and target domains with the assumption that the 
domain distributions are the same. If the domain distributions are not equal, then fur-
ther domain adaptation steps are needed. Another important aspect of a transfer learn-
ing solution is the form of information transfer (or what is being transferred). The form 
of information transfer is categorized into four general Transfer Categories [84]. The first 
Transfer Category is transfer learning through instances. A common method used in this 
case is for instances from the source domain to be reweighted in an attempt to correct 
for marginal distribution differences. These reweighted instances are then directly used 
in the target domain for training (examples in Huang [51], Jiang [53]). These reweighting 
algorithms work best when the conditional distribution is the same in both domains. 
The second Transfer Category is transfer learning through features. Feature-based trans-
fer learning approaches are categorized in two ways. The first approach transforms the 
features of the source through reweighting to more closely match the target domain (e.g. 
Pan [82]). This is referred to as asymmetric feature transformation and is depicted in 
Fig. 1b. The second approach discovers underlying meaningful structures between the 
domains to find a common latent feature space that has predictive qualities while reduc-
ing the marginal distribution between the domains (e.g. Blitzer [5]). This is referred to 

Fig. 1  a The symmetric transformation mapping (TS and TT) of the source (XS) and target (XT) domains into a 
common latent feature space. b The asymmetric transformation (TT) of the source domain (XS) to the target 
domain (XT)
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as symmetric feature transformation and is depicted in Fig. 1a. The third transfer cat-
egory is to transfer knowledge through shared parameters of source and target domain 
learner models or by creating multiple source learner models and optimally combining 
the reweighted learners (ensemble learners) to form an improved target learner (exam-
ples in Gao [37], Bonilla [8], and Evgeniou [33]). The last transfer category (and the least 
used approach) is to transfer knowledge based on some defined relationship between the 
source and target domains (examples in Mihalkova [74] and Li [62]).

Detailed information on specific transfer learning solutions are presented in 
“Homogeneous transfer learning” “Heterogeneous transfer learning” and “Negative 
transfer” sections. These sections represent the majority of the works surveyed in 
this paper. “Homogeneous transfer learning” “Heterogeneous transfer learning” and 
“Negative transfer” sections cover homogeneous transfer learning solutions, het-
erogeneous transfer learning solutions, and solutions addressing negative transfer, 
respectively. The section covering transfer learning applications focuses on the gen-
eral applications that transfer learning is applied to, but does not describe the solu-
tion details.

Homogeneous transfer learning
This section presents surveyed papers covering homogeneous transfer learning solutions 
and is divided into subsections that correspond to the transfer categories of instance-
based, feature-based (both asymmetric and symmetric), parameter-based, and rela-
tional-based. Recall that homogeneous transfer learning is the case where XS = XT . The 
algorithms surveyed are summarized in Table 2.

The methodology of homogeneous transfer learning is directly applicable to a big data 
environment. As repositories of big data become more available, there is a desire to use 
this abundant resource for machine learning tasks, avoiding the timely and potentially 
costly collection of new data. If there is an available dataset that is drawn from a domain 
that is related to, but does not an exactly match a target domain of interest, then homo-
geneous transfer learning can be used to build a predictive model for the target domain 
as long as the input feature space is the same.

Instance‑based transfer learning

The paper by Chattopadhyay [14] proposes two separate solutions both using multiple 
labeled source domains. The first solution is the conditional probability based multi-
source domain adaptation (CP-MDA) approach, which is a domain adaptation process 
based on correcting the conditional distribution differences between the source and tar-
get domains. The CP-MDA approach assumes a limited amount of labeled target data is 
available. The main idea is to use a combination of source domain classifiers to label the 
unlabeled target data. This is accomplished by first building a classifier for each sepa-
rate source domain. Then a weight value is found for each classifier as a function of the 
closeness in conditional distribution between each source and the target domain. The 
weighted source classifiers are summed together to create a learning task that will find 
the pseudo labels (estimated labels later used for training) for the unlabeled target data. 
Finally, the target learner is built from the labeled and pseudo labeled target data. The 
second proposed solution is the two stage weighting framework for multi-source domain 
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adaptation (2SW-MDA) which addresses both marginal and conditional distribution 
differences between the source and target domains. Labeled target data is not required 
for the 2SW-MDA approach; however, it can be used if available. In this approach, a 
weight for each source domain is computed based on the marginal distribution differ-
ences between the source and target domains. In the second step, the source domain 
weights are modified as a function of the difference in the conditional distribution as 
performed in the CP-MDA approach previously described. Finally, a target classifier is 
learned based on the reweighted source instances and any labeled target instances that 
are available. The work presented in Chattopadhyay [14] is an extension of Duan [29] 
where the novelty is in calculating the source weights as a function of conditional prob-
ability. Note, the 2SW-MDA approach is an example of an instance-based Transfer Cat-
egory, but the CP-MDA approach is more appropriately classified as a parameter-based 
Transfer Category (see “Parameter-based transfer learning” section). Experiments are 
performed for muscle fatigue classification using surface electromyography data where 
classification accuracy is measured as the performance metric. Each source domain 

Table 2  Homogeneous transfer learning approaches surveyed in “Homogeneous transfer 
learning” section listing different characteristics of each approach

Approach Transfer  
category

Source data Target data Multiple 
sources

Generic  
solution

Negative 
transfer

CP-MDA [14] Parameter Labeled Limited labels ✓ ✓
2SW-MDA [14] Instance Labeled Unlabeled ✓ ✓
FAM [22] Asymmetric 

feature
Labeled Limited labels ✓ ✓

DTMKL [27] Asymmetric 
feature

Labeled Unlabeled ✓

JDA [69] Asymmetric 
feature

Labeled Unlabeled ✓

ARTL [68] Asymmetric 
feature

Labeled Unlabeled ✓

TCA [87] Symmetric 
feature

Labeled Unlabeled ✓

SFA [83] Symmetric 
feature

Labeled Limited labels ✓ ✓

SDA [41] Symmetric 
feature

Labeled Unlabeled ✓

GFK [42] Symmetric 
feature

Labeled Unlabeled ✓ ✓

DCP [106] Symmetric 
feature

Labeled Unlabeled ✓

TCNN [81] Symmetric 
feature

Labeled Limited labels ✓

MMKT [114] Parameter Labeled Limited labels ✓ ✓ ✓
DSM [28] Parameter Labeled Unlabeled ✓ ✓
MsTrAdaBoost  

[138]
Instance Labeled Limited labels ✓ ✓ ✓

TaskTrAdaBoost 
[138]

Parameter Labeled Limited labels ✓ ✓ ✓

RAP [62] Relational Labeled Unlabeled

SSFE [132] Hybrid  
(instance and 
feature)

Labeled Limited labels
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represents one person’s surface electromyography measurements. A baseline approach 
is constructed using a support vector machine (SVM) classifier trained on the combina-
tion of seven sources used for this test. The transfer learning approaches that are tested 
against include an approach proposed by Huang [51], Pan [87], Zhong [143], Gao [37], 
and Duan [29]. The order of performance from best to worst is 2SW-MDA, CP-MDA, 
Duan [29], Zhong [143], Gao [37], Pan [87], Huang [51], and the baseline approach. All 
the transfer learning approaches performed better than the baseline approach.

Asymmetric feature‑based transfer learning

In an early and often cited work, Daumé [22] proposes a simple domain adaptation algo-
rithm, referred to as the feature augmentation method (FAM), requiring only ten lines 
of Perl script that uses labeled source data and limited labeled target data. In a trans-
fer learning environment, there are scenarios where a feature in the source domain may 
have a different meaning in the target domain. The issue is referred to as context feature 
bias, which causes the conditional distributions between the source and target domains 
to be different. To resolve context feature bias, a method to augment the source and 
target feature space with three duplicate copies of the original feature set is proposed. 
More specifically, the three duplicate copies of the original feature set in the augmented 
source feature space represent a common feature set, a source specific feature set, and 
a target specific feature set which is always set to zero. In a similar way, the three dupli-
cate copies of the original feature set in the augmented target feature space represent 
a common feature set, a source specific feature set which is always set to zero, and a 
target specific feature set. By performing this feature augmentation, the feature space is 
duplicated three times. From the feature augmentation structure, a classifier learns the 
individual feature weights for the augmented feature set, which will help correct for any 
feature bias issues. Using a text document example where features are modeled as a bag-
of-words, a common word like “the” would be assigned (through the learning process) a 
high weight for the common feature set, and a word that is different between the source 
and target like “monitor” would be assigned a high weight for the corresponding domain 
feature set. The duplication of features creates feature separation between the source 
and target domains, and allows the final classifier to learn the optimal feature weights. 
For the experiments, a number of different natural language processing applications are 
tested and in each case the classification error rate is measured as the performance met-
ric. An SVM learner is used to implement the Daumé [22] approach. A number of base-
line approaches with no transfer learning techniques are measured along with a method 
by Chelba [15]. The test results show the Daumé [22] method is able to outperform the 
other methods tested. However, when the source and target domains are very similar, 
the Daumé [22] approach tends to underperform. The reason for the underperformance 
is the duplication of feature sets represents irrelevant and noisy information when the 
source and target domains are very similar.

Multiple kernel learning is a technique used in traditional machine learning algorithms 
as demonstrated in the works of Wu [130] and Vedaldi [118]. Multiple kernel learning 
allows for an optimal kernel function to be learned in a computationally efficient manner. 
The paper by Duan [27] proposes to implement a multiple kernel learning framework 
for a transfer learning environment called the domain transfer multiple kernel learning 
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(DTMKL). Instead of learning one kernel, multiple kernel learning assumes the kernel is 
comprised of a linear combination of multiple predefined base kernels. The final classi-
fier and the kernel function are learned simultaneously which has the advantage of using 
labeled data during the kernel learning process. This is an improvement over Pan [82] 
and Huang [51] where a two-stage approach is used. The final classifier learning process 
minimizes the structural risk functional [117] and the marginal distribution between 
domains using the maximum mean discrepancy measure [10]. Pseudo labels are found 
for the unlabeled target data to take advantage of this information during the learning 
process. The pseudo labels are found as a weighted combination of base classifiers (one 
for each feature) trained from the labeled source data. A regularization term is added 
to the optimization problem to ensure the predicted values from the final target clas-
sifier and the base classifiers are similar for the unlabeled target data. Experiments are 
performed on the applications of video concept detection, text classification, and email 
spam detection. The methods tested against include a baseline approach using an SVM 
classifier trained on the labeled source data, the feature replication method from Daumé 
[22], an adaptive SVM method from Yang [135], a cross-domain SVM method pro-
posed by Jiang [55], and a kernel mean matching method by Huang [51]. The DTMKL 
approach uses an SVM learner for the experiments. Average precision and classification 
accuracy are measured as the performance metrics. The DTMKL method performed the 
best for all applications, and the baseline approach is consistently the worst performing. 
The other methods showed better performance over the baseline which demonstrated a 
positive transfer learning effect.

The work by Long [69] is a joint domain adaptation (JDA) solution that aims to simul-
taneously correct for the marginal and conditional distribution differences between the 
labeled source domain and the unlabeled target domain. Principal component analysis 
(PCA) is used for optimization and dimensionality reduction. To address the difference 
in marginal distribution between the domains, the maximum mean discrepancy distance 
measure [10] is used to compute the marginal distribution differences and is integrated 
into the PCA optimization algorithm. The next part of the solution requires a process to 
correct the conditional distribution differences, which requires labeled target data. Since 
the target data is unlabeled, pseudo labels (estimated target labels) are found by learn-
ing a classifier from the labeled source data. The maximum mean discrepancy distance 
measure is modified to measure the distance between the conditional distributions and 
is integrated into the PCA optimization algorithm to minimize the conditional distribu-
tions. Finally, the features identified by the modified PCA algorithm are used to train the 
final target classifier. Experiments are performed for the application of image recogni-
tion and classification accuracy is measured as the performance metric. Two baseline 
approaches of a 1-nearest neighbor classifier and a PCA approach trained on the source 
data are tested. Transfer learning approaches tested for this experiment include the 
approach by Pan [87], Gong [42], and Si [109]. These transfer learning approaches only 
attempt to correct for marginal distribution differences between domains. The Long [69] 
approach is the best performing, followed by the Pan [87] and Si [109] approaches (a tie), 
then the Gong [42] approach, and finally the baseline approaches. All transfer learning 
approaches perform better than the baseline approaches. The possible reason behind the 
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underperformance of the Gong [42] approach is the data smoothness assumption that is 
made for the Gong [42] solution may not be intact for the data sets tested.

The paper by Long [68] proposes an Adaptation Regularization based transfer learn-
ing (ARTL) framework for scenarios of labeled source data and unlabeled target data. 
This transfer learning framework proposes to correct the difference in marginal dis-
tribution between the source and target domains, correct the difference in conditional 
distribution between the domains, and improve classification performance through a 
manifold regularization [4] process (which optimally shifts the hyperplane of an SVM 
learner). This complete framework process is depicted in Fig. 2. The proposed ARTL 
framework will learn a classifier by simultaneously performing structural risk minimi-
zation [117], reducing the marginal and conditional distributions between the domains, 
and optimizing the manifold consistency of the marginal distribution. To resolve the 
conditional distribution differences, pseudo labels are found for the target data in 
the same way as proposed by Long [69]. A difference between the ARTL approach 
and Long [69] is ARTL learns the final classifier simultaneously while minimizing the 
domain distribution differences, which is claimed by Long [68] to be a more optimal 
solution. Unfortunately, the solution by Long [69] is not included in the experiments. 
Experiments are performed on the applications of text classification and image clas-
sification where classification accuracy is measured as the performance metric. There 
are three baseline methods tested where different classifiers are trained with the labeled 
source data. There are five transfer learning methods tested against, which include 
methods by Ling [66], Pan [83], Pan [87], Quanz [94], and Xiao [133]. The order of per-
formance from best to worst is ARTL, Xiao [133], Pan [87], Pan [83], Quanz [94] and 
Ling [66] (tie), and the baseline approaches. The baseline methods underperformed all 
other transfer learning approaches tested.

Symmetric feature‑based transfer learning

The paper by Pan [87] proposes a feature transformation approach for domain adapta-
tion called transfer component analysis (TCA), which does not require labeled target 
data. The goal is to discover common latent features that have the same marginal dis-
tribution across the source and target domains while maintaining the intrinsic struc-
ture of the original domain data. The latent features are learned between the source and 
target domains in a reproducing kernel hilbert space [111] using the maximum mean 
discrepancy [10] as a marginal distribution measurement criteria. Once the latent fea-
tures are found, traditional machine learning is used to train the final target classifier. 
The TCA approach extends the work of Pan [82] by improving computational efficiency. 
Experiments are conducted for the application of WiFi localization where the location 

Fig. 2  ARTL overview showing MDA marginal distribution adaptation, CDA conditional distribution adapta-
tion, and MR manifold regularization Diagram adapted from Long [68]
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of a particular device is being predicted. The source domain is comprised of data meas-
ured from different room and building topologies. The performance metric measured 
is the average error distance of the position of a device. The transfer learning methods 
tested against are from Blitzer [5] and Huang [51]. The TCA method performed the best 
followed by the Huang [51] approach and the Blitzer [5] approach. For the Blitzer [5] 
approach, the manual definition of the pivot functions (functions that define the corre-
spondence) is important to performance and specific to the end application. There is no 
mention as to how the pivot functions are defined for WiFi localization.

The work by Pan [83] proposes a spectral feature alignment (SFA) transfer learning 
algorithm that discovers a new feature representation for the source and target domain 
to resolve the marginal distribution differences. The SFA method assumes an abundance 
of labeled source data and a limited amount of labeled target data. The SFA approach 
identifies domain-specific and domain-independent features and uses the domain-inde-
pendent features as a bridge to build a bipartite graph modeling the co-occurrence rela-
tionship between the domain-independent and domain-specific features. If the graph 
shows two domain-specific features having connections to common domain-independ-
ent feature, then there is a higher chance the domain-specific features are aligned. A 
spectral clustering algorithm based on graph spectral theory [17] is used on the bipar-
tite graph to align domain-specific features and domain-independent features into a set 
of clusters representing new features. These clusters are used to reduce the difference 
between domain-specific features in the source and the target domains. All the data 
instances are projected into this new feature space and a final target classifier is trained 
using the new feature representation. The SFA algorithm is a type of correspondence 
learning where the domain-independent features act as pivot features (see Blitzer [5] and 
Prettenhofer [91] for further information on correspondence learning). The SFA method 
is well-suited for the application of text document classification where a bag-of-words 
model is used to define features. For this application there are domain-independent 
words that will appear often in both domains and domain-specific words that will appear 
often only in a specific domain. This is referred to as frequency feature bias, which causes 
marginal distribution differences between the domains. An example of domain-specific 
features being combined is the word “sharp” appearing often in the source domain but 
not in the target domain, and the word “hooked” appearing often in the target but not in 
the source domain. These words are both connected to the same domain-independent 
words (for example “good” and “exciting”). Further, when the words “sharp” or “hooked” 
appear in text instances, the labels are the same. The idea is to combine (or align) these 
two features (in this case “sharp” and “hooked”) to form a new single invariant feature. 
The experiments are performed on sentiment classification where classification accuracy 
is measured as the performance metric. A baseline approach is tested where a classifier 
is trained only on source data. An upper limit approach is also tested where a classi-
fier is trained on a large amount of labeled target data. The competing transfer learning 
approach tested against is by Blitzer [5]. The order of performance for the tests from 
best to worst is the upper limit approach, SFA, Blitzer [5], and baseline approach. Not 
only does the SFA approach demonstrate better performance than Blitzer [5], the SFA 
approach does not need to manually define pivot functions as in the Blitzer [5] approach. 
The SFA approach only addresses the issue of marginal distribution differences and does 
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not address any context feature bias issues, which would represent conditional distribu-
tion differences.

The work by Glorot [41] proposes a deep learning algorithm for transfer learning 
called a stacked denoising autoencoder (SDA) to resolve the marginal distribution dif-
ferences between a labeled source domain and an unlabeled target domain. Deep learn-
ing algorithms learn intermediate invariant concepts between two data sources, which 
are used to find a common latent feature set. The first step in this process is to train the 
stacked denoising autoencoders [119] with unlabeled data from the source and target 
domains. This transforms the input space to discover the common invariant latent fea-
ture space. The next step is to train a classifier using the transformed latent features with 
the labeled source data. Experiments are performed on text review sentiment classifica-
tion where transfer loss is measured as the performance metric. Transfer loss is defined 
as the classification error rate using a learner only trained on the source domain and 
tested on the target minus the classification error rate using a learner only trained on the 
target domain and tested on the target. There are 12 different source and target domain 
pairs that are created from four unique review topics. A baseline method is tested where 
an SVM classifier is trained on the source domain. The transfer learning approaches 
that are tested include an approach by Blitzer [5], Li [63], and Pan [83]. The Glorot [41] 
approach performed the best with the Blitzer [5], Li [63], and Pan [83] methods all hav-
ing similar performance and all outperforming the baseline approach.

In the paper by Gong [42], a domain adaptation technique called the geodesic flow 
kernel (GFK) is proposed that finds a low-dimensional feature space, which reduces 
the marginal distribution differences between the labeled source and unlabeled target 
domains. To accomplish this, a geodesic flow kernel is constructed using the source and 
target input feature data, which projects a large number of subspaces that lie on the geo-
desic flow curve. The geodesic flow curve represents incremental differences in geomet-
ric and statistical properties between the source and target domain spaces. A classifier 
is then learned from the geodesic flow kernel by selecting the features from the geo-
desic flow curve that are domain invariant. The work of Gong [42] directly enhances the 
work of Gopalan [43] by eliminating tuning parameters and improving computational 
efficiency. In addition, a rank of domain (ROD) metric is developed to evaluate which 
of many source domains is the best match for the target domain. The ROD metric is 
a function of the geometric alignment between the domains and the Kullback–Leibler 
divergence in data distributions between the projected source and target subspaces. 
Experiments are performed for the application of image classification where classifica-
tion accuracy is measured as the performance metric. The tests use pairs of source and 
target data sets from four available data sets. A baseline approach is defined that does 
not use transfer learning, along with the approach defined by Gopalan [43]. Additionally, 
the Gong [42] approach uses a 1-nearest neighbor classifier. The results in order from 
best to worst performance are Gong [42], Gopalan [43], and the baseline approach. The 
ROD measurements between the different source and target domain pairs tested have 
a high correlation to the actual test results, meaning the domains that are found to be 
more related with respect to the ROD measurement had higher classification accuracies.

The solution by Shi [106], referred to as the discriminative clustering process (DCP), 
proposes to equalize the marginal distribution of the labeled source and unlabeled target 
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domains. A discriminative clustering process is used to discover a common latent fea-
ture space that is domain invariant while simultaneously learning the final target clas-
sifier. The motivating assumptions for this solution are the data in both domains form 
well-defined clusters which correspond to unique class labels, and the clusters from the 
source domain are geometrically close to the target clusters if they share the same label. 
Through clustering, the source domain labels can be used to estimate the target labels. 
A one-stage solution is formulated that minimizes the marginal distribution differences 
while minimizing the predicted classification error in the target domain using a near-
est neighbor classifier. Experiments are performed for object recognition and sentiment 
classification where classification accuracy is measured as the performance metric. The 
approach described above is tested against a baseline approach taken from Weinberger 
[126] with no transfer learning. Other transfer learning approaches tested include an 
approach from Pan [87], Blitzer [5], and Gopalan [43]. The Blitzer [5] approach is not 
tested for the object recognition application because the pivot functions are not eas-
ily defined for this application. For the object recognition tests, the Shi [106] method 
is best in five out of six comparison tests. For the text classification tests, the Shi [106] 
approach is the best performing overall, with the Blitzer [5] approach a close second. An 
important point to note is the baseline method outperformed the Pan [87] and Gopalan 
[43] methods in both tests. Both the Pan [87] and Gopalan [43] methods are two-stage 
domain adaptation processes where the first stage reduces the marginal distributions 
between the domains and the second stage trains a classifier with the adapted domain 
data. This paper offers a hypothesis that two-stage processes are actually detrimental 
to transfer learning (causes negative transfer). The one-stage learning process is a novel 
idea presented by this paper. The hypothesis that the two-stage transfer learning process 
creates low performing learners does not agree with the results presented in the indi-
vidual papers by Gopalan [43] and Pan [87] and other previously surveyed works.

Convolutional neural networks (CNN) have been successfully used in traditional data 
mining environments [59]. However, a CNN requires a large amount of labeled training 
data to be effective, which may not be available. The paper by Oquab [81] proposes a 
transfer learning method of training a CNN with available labeled source data (a source 
learner) and then extracting the CNN internal layers (which represent a generic mid-
level feature representation) to a target CNN learner. This method is referred to as the 
transfer convolutional neural network (TCNN). To correct for any further distribution 
differences between the source and the target domains, an adaptation layer is added 
to the target CNN learner, which is trained from the limited labeled target data. The 
experiments are run on the application of object image classification where average pre-
cision is measured as the performance metric. The Oquab [81] method is tested against 
a method proposed by Marszalek [73] and a method proposed by Song [110]. Both the 
Marszalek [73] and Song [110] approaches are not transfer learning approaches and are 
trained on the limited labeled target data. The first experiment is performed using the 
Pascal VOC 2007 data set as the target and ImageNet 2012 as the source. The Oquab 
[81] method outperformed both Song [110] and Marszalek [73] approaches for this test. 
The second experiment is performed using the Pascal VOC 2012 data set as the target 
and ImageNet 2012 as the source. In the second test, the Oquab [81] method marginally 
outperformed the Song [110] method (the Marszalek [73] method was not tested for the 
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second test). The tests successfully demonstrated the ability to transfer information from 
one CNN learner to another.

Parameter‑based transfer learning

The paper by Tommasi [114] addresses the transfer learning environment characterized 
by limited labeled target data and multiple labeled source domains where each source 
corresponds to a particular class. In this case, each source is able to build a binary learner 
to predict that class. The objective is to build a target binary learner for a new class using 
minimal labeled target data and knowledge transferred from the multiple source learn-
ers. An algorithm is proposed to transfer the SVM hyperplane information of each of the 
source learners to the new target learner. To minimize the effects of negative transfer, 
the information transferred from each source to the target will be weighted such that the 
most related source domains receive the highest weighting. The weights are determined 
through a leave out one process as defined by Cawley [13]. The Tommasi [114] approach, 
called the multi-model knowledge transfer (MMKT) method, extends the method pro-
posed by Tommasi [113] that only transfers a single source domain. Experiments are 
performed on the application of image recognition where classification accuracy is 
measured as the performance metric. Transfer learning methods tested include an aver-
age weight approach (same as Tommasi [114] but all source weights are equal), and the 
Tommasi [113] approach. A baseline approach is tested, which is trained on the limited 
labeled target data. The best performing method is Tommasi [114], followed by the aver-
age weight, Tommasi [113], and the baseline approach. As the number of labeled target 
instances goes up, the Tommasi [114] and average weight methods converge to the same 
performance. This is because the adverse effects of negative transfer are lessened as the 
labeled target data increases. This result demonstrates the Tommasi [114] approach is 
able to lessen the effects of negative transfer from unrelated sources.

The transfer learning approach presented in the paper by Duan [28], referred to as the 
Domain Selection Machine (DSM), is tightly coupled to the application of event recog-
nition in consumer videos. Event recognition in videos is the process of predicting the 
occurrence of a particular event or topic (e.g. “show” or “performance”) in a given video. 
In this scenario, the target domain is unlabeled and the source information is obtained 
from annotated images found via web searches. For example, a text query of the event 
“show” for images on Photosig.com represents one source and the same query on Flickr.
com represents another separate source. The domain selection machine proposed in 
this paper is realized as follows. For each individual source, an SVM classifier is cre-
ated using SIFT (Lowe [70]) image features. The final target classifier is made up of two 
parts. The first part is a weighted sum of the source classifier outputs whose input is the 
SIFT features from key frames of the input video. The second part is a learning function 
whose inputs are space–time features [123] from the input video and is trained from tar-
get data where the target labels are estimated (pseudo labels) from the weighted sum of 
the source classifiers. To combat the effects of negative transfer from unrelated sources, 
the most relevant source domains are selected by using an alternating optimization algo-
rithm that iteratively solves the target decision function and the domain selection vector. 
Experiments are performed in the application of event recognition in videos as described 
above where the mean average precision is measured as the performance metric. A 
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baseline method is created by training a separate SVM classifier on each source domain 
and then equally combining the classifiers. The other transfer learning approaches tested 
include the approach by Bruzzone [11], Schweikert [101], Duan [29], and Chattopad-
hyay [14]. The Duan [29] approach outperforms all the other approaches tested. The 
other approaches all have similar results, meaning the transfer learning methods did not 
outperform the baseline approach. The possible reason for this result is the existence of 
unrelated sources in the experiment. The other transfer learning approaches tested had 
no mechanism to guard against negative transfer from unrelated sources.

The paper by Yao [138] first presents an instance-based transfer learning approach fol-
lowed by a separate parameter-based transfer learning approach. In the transfer learning 
process, if the source and target domains are not related enough, negative transfer can 
occur. Since it is difficult to measure the relatedness between any particular source and 
target domain, Yao [138] proposes to transfer knowledge from multiple source domains 
using a boosting method in an attempt to minimize the effects of negative transfer from 
a single unrelated source domain. The boosting process requires some amount of labeled 
target data. Yao [138] effectively extends the work of Dai [21] (TrAdaBoost) by expand-
ing the transfer boosting algorithm to multiple source domains. In the TrAdaBoost algo-
rithm, during every boosting iteration, a so-called weak classifier is built using weighted 
instance data from the previous iteration. Then, the misclassified source instances are 
lowered in importance and the misclassified target instances are raised in importance. In 
the multi-source TrAdaBoost algorithm (called MsTrAdaBoost), each iteration step first 
finds a weak classifier for each source and target combination, and then the final weak 
classifier is selected for that iteration by finding the one that minimizes the target classi-
fication error. The instance reweighting step remains the same as in the TrAdaBoost. An 
alternative multi-source boosting method (TaskTrAdaBoost) is proposed that transfers 
internal learner parameter information from the source to the target. The TaskTrAda-
Boost algorithm first finds candidate weak classifiers from each individual source by 
performing an AdaBoost process on each source domain. Then an AdaBoost process is 
performed on the labeled target data, and at every boosting iteration, the weak classifier 
used is selected from the candidate weak source classifiers (found in the previous step) 
that has the lowest classification error using the labeled target data. Experiments are 
performed for the application of object category recognition where the area under the 
curve (AUC) is measured as the performance metric. An AdaBoost baseline approach 
using only the limited labeled target data is measured along with a TrAdaBoost approach 
using a single source (the multiple sources are combined to one) and the limited labeled 
target data. Linear SVM learners are used as the base classifiers in all approaches. Both 
the MsTrAdaBoost and TaskTrAdaBoost approaches outperform the baseline approach 
and TrAdaBoost approach. The MsTrAdaBoost and TaskTrAdaBoost demonstrated sim-
ilar performance.

Relational‑based transfer learning

The specific application addressed in the paper by Li [62] is to classify words from a text 
document into one of three classes (e.g. sentiments, topics, or neither). In this scenario, 
there exists a labeled text source domain on one particular subject matter and an unla-
beled text target domain on a different subject matter. The main idea is that sentiment 
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words remain constant between the source and target domains. By learning the gram-
matical and sentence structure patterns of the source, a relational pattern is found 
between the source and target domains, which is used to predict the topic words in 
the target. The sentiment words act as a common linkage or bridge between the source 
and target domains. A bipartite word graph is used to represent and score the sentence 
structure patterns. A bootstrapping algorithm is used to iteratively build a target classi-
fier from the two domains. The bootstrapping process starts with defining seeds which 
are instances from the source that match frequent patterns in the target. A cross domain 
classifier is then trained with the seed information and extracted target information 
(there is no target information in the first iteration). The classifier is used to predict the 
target labels and the top confidence rated target instances are selected to reconstruct 
the bipartite word graph. The bipartite word graph is now used to select new target 
instances that are added to the seed list. This bootstrapping process continues over a 
selected number of iterations, and the cross domain classifier learned in the bootstrap-
ping process is now available to predict target samples. This method is referred to as the 
Relational Adaptive bootstraPping (RAP) approach. The experiments tested the Li [62] 
approach against an upper bound method where a standard classifier is trained with a 
large amount of target data. Other transfer learning methods tested include an approach 
by Hu [50], Qiu [93], Jakob [52], and Dai [21]. The application tested is word classifi-
cation as described above where the F1 score is measured as the performance metric. 
The two domains tested are related to movie reviews and product reviews. The Li [62] 
method performed better than the other transfer learning methods, but fell short of the 
upper bound method as expected. In its current form, this algorithm is tightly coupled 
with its underlying text application, which makes it difficult to use for other non-text 
applications.

Hybrid‑based (instance and parameter) transfer learning

The paper by Xia [132] proposes a two step approach to address marginal distribu-
tion differences and conditional distribution differences between the source and target 
domains called the sample selection and feature ensemble (SSFE) method. A sample 
selection process, using a modified version of principal component analysis, is employed 
to select labeled source domain samples such that the source and target marginal distri-
butions are equalized. Next, a feature ensemble step attempts to resolve the conditional 
distribution differences between the source and target domains. Four individual classi-
fiers are defined corresponding to parts of speech of noun, verb, adverb/adjective, and 
other. The four classifiers are trained using only the features that correspond to that part 
of speech. The training data is the limited labeled target and the labeled source selected 
in the previous sample selection step. The four classifiers are weighted as a function of 
minimizing the classification error using the limited labeled target data. The weighted 
output of the four classifiers is used as the final target classifier. This work by Xia [132] 
extends the earlier work of Xia [131]. The experiments are performed for the applica-
tion of review sentiment classification using four different review categories, where each 
category is combined to create 12 different source and target pairs. Classification accu-
racy is measured as the performance metric. A baseline approach using all the train-
ing data from the source is constructed, along with a sample selection approach (only 
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using the first step defined above), a feature ensemble approach (only using the second 
step defined above) and the complete approach outlined above. The complete approach 
is the best performing, followed by sample selection and feature ensemble approaches, 
and the baseline approach. The sample selection and feature ensemble approaches per-
form equally as well in head-to-head tests. The weighting of the four classifiers (defined 
by the corresponding parts of speech) in the procedure above gives limited resolution in 
attempting to adjust for context feature bias issues. A method of having more classifiers 
in the ensemble step could yield better performance at the expense of higher complexity.

Discussion of homogeneous transfer learning

The previous surveyed homogeneous transfer learning works (summarized in Table 2) 
demonstrate many different characteristics and attributes. Which homogeneous trans-
fer learning solution is best for a particular application? An important characteristic to 
evaluate in the selection process is what type of differences exist between a given source 
and target domain. The previous solutions surveyed address domain adaptation by cor-
recting for marginal distribution differences, correcting for conditional distribution 
differences, or correcting for both marginal and conditional distribution differences. 
The surveyed works of Duan [27], Gong [42], Pan [87], Li [62], Shi [106], Oquab [81], 
Glorot [41], and Pan [83] are focused on solving the differences in marginal distribu-
tion between the source and target domains. The surveyed works of Daumé [22], Yao 
[138], Tommasi [114] are focused on solving the differences in conditional distribution 
between the source and target domains. Lastly, the surveyed works of Long [68], Xia 
[132], Chattopadhyay [14], Duan [28], and Long [69] correct the differences in both the 
marginal and conditional distributions. Correcting for the conditional distribution dif-
ferences between the source and target domain can be problematic as the nature of a 
transfer learning environment is to have minimal labeled target data. To compensate 
for the limited labeled target data, many of the recent transfer learning solutions cre-
ate pseudo labels for the unlabeled target data to facilitate the conditional distribution 
correction process between the source and target domains. To further help determine 
which solution is best for a given transfer learning application, the information in 
Table 2 should be used to match the characteristics of the solution to that of the desired 
application environment. If the application domain contains multiple sources where the 
sources are not mutually uniformly distributed, a solution that guards against negative 
transfer may be of greater benefit. A recent trend in the development of transfer learning 
solutions is for solutions to address both marginal and conditional distribution differ-
ences between the source and target domains. Another emerging solution trend is the 
implementation of a one-stage process as compared to a two-stage process. In the recent 
works of Long [68], Duan [27], Shi [106], and Xia [132], a one-stage process is employed 
that simultaneously performs the domain adaptation process while learning the final 
classifier. A two-stage solution first performs the domain adaptation process and then 
independently learns the final classifier. The claim by Long [68] is a one-stage solution 
achieves enhanced performance because the simultaneous solving of domain adaptation 
and the classifier establishes mutual reinforcement. The surveyed homogeneous transfer 
learning works are not specifically applied to big data solutions; however, there is noth-
ing to preclude their use in a big data environment.
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Heterogeneous transfer learning
Heterogeneous transfer learning is the scenario where the source and target domains 
are represented in different feature spaces. There are many applications where heteroge-
neous transfer learning is beneficial. Heterogeneous transfer learning applications that 
are covered in this section include image recognition [30, 58, 146, 105, 92, 64], multi-
language text classification [145, 30, 91, 144, 64, 124], single language text classification 
[121], drug efficacy classification [105], human activity classification [46], and software 
defect classification [77]. Heterogeneous transfer learning is also directly applicable to 
a big data environment. As repositories of big data become more available, there is a 
desire to use this abundant resource for machine learning tasks, avoiding the timely and 
potentially costly collection of new data. If there is an available dataset drawn from a 
target domain of interest that has a different feature space from another target dataset 
(also drawn from the same target domain), then heterogeneous transfer learning can be 
used to bridge the difference in the feature spaces and build a predictive model for that 
target domain. Heterogeneous transfer learning is still a relatively new area of study as 
the majority of the works covering this topic have been published in the last 5  years. 
From a high-level view, there are two main approaches to solving the heterogeneous 
feature space difference. The first approach, referred to as symmetric transformation 
shown in Fig. 1a, separately transforms the source and target domains into a common 
latent feature space in an attempt to unify the input spaces of the domains. The second 
approach, referred to as asymmetric transformation as shown in Fig. 1b, transforms the 
source feature space to the target feature space to align the input feature spaces. The 
asymmetrical transformation approach is best used when the same class instances in the 
source and target can be transformed without context feature bias. Many of the hetero-
geneous transfer learning solutions surveyed make the implicit or explicit assumption 
that the source and the target domain instances are drawn from the same domain space. 
With this assumption there should be no significant distribution differences between the 
domains. Therefore, once the differences in input feature spaces are resolved, no further 
domain adaptation needs to be performed.

As is the case with homogeneous transfer learning solutions, whether the source and 
target domains contain labeled data drives the solution formulation for heterogene-
ous approaches. Data label availability is a function of the underlying application. The 
solutions surveyed in this paper have different labeled data requirements. For transfer 
learning to be feasible, the source and the target domains must be related in some way. 
Some heterogeneous solutions require an explicit mapping of the relationship or cor-
respondence between the source and target domains. For example, the solutions defined 
for Prettenhofer [91] and Wei [125] require manual definitions of source and target 
correspondence.

Symmetric feature‑based transfer learning

The transfer learning approach proposed by Prettenhofer [91] addresses the heteroge-
neous scenario of a source domain containing labeled and unlabeled data, and a target 
domain containing unlabeled data. The structural correspondence learning technique 
from Blitzer [5] is applied to this problem. Structural correspondence learning depends 
on the manual definition of pivot functions that capture correspondence between the 
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source and target domains. Effective pivot functions should use features that occur 
frequently in both domains and have good predictive qualities. Each pivot function is 
turned into a linear classifier using data from the source and target domains. From these 
pivot classifiers, correspondences between features are discovered and a latent feature 
space is learned. The latent feature space is used to train the final target classifier. The 
paper by Prettenhofer [91] uses this solution to solve the problem of text classifica-
tion where the source is written in one language and the target is written in a different 
language. In this specific implementation referred to as cross-language structural cor-
respondence learning (CLSCL), the pivot functions are defined by pairs of words, one 
from the target and one from the source, that represent direct word translations from 
one language to the other. The experiments are performed on the applications of docu-
ment sentiment classification and document topic classification. English documents are 
used in the source and other language documents are used in the target. The baseline 
method used in this test trains a learner on the labeled source documents, then trans-
lates the target documents to the source language and tests the translated version. An 
upper bound method is established by training a learner with the labeled target docu-
ments and testing with the target documents. Average classification accuracy is meas-
ured as the performance metric. The average results show the upper bound method 
performing the best and the Prettenhofer [91] method performing better than the base-
line method. An issue with using structural correspondence learning is the difficulty in 
generalizing the pivot functions. For this solution, the pivot functions need to be manu-
ally and uniquely defined for a specific application, which makes it very difficult to port 
to other applications.

The paper by Shi [105], referred to as Heterogeneous Spectral Mapping (HeMap), 
addresses the specific transfer learning scenario where the input feature space is dif-
ferent between the source and target XS �= XT , the marginal distribution is different 
between the source and the target (P(XS) �= P(XT)), and the output space is different 
between the source and the target (YS �= YT ). This solution uses labeled source data 
that is related to the target domain and limited labeled target data. The first step is to 
find a common latent input space between the source and target domains using a spec-
tral mapping technique. The spectral mapping technique is modeled as an optimization 
objective that maintains the original structure of the data while minimizing the differ-
ence between the two domains. The next step is to apply a clustering based sample selec-
tion method to select related instances as new training data, which resolves the marginal 
distribution differences in the latent input space. Finally, a Bayesian based method is 
used to find the relationship and resolve the differences in the output space. Experi-
ments are performed for the applications of image classification and drug efficacy pre-
diction. Classification error rate is measured as the performance metric. This solution 
demonstrated better performance as compared to a baseline approach; however, details 
on the baseline approach are not documented in the paper and no other transfer learn-
ing solutions are tested.

The algorithm by Wang [121], referred to as the domain adaptation manifold align-
ment (DAMA) algorithm, proposes using a manifold alignment [45] process to perform 
a symmetric transformation of the domain input spaces. In this solution, there are mul-
tiple labeled source domains and a limited labeled target domain for a total of K domains 
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where all K domains share the same output label space. The approach is to create a sepa-
rate mapping function for each domain to transform the heterogeneous input space to a 
common latent input space while preserving the underlying structure of each domain. 
Each domain is modeled as a manifold. To create the latent input space, a larger matrix 
model is created that represents and captures the joint manifold union of all input 
domains. In this manifold model, each domain is represented by a Laplacian matrix 
that captures the closeness to other instances sharing the same label. The instances with 
the same labels are forced to be neighbors while separating the instances with different 
labels. A dimensionality reduction step is performed through a generalized eigenvalue 
decomposition process to eliminate feature redundancy. The final learner is built in two 
stages. The first stage is a linear regression model trained on the source data using the 
latent feature space. The second stage is also a linear regression model that is summed 
with the first stage. The second stage uses a manifold regularization [4] process to ensure 
the prediction error is minimized when using the labeled target data. The first stage is 
trained only using the source data and the second stage compensates for the domain 
differences caused by the first stage to achieve enhanced target predictions. The experi-
ments are focused on the application of document text classification where classification 
accuracy is measured as the performance metric. The methods tested against include a 
canonical correlation analysis approach and a manifold regularization approach, which 
is considered the baseline method. The baseline method uses the limited labeled tar-
get domain data and does not use source domain information. The approach presented 
in this paper substantially outperforms the canonical correlation analysis and base-
line approach; however, these approaches are not directly referenced so it is difficult to 
understand the significance of the test results. A unique aspect of this paper is the mod-
eling of multiple source domains in a heterogeneous solution.

There are scenarios where a large amount of unlabeled heterogeneous source data is 
readily available that could be used to improve the predictive performance of a particu-
lar target learner. The paper by Zhu [146], which presents the method called the Het-
erogeneous transfer learning image classification (HTLIC), addresses this scenario with 
the assumption of having access to a sufficiently large amount of labeled target data. The 
objective is to use the large supply of available unlabeled source data to create a common 
latent feature input space that will improve prediction performance in the target classi-
fier. The solution proposed by Zhu [146] is tightly coupled to the application of image 
classification and is described as follows. Images with labeled categories (e.g. dog, cake, 
starfish, etc.) are available in the target domain. To obtain the source data, a web search 
is performed from Flickr for images that “relate” to the labeled categories. For example, 
for the category of dog, the words dog, doggy, and greyhound may be used in the Flickr 
search. As a reference point, the idea of using annotated images from Flickr as unlabeled 
source data was first proposed by Yang [137]. The retrieved images from Flickr have one 
or more word tags associated with each image. These tagged image words are then used 
to search for text documents using Google search. Next, a two-layer bipartite graph is 
constructed where the first layer represents linkages between the source images and the 
image tags. The second layer represents linkages between the image tags and the text 
documents. If an image tag appears in a text document, then a link is created, otherwise 
there is no link. Images in both the source and the target are initially represented by an 
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input feature set that is derived from the pixel information using SIFT descriptors [70]. 
Using the initial source image features and the bipartite graph representation derived 
only from the source image tags and text data, a common latent semantic feature set 
is learned by employing Latent Semantic Analysis [24]. A learner is now trained with 
the transformed labeled target instances. Experiments are performed on the proposed 
approach where 19 different image categories are selected. Binary classification is per-
formed testing different image category pairs. A baseline method is tested using an SVM 
classifier trained only with the labeled target data. Methods by Raina [95] and by Wang 
[122] are also tested. The approach proposed by Zhu [146] performed the best overall 
followed by Raina [95], Wang [122], and baseline approach. The idea of using an abun-
dant source of unlabeled data available through an internet search to improve prediction 
performance is a very alluring premise. However, this method is very specific to image 
classification and is enabled by having a web site like Flickr, which essentially provides 
unlimited labeled image data. This method is difficult to port to other applications.

The transfer learning solution proposed by Qi [92] is another example of an approach 
that specifically addresses the application of image classification. In the paper by Qi 
[92], the author claims the application of image classification is inherently more diffi-
cult than text classification because image features are not directly related to semantic 
concepts inherent in class labels. Image features are derived from pixel information, 
which is not semantically related to class labels, as opposed to word features that have 
semantic interpretability to class labels. Further, labeled image data is more scarce as 
compared to labeled text data. Therefore, a transfer learning environment for image clas-
sification is desired where an abundance of labeled text data (source) is used to enhance 
a learner trained on limited labeled image data (target). In this solution, text documents 
are identified by performing a web search (from Wikipedia for example) on class labels. 
In order to perform the knowledge transfer from the text documents (source) to the 
image (target) domain, a bridge in the form of a co-occurrence matrix is used that relates 
the text and image information. The co-occurrence matrix contains text instances with 
the corresponding image instances that are found in that particular text document. The 
co-occurrence matrix can be programmatically built by crawling web pages and extract-
ing the relevant text and image feature information. Using the co-occurrence matrix, a 
common latent feature space is found between the text and image feature, which is used 
to learn the final target classifier. This approach, called the Text to Image (TTI) method, 
is similar to Zhu [146]. However, Zhu [146] does not use labeled source data to enhance 
the knowledge transfer, which will result in degraded performance when there is limited 
labeled target data. Experiments are performed with the methods proposed by Qi [92], 
Dai [20], Zhu [146], and a baseline approach using a standard SVM classifier trained on 
the limited labeled target data. The text documents are collected from wikipedia, and 
classification error rate is measured as the performance metric. The results show the 
Zhu [146] method performing the best in 15 % of the trials, the Dai [20] method being 
the best in 10 % of the trials, and the Qi [92] method leading in 75 % of the trials. As with 
the case of Zhu [146], this method is very specific to the application of image classifica-
tion and is difficult to port to other applications.

The scenario addressed in the paper by Duan [30] is focused on heterogeneous domain 
adaptation with a single labeled source domain and a target domain with limited labeled 
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samples. The solution proposed is called heterogeneous feature augmentation (HFA). 
A transformation matrix P is defined for the source and a transformation matrix Q is 
defined for the target to project the feature spaces to a common latent space. The latent 
feature space is augmented with the original source and target feature set and zeros where 
appropriate. This means the source input data projection has the common latent features, 
the original source features, and zeros for the original target features. The target input 
data projection has the common latent features, zeros for the original source features, 
and the original target features. This feature augmentation method was first introduced 
by Daumé [22] and is used to correct for conditional distribution differences between the 
domains. For computational simplification, the P and Q matrices are not directly found 
but combined and represented by an H matrix. An optimization problem is defined by 
minimizing the structural risk functional [117] of SVM as a function of the H matrix. The 
final target prediction function is found using an alternating optimization algorithm to 
simultaneously solve the dual problem of SVM and the optimal transformation H matrix. 
The experiments are performed for the applications of image classification and text clas-
sification. The source contains labeled image data and the target contains limited labeled 
image data. For the image features, SURF [3] features are extracted from the pixel infor-
mation and then clustered into different dimension feature spaces creating the heteroge-
neous source and target environment. For the text classification experiments, the target 
contains Spanish language documents and the source contains documents in four differ-
ent languages. The experiments test against a baseline method, which is constructed by 
training an SVM learner on the limited labeled target data. Other heterogeneous adapta-
tion methods that are tested include the method by Wang [121], Shi [105], and Kulis [58]. 
For the image classification test, the HFA method outperforms all the methods tested by 
an average of one standard deviation with respect to classification accuracy. The Kulis [58] 
method has comparable results to the baseline method (possibly due to some uniqueness 
in the data set) and the Wang [121] method slightly outperforms the baseline method 
(possibly due to a weak manifold structure in the data set). For the text classification test, 
the HFA method outperforms all methods tested by an average of 1.5 standard deviation. 
For this test, the Kulis [58] method is second in performance, followed by Wang [121], 
and then the baseline method. The Shi [105] method performed worse than the baseline 
method in both tests. A possible reason for this result is the Shi [105] method does not 
specifically use the labeled information from the target when performing the symmetric 
transformation, which will result in degraded classification performance [64].

The work of Li [64], called the Semi-supervised heterogeneous feature augmentation 
(SHFA) approach, addresses the heterogeneous scenario of an abundance of labeled 
source data and limited target data, and directly extends the work of Duan [30]. In this 
work, the H transformation matrix, which is described above by Duan [30], is decom-
posed into a linear combination of a set of rank-one positive semi-definite matrices that 
allow for Multiple Kernel Learning solvers (defined by Kloft [57]) to be used to find a 
solution. In the process of learning the H transformation matrix, the labels for the unla-
beled target data are estimated (pseudo labels created) and used while learning the final 
target classifier. The pseudo labels for the unlabeled target data are found from an SVM 
classifier trained on the limited labeled target data. The high-level domain adaptation is 
shown in Fig. 3. Experiments are performed for three applications which include image 
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classification (where 31 unique classes are defined), multi-language text document clas-
sification (where six unique classes are defined), and multi-language text sentiment clas-
sification. Classification accuracy is measured as the performance metric. The method 
by Li [64] is tested against a baseline method using an SVM learner and trained on the 
limited labeled target data. Further, other heterogeneous methods tested include Duan 
[30], Shi [105], Wang [121], and Kulis [58]. By averaging the three different application 
test results, the order of performance from best to worst is Li [64], Duan [30], Wang 
[121], baseline and Kulis [58] (tie), and Shi [105].

Asymmetric feature‑based transfer learning

The work of Kulis [58], referred to as the asymmetric regularized cross-domain Trans-
formation (ARC-t), proposes an asymmetric transformation algorithm to resolve the 
heterogeneous feature space between domains. For this scenario, there is an abun-
dance of labeled source data and limited labeled target data. An objective function is 
first defined for learning the transformation matrix. The objective function contains a 
regularizer term and a cost function term that is applied to each pair of cross-domain 
instances and the learned transformation matrix. The construction of the objective func-
tion is responsible for the domain invariant transformation process. The optimization 
of the objective function aims to minimize the regularizer and the cost function terms. 
The transformation matrix is learned in a non-linear Gaussian RBF kernel space. The 
method presented is referred to as the asymmetric regularized cross-domain transfor-
mation. Two experiments using this approach are performed for image classification 
where classification accuracy is measured as the performance metric. There are 31 image 
classes defined for these experiments. The first experiment (test 1) is where instances 
of all 31 image classes are included in the source and target training data. In the second 
experiment (test 2), only 16 image classes are represented in the target training data (all 
31 are represented in the source). To test against other baseline approaches, a method 
is needed to bring the source and target input domains together. A preprocessing step 
called Kernel Canonical Correlation Analysis (proposed by Shawe-Taylor [104]) is used 
to project the source and target domains into a common domain space using symmetric 
transformation. Baseline approaches tested include k-nearest neighbors, SVM, metric 
learning proposed by Davis [23], feature augmentation proposed by Daumé [22], and 
a cross domain metric learning method proposed by Saenko [100]. For test 1, the Kulis 
[58] approach performs marginally better than the other methods tested. For test 2, the 

Fig. 3  Depicts algorithm approach by Li [64] where the heterogeneous source and target features are trans-
formed to an augmented latent feature space. TS and TT are transformation functions. P and Q are projection 
matrices as described in Duan [30] Diagram adapted from Li [64]
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Kulis [58] approach performs significantly better compared to the k-nearest neighbors 
approach (note the other methods cannot be tested against as they require all 31 classes 
to be represented in the target training data). The Kulis [58] approach is best suited for 
scenarios where all of the classes are not represented in the target training data as dem-
onstrated in test 2.

The problem domain defined by Harel [46] is of limited labeled target data and multi-
ple labeled data sources where an asymmetric transformation is desired for each source 
to resolve the mismatch in feature space. The first step in the process is to normalize 
the features in the source and target domains, then group the instances by class in the 
source and target domains. For each class grouping, the features are mean adjusted to 
zero. Next, each individual source class group is paired with the corresponding target 
class group, and a singular value decomposition process is performed to find the specific 
transformation matrix for that class grouping. Once the transformation is performed, 
the features are mean shifted back reversing the previous step, and the final target clas-
sifier is trained using the transformed data. Finding the transformation matrix using the 
singular value decomposition process allows for the marginal distributions within the 
class groupings to be aligned while maintaining the structure of the data. This approach 
is referred to as the Multiple Outlook MAPping algorithm (MOMAP). The experiments 
use data taken from wearable sensors for the application of activity classification. There 
are five different activities defined for the experiment which include walking, running, 
going upstairs, going downstairs, and lingering. The source domain contains similar (but 
different) sensor readings as compared to the target. The method proposed by Harel [46] 
is compared against a baseline method that trains a classifier with the limited labeled 
target data and an upper bound method that uses a significantly larger set of labeled tar-
get data to train a classifier. An SVM learner is used as the base classifier and a balanced 
error rate (due to an imbalance in the test data) is measured as the performance metric. 
The Harel [46] approach outperforms the baseline method in every test and falls short of 
the upper bound method in every test with respect to the balanced error rate.

The heterogeneous transfer learning scenario addressed by Zhou [145] requires 
an abundance of labeled source data and limited labeled target data. An asymmetric 
transformation function is proposed to map the source features to the target features. 
To learn the transformation matrix, a multi-task learning method based on Ando [2] 
is adopted. The solution, referred to as the sparse heterogeneous feature representation 
(SHFR), is implemented by creating a binary classifier for each class in the source and 
the target domains separately. Each binary classifier is assigned a weight term where the 
weight terms are learned by combining the weighted classifier outputs, while minimiz-
ing the classification error of each domain. The weight terms are now used to find the 
transformation matrix by minimizing the difference between the target weights and the 
transformed source weights. The final target classifier is trained using the transformed 
source data and original target data. Experiments are performed for text document clas-
sification where the target domain contains documents written in one language and the 
source domain contains documents written in different languages. A baseline method 
using a linear SVM classifier trained on the labeled target is established along with test-
ing against the methods proposed by Wang [121], Kulis [58], and Duan [30]. The method 
proposed by Zhou [145] performed the best for all tests with respect to classification 
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accuracy. The results of the other approaches are mixed as a function of the data sets 
used where the Duan [30] method performed either second or third best.

The application of software module defect prediction is usually addressed by train-
ing a classifier with labeled data taken from the software project of interest. The envi-
ronment described in Nam [77] for software module defect prediction attempts to use 
labeled source data from one software project to train a classifier to predict unlabeled 
target data from another project. The source and target software projects collect differ-
ent metrics making the source and target feature spaces heterogeneous. The proposed 
solution, referred to as the heterogeneous defect prediction (HDP) approach, is to first 
select the important features from the source domain using a feature selection method 
to eliminate redundant and irrelevant features. Feature selection methods used include 
gain ratio, Chi square, relief-F, and significance attribute evaluation (see Gao [39] and 
Shivaji [108]). The next step is to statistically match the selected source domain features 
to ones in the target using a Kolmogorov–Smirnov test that measures the closeness of 
the empirical distribution between the two sources. A learner is trained with the source 
features that exhibit a close statistical match to the corresponding target features. The 
target data is tested with the trained classifier using the corresponding matched features 
of the target. Even though the approach by Nam [77] is applied directly to the application 
of software module defect prediction, this method can be used for other applications. 
Experiments are performed using five different software defect data sets with heteroge-
neous features. The proposed method by Nam [77] uses logistic regression as the base 
learner. The other approaches tested include a within project defect prediction (WPDP) 
approach where the learner is trained on labeled target data, a cross project defect pre-
diction (CPDP-CM) approach where the source and target represent different software 
projects but have homogeneous features, and a cross project defect prediction approach 
with heterogeneous features (CPDP-IFS) as proposed by He [47]. The results of the 
experiment show the Nam [77] method significantly outperformed all other approaches 
with respect to area under the curve measurement. The WPDP approach is next best 
followed by the CPDP-CM approach and the CPDP-IFS approach. These results can be 
misleading as the Nam [77] approach could only match at least one or more input fea-
tures between the source and target domains in 37 % of the tests. Therefore, in 63 % of 
the cases, the Nam [77] method could not be used and these cases are not counted. The 
WPDP method represents an upper bound and it is an unexpected result that the Nam 
[77] approach would outperform the WPDP method.

The paper by Zhou [144] claims that previous heterogeneous solutions assume the 
instance correspondence between the source and target domains are statistically rep-
resentative (distributions are equal), which may not always be the case. An example 
of this claim is in the application of text sentiment classification where the word bias 
problem previously discussed causes distribution differences between the source and 
target domains. The paper by Zhou [144] proposes a solution called the hybrid hetero-
geneous transfer learning (HHTL) method for a heterogeneous environment with abun-
dant labeled source data and abundant unlabeled target data. The idea is to first learn 
an asymmetric transformation from the target to the source domain, which reduces 
the problem to a homogeneous domain adaptation issue. The next step is to discover 
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a common latent feature space using the transformed data (from the previous step) 
to reduce the distribution bias between the transformed unlabeled target domain and 
the labeled source domain. Finally, a classifier is trained using the common latent fea-
ture space from the labeled source data. This solution is realized using a deep learning 
method employing a marginalized stacked denoised autoencoder as proposed by Chen 
[16] to learn the asymmetric transformation and the mapping to a common latent fea-
ture space. The previous surveyed paper by Glorot [41] demonstrated a deep learning 
approach finding a common latent feature space for homogeneous source and target 
feature set. The experiments focused on multiple language text sentiment classification 
where English is used in the source and three other languages are separately used in the 
target. Classification accuracy is measured as the performance metric. Other methods 
tested include a heterogeneous spectral mapping approach proposed by Shi [105], a 
method proposed by Vinokourov [120], and a multimodal deep learning approach pro-
posed by Ngiam [79]. An SVM learner is used as the base classifier for all methods. The 
results of the experiment from best to worst performance are Zhou [144], Ngiam [79], 
Vinokourov [120], and Shi [105].

Improvements to heterogeneous solutions

The paper by Yang [136] proposes to quantify the amount of knowledge that can be 
transferred between domains in a heterogeneous transfer learning environment. In other 
words, it attempts to measure the “relatedness” of the domains. This is accomplished 
by first building a co-occurrence matrix for each domain. The co-occurrence matrix 
contains the set of instances represented in every domain. For example, if one particu-
lar text document is an instance in the co-occurrence matrix, that text document is 
required to be represented in every domain. Next, principal component analysis is used 
to select the most important features in each domain and assign the principal compo-
nent coefficient to those features. The principal component coefficients are used to form 
a directed cyclic network (DCN) where each node represents a domain (either source 
or target) and each node connection (edge weight) is the conditional dependence from 
one domain to another. The DCN is built using a Markov Chain Monte Carlo method. 
The edge weights represent the potential amount of knowledge that can be transferred 
between domains where a higher value means higher knowledge transfer. These edge 
weights are then used as tuning parameters in different heterogeneous transfer learning 
solutions, which include works from Yang [137], Ng [78], and Zhu [146] (the weights 
are calculated first using Yang [136] and then applied as tuning values in the other solu-
tions). Note, that integrating the edge weight values into a particular approach is specific 
to the implementation of the solution and cannot be generically applied. The experi-
ments are run on the three different learning solutions comparing the original solution 
against the solution using the weighted edges of the DCN as the tuned parameters. In 
all three solutions, the classification accuracy is improved using the DCN tuned param-
eters. One potential issue with this approach is the construction of the co-occurrence 
matrix. The co-occurrence matrix contains many instances; however, each instance must 
be represented in each domain. This may be an unrealistic constraint in many real-world 
applications.
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Experiment results

In reviewing the experiment results of the previous surveyed papers, there are instances 
where one solution can show varying results over a range of different experiments. There 
are many reasons why this can happen which include varying test environments, dif-
ferent test implementations, different applications being tested, and different data sets 
being used. An interesting area of future work is to evaluate the solutions presented to 
determine the best performing solutions as a function of specific datasets. To facilitate 
that goal, a repository of open-source software containing the software implementations 
for solutions used in each paper would be extremely beneficial.

Table 3 lists a compilation of head-to-head results for the most commonly tested solu-
tions contained in the “Heterogeneous transfer learning” section. The results listed in 
Table 3 represent a win, loss, and tie performance record of the head-to-head solution 
comparisons. Note, these results are compiled directly from the surveyed papers. It is 
difficult to draw exact conclusions from this information because of the reasons just out-
lined; however, it provides some interesting insight into the comparative performances 
of the solutions.

Discussion of heterogeneous solutions

The previous surveyed heterogeneous transfer learning works demonstrate many dif-
ferent characteristics and attributes. Which heterogeneous transfer learning solu-
tion is best for a particular application? The heterogeneous transfer learning solutions 
use either a symmetric transformation or an asymmetric transformation process in an 
attempt to resolve the differences between the input feature space (as shown in Fig. 1). 
The asymmetrical transformation approach is best used when the same class instances 
in the source and target domains can be transformed without context feature bias. Many 
of the surveyed heterogeneous transfer learning solutions only address the issue of the 
input feature space being different between the source and target domains and do not 
address other domain adaptation steps needed for marginal and/or conditional distri-
bution differences. If further domain adaptation needs to be performed after the input 
feature spaces are aligned, then an appropriate homogeneous solution should be used. 
To further help determine which solution is best for a given transfer learning applica-
tion, the information in Table 4 should be used to match the characteristics of the solu-
tion to that of the desired application environment. None of the surveyed heterogeneous 

Table 3  Lists the head-to-head results of  experiments performed in  the heterogeneous 
transfer learning works surveyed

The numbers (x–y–z) in the table indicate the far left column method outperforms the top row method x times, underperforms 
y times, and has similar performance z times

Methods HeMap ARC-t DAMA HFA SHFR SHFA

HeMap [105] – 0–5–0 0–5–0 0–5–0 0–0–0 0–3–0

ARC-t [58] 5–0–0 – 4–2–0 1–7–0 0–3–0 0–3–0

DAMA [121] 5–0–0 2–4–0 – 0–8–0 0–3–0 0–3–0

HFA [30] 5–0–0 7–1–0 8–0–0 – 0–3–0 0–3–0

SHFR [145] 0–0–0 3–0–0 3–0–0 3–0–0 – 0–0–0

SHFA [64] 3–0–0 3–0–0 3–0–0 3–0–0 0–0–0 –
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transfer learning solutions have a means to guard against negative transfer effects. How-
ever, the paper by Yang [136] demonstrates that negative transfer guards can benefit het-
erogeneous transfer learning solutions. It seems likely that future heterogeneous transfer 
learning works will integrate means for negative transfer protection. Many of the same 
heterogeneous transfer learning solutions are tested in the surveyed solution experi-
ments. These head-to-head comparisons are summarized in Table  3 and can be used 
as a starting point to understand the relative performance between the solutions. As 
observed as a trend in the previous homogeneous solutions, the recent heterogeneous 
solution by Duan [30] employs a one-stage solution that simultaneously performs the 
feature input space alignment process while learning the final classifier. As is the case for 
the surveyed homogeneous transfer learning works, the surveyed heterogeneous trans-
fer learning works are not specifically applied to big data solutions; however, there is 
nothing to preclude their use in a big data environment.

Negative transfer
The high-level concept of transfer learning is to improve a target learner by using data 
from a related source domain. But what happens if the source domain is not well-related 
to the target? In this case, the target learner can be negatively impacted by this weak 
relation, which is referred to as negative transfer. In a big data environment, there may 
be a large dataset where only a portion of the data is related to a target domain of inter-
est. For this case, there is a need to divide the dataset into multiple sources and employ 
negative transfer methods when using transfer learning algorithm. In the scenario where 
multiple datasets are available that initially appear to be related to the target domain 
of interest, it is desired to select the datasets that provide the best information transfer 
and avoid the datasets that cause negative transfer. This allows for the best use of the 
available large datasets. How related do the source and target domains need to be for 
transfer learning to be advantageous? The area of negative transfer has not been widely 
researched, but the following papers begin to address this issue.

Table 4  Heterogeneous transfer learning approaches surveyed in “Heterogeneous trans-
fer learning” section listing various characteristics of each approach

Approach Transfer category Source
data

Target data Multiple 
sources

Generic  
solution

Negative 
transfer

CLSCL [91] Symmetric feature Labeled Unlabeled

HeMap [105] Symmetric feature Labeled Limited labels ✓
DAMA [121] Symmetric feature Labeled Limited labels ✓ ✓
HTLIC [146] Symmetric feature Unlabeled Abundant labels

TTI [92] Symmetric feature Labeled Limited labels

HFA [30] Symmetric feature Labeled Limited labels ✓
SHFA [64] Symmetric feature Labeled Limited labels ✓
ARC-t [58] Asymmetric feature Labeled Limited labels ✓
MOMAP [46] Asymmetric feature Labeled Limited labels ✓
SHFR [145] Asymmetric feature Labeled Limited labels ✓
HDP [77] Asymmetric feature Labeled Unlabeled ✓
HHTL [144] Asymmetric feature Labeled Unlabeled ✓
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An early paper by Rosenstein [98] discusses the concept of negative transfer in trans-
fer learning and claims that the source domain needs to be sufficiently related to the 
target domain; otherwise, the attempt to transfer knowledge from the source can have 
a negative impact on the target learner. Cases of negative transfer are demonstrated by 
Rosenstein [98] in experiments using a hierarchical Naive Bayes classifier. The author 
also demonstrates the chance of negative transfer goes down as the number of labeled 
target training samples goes up.

The paper by Eaton [31] proposes to build a target learner based on a transferabil-
ity measure from multiple related source domains. The approach first builds a logistic 
regression learner for each source domain. Next, a model transfer graph is constructed 
to represent the transferability between each source learner. In this case, transferabil-
ity from a first learner to a second learner is defined as the performance of the second 
learner with learning from the first learner minus the performance of the second learner 
without learning from the first learner. Next, the model transfer graph is modified by 
adding the transferability measures between the target learner and all the source learn-
ers. Using spectral graph theory [17] on the model transfer graph, a transfer function 
is derived that maintains the geometry of the model transfer graph and is used in the 
final target learner to determine the level of transfer from each source. Experiments are 
performed in the applications of document classification and alphabet classification. 
Source domains are identified that are either related or unrelated to the target domain. 
The method by Eaton [31] is tested along with a handpicked method where the source 
domains are manually selected to be related to the target, an average method that uses 
all sources available, and a baseline method that does not use transfer learning. Clas-
sification accuracy is the performance metric measured in the experiments. The source 
and target domains are represented by a homogeneous feature input space. The results 
of the experiments are mixed. Overall, the Eaton [31] approach performs the best; how-
ever, there are certain instances where Eaton [31] performed worse than the handpicked, 
average, and baseline methods. In the implementation of the algorithm, the transferabil-
ity measure between two sources is required to be the same; however, the transferabil-
ity from source 1 to source 2 is not always equal to the transferability from source 2 to 
source 1. A suggestion for future improvement is to use directed graphs to specify the 
bidirectional nature of the transferability measure between two sources.

The paper by Ge [40] claims that knowledge transfer can be inhibited due to the exist-
ence of unrelated or irrelevant source domains. Further, current transfer learning solu-
tions are focused on transferring knowledge from source domains to a target domain, 
but are not concerned about different source domains that could potentially be irrel-
evant and cause negative transfer. In the model presented by Ge [40], there is a single 
target domain with limited labeled data and multiple labeled source domains for knowl-
edge transfer. To reduce negative transfer effects from unrelated source domains, each 
source is assigned a weight (called the Supervised Local Weight) corresponding to how 
related the source is with the target (the higher the weight the more it is related). The 
supervised local weight is found by first using a spectral clustering algorithm (Chung 
[17]) on the unlabeled target information and propagating labels to the clusters from the 
labeled target information. Next, each source is separately clustered and labels assigned 
to the clusters from the labeled source. The supervised local weight of each source 
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cluster is computed by comparing the source and target clusters. This solution further 
addresses the issue of imbalanced class distribution in source domains by preventing 
a high-weight class assignment in the case of high-accuracy predictions in a minority 
target class. The final target learner uses the supervised local weights to attenuate the 
effects of negative transfer. Experiments are performed in three application areas includ-
ing cardiac arrhythmia detection, spam email filtering, and intrusion detection. Area 
under the curve is measured as the performance metric. The source and target domains 
are represented by a homogeneous feature input space. The method presented in this 
paper is compared against methods by Luo [71], by Gao [38], by Chattopadhyay [14], and 
by Gao [37]. The Luo [71] and Gao [38] methods are the worst performing, most likely 
due to the fact that these solutions do not attempt to combat negative transfer effects. 
The Chattopadhyay [14] and Gao [37] methods are the next best performing, which have 
means in place to reduce the effects of negative transfer from the source domains. The 
Chattopadhyay [14] and Gao [37] methods do address the negative transfer problem but 
do not address the imbalanced distribution issue. The Ge [40] method does exhibit the 
best overall performance due to the handling of negative transfer and imbalanced class 
distribution.

The paper by Seah [102] claims the root cause of negative transfer is mainly due to 
conditional distribution differences between source domains 

(

PS1(y|x ) �= PS2
(

y|x
))

 
and a difference in class distribution (class imbalance) between the source and target 
(

PS(y) �= PT
(

y
))

. Because the target domain usually contains a small number of labeled 
instances, it is difficult to find the true class distribution of the target domain. A predic-
tive distribution matching (PDM) framework is proposed to align the conditional dis-
tributions of the source domains and target domain in an attempt to minimize negative 
transfer effects. A positive transferability measure is defined that measures the transfer-
ability of instance pairs with the same label from the source and target domains. The first 
step in the PDM framework is to assign pseudo labels to the unlabeled target data. This 
is accomplished by an iterative process that forces source and target instances which are 
similar (as defined by the positive transferability measure) to have the same label. Next, 
irrelevant source data are removed by identifying data that does not align with the con-
ditional distribution of the pseudo labeled target data for each class. Both logistic regres-
sion and SVM classifiers are implemented using the PDM framework. Experiments are 
performed on document classification using the PDM method described in this paper, 
the approach from Daumé [22], the approach from Huang [51], and the approach from 
Bruzzone [11]. Classification accuracy is measured as the performance metric. The 
source and target domains are represented by a homogeneous feature input space. The 
PDM approach demonstrates better performance as compared to the other approaches 
tested as these solutions do not attempt to account for negative transfer effects.

A select number of previously surveyed papers contain solutions addressing negative 
transfer. The paper by Yang [136] addresses the negative transfer issue, which is pre-
sented in the “Heterogeneous transfer learning” section. The homogeneous solution by 
Gong [42] defines an ROD value that measures the relatedness between a source and 
target domain. The work presented in Chattopadhyay [14] is a multiple source transfer 
learning approach that calculates the source weights as a function of conditional prob-
ability differences between the source and target domains attempting to give the most 
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related sources the highest weights. Duan [28] proposes a transfer learning approach 
that only uses source domains that are deemed relevant and test data demonstrates bet-
ter performance compared to methods with no negative transfer protection.

The previous papers attempt to measure how related source data is to the target data 
in a transfer learning environment and then selectively transfer the information that is 
highly related. The experiments in the above papers demonstrate that accounting for 
negative transfer effects from source domain data can improve target learner perfor-
mance. However, most transfer learning solutions do not attempt to account for negative 
transfer effects. Robust negative transfer measurements are difficult to define. Since the 
target domain typically has limited labeled data, it is inherently difficult to find a true 
measure of the relatedness between the source and target domains. Further, by selec-
tively transferring information that seems related to the limited labeled target domain, 
a risk of overfitting in the target learner is a concern. The topic of negative transfer is a 
fertile area for further research.

Transfer learning applications
The surveyed works in this paper demonstrate that transfer learning has been applied 
to many real-world applications. There are a number of application examples pertain-
ing to natural language processing, more specifically in the areas of sentiment classifica-
tion, text classification, spam email detection, and multiple language text classification. 
Other well-represented transfer learning applications include image classification and 
video concept classification. Applications that are more selectively addressed in the pre-
vious papers include WiFi localization classification, muscle fatigue classification, drug 
efficacy classification, human activity classification, software defect classification, and 
cardiac arrhythmia classification.

The majority of the solutions surveyed are generic, meaning the solution can be eas-
ily applied to applications other than the ones implemented and tested in the papers. 
The application-specific solutions tend to be related to the field of natural language pro-
cessing and image processing. In the literature, there are a number of transfer learning 
solutions that are specific to the application of recommendation systems. Recommen-
dation systems provide users with recommendations or ratings for a particular domain 
(e.g. movies, books, etc.), which are based on historical information. However, when the 
system does not have sufficient historical information (referred to as the data sparsity 
issue presented in Moreno [76]), then the recommendations are not reliable. In the cases 
where the system does not have sufficient domain data to make reliable predictions (for 
example when a movie is just released), there is a need to use previously collected infor-
mation from a different domain (using books for example). The aforementioned prob-
lem has been directly addressed using transfer learning methodologies and captured in 
papers by Moreno [76], Cao [12], Li [60], Li [61], Pan [86], Zhang [140], Pan [85], Roy 
[99], Jiang [54], and Zhao [142].

Transfer learning solutions continue to be applied to a diverse number of real-world 
applications, and in some cases the applications are quite obscure. The application 
of head pose classification finds a learner trained with previously captured labeled 
head positions to predict a new head position. Head pose classification is used for 
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determining the attentiveness of drivers, analyzing social behavior, and human inter-
action with robots. Head positions captured in source training data will have different 
head tilt ranges and angles than that of the predicted target. The paper by Rajagopal [96] 
addresses the head pose classification issues using transfer learning solutions.

Other transfer learning applications include the paper by Ma [72] that uses transfer 
learning for atmospheric dust aerosol particle classification to enhance global climate 
models. Here the TrAdaBoost algorithm proposed by Dai [21] is used in conjunction 
with an SVM classifier to improve on classification results. Being able to identify areas 
of low income in developing countries is important for disaster relief efforts, food secu-
rity, and achieving sustainable growth. To better predict poverty mapping, Xie [134] pro-
poses an approach similar to Oquab [81] that uses a convolution neural network model. 
The first prediction model is trained to predict night time light intensity from source 
image data. The final target prediction model predicts the poverty mapping from source 
night time light intensity data. In the paper by Ogoe [80], transfer learning in used to 
enhance disease prediction. In this solution, a rule-based learning approach is formu-
lated to use abstract source domain data to perform modeling of multiple types of gene 
expression data. Online display web advertising is a growing industry where transfer 
learning is used to optimally predict targeted ads. In the paper by Perlich [90], a transfer 
learning approach is employed that uses the weighted outputs of multiple source classi-
fiers to enhance a target classifier trained to predict targeted online display advertising 
results. The paper by Kan [56] addresses the field of facial recognition and is able to use 
face image information from one ethnic group to improve the learning of a classifier for 
a different ethnic group. The paper by Farhadi [35] is focused on the application of sign 
language recognition where the model is able to learn from different people signing at 
various angles. Transfer learning is applied to the field of biology in the paper by Widmer 
[127]. Specifically, a multi-task learning approach is used in the prediction of splice sites 
in genome biology. Predicting if patients will contract particular bacteria when admitted 
to a hospital is addressed in the paper by Wiens [128]. Information taken from differ-
ent hospitals is used to predict the infection rate for a different hospital. In the paper 
by Romera-Paredes [97], a multi-task transfer learning approach is used to predict pain 
levels from an individual’s facial expression by using labeled source facial images from 
other individuals. The paper by Deng [25] applies transfer learning to the application 
of speech emotion recognition where information is transferred from multiple labeled 
speech sources. The application of wine quality classification is implemented in Zhang 
[141] using a multi-task transfer learning approach. As a reference, the survey paper by 
Cook [19] covers transfer learning for the application of activity recognition and the sur-
vey papers by Patel [89] and Shao [103] address transfer learning in the domain of image 
recognition.

Conclusion and discussion
The subject of transfer learning is a well-researched area as evidenced with more than 
700 academic papers addressing the topic in the last 5  years. This survey paper pre-
sents solutions from the literature representing current trends in transfer learning. 
Homogeneous transfer learning papers are surveyed that demonstrate instance-based, 
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feature-based, parameter-based, and relational-based information transfer techniques. 
Solutions having various requirements for labeled and unlabeled data are also pre-
sented as a key attribute. The relatively new area of heterogeneous transfer learning is 
surveyed showing the two dominant approaches for domain adaptation being asymmet-
ric and symmetric transformations. Many real-world applications that transfer learning 
is applied to are listed and discussed in this survey paper. In some cases, the proposed 
transfer learning solutions are very specific to the underlying application and cannot 
be generically used for other applications. A list of software downloads implementing 
a portion of the solutions surveyed is presented in the appendix of this paper. A great 
benefit to researchers is to have software available from previous solutions so experi-
ments can be performed more efficiently and more reliably. A single open-source soft-
ware repository for published transfer learning solutions would be a great asset to the 
research community.

In many transfer learning solutions, the domain adaptation process performed is 
focused either on correcting the marginal distribution differences or the conditional 
distribution differences between the source and target domains. Correcting the condi-
tional distribution differences is a challenging problem due to the lack of labeled target 
data. To address the lack of labeled target data, some solutions estimate the labels for the 
target data (called pseudo labels), which are then used to correct the conditional distri-
bution differences. This method is problematic because the conditional distribution cor-
rections are being made with the aid of pseudo labels. Improved methods for correcting 
the conditional distribution differences is a potential area of future research. A number 
of more recent works attempt to correct both the marginal distribution differences and 
the conditional distribution differences during the domain adaptation process. An area 
of future work is to quantify the advantage of correcting both distributions and in what 
scenarios it is most effective. Further, Long [68] states that the simultaneous solving of 
marginal and conditional distribution differences is preferred over serial alignment as 
it reduces the risk of overfitting. Another area of future work is to quantify any perfor-
mance gains for simultaneously solving both distribution differences. In addition to solv-
ing for distribution differences in the domain adaptation process, exploring possible data 
preprocessing steps using heuristic knowledge of the domain features can be used as 
a method to improve the target learner performance. The heuristic knowledge would 
represent a set of complex rules or relations that standard transfer learning techniques 
cannot account for. In most cases, this heuristic knowledge would be specific to each 
domain, which would not lead to a generic solution. However, if such a preprocessing 
step leads to improved target learner performance, it is likely worth the effort.

A trend observed in the formulation of transfer learning solutions is in the implemen-
tation of a one-stage process as opposed to a two-stage process. A two-stage solution 
first performs the domain adaptation process and then independently learns the final 
classifier. A one-stage process simultaneously performs the domain adaptation pro-
cess while learning the final classifier. Recent solutions employing a one-stage solution 
include Long [68], Duan [27], Shi [106], Xia [132], and Duan [30]. With respect to the 
one-stage solution, Long [68] claims the simultaneous solving of domain adaptation and 
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the classifier establishes mutual reinforcement for enhanced performance. An area of 
future work is to better quantify the effects of a one-stage approach over a two-stage 
approach.

This paper surveys a number of works addressing the topic of negative transfer. The 
subject of negative transfer is still a lightly researched area. The expanded integration 
of negative transfer techniques into transfer learning solutions is a natural extension for 
future research. Solutions supporting multiple source domains enabling the splitting of 
larger source domains into smaller domains to more easily discriminate against unre-
lated source data are a logical area for continued research. Additionally, optimal transfer 
is another fertile area for future research. Negative transfer is defined as a source domain 
having a negative impact on a target learner. The concept of optimal transfer is when 
select information from a source domain is transferred to achieve the highest possible 
performance in a target learner. There is overlap between the concepts of negative trans-
fer and optimal transfer; however, optimal transfer attempts to find the best performing 
target learner, which goes well beyond the negative transfer concept.

With the recent proliferation of sensors being deployed in cell phones, vehicles, build-
ings, roadways, and computers, larger and more diverse information is being collected. 
The diversity in data collection makes heterogeneous transfer learning solutions more 
important moving forward. Larger data collection sizes highlight the potential for big 
data solutions being deployed concurrent with current transfer learning solutions. How 
the diversity and large size of sensor data integrates into transfer learning solutions is 
an interesting topic of future research. Another area of future work pertains to the sce-
nario where the output label space is different between domains. With new data sets 
being captured and being made available, this topic could be a needed area of focus for 
the future. Lastly, the literature has very few transfer learning solutions addressing the 
scenario of unlabeled source and unlabeled target data, which is certainly an area for 
expanded research.
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Appendix
The majority of transfer learning solutions surveyed are complex and implemented with 
non-trivial software. It is a great advantage for a researcher to have access to software 
implementations of transfer learning solutions so comparisons with competing solutions 
are facilitated more quickly and fairly. Table 5 provides a list of available software down-
loads for a number of the solutions surveyed in this paper. Table 6 provides a resource 
for useful links that point to transfer learning tutorials and other interesting articles on 
the topic of transfer learning.
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