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Abstract
Output thresholding is well-suited for addressing class imbalance, since the technique does not increase dataset size, run the risk of discarding important instances, or modify an existing learner. Through the use of the Credit Card Fraud Detection Dataset, this study proposes a threshold optimization approach that factors in the constraint  True Positive Rate (TPR) ≥ True Negative Rate (TNR). Our findings indicate that an increase of the Area Under the Precision–Recall Curve (AUPRC) score is associated with an improvement in threshold-based classification scores, while an increase of positive class prior probability causes optimal thresholds to increase. In addition, we discovered that best overall results for the selection of an optimal threshold are obtained without the use of Random Undersampling (RUS). Furthermore, with the exception of AUPRC, we established that the default threshold yields good performance scores at a balanced class ratio. Our evaluation of four threshold optimization techniques, eight threshold-dependent metrics, and two threshold-agnostic metrics defines the uniqueness of this research.
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Introduction
Class imbalance within a dataset occurs when there is a higher number of instances in one or more classes than in the other class(es). From a binary class perspective, this imbalance means that there is one majority (typically negative) class and one minority (typically positive) class. If the difference between the number of majority and minority class instances is significant, as in the case of high class imbalance, the results of a machine learning study could be skewed. As stated by several researchers, a condition of high class imbalance exists when the minority-to-majority ratio ranges from 1:100 to 1:10,000 [1].
Various techniques are employed to reduce class imbalance or reduce the effect of this imbalance. These techniques can be implemented at the data or algorithm level or both. The most popular and established data-level approaches [1] involve Random Undersampling (RUS), Random Oversampling (ROS), and Synthetic Minority Oversampling Technique (SMOTE). However, these three techniques have well-known disadvantages. RUS, a method for randomly discarding instances from the majority class, may also remove important instances. ROS, a process for duplicating instances of the minority class, runs the risk of overfitting. Developed as an intelligent method for duplication of the minority class, SMOTE generates synthetic instances between existing instances of the minority class. The risk of overfitting is greatly reduced with SMOTE. One disadvantage, which is characteristic of any oversampling technique, is the increase in size of the dataset. Algorithm-level approaches include class-weighting and output thresholding techniques. Class-weighting, which is a direct algorithm-level method, modifies the learner [2]. It is a popular technique that has been integrated into many machine learning algorithms. Output thresholding is a process for tuning the decision threshold that is used to associate class labels with a model’s probability estimates [3]. While both algorithm-level approaches reduce bias toward the majority class, output thresholding is a more beneficial technique because it does not modify existing learners and can be performed on any learner that provides probability scores. Therefore, this paper focuses primarily on threshold optimization. In addition, six different levels of RUS are applied to evaluate the interaction between threshold optimization and changing class distributions. We use RUS because studies show that it performs as good as or better than other methods of addressing class imbalance in most cases [4, 5].
In this paper, threshold optimization is used to assign class labels to a model’s output probability scores. The optimal or best threshold is one that maximizes the score of a specified performance metric. A valuable tool in our study is the application of the constraint True Positive Rate (TPR) ≥ True Negative Rate (TNR). This constraint ensures that a threshold will not be selected where the positive class has been ignored by a classifier. For comparative purposes, the default threshold of 0.5 is also investigated to determine whether it is suitable for classifying imbalanced data. Since this is a comprehensive study, we investigate four threshold optimization techniques based on metrics: F-measure, Geometric Mean of TPR and TNR, Matthews Correlation Coefficient (MCC), and Precision. In addition, we evaluate eight threshold-dependent metrics: TPR, False Positive Rate (FPR), False Negative Rate (FNR), TNR, F-measure, Geometric Mean of TPR and TNR, MCC, and Precision. Also under evaluation are two threshold-agnostic metrics, Area Under the Receiver Operating Characteristic Curve (AUC) and AUPRC. The learners in this work are XGBoost [6], CatBoost [7], Random Forest [8], Extremely Randomized Trees [9], and Logistic Regression [10].
Our research is centered on the Credit Card Fraud Detection Dataset, which is a set of anonymized transactions available for download from Kaggle [11]. The dataset is based on credit card purchases by Europeans in 2013. There are 284,807 instances and 30 independent variables in the Credit Card Fraud Detection Dataset. Other publicly available datasets used for credit card fraud detection are orders of magnitude less in size. Fraudulent transactions comprise 0.172% of the total number of records, which means that the dataset is highly imbalanced. We use this dataset because it consists of real-world transactions and also because it is on track to become a gold standard for credit card fraud detection.
Our research findings are highlighted as follows:	As the AUPRC score increases, the threshold-based performance scores also improve.

	As RUS is used to increase the positive class prior probability, the optimal thresholds also increase.

	Best overall results for the selection of an optimal threshold are obtained without the use of RUS.

	For most metrics, the default threshold yields its best results at a balanced (1:1) class ratio.

	However, the combination of the default threshold and balanced class ratio yields the lowest AUPRC scores for all classifiers, implying a significant tradeoff for balancing the classes.

	The default threshold does not yield good results when the dataset is imbalanced.



To the best of our knowledge, this is the first study to investigate threshold optimization using four different techniques based on metrics, while considering the TPR ≥ TNR constraint. Moreover, this is the first study to evaluate threshold optimization with eight threshold-dependent and two threshold-agnostic metrics. The remainder of this paper is organized as follows: “Related work” section reviews relevant literature on output thresholding; “Data description” describes the dataset; “Methodology” section covers the methodology, learners, and non-default hyperparameters used; “Results and discussion” section presents and analyzes our findings; and “Conclusion” section summarizes the key points of this paper, as well as providing suggestions for future work.

Related work
The objective of this section is to discuss similar studies that use optimal thresholds for dataset classification. We did not come across any studies on the use of output thresholding with the Credit Card Fraud Detection Dataset.
In relation to one dataset of scenic images and another of health records, Zhang et al. [12] proposed the use of threshold moving techniques to address class imbalance. This involved the adjustment of decision thresholds for binary classification, so that the class distribution of training data could match the predicted outcomes of new data. Using a multi-label version of Random Forest, the authors then performed multi-label classification, where instances may belong to more than one label. Performance-wise, their results indicate that the Random Forest model was just as good or better than more complex multi-label classifiers. Both our work and theirs incorporate the positive class prior probability threshold. However, we go further by comparing the positive class probability threshold with other thresholds.
Buda et al. [13] investigated the effect of output thresholding on Convolutional Neural Networks (CNNs) [14], with the aid of three benchmark datasets: MNIST [15], CIFAR-10 [16], and ImageNet [17]. Subsampling was used to render the datasets sufficiently imbalanced. The authors showed that making the threshold equivalent to the positive class prior probability noticeably improved accuracy. Not only do we use the positive class prior probability technique in our work, but we also evaluate four threshold optimization techniques. In addition, the inclusion of eight performance metrics in our study makes it a more comprehensive paper.
With a focus on the network security domain, Calvert and Khoshgoftaar [18] used threshold optimization for establishing alternatives to the AUC metric. They determined that optimal thresholds could be obtained with the Geometric Mean and F-Measure metrics. Using these optimal thresholds, the authors were able to evaluate the performance of various classifiers with different metrics. We note that the authors do not assess the effect of optimized thresholds for Geometric Mean and F-Measure on eight metrics. Another contribution of our work is the inclusion of the TPR ≥ TNR constraint.
Finally, Zhou et al. [19] developed a method for finding optimal classification thresholds during experimentation with a protein homology dataset. Their technique involved the comparison of optimal thresholds against “uniform” thresholds of 0.1, 0.2, 0.3 and the default threshold of 0.5. According to their results, the optimal thresholds yielded better scores than the “uniform” thresholds. Our approach is more general, in that we assess several optimal thresholds obtained by different techniques. Moreover, we demonstrate how constraints can be effectively imposed on the threshold optimization process.
We discovered that many studies use RUS to address class imbalance [1]. As stated earlier, there is an inherent risk of discarding important instances when using RUS. This risk is non-existent for output thresholding. In concluding this section, we reaffirm that this is the first paper to include four threshold optimization techniques based on metrics, while taking into account the TPR ≥ TNR constraint. It is also the first paper to do so using eight threshold-dependent and two threshold-agnostic metrics.

Data description
The Credit Card Fraud dataset [11] was published by Worldline and the Université Libre de Bruxelles (ULB). There are 284,807 instances and 30 independent variables or input features in the raw dataset, which shows credit card purchases by Europeans in September 2013. Using Principal Component Analysis (PCA) [20], the dataset publishers transformed 28 of the 30 input features. The remaining two features, “Time” and “Amount” were not transformed. “Time” contains the seconds elapsed between each transaction and the first transaction in the dataset. “Amount”, which we normalized, is the transaction amount. “Time” was dropped as this is a uninformative feature for the purpose of the study.
The label (dependent variable) of this binary dataset is 1 for a fraudulent transaction and 0 for a non-fraudulent transaction. Fraudulent transactions constitute 492 instances, or 0.172%, thus making the dataset highly imbalanced with regard to the minority and majority classes.

Methodology
Experiments were run on a distributed computing platform where available nodes have Intel Xeon Central Processing Units (CPUs) with 16 cores, 256 GB RAM per CPU and Nvidia V100 GPUs. Our programs for training and testing machine learning models were implemented in the Python programming language. CatBoost and XGBoost are standalone Python libraries. Random Forest, Extremely Randomized Trees, and Logistic Regression are part of the Sci-kit Learn library [21]. These five learners represent different families of machine learning algorithms, thus benefiting the generalization of results.
CatBoost is designed around Ordered Boosting, an algorithm that orders instances used by Decision Trees. XGBoost is based on a weighted quantile sketch and a sparsity-aware function. A weighted quantile sketch uses approximate tree learning [22] for merging and pruning operations of Decision Trees, while the sparsity-aware function is an optimization that efficiently locates the best value to split a dataset on for a Decision Tree node when data is sparse. Random Forest is an ensemble of Decision Trees, and it uses the bagging [23] technique. The Extremely Randomized Trees learner, which also relies on the bagging technique, is an extension of Random Forest. However, for Random Forest, the optimal values for splits in the Decision Tree are usually calculated systematically, whereas these optimal values are selected randomly for Extremely Randomized Trees. Logistic Regression produces a value corresponding to the probability of belonging to a particular class. It is a linear model that relies on a sigmoid function to output a number between 0 and 1.
For every experiment, we select a classifier and a class ratio that we wish to apply to the training data. We use the Imblearn [24] library’s RandomUnderSampler module to control class ratios for all experiments, except for the case when we leave the class ratio at its initial value. Hence, we perform experiments with the six class ratios of 1:1 (balanced class ratio), 1:3, 1:9, 1:27, 1:81, and 1:578 (original class ratio of the Credit Card Fraud Detection dataset). Selection of the first five ratios is based on preliminary experimentation through RUS.
For each experiment, training is subsequently performed on 80% of the data using k-fold cross-validation, where the model is trained on k-1 folds each time and tested on the remaining fold. This ensures that as much data as possible is used during the classification phase. Our cross-validation process is stratified, which seeks to ensure that each class is proportionally represented across the folds. In this experiment, a value of five was assigned to k, where four folds were used in training and one fold was used in testing. We perform 10 iterations of cross-validation as a precaution against data loss due to random sampling of instances from the majority class.
The threshold optimization technique, as outlined in Algorithm 1, is implemented on the training data. For the remaining 20% of the data, classifier output probabilities are calculated. Instances of the test data are then assigned to classes based on the computed thresholds. After the model is fit to the training partitions, Algorithm 1 is used to identify the optimal decision threshold that maximizes some user-defined performance metric. Given the training data’s probability estimates and ground truth labels, we enumerate all possible thresholds and then select the threshold that maximizes the desired performance metric. This design is flexible, as it allows for the user to optimize against any performance metric that is suitable for their problem. It also allows for additional constraints, e.g., we desire that the TPR be greater than the TNR in many classification problems. Finally, we apply the optimal decision threshold that has been learned from the training partitions to the test partition and record the test performance.[image: ]

We point out that our threshold optimization algorithm takes a function as an argument. This function parameter may be one of the four classification metrics: Geometric Mean of TPR and TNR, MCC, Precision, or F-measure. Furthermore, our threshold optimization algorithm has a flag that controls whether optimization is constrained. If the flag is set to true, the threshold, where TPR ≥ TNR, is chosen for the best value of a specific metric. Optimized thresholds are computed for all combinations of the constraint flag and classification metrics.
For each of the optimized thresholds, as well as the default threshold of 0.5 and the positive class prior probability threshold, scores are calculated for the following metrics: TPR, FPR, FNR, TNR, F-measure, Geometric Mean of TPR and TNR, MCC, and Precision. For Logistic Regression, the hyperparameter values were not changed. To prevent overfitting of the Decision Tree-based classifiers, the maximum tree depths shown in Table 1 are used. These depths were obtained from preliminary experimentation. Overall classification performance for each model at each ratio was evaluated with the threshold-agnostic AUC and AUPRC metrics.Table 1Maximum tree depths used in experiments


	Classifier
	Maximum tree depth

	XGBoost
	max_depth=1 for all class ratios

	CatBoost
	max_depth=1 for 1:1, 1:3, 1:9, max_depth=5 for 1:27, 1:81

	Random forest
	max_depth=4 for all class ratios

	Extremely randomized trees
	max_depth=8 for all class ratios





Results and discussion
To start off, we define the words and abbreviations used in the tables. “Classifier” is the type of learning algorithm used for classification. AUC is the Area under the Receiver Operating Characteristic Curve. AUPRC is the Area under the Precision–Recall Curve. “Technique” is the thresholding technique used. An example is the selection of the output probability threshold that optimizes F-measure. “Threshold” is the value of the threshold found for a particular thresholding technique. TPR stands for True Positive Rate. FPR stands for False Positive Rate. FNR stands for False Negative Rate. F-meas stands for the F-measure score. G-mean stands for the score of the Geometric Mean of TPR and TNR. MCC stands for Matthews Correlation Coefficient.
Under the “Technique” column, there are several abbreviations for the thresholding techniques. F-meas, G-mean and MCC have already been defined. NC stands for no constraint. In other words, the constraint has not been applied. The constraint is that the True Positive Rate is greater than the True Negative Rate. Therefore, “NC” after any thresholding technique means that the constraint is not used. C stands for class prior; i.e., the threshold value chosen is the fraction of positive instances in the dataset. Since the class prior threshold is determined, and not calculated via optimization code, the constraint that True Positive Rate be greater than True Negative Rate cannot be applied. D stands for the default threshold of 0.5. The constraint cannot be applied to the default threshold as well.
Several tables of results were generated for the various class ratios for each classifier. For ease of understanding, in this section we show the results of CatBoost, which is the top performing classifier overall. Results obtained with the remaining classifiers are shown in “Appendices”.
Classification results for the original class ratio (no RUS applied)
In Table 2, CatBoost is the best performer with regard to AUC and AUPRC, obtaining scores of 0.9834 and 0.8592, respectively. For Table 3, use of the default threshold yields comparatively low TPR scores and comparatively high FNR scores. Furthermore, the threshold values obtained using constrained optimal thresholds are lower than their non-constrained counterparts.Table 2Mean AUC and AUPRC scores for 10 iterations of fivefold cross validation


	Classifier
	AUC
	AUPRC

	CatBoost depth 5
	0.9834
	0.8592

	Extremely randomized trees depth 8
	0.9721
	0.8092

	Logistic regression
	0.9737
	0.7586

	Random forest depth 4
	0.9601
	0.8067

	XGBoost depth 1
	0.9775
	0.8261



Table 3Results for the CatBoost depth 5 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0018
	0.9039
	0.0150
	0.0961
	0.9850
	0.1764
	0.9434
	0.2935
	0.0982

	F-meas NC
	0.3541
	0.8053
	0.0001
	0.1947
	0.9999
	0.8687
	0.8970
	0.8717
	0.9449

	G-mean
	0.0015
	0.9063
	0.0180
	0.0937
	0.9820
	0.1514
	0.9432
	0.2698
	0.0829

	G-mean NC
	0.0023
	0.8970
	0.0108
	0.1030
	0.9892
	0.2395
	0.9418
	0.3476
	0.1405

	MCC
	0.0015
	0.9063
	0.0180
	0.0937
	0.9820
	0.1510
	0.9432
	0.2695
	0.0826

	MCC NC
	0.0023
	0.8970
	0.0108
	0.1030
	0.9892
	0.2395
	0.9418
	0.3476
	0.1405

	Precision
	0.0018
	0.9039
	0.0150
	0.0961
	0.9850
	0.1764
	0.9434
	0.2935
	0.0982

	Precision NC
	0.4869
	0.7953
	0.0001
	0.2047
	0.9999
	0 .8676
	0.8915
	0.8714
	0.9560

	C
	0.0017
	0.9037
	0.0147
	0.0963
	0.9853
	0.1755
	0.9435
	0.2934
	0.0973

	D
	0.5000
	0.7937
	0.0001
	0.2063
	0.9999
	0.8665
	0.8905
	0.8704
	0.9559





Classification results for the 1:1 class ratio
In Table 4, Extremely Randomized Trees is the best performer in reference to AUC and AUPRC, obtaining scores of 0.9803 and 0.7379, respectively. For Table 5, use of the default threshold yields comparatively low TPR scores and comparatively high FNR scores. In addition, the threshold values obtained using constrained optimal thresholds are lower than their non-constrained counterparts.Table 4Mean AUC and AUPRC scores for 10 iterations of fivefold cross validation


	Classifier
	AUC
	AUPRC

	Random forest depth 4
	0.9771
	0.7347

	Extremely randomized trees depth 8
	0.9803
	0.7379

	Logistic regression
	0.9770
	0.6030

	XGBoost depth 1
	0.9790
	0.7121

	CatBoost depth 1
	0.9785
	0.5928



Table 5Results for the CatBoost depth 1 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.3100
	0.9281
	0.0690
	0.0719
	0.9310
	0.0458
	0.9293
	0.1412
	0.0235

	F-meas NC
	0.3760
	0.9207
	0.0552
	0.0793
	0.9448
	0.0609
	0.9325
	0.1623
	0.0317

	G-mean
	0.2992
	0.9301
	0.0717
	0.0699
	0.9283
	0.0440
	0.9291
	0.1383
	0.0225

	G-mean NC
	0.3783
	0.9201
	0.0544
	0.0799
	0.9456
	0.0612
	0.9326
	0.1629
	0.0319

	MCC
	0.2921
	0.9313
	0.0741
	0.0687
	0.9259
	0.0427
	0.9285
	0.1361
	0.0219

	MCC NC
	0.3916
	0.9193
	0.0524
	0.0807
	0.9476
	0.0641
	0.9331
	0.1669
	0.0334

	Precision
	0.3311
	0.9250
	0.0627
	0.0750
	0.9373
	0.0494
	0.9310
	0.1473
	0.0254

	Precision NC
	0.8357
	0.8594
	0.0095
	0.1406
	0.9905
	0.3031
	0.9219
	0.3922
	0.2045

	C
	0.5000
	0.9099
	0.0339
	0.0901
	0.9661
	0.0873
	0.9375
	0.1993
	0.0459

	D
	0.5000
	0.9099
	0.0339
	0.0901
	0.9661
	0.0873
	0.9375
	0.1993
	0.0459





Classification results for the 1:3 class ratio
In Table 6, CatBoost generated the highest score for AUC (0.9790), while the top score for AUPRC (0.7481) was obtained with XGBoost. For Table 7, use of the default threshold yields comparatively low TPR scores and comparatively high FNR scores. Also, the threshold values obtained using constrained optimal thresholds are lower than their non-constrained counterparts.Table 6Mean AUC and AUPRC scores for 10 iterations of fivefold cross validation


	Classifier
	AUC
	AUPRC

	Random forest depth 4
	0.9742
	0.7313

	Extremely randomized trees depth 8
	0.9786
	0.7387

	Logistic regression
	0.9790
	0.7090

	XGBoost depth 1
	0.9786
	0.7481

	CatBoost depth 1
	0.9790
	0.7374



Table 7Results for the CatBoost depth 1 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.1507
	0.9217
	0.0518
	0.0783
	0.9482
	0.0584
	0.9347
	0.1614
	0.0302

	F-meas NC
	0.3901
	0.8907
	0.0166
	0.1093
	0.9834
	0.1730
	0.9356
	0.2861
	0.0975

	G-mean
	0.1324
	0.9260
	0.0606
	0.0740
	0.9394
	0.0508
	0.9325
	0.1497
	0.0261

	G-mean NC
	0.2208
	0.9094
	0.0347
	0.0906
	0.9653
	0.0890
	0.9367
	0.2003
	0.0470

	MCC
	0.1317
	0.9260
	0.0610
	0.0740
	0.9390
	0.0505
	0.9323
	0.1492
	0.0260

	MCC NC
	0.2350
	0.9073
	0.0326
	0.0927
	0.9674
	0.0960
	0.9367
	0.2081
	0.0510

	Precision
	0.1509
	0.9217
	0.0517
	0.0783
	0.9483
	0.0585
	0.9348
	0.1616
	0.0302

	Precision NC
	0.8467
	0.7722
	0.0025
	0.2278
	0.9975
	0.5380
	0.8716
	0.5810
	0.4962

	C
	0.2500
	0.9057
	0.0276
	0.0943
	0.9724
	0.1029
	0.9383
	0.2181
	0.0546

	D
	0.5000
	0.8836
	0.0103
	0.1164
	0.9897
	0.2305
	0.9349
	0.3393
	0.1332





Classification results for the 1:9 class ratio
In Table 8, XGBoost produced the top scores for both AUC (0.9801) and AUPRC (0.7804). For Table 9, use of the default threshold yields comparatively low TPR scores and comparatively high FNR scores. In addition, the threshold values obtained using constrained optimal thresholds are lower than their non-constrained counterparts.Table 8Mean AUC and AUPRC scores for 10 iterations of fivefold cross validation


	Classifier
	AUC
	AUPRC

	Random forest depth 4
	0.9719
	0.7418

	Extremely randomized trees depth 8
	0.9779
	0.7523

	Logistic regression
	0.9786
	0.7298

	XGBoost depth 1
	0.9801
	0.7804

	CatBoost depth 1
	0.9789
	0.7680



Table 9Results for the CatBoost depth 1 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0535
	0.9183
	0.0529
	0.0817
	0.9471
	0.0571
	0.9324
	0.1591
	0.0295

	F-meas NC
	0.4056
	0.8667
	0.0042
	0.1333
	0.9958
	0.4201
	0.9288
	0.4886
	0.2820

	G-mean
	0.0477
	0.9217
	0.0600
	0.0783
	0.9400
	0.0510
	0.9307
	0.1497
	0.0262

	G-mean NC
	0.1089
	0.8982
	0.0252
	0.1018
	0.9748
	0.1206
	0.9355
	0.2349
	0.0651

	MCC
	0.0475
	0.9217
	0.0603
	0.0783
	0.9397
	0.0507
	0.9306
	0.1493
	0.0261

	MCC NC
	0.1250
	0.8947
	0.0215
	0.1053
	0.9785
	0.1408
	0.9355
	0.2552
	0.0772

	Precision
	0.0535
	0.9183
	0.0529
	0.0817
	0.9471
	0.0571
	0.9324
	0.1591
	0.0295

	Precision NC
	0.8815
	0.6851
	0.0005
	0.3149
	0.9995
	0.6875
	0.8208
	0.7039
	0.7591

	C
	0.1000
	0.8992
	0.0249
	0.1008
	0.9751
	0.1115
	0.9362
	0.2273
	0.0595

	D
	0.5000
	0.8599
	0.0027
	0.1401
	0.9973
	0.5053
	0.9259
	0.5539
	0.3597





Classification results for the 1:27 class ratio
In Table 10, CatBoost is the top performer for both AUC and AUPRC, registering scores of 0.9817 and 0.7963, respectively. For Table 11, use of the default threshold yields comparatively low TPR scores and comparatively high FNR scores. Also, the threshold values obtained using constrained optimal thresholds are lower than their non-constrained counterpartsTable 10Mean AUC and AUPRC scores for 10 iterations of fivefold cross validation


	Classifier
	AUC
	AUPRC

	CatBoost depth 5
	0.9817
	0.7963

	Random forest depth 4
	0.9699
	0.7483

	Extremely randomized trees depth 8
	0.9754
	0.7693

	Logistic regression
	0.9785
	0.7504

	XGBoost depth 1
	0.9802
	0.7885



Table 11Results for the CatBoost depth 5 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0681
	0.8819
	0.0053
	0.1181
	0.9947
	0.3856
	0.9365
	0.4641
	0.2533

	F-meas NC
	0.1711
	0.8685
	0.0018
	0.1315
	0.9982
	0.5979
	0.9310
	0.6289
	0.4584

	G-mean
	0.0333
	0.8977
	0.0132
	0.1023
	0.9868
	0.2238
	0.9410
	0.3316
	0.1323

	G-mean NC
	0.0734
	0.8801
	0.0048
	0.1199
	0.9952
	0.4054
	0.9358
	0.4795
	0.2699

	MCC
	0.0333
	0.8977
	0.0132
	0.1023
	0.9868
	0.2238
	0.9410
	0.3316
	0.1323

	MCC NC
	0.0734
	0.8801
	0.0048
	0.1199
	0.9952
	0.4054
	0.9358
	0.4795
	0.2699

	Precision
	0.0681
	0.8819
	0.0053
	0.1181
	0.9947
	0.3856
	0.9365
	0.4641
	0.2533

	Precision NC
	0.4621
	0.8480
	0.0009
	0.1520
	0.9991
	0.7224
	0.9202
	0.7336
	0.6446

	C
	0.0357
	0.8923
	0.0091
	0.1077
	0.9909
	0.2517
	0.9402
	0.3591
	0.1469

	D
	0.5000
	0.8526
	0.0007
	0.1474
	0.9993
	0.7560
	0.9229
	0.7610
	0.6812





Classification results for the 1:81 class ratio
In Table 12, CatBoost is the top performer for both AUC (0.9832) and AUPRC (0.8490). For Table 13, use of the default threshold yields comparatively low TPR scores and comparatively high FNR scores. Also, the threshold values obtained using constrained optimal thresholds are lower than their non-constrained counterparts.Table 12Mean AUC and AUPRC scores for 10 iterations of fivefold cross validation


	Classifier
	AUC
	AUPRC

	CatBoost depth 5
	0.9832
	0.8490

	Random forest depth 4
	0.9657
	0.7852

	Extremely randomized trees depth 8
	0.9747
	0.7915

	Logistic regression
	0.9782
	0.7580

	XGBoost depth 1
	0.9801
	0.8057



Table 13Results for the CatBoost depth 5 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0158
	0.8923
	0.0081
	0.1077
	0.9919
	0.2831
	0.9406
	0.3844
	0.1700

	F-meas NC
	0.1760
	0.8553
	0.0008
	0.1447
	0.9992
	0.7489
	0.9243
	0.7555
	0.6711

	G-mean
	0.0120
	0.8988
	0.0122
	0.1012
	0.9878
	0.2133
	0.9421
	0.3256
	0.1223

	G-mean NC
	0.0201
	0.8872
	0.0061
	0.1128
	0.9939
	0.3458
	0.9389
	0.4338
	0.2182

	MCC
	0.0119
	0.8990
	0.0123
	0.1010
	0.9877
	0.2123
	0.9422
	0.3248
	0.1216

	MCC NC
	0.0201
	0.8872
	0.0061
	0.1128
	0.9939
	0.3458
	0.9389
	0.4338
	0.2182

	Precision
	0.0158
	0.8923
	0.0081
	0.1077
	0.9919
	0.2831
	0.9406
	0.3844
	0.1700

	Precision NC
	0.4323
	0.8347
	0.0004
	0.1653
	0.9996
	0.8107
	0.9133
	0.8115
	0.7912

	C
	0.0122
	0.8977
	0.0110
	0.1023
	0.9890
	0.2200
	0.9421
	0.3328
	0.1256

	D
	0.5000
	0.8333
	0.0003
	0.1667
	0.9997
	0.8268
	0.9126
	0.8269
	0.8218





Overall analysis of results
A thorough investigation of results should also involve a collective analysis of the various experiments performed. As such, interesting observations about the overall study have been discussed in the paragraphs below.
As RUS is used to increase the positive class prior probability, the AUC metric remains practically unchanged. For the original class ratio, the highest score in Table 2 is 0.9834 (CatBoost). At the balanced class ratio, the highest score in Table 4 is 0.9803 (Extremely Randomized Trees). In terms of AUPRC, the increase of positive class prior probability negatively affects the scores. At the original class ratio, the highest score in Table 2 is 0.8592 (CatBoost), which is also the highest value of AUPRC for the entire study. At the balanced class ratio, the highest score in Table 4 is 0.7379 (Extremely Randomized Trees). AUPRC is impacted due to the sensitivity of this metric to the percentage of positive class instances. When RUS is used to balance training data, the models become less and less biased toward the majority class. Instead, they begin to favor the minority class more, causing them to over-predict the minority class and obtain many false positives. These large numbers of false positives are detrimental to Precision and AUPRC.
Increasing model bias toward the minority class may result in a higher TPR score on the test set. This action can significantly lower TNR scores, which in turn negatively impacts Precision and F-Measure. In general, the increase in bias results in lower G-Mean, F-Measure, MCC, and Precision scores (all metrics that take both classes into consideration). This is because overall, the models trained with RUS are worse at discriminating between the classes, as observed with the AUPRC results. Some may argue that RUS should be used to obtain higher TPR scores. Based on our results, however, we counterargue that instead of applying RUS to raise TPR scores, the threshold optimization process should be used. This optimization would yield better results, because a model trained without RUS is better at discriminating between classes.
Since the AUPRC indicates how good a model is at separating classes, an increase in the AUPRC score means that, in theory, there will be an improvement in threshold-based performance. Hence, the use of AUPRC and optimal thresholding are two techniques that complement each other. We point out that the AUPRC does not identify a specific threshold for selection. Rather, the AUPRC is helpful because it allows for the selection of the best model, model hyperparameters, or sampling rates. Within this framework, optimal thresholding should be implemented after the AUPRC is plotted in order to select the correct operating point on the curve. It is intuitively apparent that the best AUPRC values occur when RUS is not applied (at the original class ratio). Therefore, in the absence of RUS, the practice of optimal thresholding can be used to identify the ideal operating point on an AUPRC curve. This does not mean that the use of RUS should be avoided at all costs, as there is always a run-time tradeoff to consider. For example, undersampling to a 1:81 class ratio may yield statistically similar results, which translates to the saving of training resources in the case of big data.
An increase in positive class prior probability with RUS generally increases the optimal thresholds. This phenomenon can be observed using results obtained with CatBoost (and also results shown in “Appendices” for the remaining classifiers). For the original class ratio, Table 3 shows the constrained optimal threshold for Geometric Mean as 0.0015, while for the balanced class ratio in Table 5, the related value is 0.2992. This phenomenon is due to the shift of the optimal thresholds toward the positive class ratio.
Finally, it should be noted that the best results for the default threshold are obtained at the balanced class ratio. This observation can be shown using results obtained with CatBoost (and also results shown in “Appendices” for the remaining classifiers). For the original class ratio, Table 3 associates the default threshold with a Geometric Mean score of 0.8905. For the balanced class ratio, the related value in Table 5 is 0.9375. This observation can be attributed to the shifting of probability scores closer to the value of 0.5 when RUS is used to obtain the 1:1 class ratio. We also point out that there is a comparatively significant difference between the Geometric Mean score of 0.9375 at the balanced class ratio and 0.8905 at the original class ratio. For the 1:81, 1:27, 1:9, and 1:3 ratios, the related Geometric Mean scores for Logistic Regression at the default threshold are 0.9126, 0.9229, 0.9259, and 0.9349, respectively. Hence, it should also be noted that the default threshold does not yield strong results when the dataset is imbalanced.


Conclusion
In our research, we use the Credit Card Fraud Detection Dataset to investigate output thresholding. A useful aid in this work is the application of the constraint TPR ≥ TNR, which ensures that the positive class is never ignored during the selection of an optimal threshold. We evaluate four threshold optimization techniques, eight threshold-dependent metrics, and two threshold-agnostic metrics.
Our primary observations made in this research suggest that: an increase of the AUPRC score is associated with an improvement of threshold-based performance scores; increasing the positive class prior probability will increase optimal thresholds; best overall results for an optimal threshold are obtained without the need for RUS; determining whether to use the default threshold with a 1:1 class ratio obtained via RUS requires a proper consideration of the tradeoff involved; the default threshold yields poor results when the dataset is imbalanced. Future work will use our threshold optimization approach with datasets from other application domains. Also, the use of additional constraints will be evaluated.
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Appendices


Appendix 1: Results for original class ratio
See Tables 14, 15, 16 and 17.Table 14Results for the extremely randomized trees depth 8 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0012
	0.9087
	0.0678
	0.0913
	0.9322
	0.0446
	0.9202
	0.1380
	0.0229

	F-meas NC
	0.1975
	0.7735
	0.0002
	0.2265
	0.9998
	0.8143
	0.8790
	0.8159
	0.8628

	G-mean
	0.0012
	0.9114
	0.0734
	0.0886
	0.9266
	0.0414
	0.9188
	0.1326
	0.0212

	G-mean NC
	0.0026
	0.8807
	0.0262
	0.1193
	0.9738
	0.1164
	0.9258
	0.2274
	0.0631

	MCC
	0.0011
	0.9114
	0.0737
	0.0886
	0.9263
	0.0413
	0.9186
	0.1323
	0.0211

	MCC NC
	0.0037
	0.8725
	0.0198
	0.1275
	0.9802
	0.1639
	0.9245
	0.2715
	0.0942

	Precision
	0.0012
	0.9087
	0.0678
	0.0913
	0.9322
	0.0446
	0.9202
	0.1380
	0.0229

	Precision NC
	0.6220
	0.4836
	0.0000
	0.5164
	1.0000
	0.6437
	0.6939
	0.6844
	0.9740

	C
	0.0017
	0.8937
	0.0390
	0.1063
	0.9610
	0.0739
	0.9266
	0.1809
	0.0386

	D
	0.5000
	0.5652
	0.0001
	0.4348
	0.9999
	0.7047
	0.7513
	0.7275
	0.9386



Table 15Results for the logistic regression classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0012
	0.9193
	0.0699
	0.0807
	0.9301
	0.0438
	0.9245
	0.1375
	0.0225

	F-meas NC
	0.0921
	0.7746
	0.0004
	0.2254
	0.9996
	0.7778
	0.8797
	0.7778
	0.7827

	G-mean
	0.0011
	0.9208
	0.0759
	0.0792
	0.9241
	0.0404
	0.9223
	0.1315
	0.0206

	G-mean NC
	0.0025
	0.8915
	0.0239
	0.1085
	0.9761
	0.1199
	0.9327
	0.2343
	0.0646

	MCC
	0.0011
	0.9208
	0.0760
	0.0792
	0.9240
	0.0403
	0.9223
	0.1314
	0.0206

	MCC NC
	0.0029
	0.8846
	0.0196
	0.1154
	0.9804
	0.1433
	0.9311
	0.2575
	0.0787

	Precision
	0.0012
	0.9193
	0.0699
	0.0807
	0.9301
	0.0438
	0.9245
	0.1375
	0.0225

	Precision NC
	1.0000
	0.1833
	0.0000
	0.8167
	1.0000
	0.3087
	0.4267
	0.4261
	0.9988

	C
	0.0017
	0.9043
	0.0398
	0.0957
	0.9602
	0.0729
	0.9317
	0.1807
	0.0380

	D
	0.5000
	0.6178
	0.0002
	0.3822
	0.9998
	0.7219
	0.7853
	0.7329
	0.8721



Table 16Results for the random forest depth 4 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0005
	0.8929
	0.0752
	0.1071
	0.9248
	0.0400
	0.9085
	0.1285
	0.0205

	F-meas NC
	0.3299
	0.7547
	0.0002
	0.2453
	0.9998
	0.7997
	0.8682
	0.8019
	0.8550

	G-mean
	0.0005
	0.8996
	0.0836
	0.1004
	0.9164
	0.0362
	0.9078
	0.1220
	0.0185

	G-mean NC
	0.0014
	0.8612
	0.0247
	0.1388
	0.9753
	0.1632
	0.9161
	0.2644
	0.0951

	MCC
	0.0005
	0.8996
	0.0836
	0.1004
	0.9164
	0.0362
	0.9078
	0.1220
	0.0185

	MCC NC
	0.0033
	0.8524
	0.0123
	0.1476
	0.9877
	0.2766
	0.9173
	0.3654
	0.1751

	Precision
	0.0005
	0.8929
	0.0752
	0.1071
	0.9248
	0.0400
	0.9085
	0.1285
	0.0205

	Precision NC
	0.8217
	0.4545
	0.0000
	0.5455
	1.0000
	0.6190
	0.6729
	0.6659
	0.9805

	C
	0.0017
	0.8498
	0.0089
	0.1502
	0.9911
	0.2459
	0.9176
	0.3471
	0.1440

	D
	0.5000
	0.6898
	0.0001
	0.3102
	0.9999
	0.7832
	0.8302
	0.7906
	0.9074



Table 17Results for the XGBoost depth 1 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0010
	0.9161
	0.0476
	0.0839
	0.9524
	0.0628
	0.9339
	0.1675
	0.0325

	F-meas NC
	0.4605
	0.7739
	0.0002
	0.2261
	0.9998
	0.8286
	0.8792
	0.8315
	0.8961

	G-mean
	0.0009
	0.9189
	0.0527
	0.0811
	0.9473
	0.0573
	0.9329
	0.1595
	0.0296

	G-mean NC
	0.0015
	0.9045
	0.0315
	0.0955
	0.9685
	0.0996
	0.9357
	0.2117
	0.0531

	MCC
	0.0009
	0.9189
	0.0530
	0.0811
	0.9470
	0.0571
	0.9327
	0.1592
	0.0295

	MCC NC
	0.0016
	0.9031
	0.0300
	0.0969
	0.9700
	0.1071
	0.9357
	0.2194
	0.0576

	Precision
	0.0010
	0.9161
	0.0476
	0.0839
	0.9524
	0.0628
	0.9339
	0.1675
	0.0325

	Precision NC
	0.9418
	0.3137
	0.0000
	0.6863
	1.0000
	0.4698
	0.5552
	0.5500
	0.9830

	C
	0.0017
	0.8990
	0.0229
	0.1010
	0.9771
	0.1196
	0.9371
	0.2364
	0.0641

	D
	0.5000
	0.7700
	0.0002
	0.2300
	0.9998
	0.8238
	0.8771
	0.8260
	0.8877






Appendix 2: Results for 1:1 class ratio
See Tables 18, 19, 20 and 21.Table 18Results for the extremely randomized trees depth 8 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.2232
	0.9423
	0.1047
	0.0577
	0.8953
	0.0308
	0.9183
	0.1139
	0.0157

	F-meas NC
	0.2306
	0.9384
	0.0969
	0.0616
	0.9031
	0.0339
	0.9204
	0.1196
	0.0173

	G-mean
	0.2165
	0.9459
	0.1137
	0.0541
	0.8863
	0.0286
	0.9155
	0.1092
	0.0145

	G-mean NC
	0.2319
	0.9380
	0.0951
	0.0620
	0.9049
	0.0344
	0.9211
	0.1205
	0.0175

	MCC
	0.2148
	0.9465
	0.1165
	0.0535
	0.8835
	0.0280
	0.9143
	0.1079
	0.0142

	MCC NC
	0.2372
	0.9364
	0.0905
	0.0636
	0.9095
	0.0368
	0.9226
	0.1247
	0.0188

	Precision
	0.2275
	0.9411
	0.0987
	0.0589
	0.9013
	0.0324
	0.9208
	0.1172
	0.0165

	Precision NC
	0.3903
	0.8921
	0.0218
	0.1079
	0.9782
	0.1546
	0.9339
	0.2653
	0.0876

	C
	0.5000
	0.8665
	0.0073
	0.1335
	0.9927
	0.2946
	0.9273
	0.3894
	0.1794

	D
	0.5000
	0.8665
	0.0073
	0.1335
	0.9927
	0.2946
	0.9273
	0.3894
	0.1794



Table 19Results for the logistic regression classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.3001
	0.9321
	0.0700
	0.0679
	0.9300
	0.0452
	0.9310
	0.1405
	0.0232

	F-meas NC
	0.4586
	0.9189
	0.0426
	0.0811
	0.9574
	0.0774
	0.9378
	0.1857
	0.0406

	G-mean
	0.2742
	0.9356
	0.0773
	0.0644
	0.9227
	0.0410
	0.9290
	0.1334
	0.0209

	G-mean NC
	0.4675
	0.9185
	0.0411
	0.0815
	0.9589
	0.0792
	0.9384
	0.1883
	0.0416

	MCC
	0.2685
	0.9366
	0.0792
	0.0634
	0.9208
	0.0400
	0.9286
	0.1318
	0.0205

	MCC NC
	0.5330
	0.9116
	0.0342
	0.0884
	0.9658
	0.0944
	0.9381
	0.2062
	0.0501

	Precision
	0.3101
	0.9303
	0.0667
	0.0697
	0.9333
	0.0467
	0.9317
	0.1432
	0.0240

	Precision NC
	0.8922
	0.8272
	0.0091
	0.1728
	0.9909
	0.2769
	0.8990
	0.3673
	0.1878

	C
	0.5000
	0.9155
	0.0350
	0.0845
	0.9650
	0.0844
	0.9398
	0.1966
	0.0443

	D
	0.5000
	0.9155
	0.0350
	0.0845
	0.9650
	0.0844
	0.9398
	0.1966
	0.0443



Table 20Results for the random forest depth 4 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.2546
	0.9352
	0.0845
	0.0648
	0.9155
	0.0377
	0.9252
	0.1273
	0.0193

	F-meas NC
	0.2900
	0.9256
	0.0629
	0.0744
	0.9371
	0.0519
	0.9312
	0.1502
	0.0268

	G-mean
	0.2368
	0.9384
	0.0994
	0.0616
	0.9006
	0.0322
	0.9192
	0.1167
	0.0164

	G-mean NC
	0.2908
	0.9252
	0.0622
	0.0748
	0.9378
	0.0522
	0.9313
	0.1508
	0.0269

	MCC
	0.2352
	0.9390
	0.1008
	0.0610
	0.8992
	0.0318
	0.9188
	0.1158
	0.0162

	MCC NC
	0.3023
	0.9224
	0.0557
	0.0776
	0.9443
	0.0578
	0.9331
	0.1592
	0.0299

	Precision
	0.2570
	0.9344
	0.0824
	0.0656
	0.9176
	0.0386
	0.9258
	0.1288
	0.0197

	Precision NC
	0.5203
	0.8756
	0.0121
	0.1244
	0.9879
	0.2453
	0.9299
	0.3463
	0.1545

	C
	0.5000
	0.8801
	0.0122
	0.1199
	0.9878
	0.2044
	0.9323
	0.3155
	0.1164

	D
	0.5000
	0.8801
	0.0122
	0.1199
	0.9878
	0.2044
	0.9323
	0.3155
	0.1164



Table 21Results for the XGBoost depth 1 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.3385
	0.9270
	0.0623
	0.0730
	0.9377
	0.0500
	0.9322
	0.1483
	0.0257

	F-meas NC
	0.3647
	0.9248
	0.0570
	0.0752
	0.9430
	0.0556
	0.9337
	0.1565
	0.0287

	G-mean
	0.3201
	0.9282
	0.0666
	0.0718
	0.9334
	0.0470
	0.9307
	0.1434
	0.0241

	G-mean NC
	0.3670
	0.9240
	0.0565
	0.0760
	0.9435
	0.0560
	0.9335
	0.1570
	0.0289

	MCC
	0.3127
	0.9291
	0.0685
	0.0709
	0.9315
	0.0458
	0.9302
	0.1414
	0.0235

	MCC NC
	0.3810
	0.9229
	0.0540
	0.0771
	0.9460
	0.0588
	0.9343
	0.1611
	0.0304

	Precision
	0.3526
	0.9248
	0.0589
	0.0752
	0.9411
	0.0525
	0.9328
	0.1522
	0.0270

	Precision NC
	0.6989
	0.8848
	0.0176
	0.1152
	0.9824
	0.1880
	0.9318
	0.2967
	0.1215

	C
	0.5000
	0.9120
	0.0344
	0.0880
	0.9656
	0.0854
	0.9383
	0.1975
	0.0448

	D
	0.5000
	0.9120
	0.0344
	0.0880
	0.9656
	0.0854
	0.9383
	0.1975
	0.0448






Appendix 3: Results for 1:3 class ratio
See Tables 22, 23, 24 and 25.Table 22Results for the extremely randomized trees depth 8 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.1126
	0.9317
	0.0788
	0.0683
	0.9212
	0.0399
	0.9263
	0.1312
	0.0204

	F-meas NC
	0.1663
	0.9035
	0.0339
	0.0965
	0.9661
	0.0926
	0.9341
	0.2033
	0.0492

	G-mean
	0.1066
	0.9352
	0.0898
	0.0648
	0.9102
	0.0352
	0.9224
	0.1225
	0.0179

	G-mean NC
	0.1289
	0.9214
	0.0589
	0.0786
	0.9411
	0.0534
	0.9310
	0.1530
	0.0276

	MCC
	0.1062
	0.9356
	0.0907
	0.0644
	0.9093
	0.0349
	0.9222
	0.1220
	0.0178

	MCC NC
	0.1317
	0.9201
	0.0563
	0.0799
	0.9437
	0.0563
	0.9317
	0.1570
	0.0291

	Precision
	0.1129
	0.9313
	0.0784
	0.0687
	0.9216
	0.0400
	0.9263
	0.1315
	0.0205

	Precision NC
	0.3501
	0.8591
	0.0068
	0.1409
	0.9932
	0.3814
	0.9235
	0.4580
	0.2838

	C
	0.2500
	0.8789
	0.0129
	0.1211
	0.9871
	0.1913
	0.9313
	0.3042
	0.1076

	D
	0.5000
	0.8415
	0.0009
	0.1585
	0.9991
	0.7138
	0.9167
	0.7222
	0.6223



Table 23Results for the logistic regression classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.1336
	0.9307
	0.0588
	0.0693
	0.9412
	0.0524
	0.9358
	0.1528
	0.0270

	F-meas NC
	0.4471
	0.8918
	0.0134
	0.1082
	0.9866
	0.2030
	0.9379
	0.3143
	0.1175

	G-mean
	0.1215
	0.9337
	0.0659
	0.0663
	0.9341
	0.0475
	0.9338
	0.1447
	0.0244

	G-mean NC
	0.2451
	0.9130
	0.0299
	0.0870
	0.9701
	0.1027
	0.9410
	0.2172
	0.0547

	MCC
	0.1210
	0.9340
	0.0663
	0.0660
	0.9337
	0.0473
	0.9337
	0.1444
	0.0243

	MCC NC
	0.2696
	0.9087
	0.0271
	0.0913
	0.9729
	0.1141
	0.9401
	0.2292
	0.0613

	Precision
	0.1337
	0.9307
	0.0588
	0.0693
	0.9412
	0.0525
	0.9358
	0.1528
	0.0270

	Precision NC
	0.9082
	0.7439
	0.0023
	0.2561
	0.9977
	0.5093
	0.8474
	0.5555
	0.4803

	C
	0.2500
	0.9120
	0.0272
	0.0880
	0.9728
	0.1050
	0.9418
	0.2214
	0.0558

	D
	0.5000
	0.8880
	0.0110
	0.1120
	0.9890
	0.2218
	0.9370
	0.3324
	0.1274



Table 24Results for the random forest depth 4 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.1161
	0.9254
	0.0728
	0.0746
	0.9272
	0.0427
	0.9261
	0.1358
	0.0219

	F-meas NC
	0.2347
	0.8850
	0.0183
	0.1150
	0.9817
	0.1550
	0.9319
	0.2688
	0.0857

	G-mean
	0.1073
	0.9305
	0.0853
	0.0695
	0.9147
	0.0371
	0.9224
	0.1258
	0.0189

	G-mean NC
	0.1551
	0.9069
	0.0421
	0.0931
	0.9579
	0.0755
	0.9318
	0.1822
	0.0396

	MCC
	0.1072
	0.9305
	0.0854
	0.0695
	0.9146
	0.0370
	0.9223
	0.1256
	0.0189

	MCC NC
	0.1607
	0.9045
	0.0393
	0.0955
	0.9607
	0.0809
	0.9319
	0.1889
	0.0426

	Precision
	0.1162
	0.9254
	0.0727
	0.0746
	0.9273
	0.0427
	0.9262
	0.1359
	0.0219

	Precision NC
	0.4851
	0.8484
	0.0038
	0.1516
	0.9962
	0.5213
	0.9190
	0.5716
	0.4317

	C
	0.2500
	0.8811
	0.0149
	0.1189
	0.9851
	0.1724
	0.9315
	0.2867
	0.0958

	D
	0.5000
	0.8490
	0.0015
	0.1510
	0.9985
	0.6337
	0.9206
	0.6554
	0.5103



Table 25Results for the XGBoost depth 1 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.1735
	0.9173
	0.0446
	0.0827
	0.9554
	0.0672
	0.9360
	0.1738
	0.0349

	F-meas NC
	0.3210
	0.8994
	0.0213
	0.1006
	0.9787
	0.1358
	0.9381
	0.2519
	0.0739

	G-mean
	0.1590
	0.9193
	0.0496
	0.0807
	0.9504
	0.0614
	0.9346
	0.1654
	0.0318

	G-mean NC
	0.1992
	0.9122
	0.0387
	0.0878
	0.9613
	0.0794
	0.9363
	0.1889
	0.0416

	MCC
	0.1572
	0.9195
	0.0503
	0.0805
	0.9497
	0.0606
	0.9344
	0.1643
	0.0314

	MCC NC
	0.2054
	0.9106
	0.0375
	0.0894
	0.9625
	0.0824
	0.9360
	0.1923
	0.0433

	Precision
	0.1752
	0.9169
	0.0441
	0.0831
	0.9559
	0.0679
	0.9361
	0.1747
	0.0353

	Precision NC
	0.7930
	0.8209
	0.0035
	0.1791
	0.9965
	0.4734
	0.9024
	0.5310
	0.3857

	C
	0.2500
	0.9061
	0.0280
	0.0939
	0.9720
	0.1012
	0.9383
	0.2163
	0.0536

	D
	0.5000
	0.8846
	0.0105
	0.1154
	0.9895
	0.2279
	0.9355
	0.3373
	0.1313






Appendix 4: Results for 1:9 class ratio
see Tables 26, 27, 28 and 29.Table 26Results for the Extremely randomized trees depth 8 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0507
	0.9213
	0.0651
	0.0787
	0.9349
	0.0470
	0.9280
	0.1431
	0.0241

	F-meas NC
	0.1665
	0.8628
	0.0066
	0.1372
	0.9934
	0.3168
	0.9257
	0.4066
	0.1964

	G-mean
	0.0478
	0.9254
	0.0736
	0.0746
	0.9264
	0.0420
	0.9258
	0.1347
	0.0215

	G-mean NC
	0.0658
	0.9063
	0.0407
	0.0937
	0.9593
	0.0764
	0.9323
	0.1840
	0.0400

	MCC
	0.0478
	0.9254
	0.0737
	0.0746
	0.9263
	0.0419
	0.9257
	0.1346
	0.0215

	MCC NC
	0.0674
	0.9055
	0.0390
	0.0945
	0.9610
	0.0799
	0.9327
	0.1883
	0.0419

	Precision
	0.0507
	0.9213
	0.0651
	0.0787
	0.9349
	0.0470
	0.9280
	0.1431
	0.0241

	Precision NC
	0.3681
	0.8323
	0.0013
	0.1677
	0.9987
	0.6793
	0.9114
	0.6963
	0.6006

	C
	0.1000
	0.8876
	0.0178
	0.1124
	0.9822
	0.1466
	0.9335
	0.2631
	0.0800

	D
	0.5000
	0.8167
	0.0004
	0.1833
	0.9996
	0.7911
	0.9033
	0.7915
	0.7685



Table 27Results for the logistic regression classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0496
	0.9260
	0.0560
	0.0740
	0.9440
	0.0545
	0.9349
	0.1557
	0.0281

	F-meas NC
	0.4944
	0.8598
	0.0036
	0.1402
	0.9964
	0.4652
	0.9254
	0.5227
	0.3275

	G-mean
	0.0441
	0.9297
	0.0642
	0.0703
	0.9358
	0.0481
	0.9326
	0.1456
	0.0247

	G-mean NC
	0.1006
	0.9081
	0.0277
	0.0919
	0.9723
	0.1140
	0.9395
	0.2285
	0.0613

	MCC
	0.0440
	0.9297
	0.0643
	0.0703
	0.9357
	0.0480
	0.9326
	0.1455
	0.0247

	MCC NC
	0.1212
	0.9024
	0.0218
	0.0976
	0.9782
	0.1382
	0.9393
	0.2539
	0.0756

	Precision
	0.0497
	0.9258
	0.0559
	0.0742
	0.9441
	0.0545
	0.9348
	0.1558
	0.0281

	Precision NC
	0.9541
	0.5959
	0.0005
	0.4041
	0.9995
	0.6020
	0.7487
	0.6345
	0.7548

	C
	0.1000
	0.9081
	0.0243
	0.0919
	0.9757
	0.1153
	0.9412
	0.2326
	0.0616

	D
	0.5000
	0.8596
	0.0033
	0.1404
	0.9967
	0.4687
	0.9254
	0.5254
	0.3262



Table 28Results for the random forest depth 4 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0381
	0.9152
	0.0694
	0.0848
	0.9306
	0.0441
	0.9228
	0.1376
	0.0226

	F-meas NC
	0.1973
	0.8520
	0.0051
	0.1480
	0.9949
	0.3822
	0.9205
	0.4561
	0.2545

	G-mean
	0.0362
	0.9189
	0.0771
	0.0811
	0.9229
	0.0398
	0.9208
	0.1302
	0.0203

	G-mean NC
	0.0575
	0.8955
	0.0336
	0.1045
	0.9664
	0.0885
	0.9301
	0.1988
	0.0467

	MCC
	0.0362
	0.9189
	0.0771
	0.0811
	0.9229
	0.0398
	0.9208
	0.1302
	0.0203

	MCC NC
	0.0619
	0.8931
	0.0303
	0.1069
	0.9697
	0.0975
	0.9305
	0.2093
	0.0517

	Precision
	0.0382
	0.9152
	0.0694
	0.0848
	0.9306
	0.0441
	0.9228
	0.1376
	0.0226

	Precision NC
	0.6686
	0.7846
	0.0006
	0.2154
	0.9994
	0.7638
	0.8845
	0.7702
	0.7717

	C
	0.1000
	0.8693
	0.0142
	0.1307
	0.9858
	0.1739
	0.9255
	0.2868
	0.0968

	D
	0.5000
	0.8398
	0.0006
	0.1602
	0.9994
	0.7746
	0.9160
	0.7771
	0.7212



Table 29Results for the XGBoost depth 1 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0678
	0.9199
	0.0399
	0.0801
	0.9601
	0.0744
	0.9396
	0.1841
	0.0388

	F-meas NC
	0.3362
	0.8791
	0.0054
	0.1209
	0.9946
	0.3703
	0.9349
	0.4518
	0.2390

	G-mean
	0.0607
	0.9233
	0.0459
	0.0767
	0.9541
	0.0661
	0.9384
	0.1727
	0.0343

	G-mean NC
	0.0883
	0.9114
	0.0308
	0.0886
	0.9692
	0.0999
	0.9396
	0.2135
	0.0531

	MCC
	0.0603
	0.9239
	0.0464
	0.0761
	0.9536
	0.0657
	0.9385
	0.1721
	0.0341

	MCC NC
	0.0894
	0.9114
	0.0305
	0.0886
	0.9695
	0.1011
	0.9398
	0.2150
	0.0539

	Precision
	0.0678
	0.9199
	0.0399
	0.0801
	0.9601
	0.0744
	0.9396
	0.1841
	0.0388

	Precision NC
	0.8462
	0.7161
	0.0007
	0.2839
	0.9993
	0.6796
	0.8386
	0.6991
	0.7259

	C
	0.1000
	0.9083
	0.0245
	0.0917
	0.9755
	0.1139
	0.9412
	0.2312
	0.0608

	D
	0.5000
	0.8646
	0.0026
	0.1354
	0.9974
	0.5170
	0.9284
	0.5639
	0.3708






Appendix 5: Results for 1:27 class ratio
See Tables 30, 31, 32 and 33.Table 30Results for the extremely randomized trees depth 8 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0211
	0.9134
	0.0612
	0.0866
	0.9388
	0.0494
	0.9259
	0.1465
	0.0254

	F-meas NC
	0.1246
	0.8518
	0.0025
	0.1482
	0.9975
	0.5367
	0.9217
	0.5785
	0.4020

	G-mean
	0.0196
	0.9189
	0.0703
	0.0811
	0.9297
	0.0435
	0.9242
	0.1370
	0.0223

	G-mean NC
	0.0315
	0.8980
	0.0315
	0.1020
	0.9685
	0.0952
	0.9324
	0.2069
	0.0504

	MCC
	0.0196
	0.9191
	0.0704
	0.0809
	0.9296
	0.0435
	0.9243
	0.1370
	0.0223

	MCC NC
	0.0349
	0.8949
	0.0273
	0.1051
	0.9727
	0.1110
	0.9329
	0.2240
	0.0596

	Precision
	0.0211
	0.9134
	0.0612
	0.0866
	0.9388
	0.0494
	0.9259
	0.1465
	0.0254

	Precision NC
	0.5029
	0.7598
	0.0003
	0.2402
	0.9997
	0.7823
	0.8707
	0.7845
	0.8149

	C
	0.0357
	0.8910
	0.0238
	0.1090
	0.9762
	0.1146
	0.9326
	0.2299
	0.0612

	D
	0.5000
	0.7872
	0.0003
	0.2128
	0.9997
	0.7981
	0.8869
	0.7981
	0.8105



Table 31Results for the logistic regression classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0170
	0.9270
	0.0587
	0.0730
	0.9413
	0.0520
	0.9340
	0.1519
	0.0268

	F-meas NC
	0.3684
	0.8465
	0.0013
	0.1535
	0.9987
	0.6562
	0.9193
	0.6736
	0.5395

	G-mean
	0.0156
	0.9305
	0.0650
	0.0695
	0.9350
	0.0474
	0.9326
	0.1446
	0.0243

	G-mean NC
	0.0355
	0.9041
	0.0252
	0.0959
	0.9748
	0.1181
	0.9386
	0.2338
	0.0635

	MCC
	0.0155
	0.9307
	0.0654
	0.0693
	0.9346
	0.0472
	0.9325
	0.1443
	0.0242

	MCC NC
	0.0422
	0.8994
	0.0201
	0.1006
	0.9799
	0.1411
	0.9386
	0.2578
	0.0769

	Precision
	0.0170
	0.9270
	0.0587
	0.0730
	0.9413
	0.0520
	0.9340
	0.1519
	0.0268

	Precision NC
	0.9873
	0.3665
	0.0001
	0.6335
	0.9999
	0.4655
	0.5745
	0.5312
	0.8709

	C
	0.0357
	0.9037
	0.0231
	0.0963
	0.9769
	0.1193
	0.9394
	0.2367
	0.0639

	D
	0.5000
	0.8327
	0.0009
	0.1673
	0.9991
	0.7092
	0.9119
	0.7171
	0.6197



Table 32Results for the random forest depth 4 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0114
	0.9096
	0.0657
	0.0904
	0.9343
	0.0461
	0.9217
	0.1406
	0.0237

	F-meas NC
	0.3419
	0.8392
	0.0008
	0.1608
	0.9992
	0.7330
	0.9156
	0.7413
	0.6627

	G-mean
	0.0111
	0.9116
	0.0714
	0.0884
	0.9286
	0.0424
	0.9199
	0.1345
	0.0217

	G-mean NC
	0.0158
	0.8886
	0.0378
	0.1114
	0.9622
	0.0802
	0.9245
	0.1870
	0.0422

	MCC
	0.0111
	0.9116
	0.0714
	0.0884
	0.9286
	0.0424
	0.9199
	0.1345
	0.0217

	MCC NC
	0.0193
	0.8823
	0.0310
	0.1177
	0.9690
	0.1007
	0.9245
	0.2097
	0.0541

	Precision
	0.0114
	0.9096
	0.0657
	0.0904
	0.9343
	0.0461
	0.9217
	0.1406
	0.0237

	Precision NC
	0.7582
	0.7147
	0.0002
	0.2853
	0.9998
	0.7689
	0.8435
	0.7739
	0.8448

	C
	0.0357
	0.8632
	0.0125
	0.1368
	0.9875
	0.1911
	0.9231
	0.3018
	0.1075

	D
	0.5000
	0.8218
	0.0004
	0.1782
	0.9996
	0.8049
	0.9062
	0.8049
	0.7895



Table 33Results for the XGBoost depth 1 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0241
	0.9170
	0.0384
	0.0830
	0.9616
	0.0767
	0.9390
	0.1870
	0.0400

	F-meas NC
	0.3270
	0.8551
	0.0015
	0.1449
	0.9985
	0.6273
	0.9238
	0.6510
	0.4996

	G-mean
	0.0212
	0.9219
	0.0451
	0.0781
	0.9549
	0.0666
	0.9382
	0.1736
	0.0346

	G-mean NC
	0.0335
	0.9057
	0.0280
	0.0943
	0.9720
	0.1095
	0.9381
	0.2237
	0.0587

	MCC
	0.0211
	0.9219
	0.0452
	0.0781
	0.9548
	0.0665
	0.9381
	0.1733
	0.0345

	MCC NC
	0.0365
	0.9042
	0.0267
	0.0958
	0.9733
	0.1199
	0.9379
	0.2334
	0.0653

	Precision
	0.0241
	0.9170
	0.0384
	0.0830
	0.9616
	0.0767
	0.9390
	0.1870
	0.0400

	Precision NC
	0.9284
	0.6142
	0.0002
	0.3858
	0.9998
	0.7054
	0.7760
	0.7261
	0.8842

	C
	0.0357
	0.9046
	0.0234
	0.0954
	0.9766
	0.1177
	0.9398
	0.2350
	0.0630

	D
	0.5000
	0.8429
	0.0008
	0.1571
	0.9992
	0.7294
	0.9175
	0.7362
	0.6452






Appendix 6: Results for 1:81 class ratio
See Tables 34, 35, 36 and 37.Table 34Results for the extremely randomized trees depth 8 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0083
	0.9096
	0.0607
	0.0904
	0.9393
	0.0500
	0.9241
	0.1469
	0.0257

	F-meas NC
	0.1187
	0.8405
	0.0008
	0.1595
	0.9992
	0.7396
	0.9163
	0.7453
	0.6637

	G-mean
	0.0076
	0.9136
	0.0692
	0.0864
	0.9308
	0.0438
	0.9220
	0.1370
	0.0224

	G-mean NC
	0.0155
	0.8870
	0.0245
	0.1130
	0.9755
	0.1209
	0.9300
	0.2340
	0.0654

	MCC
	0.0076
	0.9136
	0.0693
	0.0864
	0.9307
	0.0437
	0.9220
	0.1370
	0.0224

	MCC NC
	0.0169
	0.8844
	0.0214
	0.1156
	0.9786
	0.1352
	0.9301
	0.2487
	0.0739

	Precision
	0.0083
	0.9096
	0.0607
	0.0904
	0.9393
	0.0500
	0.9241
	0.1469
	0.0257

	Precision NC
	0.6452
	0.6098
	0.0001
	0.3902
	0.9999
	0.7219
	0.7791
	0.7368
	0.8960

	C
	0.0122
	0.8947
	0.0321
	0.1053
	0.9679
	0.0881
	0.9305
	0.1994
	0.0464

	D
	0.5000
	0.7206
	0.0002
	0.2794
	0.9998
	0.7903
	0.8482
	0.7945
	0.8780



Table 35Results for the logistic regression classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0061
	0.9256
	0.0597
	0.0744
	0.9403
	0.0511
	0.9328
	0.1503
	0.0263

	F-meas NC
	0.2694
	0.8297
	0.0007
	0.1703
	0.9993
	0.7427
	0.9103
	0.7474
	0.6767

	G-mean
	0.0057
	0.9286
	0.0666
	0.0714
	0.9334
	0.0463
	0.9309
	0.1425
	0.0237

	G-mean NC
	0.0130
	0.9012
	0.0232
	0.0988
	0.9768
	0.1257
	0.9381
	0.2417
	0.0680

	MCC
	0.0056
	0.9290
	0.0668
	0.0710
	0.9332
	0.0462
	0.9310
	0.1424
	0.0237

	MCC NC
	0.0151
	0.8969
	0.0192
	0.1031
	0.9808
	0.1488
	0.9378
	0.2646
	0.0818

	Precision
	0.0061
	0.9256
	0.0597
	0.0744
	0.9403
	0.0511
	0.9328
	0.1503
	0.0263

	Precision NC
	1.0000
	0.1928
	0.0000
	0.8072
	1.0000
	0.3080
	0.4288
	0.4105
	0.9213

	C
	0.0122
	0.9030
	0.0235
	0.0970
	0.9765
	0.1174
	0.9389
	0.2345
	0.0628

	D
	0.5000
	0.8069
	0.0004
	0.1931
	0.9996
	0.7859
	0.8978
	0.7862
	0.7676



Table 36Results for the random forest depth 4 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0036
	0.9037
	0.0668
	0.0963
	0.9332
	0.0452
	0.9182
	0.1386
	0.0232

	F-meas NC
	0.3479
	0.8276
	0.0004
	0.1724
	0.9996
	0.8001
	0.9094
	0.8007
	0.7763

	G-mean
	0.0035
	0.9055
	0.0714
	0.0945
	0.9286
	0.0423
	0.9169
	0.1337
	0.0217

	G-mean NC
	0.0053
	0.8787
	0.0336
	0.1213
	0.9664
	0.0942
	0.9212
	0.2014
	0.0504

	MCC
	0.0035
	0.9055
	0.0714
	0.0945
	0.9286
	0.0423
	0.9169
	0.1337
	0.0217

	MCC NC
	0.0067
	0.8746
	0.0274
	0.1254
	0.9726
	0.1190
	0.9220
	0.2274
	0.0652

	Precision
	0.0036
	0.9037
	0.0668
	0.0963
	0.9332
	0.0452
	0.9182
	0.1386
	0.0232

	Precision NC
	0.8941
	0.5714
	0.0001
	0.4286
	0.9999
	0.6930
	0.7541
	0.7115
	0.8917

	C
	0.0122
	0.8551
	0.0109
	0.1449
	0.9891
	0.2109
	0.9195
	0.3182
	0.1204

	D
	0.5000
	0.7892
	0.0003
	0.2108
	0.9997
	0.8149
	0.8881
	0.8152
	0.8431



Table 37Results for the XGBoost depth 1 classifier


	Technique
	Threshold
	TPR
	FPR
	FNR
	TNR
	F-meas
	G-mean
	MCC
	Precision

	F-meas
	0.0077
	0.9150
	0.0414
	0.0850
	0.9586
	0.0712
	0.9364
	0.1793
	0.0370

	F-meas NC
	0.4845
	0.8307
	0.0004
	0.1693
	0.9996
	0.7988
	0.9110
	0.7996
	0.7716

	G-mean
	0.0072
	0.9158
	0.0455
	0.0842
	0.9545
	0.0656
	0.9348
	0.1715
	0.0340

	G-mean NC
	0.0110
	0.9087
	0.0293
	0.0913
	0.9707
	0.1058
	0.9390
	0.2197
	0.0566

	MCC
	0.0071
	0.9166
	0.0461
	0.0834
	0.9539
	0.0648
	0.9349
	0.1704
	0.0336

	MCC NC
	0.0117
	0.9075
	0.0279
	0.0925
	0.9721
	0.1128
	0.9391
	0.2270
	0.0607

	Precision
	0.0077
	0.9150
	0.0414
	0.0850
	0.9586
	0.0712
	0.9364
	0.1793
	0.0370

	Precision NC
	0.9753
	0.4784
	0.0001
	0.5216
	0.9999
	0.6186
	0.6827
	0.6589
	0.9326

	C
	0.0122
	0.9040
	0.0233
	0.0960
	0.9767
	0.1184
	0.9395
	0.2357
	0.0634

	D
	0.5000
	0.8303
	0.0004
	0.1697
	0.9996
	0.8029
	0.9108
	0.8033
	0.7785
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y  ground truth labels
9  classifier output probabilities
f  optimization function, e.g. geometric mean
c  flag controlling whether optimization is constrained
Output
A Optimized threshold
tprs, fprs, thresholds — roc_curve(y, 9)
tnrs < 1 - fprs
scores — f(y,9)
if ¢ then
mask < tprs > tnrs
scores, thresholds « scores[mask], thresholds[mask]
max_score_idx = arg max (scores)
return thresholds[max_score_idx]

Algorithm 1: Pseudocode for threshold optimization; roc_curve is assumed to be a
library function capable of returning all true positive rates, and false positive rates

for all thresholds in the interval from zero to one
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