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Abstract
Oral cancer may arise from oral leukoplakia and oral lichenoid mucositis (oral lichen planus and oral lichenoid lesions) subtypes of oral potentially malignant disorders. As not all patients will develop oral cancer in their lifetime, the availability of malignant transformation predictive platforms would assist in the individualized treatment planning and formulation of optimal follow-up regimens for these patients. Therefore, this study aims to compare and select optimal machine learning (ML)-based models for stratifying the malignant transformation status of patients with oral leukoplakia and oral lichenoid mucositis. One thousand one hundred and eighty-seven patients with oral leukoplakia and oral lichenoid mucositis treated at three tertiary health institutions in Hong Kong, Newcastle UK, and Lagos Nigeria were included in the study. Demographic, clinical, pathological, and treatment-based factors obtained at diagnosis and during follow-up were used to populate and compare forty-six machine learning-based models. These were implemented as a set of twenty-six predictors for centers with substantial data quantity and fifteen predictors for centers with insufficient data. Two best models were selected according to the number of variables. We found that the optimal ML-based risk models with twenty-six and fifteen predictors achieved an accuracy of 97% and 94% respectively following model testing. Upon external validation, both models achieved a sensitivity, specificity, and F1-score of 1, 0.88, and 0.67 on consecutive patients treated after the construction of the models. Furthermore, the 15-predictor ML model for centers with reduced data achieved a higher sensitivity for identifying oral leukoplakia and oral lichenoid mucositis patients that developed malignancies in other treatment settings compared to the binary oral epithelial dysplasia system for risk stratification (0.96 vs 0.82). These findings suggest that machine learning-based models could be useful potentially to stratify patients with oral leukoplakia and oral lichenoid mucositis according to their risk of malignant transformation in different settings.
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Introduction
Background of the study
Oral cancer is the most prevalent malignancy in the head and neck region [1, 2]. Commonly, tumors are of the squamous cell carcinoma subtype histologically and related to the tissue-damaging sequelae of behavioral influences such as tobacco smoking/chewing, areca nut consumption, and heavy alcohol drinking in addition to certain genetic and autoimmune predisposition [3, 4]. In other patients, tumors arise in the absence of known risk factors [5].
The natural history of oral cancer can be diverse. Some patients present with malignant ulcers or exophytic growths while others exhibit precursor mucosal disease with an inherently high risk of malignant transformation; these are collectively known as oral potentially malignant disorders (OPMD) [6, 7]. About 50–62% of oral cavity cancers arise from precancerous lesions such as leukoplakia (white patch), proliferative verrucous leukoplakia (white patch with verrucous appearance), erythroplakia (red patch), erythroleukoplakia (mixed white and red patch), oral lichen planus, and oral lichenoid lesions [6–8]. More widespread conditions include oral submucous fibrosis, oral graft vs host disease (OGVHD), long-term immunosuppressive treatment, Plummer-Vinson syndrome, chronic discoid lupus erythematosus, and dyskeratosis congenita [7, 9, 10]. Since not all patients with oral potentially malignant disorders develop cancer in their lifetime, appropriate recognition and prediction of malignant transformation risk in these disorders could be imperative to obtaining impactful oral cancer prevention, early diagnosis, and disease-specific prognosis.
There are, however, no consistent malignant transformation data in the literature to guide the management of common precursor lesions such as oral leukoplakia and oral lichenoid mucositis (oral lichen planus and oral lichenoid lesions) [7, 8, 11]. The average malignant transformation proportion of oral leukoplakia, oral lichen planus, and oral lichenoid lesions ranges from 5.9 to 14%, 0.9 to 2.3%, and 1.6 to 7% [12–15]. As such, practitioners, especially those working in non-specialist services, are unable to reliably inform or reassure patients about the risk of oral cancer development. Presently, grading oral epithelial dysplasia following histopathology appears to be the most common method of estimating the risk of malignant transformation, although, this is fraught with subpar accuracy, poor precision, and unclear reproducibility [16, 17]. Also, molecular markers suggested for outcome prediction have only been associated with certain risk groups without overt predictive optimization for use in clinical practice [8, 18].
Nomograms based on statistical inferences have been proposed to serve as predictive adjuncts in clinical practice [19]. Nomograms constructed to predict malignant transformation have shown promising accuracy in different populations [20–22], but their implementation may be inelegant, technical, and unautomated which may prolong patient consultation time. Also, such platforms do not have a threshold score for risk stratification and none of the tools have been externally validated at this time [3].

Aims and significance
The application of artificial intelligence and machine learning in clinical prediction and decision-making has been found to be relatively superior to traditional statistical methods in many fields including oncology [23–26]. Learning models based on these classifiers have outperformed alternate methods of prediction with intrinsic merits that make them attractive for potential clinical application compared to some clinical nomograms [23]. However, little information is available from comprehensive studies that have utilized a comparative modeling approach to support the consideration of machine learning models to predict malignant transformation in oral leukoplakia and oral lichenoid mucositis using variables available from medical records. Therefore, this study aimed to compare and validate machine learning-based models to predict the malignant transformation risk of oral leukoplakia and oral lichenoid mucositis using demographic, clinicopathological, and treatment features obtainable from patient medical records in different treatment centers.

Research hypothesis
This study hypothesizes that machine learning models based on health records information would predict oral cancer risk in oral leukoplakia and oral lichenoid mucositis with satisfactory to good accuracy, sensitivity, and specificity. Additionally, the performance of the machine learning models will be equivalent to or even better than the sole application of the binary oral epithelial dysplasia grading system for risk stratification in oral leukoplakia and oral lichenoid mucositis.


Materials and methods
Data description
Retrospective patients with clinical diagnoses of oral leukoplakia, oral lichen planus, and oral lichenoid lesion) who had biopsy and histopathology for definitive diagnosis were included in this study. The rationale for selecting these diseases was due to their global prevalence and variability of their malignant transformation proportions/rates which necessitate individualized prediction in these specific disorders [8, 27, 28]. As such, patients with erythroplakia or proliferative verrucous leukoplakia at other oral cavity sites with coexisting diseases of interest were excluded.
Patient cohorts from three institutions in Hong Kong, Newcastle Upon Tyne, and Lagos Nigeria were used (Fig. 1). The Hong Kong cohort included two patient groups. The first group comprised 716 patients managed at the Departments of Oral and Maxillofacial Surgery, Otorhinolaryngology, and Head and Neck Surgery of the Queen Mary Hospital, Hong Kong between January 2003 and December 2019 (collected for machine-learning-based model development). This cohort has also been described in a previous report by our group [29]. Further, the second group of Hong Kong patients (n = 58) encountered from January 1 to December 31, 2020, as well as the Newcastle and Lagos patient cohorts (n = 413) were sourced following model construction for external validation. Newcastle patients were treated at the Maxillofacial Surgery Unit of the Newcastle Dental Hospital and the Royal Victoria Infirmary, Newcastle-Upon-Tyne, the United Kingdom [30–32]. Likewise, the Lagos cohort was treated at the Dental clinics of the Lagos University Teaching Hospital, Lagos Nigeria between January 2013, and September 2019. None of the patients had inherited diseases that predisposed them to oral cancer such as Fanconi anemia, xeroderma pigmentosum, and Li-Fraumeni syndrome.[image: ]
Fig. 1Description of model construction and deployment phases underwent in this study



Variable selection and rationale
In total, 27 variables were considered which cuts across sociodemographic, clinical, pathological, and treatment information (Table 1). These variables have been presented in several reports as independent risk predictors for the malignant transformation of these precancerous lesions [21, 33–35]. Treatment for these conditions ranges from routine observation, pharmacological management, and scalpel or laser surgical excision/ablation and this was factored into model development [36]. A binary outcome indicating the presence or absence of malignant transformation was obtained for patients in all cohorts in this study. This was determined as of December 31, 2021, for the Hong Kong and Lagos OPMD cohorts and December 31, 2014, for the Newcastle cohort. Irrespective of the follow-up dates, all patients included had a minimum follow-up of 12 months. No statistical assessment of the effect of the predictors on this outcome specifically for these cohorts was conducted in this study. Also, data was not restricted only to patients with oral epithelial dysplasia as oral cancer may also occur in oral leukoplakia and oral lichenoid mucositis without this histologic feature [37]. Only squamous cell carcinomas arising from the precancer lesion, recurrences, or continued progression to adjacent sites were considered in this study.Table 1List of input parameters obtained for machine learning and missing instances


	Input feature
	Type
	Missing instances (Hong Kong Cohort only)
	Handling technique for missing data

	Age
	Continuous
	0
	NA

	Sex
	Boolean
	0
	NA

	Tobacco smoking
	Boolean
	2
	Binarization of variables during feature engineering

	Alcohol drinking
	Categorical (nominal)
	33

	Risk habit indulgence following diagnosis
	Categorical (nominal)
	0
	NA

	Previous malignancy
	Categorical (nominal)
	0
	NA

	Charlson Comorbidity Index (CCI)
	Continuous
	0
	NA

	Hypertension status
	Boolean
	0
	NA

	Diabetes Mellitus status
	Boolean
	0
	NA

	Hyperlipidemia status
	Boolean
	0
	NA

	Autoimmune disease status
	Boolean
	0
	NA

	Viral hepatitis status
	Boolean
	0
	NA

	Type of lesion
	Boolean
	0
	NA

	Clinical subtype of lichenoid lesion
	Categorical (nominal)
	0
	NA

	Tongue/FOM involved
	Boolean
	0
	NA

	Labial/buccal mucosa involved
	Boolean
	0
	NA

	Retromolar area involved
	Boolean
	0
	NA

	Gingiva involved
	Boolean
	0
	NA

	Palate involved
	Boolean
	0
	NA

	Number of lesions
	Categorical (ordinal)
	0
	NA

	Presence of ulcers or erosions
	Boolean
	0
	NA

	Presence of induration
	Boolean
	0
	NA

	Treatment at diagnosis
	Categorical (nominal)
	0
	NA

	Recurrence after surgical excision
	Boolean
	0
	NA

	Number of recurrences
	Categorical (ordinal)
	0
	NA

	Oral epithelial dysplasia at diagnosis
	Categorical (nominal)
	0
	NA

	Oral epithelial dysplasia detected during follow-up
	Categorical (nominal)
	0
	NA


All predictors were used for modeling and the variables in bold were the predictors included in the 15 feature models in this study. Note that ‘Tobacco smoking’ and ‘Alcohol consumption’ were binarized into a single variable




Model development
Data preprocessing and feature engineering
Electronic entry spreadsheet templates (Microsoft Excel for Mac v 16.52) were used for data collection and column filtering was done to ensure correlation between pertinent variables. Input features for training were continuous (n = 2), Boolean (n = 16), and categorical (n = 9). As OPMDs represent disparate subtypes/entities, the machine learning models in this study were trained to account for the specific clinical subtype (oral leukoplakia vs oral lichenoid mucositis) as this variable was included as a predictor. Both tobacco smoking and alcohol consumption status had missing data that were handled through the binarization of both variables into two categories which left no missing instances (Table 1). This new variable – patient risk habit category, was based on classifying ever-smokers and ever-drinkers as smoking and alcohol-drinking (SD) patients and non-smokers and non-drinkers as non-smoking and non-alcohol-drinking (NSND) patients. This stratification has been used previously to propose that both groups are distinct entities [5, 38]. Altogether, this left 26 variables available to model malignant transformation risk using machine learning.
We envisaged that all 26 variables (Table 1) obtained following feature engineering may not be easily obtained by specialists at different treatment centers, especially in remote areas where electronic patient documentation was not practiced. Therefore, 15 variables (Table 1 in bold) more likely to be available in manual records or obtained from patients were selected for the construction of another set of models to be applied in this scenario [21–23].

Machine learning algorithms considered
To select the optimal models useful for prediction, the performance of nine popular machine learning classifiers was compared (Fig. 1). These were logistic regression, linear support vector machines (SVM), radial basis function (RBF) kernel SVM, random forest, decision tree, gradient boosting, k-nearest neighbor (kNN), linear discriminant analysis, and multilayer perceptron with backpropagation (MLP-BP). The choice of these algorithms was per previously described models for the prediction of other oncological outcomes [23, 24, 39]. In this study, logistic regression, linear discriminant analysis, and linear SVM were the parametric models used to optimize the function being learned to a known form as a linear combination of the input parameters. Conversely, all the other algorithms use the nonparametric method which does not make a specific assumption of the mapping function from the training data and possesses adjustable parameters.

Model training
The first group of the Hong Kong cohort (n = 716) was used to train the algorithms. Data splitting into training and test sets was done according to the 80:20 rule. Two sets of models were trained per algorithm based on the number of input variables (Fig. 1). One set was trained with all 26 features (following binarization of alcohol drinking and tobacco smoking status) while the other set of models included the 15 predictors that would be obtained easily in different centers. Ten-fold cross-validation was employed with the training data to obtain performance measures across each fold for tuning hyperparameters after each training session and to evaluate the model stability. Model stability is defined as the sensitivity of a machine learning model to variations in the training dataset and it is considered a measure of the reliability of the trained models [40]. In this study, the model stability was evaluated using the coefficient of variation (COV) as a ratio of the standard deviation (s) to the mean (x̅) of the training accuracy for each model to provide the variability of this measure. In this study, the COV is inversely proportional to the model stability such that models with better stability were expected to have lower COV values compared to less-stable models. Mathematically, the coefficient of variation is defined as:[image: $$COV= \frac{s}{\overline{X} }*100$$]




As the occurrence of malignant transformation can be described as a rare event relative to the entire cohort (event to censored ratio of 1:10), we also compared the performance of two synthetic oversampling techniques and class weight assignment for parametric and tree-based models (i.e., logistic regression, SVM, decision tree, and random forest). Oversampling class imbalance techniques used were synthetic minority oversampling technique (SMOTE for categorical and continuous variables) and adaptive synthetic sampling approach (ADASYN). Both methods create synthetic data for the minority class using the k-nearest neighbor algorithm. While both methods are similar, ADASYN uses a density distribution to decide the number of synthetic samples to be generated with more samples for lower-density minority regions (instances that are hard to learn) as opposed to an equal number of synthetic samples for SMOTE [41]. Class weight assignment for parametric and tree-based algorithms was implemented by automatically adjusting the different cost function weights given to the minority and majority outcome classes in an inversely proportional fashion relative to their frequencies in the training data. Overall, this meant that six models were each trained for logistic regression, SVM, decision tree, and random forest algorithms, and four models for others based on feature selection and the type of class imbalance. In total, 46 models were trained in this study.
Manual hyperparameter tuning according to the cross-validation performance was implemented in gradient boosting, decision tree, random forest, kNN, and MLP-BP to select optimal models while automated hyperparameter optimization was employed in other models. Manual categorical encoding was also used with categorical data to allow the implementation of SVM and kNN during training. The MLP-BP architecture had 64 hidden layers and was trained with rectified linear unit (ReLU) activation, adaptive moment estimation (ADAM) optimizer, and a learning rate of 0.001. Also, for MLP-BP, early stopping regularization was implemented to stop model performance when there was no improvement on a randomly preselected 10% validation set.


Model validation
The unseen 20% dataset of the first Hong Kong patient group was used for testing the trained models. Testing performance measures were generated for all models trained per algorithm i.e., 46 models. These metrics were used to compare the overall performance and to select the best-performing model based on 26 predictors and 15 predictors in this study. Furthermore, two rounds of external validation were performed. First, patients in the second Hong Kong cohort group (n = 58) were used to independently validate the two best-performing models based on 26 features and 15 features. Second, external validation of the 15-feature model (intended for general use due to its common input features) was performed using the Newcastle and Lagos cohorts (n = 413). The performance of these models in the latter external validation round was compared to the binary dysplasia grading system currently used for risk stratification in clinical practice. In this system, atypia extending below and to the middle of the squamous epithelium on histology is classified as low grade/low risk and atypia above this level is deemed high grade/high risk [42, 43].

Performance measures
Six measures were obtained for each of the models to assess all-around performance. This included accuracy, sensitivity, specificity, precision, negative predictive value, and F1-score (defined as the harmonic mean between the precision and sensitivity). Mathematical calculations for the performance metrics are given below:[image: $$Sensitivity= \frac{TP}{TP+FN} \quad Specificity=\frac{TN}{TN+FP} \quad Accuracy=\frac{TP+TN}{TP+FN+TN+FP} \quad Precision= \frac{TP}{TP+FP} \quad NPV= \frac{TN}{TN+FN} \quad F1 \,score= 2* \frac{precision*sensitivity}{precision+sensitivity}$$]




The sensitivity and F1 score were the main measures for comparing model performance as the development of malignant lesions is time-dependent and credible prediction models are expected to identify majority of the cases that will have malignancies to enable surgical management and closer routine follow-up [44]. However, greater preference was given to the sensitivity than precision for models with similar F1-scores (± 0.05).

Explainability and net benefit analyses
To explain the rationale behind the risk prediction of the best-performing models as a measure of the input features, the Shapley additive explanations (SHAP) framework was used in this study. This is a model-agnostic approach to machine learning interpretability that is based on competitive game theory [45]. Global SHAP values were obtained for the predictions of the models using the Hong Kong external validation dataset.
Furthermore, decision curve analysis [46] was performed to estimate the net benefit of the models based on 26 and 15 features for selecting patients with oral leukoplakia and oral lichenoid mucositis that may benefit from surgical intervention and close monitoring. Net benefit was determined for all probability thresholds at or below 50% and these were used to plot the decision curves of both models. Decision curves were compared to standard references which included proffering treatment for all patients and treating none of the patients. Predicted output from the Hong Kong external validation dataset was also used for decision curve analysis.

Web-based application for future beta testing
To encourage further validation of trained models, we generated web platforms (based on 26 and 15 input variables) deployed on the backend of the best-performing models (Fig. 1). These tools were developed using the Flask module in Python and deployed using the Heroku cloud platform. Patient data with blinded outputs may be uploaded or inputted to this platform to automatically generate predictions without any need to repeat the model development process. We created two types of web-based graphical user interfaces i.e., data frame and interactive user-defined platforms. For the data frame web tool, the performance of the algorithms can be determined by uploading institutional EHR datasets in form of spreadsheets (CSV format) without the need to develop the model internally. Likewise, the interactive platform can be used to determine the risk of malignant transformation for single instances of patients with oral leukoplakia or oral lichenoid mucositis.

Computation
Descriptive statistics were performed using SPSS v 26 (IBM Corp., Armonk, NY, USA). Training, testing, and validation of all supervised learning algorithms as well as model deployment were performed with Python v 3.8.7 using scikit-learn [47] and Flask [48] (Python Software Foundation, Wilmington, DE, USA) [23]. McNemar’s test was used to compare the sensitivity values of the best 15-feature model and binary epithelial dysplasia grading during external validation. Probability values below 5% was used to denote statistical significance. The Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) checklist [49] was adhered to during the study.


Results
Patients’ description
One thousand one hundred and eighty-seven patients were included in this study with 716 patients used for model construction and 471 patients used for external validation. For the training cohort, the average follow-up time was 90.9 months and the median age (IQR) of patients was 58 (49–67) years. Majority of them were females (56%) and non-smokers/non-drinkers (65.5%). Most of the lesions were of the oral leukoplakia subtype than oral lichenoid mucositis (54.3% vs 45.7%, Table 2). Lesions involving the buccal or labial mucosa were more common than other anatomic sites (56.8%) with only 6.6% of patients presenting with indurated lesions. Most patients received no treatment or were placed on periodic observation (41.9%) while 30.9% of them received surgical intervention for their mucosal disease. Post-excision recurrence was observed among 19% of those that received surgical treatment with 13.5% experiencing only one recurrence as of the censoring date. Epithelial dysplasia was found on histology in 9.5% of patients at diagnosis and 7% of patients during follow-up biopsies. Approximately, one-tenth of the patients experienced malignant transformation of their lesions. Clinical and histologic characteristics of tumors are also shown in Table 2.Table 2Demographic, clinicopathologic, and outcome information of 774 Hong Kong patients used for training and validation


	Variables
	First patient group (2003 – 2019)
	Second patient group (2020)

	N = 716
	N = 58

	N (%)
	N (%)

	Median age at diagnosis (IQR)
	58 (49–67)
	61.5 (53.8–68.3)

	Gender

	 Female
	401 (56.0)
	33 (56.9)

	 Male
	315 (44.0)
	25 (43.1)

	Patient category

	 NSND
	469 (65.5)
	41 (70.7)

	 SD
	247 (34.5)
	17 (29.3)

	Continued risk habits following diagnosis

	 Yes
	14 (2.0)
	11 (19.0)

	 No
	167 (23.3)
	1 (1.7)

	 Not applicable
	535 (74.7)
	46 (79.3)

	Previous malignancy

	 Head and neck tumors
	21 (2.9)
	0

	 Other tumors
	46 (6.4)
	3 (5.2)

	 Hematologic malignancies
	23 (3.2)
	6 (10.3)

	 No malignancy
	626 (87.4)
	49 (84.5)

	Charlson comorbidity index–mean (SD)
	0.72 (1.01)
	0.64 (1.02)

	 Hypertension
	22 (37.9)
	211 (29.5)

	 Diabetes mellitus
	9 (15.5)
	111 (15.5)

	 Hyperlipidemia
	21 (36.2)
	122 (17.0)

	 Autoimmune disease
	3 (5.2)
	42 (5.9)

	 Viral hepatitis infection
	3 (5.2)
	69 (9.6)

	Lesion

	 Oral leukoplakia
	389 (54.3)
	41 (70.7)

	 Oral lichen planus/lichenoid lesion
	327 (45.7)
	17 (29.3)

	Clinical subtype of lichenoid lesion

	 Reticular/Papular
	100 (14.0)
	4 (6.9)

	 Erosive/Atrophic
	142 (19.8)
	6 (10.3)

	 Plaque
	85 (11.9)
	7 (12.1)

	 Tongue/FOM
	245 (34.2)
	25 (43.1)

	 Buccal/Labial mucosa
	407 (56.8)
	27 (46.6)

	 Retromolar area
	26 (3.6)
	3 (5.2)

	 Gingiva
	88 (12.3)
	2 (3.4)

	 Palate
	23 (3.2)
	3 (5.2)

	Number of lesions

	 Single
	469 (65.5)
	44 (75.9)

	 Bilateral or double
	210 (29.3)
	10 (17.2)

	 Multiple
	37 (5.2)
	4 (6.9)

	 Presence of ulcers or erosions
	228 (31.8)
	19 (32.8)

	 Induration
	47 (6.6)
	5 (8.6)

	Treatment

	 Surgical intervention
	221 (30.9)
	20 (34.5)

	 Pharmacological treatment
	195 (27.2)
	7 (12.1)

	 No treatment
	300 (41.9)
	31 (53.4)

	 Post-excision recurrence
	42 (19.0)
	2 (3.4)

	Number of recurrences

	 1
	30 (13.5)
	2 (3.4)

	 2
	7 (3.2)
	0

	 3
	4 (1.8)
	0

	 4
	1 (0.5)
	0

	Oral epithelial dysplasia at diagnosis

	 Absent
	641 (89.5)
	48 (82.8)

	 Mild
	34 (4.7)
	6 (10.3)

	 Moderate
	27 (3.8)
	0

	 Severe
	7 (1.0)
	0

	 Unknown (defaulted biopsy at diagnosis)
	7 (1.0)
	4 (6.9)

	Oral epithelial dysplasia at follow-up

	 Absent
	658 (91.9)
	48 (82.8)

	 Mild
	11 (1.5)
	0

	 Moderate
	15 (2.1)
	1 (1.7)

	 Severe
	24 (3.4)
	7 (12.1)

	 Unknown (defaulted biopsy during follow-up)
	8 (1.1)
	2 (3.4)

	Malignant transformation
	76 (10.6)
	6 (10.3)

	AJCC TNM stage

	 Stage I
	47 (6.6)
	3 (5.2)

	 Stage II
	9 (1.3)
	2 (3.4)

	 Stage III
	6 (0.8)
	0

	 Stage IV
	12 (1.7)
	0

	Tumor grade

	 Well differentiated
	23 (3.2)
	NA

	 Moderate differentiated
	30 (4.2)

	Poorly differentiated
	3 (0.4)

	Tumor prognosis

	 Remission
	58 (8.1)
	4 (6.9)

	 Recurrence
	6 (0.8)
	2 (3.4)

	 Cancer-related death
	6 (0.8)
	0

	 Second primary tumor
	6 (0.8)
	0


aNA not available



A detailed description of the external validation cohorts is presented in Table 2 and Additional file 1: Table S1. This cohort had an average follow-up time of 77.3 months. Overall, the prevalence of malignant transformation in the external validation cohort was 6% and the Newcastle cohort comprised patients with a clinically high risk of malignant transformation as 89% of the patients had epithelial dysplasia of various grades at diagnosis.

Predictive performance of classifiers
In total, 46 models were trained and the distribution of their accuracies in each cross-validation fold are shown in Figs. 2, 3. Mean accuracies during training ranged from 0.81 to 0.93 and the respective comparison of models developed within each algorithm are detailed below.[image: ]
Fig. 2Violin plots showing the distribution of accuracy estimates obtained across the cross-validation folds during model training of five algorithms using three class imbalance correction methods—(a) Logistic regression (b) Linear SVM (c) Radial basis function SVM (d) Random Forest (e) Decision tree

[image: ]
Fig. 3Violin plots showing the distribution of accuracy estimates obtained across the cross-validation folds during model training of four algorithms using two synthetic class imbalance correction methods—(a) gradient boosting (b) k-nearest neighbor (c) multilayer perceptron (d) linear discriminant analysis


Logistic regression
The average accuracies of all models were similar during training, although, the models trained following oversampling with SMOTE were more stable with a lower coefficient of variation across the cross-validation folds. Upon validation, the models with balanced class weights performed better than those resampled with ADASYN or SMOTE based on their F1 scores (Tables 3, 4, 5). Nonetheless, the models with 26 features performed better than the 15-feature models, and the 26-parameter balanced class weight assignment model had the best accuracy, and F1 score of 0.92 and 0.60 respectively as well as a sensitivity of 0.75 following testing.Table 3Performance of nine machine learning classifiers on the training and testing datasets using 26 input features and synthetic oversampling


	Algorithms
	Imbalanced class technique
	SMOTE
	ADASYN

	Dataset
	Training
	Testing
	Training
	Testing

	Performance measures
	Mean accuracy
	SD
	Range
	Accuracy
	Sensitivity
	Precision
	F1-score
	SP
	NPV
	Mean accuracy
	SD
	Range
	Accuracy
	Sensitivity
	Precision
	F1-score
	SP
	NPV

	Logistic regression
	0.89
	0.036
	0.81–0.95
	0.88
	0.75
	0.39
	0.51
	0.89
	0.98
	0.88
	0.043
	0.81–0.93
	0.92
	0.67
	0.53
	0.59
	0.95
	0.97

	Linear SVM
	0.90
	0.027
	0.84–0.95
	0.87
	0.75
	0.38
	0.50
	0.89
	0.97
	0.90
	0.051
	0.83–0.98
	0.95
	0.67
	0.73
	0.70
	0.98
	0.97

	RBF-Kernel SVM
	0.92
	0.041
	0.83–0.98
	0.92
	0.50
	0.55
	0.52
	0.96
	0.95
	0.93
	0.027
	0.88–0.97
	0.92
	0.33
	0.57
	0.42
	0.98
	0.94

	Random forest
	0.89
	0.029
	0.82–0.92
	0.87
	0.67
	0.35
	0.46
	0.89
	0.97
	0.90
	0.033
	0.83–0.94
	0.91
	0.67
	0.47
	0.55
	0.93
	0.97

	Decision tree
	0.81
	0.038
	0.72–0.85
	0.71
	0.75
	0.19
	0.31
	0.71
	0.97
	0.82
	0.056
	0.73–0.92
	0.95
	0.75
	0.69
	0.72
	0.97
	0.98

	Gradient boosting
	0.91
	0.030
	0.83–0.95
	0.90
	0.75
	0.43
	0.56
	0.91
	0.98
	0.90
	0.04
	0.83–0.95
	0.95
	0.67
	0.73
	0.70
	0.98
	0.97

	kNN
	0.89
	0.025
	0.85–0.94
	0.87
	0.42
	0.29
	0.35
	0.91
	0.94
	0.90
	0.032
	0.83–0.94
	0.83
	0.42
	0.23
	0.29
	0.87
	0.94

	MLP-BP
	0.82
	0.039
	0.75–0.89
	0.94
	0.75
	0.60
	0.67
	0.95
	0.98
	0.85
	0.066
	0.71–0.96
	0.76
	0.21
	0.21
	0.32
	0.77
	0.96

	LDA
	0.89
	0.034
	0.82–0.94
	0.87
	0.67
	0.35
	0.46
	0.89
	0.97
	0.89
	0.049
	0.79–0.95
	0.93
	0.58
	0.58
	0.58
	0.96
	0.96


SMOTE synthetic minority oversampling technique, ADASYN adaptive synthetic sampling, SD standard deviation, SP specificity, NPV negative predictive value, SVM support vector machines, RBF radial basis function, kNN k-nearest neighbor, MLP-BP multilayer perceptron with backpropagation, LDA inear discriminant analysis
Values in bold represent the best-performing algorithm in each group


Table 4Performance of nine machine learning classifiers on the training and testing datasets using 15 input features and synthetic oversampling


	Algorithms
	Imbalanced class technique
	SMOTE
	ADASYN

	Dataset
	Training
	Testing
	Training
	Testing

	Performance measures
	Mean accuracy
	SD
	Range
	Accuracy
	Sensitivity
	Precision
	F1-score
	SP
	NPV
	Mean accuracy
	SD
	Range
	Accuracy
	Sensitivity
	Precision
	F1-score
	SP
	NPV

	Logistic regression
	0.89
	0.033
	0.84–0.96
	0.84
	0.67
	0.30
	0.41
	0.85
	0.97
	0.88
	0.047
	0.82–0.97
	0.91
	0.67
	0.47
	0.55
	0.93
	0.97

	Linear SVM
	0.89
	0.036
	0.85–0.96
	0.82
	0.83
	0.29
	0.44
	0.82
	0.98
	0.88
	0.04
	0.81–0.95
	0.94
	0.67
	0.62
	0.64
	0.96
	0.97

	RBF-Kernel SVM
	0.91
	0.039
	0.83–0.97
	0.87
	0.50
	0.33
	0.40
	0.91
	0.95
	0.91
	0.025
	0.87–0.95
	0.90
	0.42
	0.42
	0.42
	0.95
	0.95

	Random forest
	0.83
	0.034
	0.77–0.88
	0.96
	0.58
	0.88
	0.70
	0.99
	0.96
	0.81
	0.055
	0.75–0.91
	0.88
	0.67
	0.38
	0.49
	0.90
	0.97

	Decision tree
	0.91
	0.045
	0.83–0.98
	0.91
	0.50
	0.46
	0.48
	0.95
	0.95
	0.92
	0.032
	0.87–0.97
	0.90
	0.67
	0.42
	0.52
	0.92
	0.97

	Gradient boosting
	0.90
	0.040
	0.85–0.97
	0.86
	0.83
	0.36
	0.50
	0.86
	0.98
	0.87
	0.035
	0.82–0.94
	0.94
	0.75
	0.64
	0.69
	0.96
	0.98

	kNN
	0.90
	0.035
	0.82–0.96
	0.87
	0.42
	0.29
	0.35
	0.91
	0.94
	0.92
	0.032
	0.85–0.98
	0.89
	0.33
	0.33
	0.33
	0.94
	0.94

	MLP-BP
	0.86
	0.038
	0.80–0.91
	0.90
	0.75
	0.43
	0.55
	0.91
	0.98
	0.83
	0.067
	0.68–0.89
	0.90
	0.75
	0.42
	0.55
	0.91
	0.98

	LDA
	0.85
	0.036
	0.80–0.91
	0.83
	0.67
	0.28
	0.39
	0.84
	0.96
	0.87
	0.066
	0.75–0.96
	0.89
	0.58
	0.39
	0.47
	0.92
	0.96


SMOTE synthetic minority oversampling technique, ADASYN adaptive synthetic sampling, SD standard deviation, SP specificity, NPV negative predictive value, SVM support vector machines, RBF—radial basis function, kNN k-nearest neighbor, MLP-BP multilayer perceptron with backpropagation, LDA linear discriminant analysis
Values in bold represent the best-performing algorithm in each group


Table 5Performance of parametric and tree-based classifiers on the training and testing datasets using class weights


	Algorithms
	Number of features
	26 features
	15 features

	Dataset
	Training
	Testing
	Training
	Testing

	Performance measures
	Mean accuracy
	SD
	Range
	Accuracy
	Sensitivity
	Precision
	F1-score
	SP
	NPV
	Mean accuracy
	SD
	Range
	Accuracy
	Sensitivity
	Precision
	F1-score
	SP
	NPV

	Logistic regression
	0.89
	0.044
	0.83–0.95
	0.92
	0.75
	0.50
	0.60
	0.93
	0.98
	0.91
	0.035
	0.84–0.97
	0.92
	0.75
	0.53
	0.62
	0.94
	0.98

	Linear SVM
	0.89
	0.040
	0.81–0.95
	0.93
	0.75
	0.56
	0.64
	0.95
	0.98
	0.91
	0.032
	0.86–0.97
	0.94
	0.67
	0.67
	0.67
	0.97
	0.97

	RBF-Kernel SVM
	0.90
	0.028
	0.85–0.95
	0.92
	0.33
	0.50
	0.40
	0.97
	0.94
	0.90
	0.030
	0.86–0.97
	0.94
	0.33
	0.80
	0.47
	0.99
	0.94

	Random forest
	0.92
	0.032
	0.86–0.97
	0.97
	0.75
	0.90
	0.81
	0.99
	0.98
	0.92
	0.032
	0.86–0.97
	0.94
	0.42
	0.83
	0.56
	0.99
	0.95

	Decision tree
	0.91
	0.040
	0.83–0.97
	0.95
	0.75
	0.69
	0.72
	0.97
	0.98
	0.88
	0.038
	0.83–0.97
	0.92
	0.42
	0.56
	0.48
	0.97
	0.95


SD standard deviation, SP specificity, NPV negative predictive value, SVM support vector machines, RBF—radial basis function
Values in bold represent the best-performing algorithm in each group




Linear SVM
Similar mean accuracies were obtained for all models with the 26-parameter SMOTE model being the most consistent across the ten cross-validation folds (A detailed description of the external validation cohorts is presented in Table 2 and Additional file 1: Table S2). The 26-parameter models had better accuracy and F1 scores than models trained with 15 features, and the 26-parameter ADASYN model had the best accuracy and F1 score of 0.95 and 0.70, and a sensitivity of 0.67 following testing.

RBF-Kernel SVM
All six models had excellent average accuracy on training, however, the 15-parameter ADASYN model was the most stable (Additional file 1: Table S2). Models with 26 features were slightly better than those with 15 features and lower performances were observed irrespective of the class imbalance technique implemented (Tables 3, 4, 5). Overall, the 26-parameter SMOTE model had the best accuracy and F1-score of 0.92 and 0.52 upon testing; although, the sensitivity of this model on the test set was 0.50.

Random forest
Irrespective of the class imbalance resampling used, the 26-feature model had equal or better mean training accuracy and was more stable than the models with 15 features (Tables 2, 3, 4). However, the 26-parameter balanced class weight model outperformed all other algorithms on the test dataset with accuracy, F1 score, and sensitivity of 0.97, 0.81, and 0.75 respectively.

Decision tree
The mean accuracies of the 15-feature models were higher than the 26-feature models for models trained with synthetic oversampling (Tables 3, 4). However, the 26-feature model had better mean training accuracy when class weight assignment was used (Table 5). The 15-feature ADASYN model was the most stable across the validation folds (Additional file 1: Table S2). Following testing, the 26-parameter models based on ADASYN and class weight distribution both outperformed other models with similar accuracy, F1 score, and sensitivity of 0.95, 0.72, and 0.75 respectively.

Gradient boosting
Mean accuracies on training followed the same trend based on the type of imbalance technique, although, the accuracy of the 26-parameter models was higher and stable generally (Tables 3, 4). Upon evaluation with the test dataset, the 26-parameter model with ADASYN technique had the best accuracy and F1 score of 0.95 and 0.70 with a sensitivity of 0.67.

kNN
While the 15-parameter ADASYN had the highest mean accuracy for the models during training, the 26-parameter SMOTE model was most stable across the folds (Additional file 1: Table S2). Models with 26 and 15 features based on SMOTE-resampled training data had similar accuracy, F1 score, and sensitivity of 0.87, 0.35, and 0.42 which was better than both ADASYN-resampled models upon evaluation with the test dataset (Tables 3, 4).

MLP-BP
The 15-parameter SMOTE model had the highest accuracy on the training dataset and the most stable performance estimates across the cross-validation folds (Tables 3, 4). On evaluation with the test dataset, the 26-parameter SMOTE model had the best accuracy, F1 score, and sensitivity of 0.94, 0.67, and 0.75.

Linear discriminant analysis
Irrespective of the class imbalance method, the 26-parameter model had a higher mean accuracy than the 15-parameter model on the training dataset and the SMOTE-resampled models were generally more stable (Tables 3, 4). The 26-parameter ADASYN model performed best with an accuracy, F1 score, and sensitivity of 0.93, 0.58, and 0.58 respectively following model testing.


Comparison of model performance upon testing
Testing performances of these trained models are also presented in Tables 3, 4, 5. For all algorithms, the 26-parameter SMOTE models had better stability across the cross-validation folds (Additional file 1: Table S2). However, the 15-parameter RBF-kernel SVM model based on ADASYN resampling had the lowest coefficient of variation and best stability of any model upon comparing the mean training accuracies. Also, according to the F1 scores, for models using synthetic class imbalance correction, those based on ADASYN had better mean F1 scores than those based on SMOTE (Additional file 1: Table S3). Likewise, irrespective of class imbalance, the 26-parameter models had better mean F1 scores than the 15-parameter models.
Overall, for the models with 26 predictors, the weighted random forest model outperformed other models with an F1 score, sensitivity, precision, and accuracy of 0.81, 0.75, 0.90, and 0.97 respectively (Table 5). Also, this model was better than all others irrespective of the number of variables or class resampling technique. For the 15-parameter models, both random forest with SMOTE (F1-score: 0.70, sensitivity: 0.58, accuracy: 0.96) and gradient boosting with ADASYN (F1-score: 0.69, sensitivity: 0.75, accuracy: 0.94) had similar performances that bested other models (Table 4). However, based on the prioritization of sensitivity over precision for models with similar F1 scores, the gradient boosting with ADASYN resampling had the best performance for the 15 feature models in this study.

External validation of the two best models using prospective Hong Kong patients
We assessed the performance of the two outperforming models (weighted random forest for 26 predictors and gradient boosting-ADASYN model for 15 variables) using 58 consecutive Hong Kong patients with oral leukoplakia and oral lichenoid mucositis. For all patients, both models had perfect sensitivity (1.00) for predicting malignant transformation as of the last date of follow-up (December 31, 2021) and both displayed satisfactory yet comparable predictive accuracies. Both risk models for oral leukoplakia and oral lichenoid mucositis achieved similar AUC, accuracy, specificity, and F1 score of 0.94, 0.90, 0.88, and 0.67 respectively.
Explainability using global SHAP values for both 26 and 15 feature models is presented in Figs. 4, 5. For the weighted random forest model, epithelial dysplasia at diagnosis and follow-up, tongue lesions, number of lesions, and occurrence of recurrent lesions were the five most important features contributing to the predicted output. Likewise, for the gradient boosting-ADASYN model, buccal mucosa lesions, epithelial dysplasia at diagnosis and follow-up, type of lesions (leukoplakia vs lichenoid mucositis), and the patient’s gender were covariates that were pertinent to predicted outputs in the external validation cohort. Decision curve analysis to determine the net benefit of the predicted outputs of the models is plotted in Fig. 6. Overall, both models offered higher benefits when used for risk stratification at different threshold probabilities than if surgical intervention is performed in all patients in the external validation cohort.[image: ]
Fig. 4Global SHAP summary plot to explain the importance of the features to the model predictions of the weighted random forest model (with 26 input parameters)

[image: ]
Fig. 5Global SHAP summary plot to explain the importance of the features to the model predictions of the gradient boosting-ADASYN model (with 15 input parameters)

[image: ]
Fig. 6Decision curves indicating the net benefits of the weighted random forest model (A) and gradient boosting-ADASYN model (B) in selecting patients for intervention and close monitoring



External validation of the 15-feature model using patients from different settings
Since the malignant transformation prediction model based on 15 variables was specifically developed to be used in other areas according to the ease of data availability, we further assessed its generalizability using patients managed in Newcastle, UK (high-risk cohort) and Lagos, Nigeria for which the same variables were available. The 15-parameter gradient boosting-ADASYN risk model achieved a higher sensitivity for identifying patients with malignant transformation in these cohorts than the binary epithelial dysplasia grading system (0.96 vs 0.82). However, the difference in sensitivity values between the ML model and dysplasia grading did not achieve statistical significance (p = 0.250).

Web deployment
The data frame web-based deployment of both risk models according to 26 predictors (weighted random forest) and 15 predictors (gradient boosting-ADASYN can be found at https://​wrf-26.​herokuapp.​com and https://​mtp-gb-a-15.​herokuapp.​com. The templates for input parameters and coding of variables have been included in Additional file 2 (for 26 features) and Additional file 3 (for 15 features). Predicted outputs are given as high risk (1) and low risk (0) for malignant transformation. Further, the interactive web applications of the models to enable day-to-day validation are available at https://​opmd-predict-facdent-hku.​herokuapp.​com and https://​opmd-predict-facdent-hku-26.​herokuapp.​com which also includes the predicted class probabilities.


Discussion
Predicting the malignant transformation of oral leukoplakia and oral lichenoid mucositis often pose a conundrum to clinicians especially in non-specialist centers and resource-limited settings [10]. Adjunctive decision-making and risk stratification platforms that could predict cancer occurrence in OPMDs with good sensitivity and precision would prove to be substantive assets in contemporary clinical practice. Machine learning represents one of the most advanced and sophisticated methods for developing such tools leading to the objective of this study to compare different models and select the most promising ones for further optimization.
Generally, this study found that machine learning models with 26 variables performed better than those with 15 variables in sensitivity and precision. This alludes to the ability of clinical factors such as risk factor category, clinical history of comorbidities, viral hepatitis status, number of lesions, and presence of induration which were included in the 26-feature models to better delineate high and low-risks patients with oral leukoplakia and oral lichenoid mucositis when they are available. Notably, the performance of the machine learning models was found to vary with the method of class imbalance correction as those employing ADASYN obtained better F1-scores than SMOTE irrespective of the number of variables or the type of machine learning algorithm employed. This supports the notion of a potential increase in model performance that may be offered by ADASYN over SMOTE since it focuses on instances that are difficult to classify [50]. Nonetheless, we maintain that this is likely to vary with the type of machine learning classifier used [51].
This study developed two models based random forest and gradient boosting algorithms which were the outperformers to predict the malignant transformation of oral leukoplakia and oral lichenoid mucositis. In this study, these models were selected for achieving a satisfactory sensitivity (all > 75%) for patients with high risk of malignancy in the different datasets used during internal and external validation irrespective of the number of predictors available for the task. Random forest and gradient boosting are robust ensemble learning algorithms that seek to reduce the generalization error of predictions by considering decisions from different weak learners resulting in better overall performance [52, 53]. The performance of these algorithms for producing better predictive models for oral cavity cancer outcomes (such as locoregional recurrence) has been previously reported by our group and others which supports the findings of this study [23, 39, 54–56].
To date, three models for predicting the malignant transformation of OPMDs have been proposed [55, 57, 58] none of which have resulted from a comprehensive model comparison experiments, internal/external validation, or utilized predictive features available at different point-of-care centers [57]. Comparing all tools proposed, the best-performing models in this study had better sensitivity on internal and even external validation. Furthermore, we obtained better overall performance for the developed models in this study when compared to the few nomograms proposed to stratify the risk of cancer occurrence in patients with OPMDs [21, 22]. One of such nomograms (Newcastle nomogram) was developed with a similar dataset with that used for external validation in this study and our models displayed better sensitivity for identifying patients with high risk of malignant transformation [22]. Also, the outperforming machine learning models had better sensitivity than reported for the WHO dysplasia grading system or binary epithelial dysplasia grading system in predicting the risk of malignant transformation in different OPMDs [16, 17, 42]

Limitations
The main limitation in the implementation of the models developed and validated in this study is their moderate precision. However, the high sensitivity achieved on external validation indicates that they are indeed better suited to risk stratification for better clinical judgment currently than the incontrovertible prediction that some white lesions will develop malignancies. To improve the precision, we suggest the inclusion of other cytologic or molecular-based features which may further indicate malignant outcomes among clinically high-risk patients with high-grade dysplasia in future endeavors [18, 59, 60]. Furthermore, the models were developed using a retrospective dataset that was not purposeful for training the algorithms. However, the data was collected from electronic records linked across different specialties and clinics involved in the management of oral precancer and correlated across multiple platforms and visits to ensure correct imputation. Likewise, our generalizability assessments of these models are only incipient and solely to assess the potential utility of these models in cases from other centers. Hopefully, the availability of web platforms based on the malignant transformation risk models constructed in this study will encourage further external validation and impact assessment in other populations using randomized controlled trial designs [61] before routine implementation at various general and oncological practices in specialist and remote centers.

Conclusions
Overall, this study found that machine learning-based models have satisfactory sensitivity and accuracy in identifying patients with oral leukoplakia and oral lichenoid mucositis that are at risk of malignant transformation. Tree-based algorithms (gradient boosting and random forest) performed best and were used to develop two promising models based on 15 and 26 features respectively. Although not statistically significant, the 15-parameter gradient boosting model had a higher sensitivity than the binary epithelial dysplasia grading system. Furthermore, this study provided proof-of-concept that demographic, clinicopathological, and treatment information obtainable from electronic health records are useful for predicting the risk of malignant transformation of oral leukoplakia and oral lichenoid mucositis as a binary outcome. The models were deployed as web-based platforms to encourage further external validation and serve as tools for future research to determine their impact in the management of patients with oral leukoplakia and oral lichenoid mucositis.
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