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Introduction
Over the past 10  years, there has been vast improvement in hardware architecture 
design for computer information, one of the most important functions being network 
analysis. The main problem with network analysis is the shortest path analysis. Accord-
ing to the network being analyzed, the shortest path has a variety of measurements, such 
as time, to find the path. The problem with determining the shortest path, however, is to 
find both the fastest and the shortest path. Thus, research in the shortest path always has 
been a point of interest in graph theory.

Frequently, graphs are used along with modern technology in such setting as online 
social networks (e.g., LinkedIn™ or Facebook). Since the size of the graphs is increasing 
exponentially, many direct processes become more demanding. For example, LinkedIn—
a well-known website for professional networking—that tries to connect professionals 
together worldwide. If a person is trying to get in touch with someone from the human 
resource department in a company by using LinkedIn, what the website does is try to 
find the shortest path to reach that person in that specific company, starting from his 
connections and moving on to friends of friend to reach the desired personal in the 
specified company. Similarly, this application of the shortest path can be used over and 
over in different scenarios, for example, finding routes from one point to another point 
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in GPS navigation system. In many cases, when finding the shortest path, in a selected 
graph that consists of millions of nodes and edges the measurability and accuracy 
becomes more complex to measure, the shortest path query must respond to the request 
as fast as possible with high accuracy. Although the graph may comprise of a lot of nodes 
and edges but the shortest path must be calculated fast, as an example in car navigation 
(GPS) an alternative route could be used [1] to provide the driver with a driving route to 
the requested destination in a given situation the driver would prefer a quick response 
that is accurate to make right decisions while driving thus a much faster response time is 
a necessity in this case.

Background
Computing the path in cluttered environments that contain a lot of nodes and with 
millions of vertices where some vertices might be fairly similar or relatively close still 
consumes a lot from the computation prospective and makes computation much more 
complex. The desire to produce algorithms that are complete, i.e., algorithms that find 
a path if one exists—have resulted in computationally impractical when applied to high 
dimensionality problems despite their relatively low (polynomial) complexity. It is essen-
tial to address practical motion-planning problems in complex industrial environments 
as discussed that led to the development of probabilistic and Monte Carlo search algo-
rithms, typically known as the random roadmap approach [2]. While the probabilistic 
algorithms effectively trade-off completeness for computational efficiency, they have 
difficulties in finding valid paths through narrow corridors in the free space, where the 
probability of sampling configurations is low.

The computation cost to compute the path using an approach, such as the algorithm 
proposed by Fujita et  al. [2] or other similar approaches [3–6] such as Dual Dijkstra’s 
Search (DDS) were unlike randomized algorithms, it searches over the entire configu-
ration space to simultaneously generate the global optimal path, in addition to several 
distinct local minima. The procedural part of this approach is to run the Dijkstra’s search 
twice so that it produces a list of ranked paths that span the entire graph in order of opti-
mality. There have been numerous ways that helps to calculate the shortest path by using 
several techniques as the one proposed in [2] and they work perfectly but they have a 
high cost of computation specially when the number of nodes increases. The computa-
tion of typical algorithms for K-best paths [7, 8] is linear in the number of paths (K), 
that may be enormous if the paths are to span throw the entire graph. In contrast, the 
Dual Dijkstra’s Search computes paths that span the entire graph at a computational cost 
that is independent of the number of paths generated. The DDS requires two Dijkstra’s 
searches, similar to K = 2 [2].

The approaches were Dijkstra’s search that computes the shortest paths from the start 
node to all other nodes in the graph. For every node, it computes and stores the mini-
mum cost to the start node and the previous node on the optimal path. By tracing back 
to the previous node, it is possible to generate the optimal path. This algorithm is useful 
for generating only the optimal path between any two nodes, and cannot generate other 
candidates paths between the two nodes [2].

The Dual Dijkstra’s Search algorithm consists of two steps. In the first step, for each 
node in the graph, the shortest path is computed between the start and goal nodes that 
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pass through that node. In the second step, the shortest path is selected in each homot-
opy class [9].

Typical algorithms for computing the K shortest paths [7, 8] first search for the opti-
mal path, then search for the second best, the third, and so on. This approach has several 
disadvantages:

1.	 The computational cost grows linearly with K.
2.	 Paths are found in a decreasing order of optimality, generating many ‘similar’ paths.

Another reason why best-first search (BFS) doesn’t work for weighted graphs as there 
could no longer an assurance that the node at the top of the queue is the node that is the 
closest or nearest to s. It is certainly the closest in terms of the number of edges used to 
reach it, but not in terms of the sum of edge weights. Although this issue could be fixed 
instead of using a plain queue, a priority queue can be used, in which vertices are sorted 
by their increasing dist[] value. Then, at each iteration, select the node x, with smallest 
dist[x] value and call relax (x, y) on all of its neighbors, y.

This evidence of exactness is typically the same towards BFS, and the same loop invari-
ant holds. However, this algorithm approach works only as long as there are no edges 
that has a negative weight. Or else there is no assurance that when x is selected as the 
nearest node, dist[y] for some other vertex y will not become smaller than dist[x] at a 
point upcoming.

There are several ways to implement Dijkstra’s algorithm. One of the main challenges 
that’s to support a priority queue of vertices that offers three main processes: Adding 
new nodes to the queue, removing the nodes with smallest dist[], and reducing the dist[] 
value of some nodes during relaxation [10]. A set can be used to represent the queue. 
This approach of implementation will look similar to the BFS.

Shortest distances have been used as an underlying metric in a number of measures, 
such as centrality. One of these measures is betweenness, which is equal to the number 
of shortest paths between others that pass through a node.

The Dijkstra’s algorithm selects a source node and loads in the dist[] array with the 
shortest path distances from s. All the distances that are initialized to infinity, except for 
dist[s], which are set to 0. Then, s is added to the queue, and the same process continues 
as for BFS: remove the first node x, and scan all of its neighboring node, y. Then the 
new distance to y is computed, and if it is better than the currently known distance, it is 
updated [11].

Problem definition
Computing the shortest path on large graphs might be a problematic choice as the use 
of the standard Dijkstra’s algorithm to calculate the shortest path between two nodes 
in a graph has the asymptotic runtime complexity of 0(m +  nlog (n)), where n is the 
number of nodes and m is the number of edges. Compared to the standard approach 
which detect the overall path structure in a network by traversing through all the nodes 
our proposed algorithm that will only traverse through the bounded path after com-
puting maximal similarity clique (MSC) proposed later in this paper and by doing so 
making it require less time and search space. Measuring complexity in such approaches 
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is important as it shows how it would perform as the input size grows [12]. Dijkstra’s 
method is one of the well-known algorithms, and that have been used and implemented 
in several applications and in several approaches.

In this study, a benchmark dataset was tested from UNC The Odum Institue, [13–15] 
Where we used the data source from there Dataverse Network, the input dataset consists 
of a collection of XML files Extensible Markup Language, using the standard implementa-
tion and just trying to run such dataset or even larger set of data affects the running time 
as well as might affect the decision making process in case of a real-time necessity. Due to 
several computation nodes that maybe irrelevant. As a result of this delay in responding 
which might not be acceptable in some programs or some other cases. The main reason 
for this delay in Dijkstra’s algorithm is that it has to build and keep the shortest path to 
all nodes in the graph whose distance to the source or main node is less than the distance 
from the source node to the final node or the destination node. Thus in such a case the 
consumption of memory by this classical algorithm “Dijkstra’s algorithm” is excessive and 
too demanding to maintain a large amount in the memory as it’s a large network that con-
sist of millions of nodes it’s absurd and costly for parallel execution of all these queries.

Definition 1  In a weighted directed graph G = (V, E), an edge is adjacent to an edge 
〈Vj, Vk〉 is adjacent to an edge 〈Vi, Vj〉 if and only if Vi, Vjʹ Vk ∈ V, 〈Vi, vj〉 and 〈vj, vk〉 ∈ E.

Definition 2  (Direct adjacent edges/indirect adjacent edges) If there is no cost from an 
edge to its adjacent edge, the adjacent edge is called the edge’s direct adjacent edge. Oth-
erwise, it’s called the edge’s indirect adjacent edge. The weight of an indirect adjacent 
edge represents the cost from an edge to its adjacent edge.

Definition 3  Line In a weighted directed graph G = (V, E), a line from vp to vq is the 
vertex sequence vp = ViO, ViI,…,vm = vq, where �Vij − 1� vu, and �Vij, Vij + 1� ∈ E and an 
edge �Vij, Vij + 1� is the direct adjacent edge of an edge �vij − 1, vij� (1 ≤ j ≤ m − 1).

The method used in this paper uses Dijkstra’s algorithm that marks the start point in a 
network and then it calculates the cost of moving from the start node to each node and 
marks the node with the least value. Then it repeats this process this step several times 
until the destination is marked and reached.

To modify this algorithm to work in a specified time by making the algorithm run in 
both directions that beans that the algorithm starts from the beginning node and starts 
to calculate the cost of each value of each movement to each node while at the same time 
starts at the end node to do the same calculation but starting from the last node this 
time and calculating the cost to each node. Yet this method has a major disadvantage 
[16] that is by using this method to obtain a result these results could not be obtained in 
a real-time situation.

Our approach
This methodology of graph reduction is mainly applied in the process of modeling where 
these workflow graphs were used to model task processes, several reduction approaches 
has been proposed before such as [17–19]. These workflow graphs are a directed graph 
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that starts with an initial node and ends with one final node. Which means that these 
initial nodes have no incoming edges connected to it and the final node doesn’t have any 
outgoing edges of it. The hassle with these directed graphs is that it has structural con-
flicts like deadlocks and lack of synchronization [20] may occur if the workflow graph 
wasn’t designed correctly.

In such cases of large network and where an ideal and a quick response is required it’s 
preferably as an initial step for us to do is to aim for a graph reduction. Where trying to 
reduce large amount of data depending on many certain methodologies that are based 
on Similarity graph reduction (SGR) [21, 22] that will help in solving the main aim that 
is reducing a graph to a simple structure that will help us to reveal some information 
that were previously difficult to be discovered or it took a lot of time to figure out this 
information. Thus we will be reducing the graph on similarity bases and by computing 
similarity that gives us a final reduction graph. This graph will be based on a certain 
threshold [23, 24] after reducing our large graph by applying the reduction algorithm.

The use of the shortest path algorithm is a commonly used nowadays and can be seen 
in a lot of common applications that we use in our daily life as an example the Naviga-
tion systems [1]. This made me more interested to research on this topic as improving 
the response time that is given to us from this algorithm could lead into a lot of better 
improvements and better decision in a smaller time frame making faster decisions more 
reliable and in certain cases giving a better response time to the tool where this algo-
rithm will be used, especially if the path consist of a lot of data (nodes, edges) and a lot 
of alternative paths thus making it take much longer to find the shortest path. Therefore 
this algorithm has a lot of use and as well a lot of benefit, this made me more motivated 
to work on this topic.

In this section of the paper we talk about the procedure and the Algorithm used and 
the steps made to make the reduction and then finding the shortest path after the reduc-
tion part has been made.

Network reduction

In the reduction graph that is based on similarity the main aim is to gain a less complex 
(similarity) graph through the given original graph. As the Author [23] in this paper he 
defined the SGR were the formal definition he defines is as follows:

Definition 4  [Similarity graph reduction (SGR)] Given an similarity graph, G = (V, E), 
the goal of SGR is to generate a Gʹ = (Vʹ, Eʹ) such that it suffices |Vʹ| < |V| and |Eʹ| < |E|.

As shown from the definition of the author [22] that if a similarity value of a couple of 
nodes is adequately high then we can assume that the distance between both the nodes 
is negligible. Thus let’s assume two nodes that are identical have a similarity value being 
1 hence their distance will be assumed as 0 this represents a complete overlapping graph. 
Therefore the author introduces another definition that will help in proceeding without 
loss in generality.

Definition 5  [Similarity clique (SC)] Given a set of nodes, N and |N| ≥ 2, N is said to 
form a similarity clique if and only if both of the following two conditions hold: (1) N 
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forms a complete similarity graph; (2) The similarity value on each pair of the edges of 
the complete graph is sufficiently large, such that S (u, v) ≥ θ where u, v ∈ N and u ≠ v.

This section of reduction aims to find a similarity clique [22] for situations that has 
more than two nodes it does so by presenting an arbitrary threshold value θ. The thresh-
old value will assist in controlling the SC’s similarity level through adjusting the value of θ.

The similarity clique collects groups of nodes that have negligible distances. Thus for 
the aim of reduction we need the maximal similarity clique (MSC) that’s defined as the 
following:

Definition 6  [Maximal similarity clique (MSC)] A similarity clique is said to be a max-
imal similarity clique if it violates the necessary and sufficient conditions of being a simi-
larity clique by adding one more adjacent vertex.

Then from this result we try to combine the entire maximal similarity clique [22] into a 
single node thus making the number of nodes and as well as the number of edges in the 
graph to be reduced. As the author in paper [22] explained the main reason for this reduc-
tion is because with every k-node maximal similarity clique its replaced with a single node 
where there is at least k2−k

2  edges and a k − 1 nodes reduced from the original graph.

Shortest path

Shortest path on large graphs might not be an easy task as there are a lot of nodes and 
alternatives in that graph thus it takes a lot of time and as well as computational efforts 
to find the shortest path [1, 6]. By using Dijkstra’s algorithm to calculate the shortest path 
between two nodes in a graph has the asymptotic runtime complexity of O (m + nlog 
(n)), where n is the number of nodes and m is the number of edges. We will insert the 
network graph that will be used in Dijkstra’s method it will use the reduced graph from 
SGR the method we used before thus reducing the size of the graph and will help in giv-
ing a better upgrade in performance wise in Dijkstra’s method.

Principle of dijkstra’s shortest path

The main hypothesis of this algorithm works the following way:

• • Select the source vertex.
• • Define a set N of nodes; Initialize it to an empty set or infinite. Along the Algorithm 

and as it moves along these set N will be updated with those nodes that the shortest 
path has found.

• • Start the source Node with 0, and then insert it into N.
• • Then we consider each node not in N that it’s connected by an edge from the newly 

inserted Node. Label the node not in N with the label that’s inserted newly into the 
node and add the length of the edge. (If the node is not in N its new label will be the 
minimum)

• • Select the vertex that’s not in N with the least label and add it to N.
• • Repeat these steps from step 4 till the Node required is added to N or the labeled 

node is not available in N.
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Thus if the final destination that is required is labeled, then its label will be the distance 
from the source till the destination. If it isn’t labeled, thus we can assume that there isn’t 
a path from the source to the destination required.

As shown in Fig. 1 an undirected graph network that’s weighted to clarify the proce-
dure from this sample graph we are able to create the adjacency matrix and a distance 
matrix as well by creating a square matrix of size N × N (di j).

The matrices will be created from the input data and visualized as shown in Fig.  1 
where these matrices helps also in the process of analysis of the graph either it’s a social 
network graph that represents people and their communication with each other, friend 
connection on social network or even flight records analysis or all flights from one air-
port to another these helps us to have a better understanding and a better means for 
structural analysis and visualization techniques such as the work presented in [11, 25, 
26]. Complex large scale networks are massive in size of data and the information that 
they hold and contain. Analysis and the interactivity of a network and in particularly 
network that deal with large scale “Big Data” have vital importance. As our networks are 
evolving incessantly and constantly tools that are used must be scalable and must main-
tain a superior visualization and interactivity as visualization plays an important role in 
understanding the big picture of the network as well as reveals to us hidden factors that 
weren’t made clear before therefore these methods are a necessity.

As shown in Fig. 2a and in Fig. 2b the matrices of the graph in Fig. 1 created where in Fig. 2a 
the matrices represent 0’s and 1’s where 0’s represents no edges between certain nodes and 1’s 

Fig. 1  Sample undirected weighted graph

Fig. 2  a Adjacent matrix. b Distance matrix
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represent a weighted edge available between these nodes. As for the matrix in Fig. 2b repre-
sent the distance matrix for the graph for calculation of the path where it updates the matrix 
with each loop as explained later in the algorithm section of this paper, after the updating the 
distance matrix the measures or the weights of distance in the graph are important indicators 
in the process of statistical analysis. It quantifies dissimilarity between sample data for numer-
ical computation. These distance methods data using a matrix of pairwise distances.

Inserting the weights to the matrix in Fig. 2a yields the distance matrix that makes it 
easier to calculate many analysis functions that are important such as clustering coef-
ficient, degree distribution, the distance matrix created in Fig. 3 is an appropriate way to 
represent the dataset and make it much more uncomplicated and simpler to analyze the 
dataset and to visualize it. Splaying the dataset onto an adjacency matrix helps to display 
the graph and gather all the information that the dataset would have and thus can be 
represented in a more efficient way.

In Fig. 4 we use the same network graph used in Fig. 1 to show how the steps are cov-
ered during analysis of the graph to calculate the path between nodes. As shown in Fig. 4 
we use node A as the start node and set the final destination as node F in the second step 
we calculate the lowest cost to reach the next node from node A and so on. As explained 
in the figure relating to the algorithm stages Figs.  1–4 expressed the phases from the 
start node A followed by node C then to node D and finally to the selected destination F 
traversing through the start node to the destination in the shortest possible path.

Fig. 3  Distance matrix

Fig. 4  Algorithm stages
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Algorithms
 

The similarity value is usually normalized in the domain of [0, 1], with a value of 1 indi-
cating identical and a value of 0 implying completely different [22]. As an adjacency 
matrix, the data structure that stores an undirected graph, a similarity adjacency matrix 
is the data structure that stores a similarity graph and as long as a similarity adjacency 
matrix is filled out, the relevant similarity graph then can be plotted.

To explain the process of similarity value computation, the data points, X  =  {X1, 
X2,…,Xn} and Y = {Y1, Y2,…,Yn}. ∀ Xk ∈ X and ∀Yk ∈ Y, |Xk| = |{x1, x2,…, xi}| = ik and 
|Yk| = |{y1, y2,…, yj}| = jk. This indicates that both categorical attributes, Xk and Yk, have 
a number of ik and jk values [22]. The method of similarity computation for two data 
points is described in algorithm 1. The algorithm requires two data points as its input 
and outputs a similarity value. Specifically, for each attribute of X and Y, the algorithm 
first stores a smaller attribute cardinality to K, then it computes an attribute similarity 
matrix. All elements in the matrix are then extracted into a value list. The value list is 
sorted such that the mean of the top K values can be computed and assigned as Sk(Xk, 
Yk). At last, S(Xk, Yk) can be obtained through a weighted sum of each Sk(Xk, Yk).

 

As defined in def.6 and Algorithm 2 [22] is provided for solving the maximal similarity clique 
problem [27]. The algorithm is essentially based on the recursive backtracking algorithm pro-
posed by Bron and Kerbosch [24] for maximal clique enumerations with pivoting. The input 
of algorithm 2 is G, an undirected graph summarizing in M. The output is a list of maximal 
cliques found in G, where Cliques = {C1, C2,…, Cm} and ∀Ci ∈ Cliques, Ci = {v}.
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The new cliques algorithm (Algorithm 3) above [22] describes the process of producing a list 
of new cliques [22], in which the new cliques do not contain any repeating vertex. The algo-
rithm first compares each clique in the input list to identify if there are any repeating vertices. 
If there do exist repeating vertices, the algorithm returns the input clique list; otherwise, it 
first compares similarities for each pair of cliques listed in Cliques and merges repeating 
nodes into the clique having maximum similarities and then it removes cliques with only one 
node left and returns a list of new cliques. The reduced graph consists of a list of vertices Vʹ, 
Where Vʹ = V\VNewCliques ∪ {m}. Where if we Let V1 = V\VNewCliques, V2 = {m}. Thus, all 
similarity edges of the graph forms a set of E, where E ⊆ {V1 × V1} ∪ {V1 × V2}∪{V2 × V2}. 
Edges in V1 × V1 can be directly inherited from E, the original edge set, since the similarity 
value of each edge remains the same. However, for the edges in V1 × V2 and V2 × V2, the 
computation of similarity values is required because of the m new nodes

A New Cliques list with m cliques forms m new vertices for the reduced similarity 
graph [22].  
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value of each edge remains the same. However, for the edges in V1 × V2 and V2 × V2, the 
computation of similarity values is required because of the m new nodes

A New Cliques list with m cliques forms m new vertices for the reduced similarity 
graph [22].  

The algorithm has two sets of nodes that are maintained that are as follows:
Node E for the node that has been encountered with and node U for nodes that still 

haven’t been encountered yet with. In relation to figure z where it shows that our Start 
node “A” thus as an initial state E will contain only A that’s the initial node then we use e 
(n) to signify the current estimated distance from node A to N that is its neighbor node. 
In the initial step all “n” neighbor nodes other than A has E(n) = ∞ value. The size of the 
set E increases by adding the nodes with the minimal estimate distance from U to E and 
we update the current distance of the neighbor nodes N of the newly added node only if 
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the weight of the value is less than that’s what is unavailable and we repeat this step till 
all nodes are available in E.

Then the similarity graph reduction algorithm [22] reduces the total number of verti-
ces within a similarity graph that merges every vertex involving in a maximal similarity 
clique into one node.

Experiment
The Objective of this experimentation is to input a graph data and successfully imple-
ment reduction on the graph then computing the path based on the reduced graph that’s 
based on the similarity clique process. The Dataset collected to run on this experiment 
was from UNC The Odum Institue, [13–15] Where we used the data source from there 
Dataverse Network, the input dataset consists of a collection of XML files. This Research 
has been tested and conducted on a Lenovo Y510P with 4th Generation Intel® core i7- 
4700MQ processor with a 2.4 GHz 1600 MHz, 8 GB of (RAM) with Graphics NVIDIA® 
GeForce® GT755 M 2 GB. This paper introduces a concept of finding the shortest path 
in a large undirected Network graph by using a reduction algorithm to reduce the size 
and this will have a large impact on the performance. This proposed algorithm makes 
use of the similarity Clique “SC” and the maximum similarity clique “MSC” developed 
by our colleague and published in [22] to make the reduction effective. This algorithm is 
applied to the network with huge nodes to support the network analysis process that we 
developed [11, 25, 26].

Figure  5 illustrates the frame work followed to shed light on the procedure followed 
after the collection of the data from Dataverse in XML format its then preprocessed to 
form the graph data network based on interactions and weight is represented as edges 
between nodes. Then the process of calculating similarities in graph based on the 

Fig. 5  Framework of reduction and path calculation
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definitions and algorithms discussed on the previous section to output the reduction 
graph the similarity is also based on a threshold set to form the cliques then based on this 
reduction graph on a large network a path could be determined from this reduced graph.

After the similarity graph reduction process have been applied to a large graph the 
algorithm starts working as explained in the previous section by finding similarities and 
then applying the maximum similarity cliques to the graph by grouping nodes that are 
connected through similarity edges and then followed by the similarity graph reduction 
that reduces the graph G, after this process has been done the simulation time on the 
reduced graph becomes much faster since the graph has been reduced using the algo-
rithm proposed, Then the process of calculating the shortest path in the reduced graph 
starts using Shortest path calculation algorithm. This greedy algorithm has a complexity 
of O (m) where m represents the number of edges in a given graph.

As represented in the framework of the reduction Fig. 5 and path calculation Fig. 4, 
on the procedure and the flow between algorithm stages on the graph data using MSC 
algorithm (Algorithm 2), then forming new cliques using New Cliques Algorithm 3 and 
Similarity Graph Reduction Algorithm 4 to effectively reduce the size of the graph effec-
tively where as in Fig. 6 where it represents the graph data before reduction as in nodes 
and edges and Fig. 7 represents the same data but after applying the reduction where the 
number of edges have decreased and Figs. 8 and 9 similarity clique process while adjust-
ing the threshold applied regarding the edges using this data to find the shortest path by 
using the path Calculation Algorithm. After this process of reduction and the graph have 
been reduced we apply the path calculation algorithm to calculate the distance based 
on the weights of the edges on the reduced graph. Figures 10 and 11 represents count of 
edges or degrees in two graphs Erdos Collaboration network and Slovenian journal that 
is a weighted undirected graph.

Fig. 6  Shows network graph before reduction



Page 14 of 18Selim and Zhan ﻿J Big Data  (2016) 3:10 

To further more clarify this method of reduction on the network we demonstrate a 
sample small network in Figs. 12 and 13 that consist of five nodes, where we are given a 
similarity graph to show the procedure of the process as follows:

Fig. 7  Graph reduction similarity clique process

Fig. 8  Similarity clique process

Fig. 9  Graph reduction MSC
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• • Calculate and do the maximum similarity clique giving us {1, 2, 3} and {3, 4, 5} based 
on the set threshold that’s set to 0.8 in this sample.

• • Remove the repeating vertex 3 from the clique {3, 4, 5}, since the clique {1, 2, 3} takes 
more similarities than the other one.

• • forms a new edge between the two new nodes, where the similarity value is com-
puted as S (1,4)+ S (3,4)+ S (3,5)

3 = 0.8.

Fig. 10  An analysis on a network graph degrees on Erdos collaboration network

Fig. 11  Slovenian journal also a weighted and undirected graph
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Figures 12 and 13 demonstrate the reduction from 5 nodes to 2 nodes while retaining 
the information of other nodes that where combined [22].

Conclusion
We have proposed in this paper a fast method and an algorithm for the approximation 
and reduction of a large network and a fast estimate calculation for the shortest path, 
in addition to previously proposed algorithms for distance estimation. We described an 
uncomplicated yet powerful approach to the graph data that will function on the col-
lected similarity graph data that is computed by the reduction algorithm and achiev-
ing at query execution time that beat’s up the classical Dijkstra’s shortest path algorithm 
with large datasets. Thus this will help some other application that uses a large network 
to have a better, faster response time further experiments could be done using alterna-
tive data reduction methods that might have an effect on data reduction with greater 

Fig. 12  Similarity graph

Fig. 13  Reduction output
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response time. Along with the rise of Big Data and vast increase in volumes and the 
diversity of the data.

This vast increase in the volume and also the diversity (variety) of the data as well as 
the speed or velocity that these data are generated with along with the veracity, uncer-
tainty of the data due to certain inconsistency or the ambiguity generated from such data 
makes it a Big Data problem by covering the main four characteristics of Big Data (vol-
ume, velocity, variety, veracity).

Another further method that could be implemented is by modifying the algorithm in 
finding the shortest path to try to eliminate the 0 or infinite values. Thus reducing the 
load on the memory and could result in a faster response.

This approach has helped by reducing the number of edges in a network graph and as 
well as nodes in the graph by combining similar nodes based on the MSC algorithm.
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