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Abstract
Data are often correlated in real-world datasets. Existing data privacy algorithms did not consider data correlation an inherent property of datasets. This data correlation caused privacy leakages that most researchers left unnoticed. Such privacy leakages are often caused by homogeneity, background knowledge, and linkage attacks, and the probability of such attacks increases with the magnitude of correlation among data. This problem further got magnified by the large size of real-world datasets, and we refer to these large datasets as ’Big Data.’ Several researchers proposed algorithms using machine learning models, correlation analysis, and data privacy algorithms to prevent privacy leakages due to correlation in large-sized data. The current proposed work first analyses the correlation among data. We studied the Mutual Information Correlation analysis technique and the distance correlation analysis technique for data correlation analysis. We found out distance correlation analysis technique to be more accurate for high-dimensional data. It then divides the data into blocks using the correlation computed earlier and applies the differential privacy algorithm to ensure the data privacy expectations. The results are derived based upon multiple parameters such as data utility, mean average error, variation with data size, and privacy budget values. The results showed that the proposed methodology provides better data utility when compared to the works of other researchers. Also, the data privacy commitments offered by the proposed method are comparable to the other results. Thus, the proposed methodology gives a better data utility while maintaining the required data privacy commitments.
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Introduction
The massive generation of data from our day-to-day life has led to large, voluminous, and heterogeneous data getting produced daily. Due to this reason, the real-world datasets are primarily large and possess high dimensionality. The traditional privacy algorithms are no longer sufficient to ensure the privacy of large-sized datasets, especially when data is highly correlated [1, 2]. Hence many researchers are working towards producing algorithms that can take care of these challenges. Our previous work [4] gave a detailed description of all the works of global researchers who shed light on this issue and proposed solutions to deal with it. Among all the other pieces, we identified the work presented in [5] by authors Lv et al. as the most potential one and extended our research in the same direction. This paper presents a solution using Distance Correlation Analysis Technique and showcases our results. We compared our results with the results of [5] and subsequently established the supremacy of our method.
Data privacy protection
Data privacy has been a topic of concern for a long time. The concern grew among researchers with the data’s increase in size and dimensionality. The classical data privacy algorithms are k-anonymity [6, 7], l-diversity [7, 8], t-closeness [9] and differential privacy [10, 11]. Figure 1 briefly describes the traditional data privacy algorithms. Most of the research regarding data privacy primarily revolves around DP. It is due to its widespread use in this field. Researchers have observed and studied many threats to data privacy over the years. Among them, the existence of data correlation within the data is one of the potential causes of privacy leakages [12–14].[image: ]
Fig. 1Pros and cons of classical data privacy algorithms


Initial research around data privacy ignored data correlation and considered data as IID. A piece of data is said to be IID, i.e., Independent and Identically Distributed, when it does not hold any relation with other data of the dataset and its distribution is identical throughout the dataset. In other words, there exists no correlation among data within the dataset. But suppose a correlation exists among such data and during the application of data privacy algorithms. In that case, if it gets ignored, then such assumptions can lead to potential privacy leakages [5, 15, 16]. This threat increases with the size and dimensionality of data. Hence, one can conclude that data correlation is a more significant threat to big data [17]. Big data privacy often gets compromised by ignoring the data correlation within the data.
The work presented in this research paper outlines all the related results where data correlation threatens data privacy and big data privacy. This work also suggests a methodology to deal with the mentioned problem. The proposed approach initially offers to realize the correlation amongst data using the Distance Correlation analysis method. Then, using this correlation as a parameter, clustering is performed over the dataset and divided into blocks. After that, data sensitivity gets calculated concerning the individual blocks instead of Global Sensitivity (GS). The last step is to use the calculated sensitivity to apply differential privacy for the data blocks. The Distance correlation analysis method applied at the first step ensures proper recognition and consideration of data correlation in the big dataset. The divide and conquer approach is adopted to handle the high dimensionality of the data. Calculating sensitivity ensures that noise of lower magnitude gets added to increase the data utility. The Pyspark technology is adopted to manage the processing of big data. Finally, we compare the observations extracted from the performed experiment with the results of [5] to establish its effectiveness.

Data privacy and data utility
Data utility means that we should maintain the availability of the data when conducting privacy preservation [18]. More clearly, data utility means the ease of using noisy data for data mining and other analysis, maintaining the correctness and accuracy of the analytical result drawn from the noisy data [18]. The most common metric to measure data utility is Information Loss. The more the information loss, the less the utility of data [18]. Data privacy also has a relationship with data utility. The privacy performance of the data decreases with the increase in data utility, and it creates a trade-off between data utility and data privacy. Figure 2 is a graphical representation of the same. To plot the graph between data privacy and data utility, we have calculated data privacy as the number of attributes that has been anonymized and to calculate data utility we have used Information Gain. In the presented work, we aim to provide enhanced data utility while maintaining the required data privacy levels. Thus, the measurement of data utility is crucial for the proposed methodology.[image: ]
Fig. 2Data utility and data privacy trade off



Data correlation and data privacy
Before 2011, when researchers talked about data privacy algorithms, they considered that there existed no correlation among data. But soon, in 2011, researchers started studying the potential of data correlation as a privacy threat to data and have given enough instances to support it [4]. Many privacy leakages became evident with the existence of data correlation among data. The privacy leakages were caused due to the homogeneity attack, background knowledge attack, and linkage attack. The main contributing factor to these attacks was unnoticed data correlation. If one ignored the existence of data correlation, these privacy leakages would also go unnoticed and cause a reduction in the privacy commitments of the data privacy algorithms. The pioneer in this was Gehrke et al. [19], who considered the case of social networks where users and their data are highly correlated, and even the strong privacy guarantee provided by Differential Privacy could not assure privacy for Social Network settings. Then in the subsequent years, researchers worked over the same lines and with various data to study the privacy threats associated with data correlation and proposed solutions. Table 2 gives a summary of all such works. Also, the following section provides a deeper insight into the same.
Another problem associated with the existence of data correlation is sensitivity. Correlated data causes a higher value of sensitivity of the data. While applying differential privacy algorithm, a higher sensitivity value will cause higher noise to be added to the original data. It adversely affects the data utility and causes its reduction. This is an undesirable effect and may render the privatized data useless.

Correlated big data privacy
As stated initially, data correlation poses a big threat to data privacy, and it causes privacy leakages that go unnoticed and causes unexpected compromises in data privacy. The real-world datasets are often large and accompanied by high dimensionality, which in turn causes high data correlation [4], which causes a potential threat to big data privacy. Given the massive amount of data and the combination of structured and unstructured data, some new Big Data models are a need to improve privacy and protection [4].

Organisation of the paper
This paper suggests a mechanism that deals with three main problems—Processing high dimensional big datasets, ensuring privacy protection of correlated data while using DP as the main privacy algorithm, and maintaining data utility while enhancing data privacy. The organization of the remaining paper is as follows: “Literature review” section presents a brief literature review of the topic. “Basic principles and theories” section gives a short description of the basic principles and theories used. Whereas “Proposed methodology” section discusses the proposed solution for the privacy protection of correlated big data and submits the model algorithm to implement it. “Experiment and analysis” section describes the performed experiments and presents the analysis and results. Then the paper finally concludes. Table 1 provides a list of abbreviations used in this work.Table 1List of abbreviations


	S. no.
	Abbreviation
	Meaning

	1
	DP
	Differential privacy

	2
	IID
	Independent and identically distributed

	3
	GS
	Global sensitivity

	4
	PM
	Pufferfish mechanism

	5
	MIC
	Mutual information correlation

	6
	LM
	Laplace mechanism

	7
	DCov
	Distance covariance

	8
	DCor
	Distance correlation

	9
	DVar
	Distance variance

	10
	MAE
	Mean average error

	11
	CIS
	Coupled item similarity






Literature review
Differential privacy provides very robust privacy protection for data. It is dependent on pure mathematical theories. Researchers from 2011 have studied the potential of data correlation as a privacy threat to data and have given enough instances to support it [4]. Gehrke et al. [19], in the year 2011, considered the case of social networks where users and their data are highly correlated, and even the strong privacy guarantee provided by Differential Privacy could not assure privacy for Social Network settings. Kifer et al. [13] in 2011 gave initial arguments that the consideration of correlation between records is pivotal as the correlation between records or attributes can substantially decrease the privacy guarantee provided by any algorithm. Those mentioned above were the initial attempts to formalize Data Correlation as a general phenomenon for real-time datasets. These are considered pioneers in realizing the existence of data correlation in datasets and its potential as a privacy threat. Kifer et al. [21], in their successive work in the year 2014, proposed a privacy mechanism called Pufferfish. The mechanism helped develop privacy definitions for different data-sharing needs, studied existing privacy definitions, studied privacy compromise due to non-independent data records, and several other critical issues in terms of privacy. Since then, Yang et al. [22] in 2015, Wang et al. [23], Chen et al. [24] in 2017 proposed some solutions to it using Bayesian Networks, [21–24] proposed solutions using Probabilistic Models, Cao et al. in 2012 [25] and 2013 [26] proposed solutions using Behavioural and Similarity Analysis, Chen et al. [27] in 2013, and Liu et al. [15] in the year 2016 proposed modified perturbation mechanisms, Authors Kumar et al. [17] in 2018 have tried to offer solutions using Statistical Correlation Analysis Method, Lv et al. [5] in 2019 and Zhao et al. [15] proposed modifications to the DP algorithm, and the authors of [16, 28, 29] present the recent advancements regarding the same. Table 2 summarizes the notable works done by previous researchers and throws light on the limitations of the approaches proposed by them.
Among the discussed works, [5] is the most relevant to the proposed work. In [5], authors Lv et al. studied the data correlation among the dataset and then utilized the same to assure data privacy of the dataset using differential privacy. The main shortcomings of this paper were—(i) the Use of the Mutual Information Correlation analysis technique to calculate the data correlation among data, (ii) Its inefficiency in handling voluminous and high dimensional data, i.e., Big Data, (iii) Very few parameters were used for evaluation of the solution. In the presented work, we have proposed solutions to the shortcomings of [5].For the same, we used the Distance Correlation analysis method as it could handle high dimensional data. PySpark technology and the divide and conquer approach supported big data processing. We used parameters such as data utility, mean average error, information loss, variation with data size, and privacy budget values to evaluate the proposed method.Table 2Proposed solutions


	S. no.
	Privacy measure
	Definition
	Limitations

	1
	Pufferfish mechanism [21]
	Formed strong foundation for other similar research
	Could not satisfy differential privacy guarantee

	2
	Coupled behavior analysis (CBA) [25]
	Good experimental results were obtained on real datasets
	It does not furnish expected results for high dimensional data, other challenges of CBA are yet to be explored

	3
	CBA-HG and CBA-HC [31]
	Experimental comparison showed that CBA-HG outperformed the mechanisms of [25]
	Applicability on other datasets with different couplings is uncertain

	4
	Coupled item similarity (CIS) [26]
	Proposed an effective mechanism to measure the non-IIDness
	No solution to deal with the non-IIDness was proposed, without mentioning non-IIDness of data adversely affecting data privacy

	5
	Modified sensitivity calculation [27]
	Multiplication of global sensitivity with the no. of correlated records for correlated datasets.
	Data utility got highly degraded

	6
	Correlated sensitivity [12]
	Noise reduced by an enormous amount and greater data utility as compared to [27]
	Few parameters held trade-off with utility

	7
	Bayesian differential privacy [22]
	Mechanism provided privacy for correlated data and against an adversary with partial background knowledge
	Prior knowledge of probabilistic relationships is not possible

	8
	Dependent differential privacy [15]
	High accuracy achieved
	The estimation of value of [image: $$\rho _{ij}$$] is the key challenge

	9
	Pufferfish Wasserstein distance mechanism [6]
	Mathematically proved the unnecessity to consider the correlation of distant nodes
	When compared to the results of [17], it performed slightly worse for a particular range of values

	10
	Identity differential privacy [7]
	Mechanism concluded that concepts of Information Theory are well suited to model the problems of dependent data in differential privacy
	Practical implementation is not suggested as other privacy leakages were not studied

	11
	Bayesian network perturbation mechanism [8]
	Proposed perturbation mechanism provided a decreased privacy budget and increased data utility
	The requirement of modeling the Bayesian Network in advance may not be practically feasible

	12
	Statistical correlation analysis [9]
	Enhanced accuracy by using correlation analysis techniques
	The correlation analysis techniques and feature selection techniques used were not good enough to study complex relationships

	13
	Correlated differential privacy of big data publication [10]
	Proposed use of Divide and conquer approach along with machine learning, Used correlated big datasets
	Traditional correlation analysis technique used could not handle high dimensional data

	14
	Dependent differential privacy [13]
	Proposed DDP and proved mathematically how it can be derived from DP
	Lacks practical implementation

	15
	Temporal privacy leakage [14]
	Temporal correlation along with the study of the relationship between data privacy and data utility
	Other correlation models were not studied for temporal leakages

	16
	Weighted hierarchical graph mechanism [16]
	Mechanism offers privacy guarantee in case of negative correlation as well
	Not applicable to nonlinear queries

	17
	Temporal correlation mechanism [28]
	Proposed w-event privacy using DP for location statistics and provided results regarding data utility
	Correlation between other values was not studied

	18
	Bayesian DP with Gaussian correlation model [29]
	Proposed Bayesian DP model which used Gaussian correlation model to study data correlation
	Approximation of accurate probabilistic values is a challenge

	19
	Social network data privacy analysis [30]
	Analysed data privacy leakages in social network data using single and cross social extrapolation
	They did not provide any solution framework for the problem





Basic principles and theories
Differential privacy definition
The foundation of the differential privacy mechanism is based on the concept of adjacent data sets. Let’s consider two datasets, [image: $$D_1$$] and [image: $$D_2$$], which differ in one record, denoted by [image: $$\mid D_1 \Delta D_2 \mid = 1$$]; then these datasets are termed as adjacent datasets. The conventional definition of Differential Privacy is as follows—Suppose [image: $$D_1$$] and [image: $$D_2$$] are adjacent datasets, A is a privacy mechanism and if A satisfies [image: $$\epsilon$$] -differential privacy for any output [image: $$A(D_1)$$] [image: $$\rightarrow$$] R, S [image: $$\in$$] R, then[image: $$\begin{aligned} Pr[A(D_1) \in S] \le e^{\epsilon } Pr[A(D_2) \in S] \end{aligned}$$]

 (1)


Often, such privacy mechanisms are realized using global sensitivity (GS). It is the measure of change in other records due to modification of another record. Let [image: $$D_1$$] and [image: $$D_2$$] be adjacent datasets; the global sensitivity can be defined as follow:[image: $$\begin{aligned} GS = max_{D_1,D_2} ||f(D_1)-f(D_2)||_1 \end{aligned}$$]

 (2)


where f is the query function, [image: $$||.||_1$$] is the L1-norm.
The differential privacy can be realized by adding noise ‘e’ to the output.[image: $$\begin{aligned} A(D) = f(D)+ e \end{aligned}$$]

 (3)




Definition of laplace mechanism
The Laplace mechanism will compute the function and perturb each coordinate with noise drawn from the LM distribution [32]. The noise scale will get adjusted to the sensitivity of the function (divided by [image: $$\epsilon$$]). LM is used when the output is numerical [32].
Given the query function f and dataset D and the parameter [image: $$\epsilon$$], the Laplace mechanism A satisfies the following equation:[image: $$\begin{aligned} A(D) = f(D) + Laplace\left( \frac{GS}{\epsilon }\right) \end{aligned}$$]

 (4)


where [image: $$Laplace\left( \frac{GS}{\epsilon }\right)$$] is Laplace distribution, and parameter [image: $$\epsilon$$] is called privacy budget. In practical applications, the inverse cumulative distribution function usually realizes the noise e.

Distance correlation
In the world of statistics, distance correlation means a measure of dependence between a pair of random vectors not necessarily having equal dimensions. The coefficient value ranges from [0,1], where the distance correlation coefficient is zero if and only if the random vectors are independent. It has the power to measure both linear and non-linear associations between the pair of random vectors, whereas the Pearson correlation can only capture the linear association between them. [33] shows how distance correlation gets estimated from the given data samples. A practical inference is that, by using two matrices, one can calculate the distance correlation. One of the matrices contains the pairwise distances between observations from X, and the other matrix contains observations from Y. We say X and Y are highly correlated if the items in these matrices co-varies together; otherwise, they have a meager correlation value.
Distance covariance The equation for Pearson covariance (Cov) between X and Y is given below:[image: $$\begin{aligned} Cov(x,y) = \frac{1}{n^2}\sum _{i=1}^{n}\sum _{j=1}^{n}\frac{1}{2}(x_i-x_j)(y_i-y_j) \end{aligned}$$]

 (5)


The terms [image: $$(x_i-x_j)$$] and [image: $$(y_i -y_j)$$] can be considered as a signed distance between [image: $$i^{th}$$] and [image: $$j^{th}$$] sample in one-dimension. These have been modified to centered Euclidean distances [image: $$D(x_i, x_j)$$] in order to define distance covariance as given below:[image: $$\begin{aligned} DCov(x,y) = \frac{1}{n^2}\sum _{i=1}^{n}\sum _{j=1}^{n}D(x_i,x_j).D(y_i,y_j) \end{aligned}$$]

 (6)


Following are the properties for distance covariance: 	I.
If X and Y are independent, then DCov (X, Y) = 0

 

	II.
DCov (X, Y)[image: $$\ge$$] 0 and DCov (X, Y)[image: $$\le$$]1

 

	III.
[image: $$DCov^2(a_1 + b_1C_1 X, a_2+b_2C_2 Y) = \mid b_1 b_2\mid DCov^2(X, Y)$$] for all scalars [image: $$b_1, b_2$$], constant vectors [image: $$a_1, a_2$$] and orthonormal matrices [image: $$C_1, C_2.$$]

 

	IV.
This is also defined for random variables in different dimensions, as we can compute the distance between observations in any dimension.

 

	V.
If the random vectors [image: $$(X_1, Y_1) and (X_2, Y_2)$$] are independent then [image: $$DCov (X_1 + X_2, Y_1 + Y_2) \le DCov (X_1, Y_1) + DCov (X_2, Y_2)$$]

 



Distance variance It is a special case of distance covariance where the two variables are the same[image: $$\begin{aligned} DVar(x) = DCov(x,x) \end{aligned}$$]

 (7)


Properties of distance variance are: 	I.
DVar(X) = 0 if and only if X = E[X], where E is the Euclidean Distance.

 

	II.
DVar(X) = 0 if and only every observation is the same.

 

	III.
DVar(A+bCX) = [image: $$\mid b \mid$$] DVar(x) for all constant orthonormal matrices C, constant vectors A, and scalars B

 

	IV.
DVar(X+Y) [image: $$\le$$] DVar(X) + DVar(Y) if and only if X and Y are independent.

 



Distance correlation One can obtain it for two random variables by dividing distance covariance by the product of their distance standard deviation. It is given by:[image: $$\begin{aligned} DCor(x,y) = \frac{DCov(x,y)}{\sqrt{DVar(x)*DVar(y)}} \end{aligned}$$]

 (8)


Properties: 	I.
0[image: $$\le$$] DCor (X, Y) [image: $$\le$$] 1 for all X and Y; This is different from Pearson Correlation, where correlation can even be negative

 

	II.
DCor (X, Y) = 0 if and only if X and Y are independent

 

	III.
It defines a statistical test for dependence with a permutation test.

 





Information gain
Information gain is a popular metric that is used to measure Data Utility. It measures the amount of information that can be derived from the given dataset. To compute it, we have used Information Loss [34]. Its value ranges between 0 to 1. One can compute Information Loss using the:[image: $$\begin{aligned} Information\, Loss\, in\, each\, field\, = \frac{|(Value_{original} - Value_{modified})|}{(Value_{original} + Value_{modified})} \end{aligned}$$]

 (9)


where [image: $$Value_{original}$$] is the original value of the attribute and [image: $$Value_{modified}$$] is the attribute’s value after applying the final methodology. Information Gain gets calculated by complementing the value of Information Loss [34].[image: $$\begin{aligned} Information\, Gain\, of\, each\, field\, = (1 - Information\,Loss) \end{aligned}$$]

 (10)





Proposed methodology
As per the literature review and detailed research on the topic, one can extract the following: 	1.
Data Correlation must be studied, analyzed, and considered to ensure data privacy needs of data. When left unnoticed, these can cause severe privacy leakages, which may lead to the degradation of the privacy commitments of the applied data privacy algorithm.

 

	2.
When there is an increase in the volume, size, and dimensionality of data, the correlation among data also increases. Either the number of correlated data gets increased, or the magnitude of data correlation increases. In some cases, both may happen. Thus, correlated big data has great potential for data privacy leakages.

 

	3.
The implementation of differential privacy mechanism usually consumes too many computing resources and a privacy budget. This problem further gets magnified when the data is big data.

 

	4.
The increasing magnitude of data correlation, size, and dimensionality of data causes an increase in the overall sensitivity of data. Increased sensitivity will result in the addition of larger noise when applying differential privacy algorithm. Consequently, this results in a highly polluted dataset that can be of very little use after data publication.

 



Based on the above observations, this paper proposes a novel mechanism to study data correlation using the Distance Correlation Analysis Method, efficiently handle big data using the divide and conquer approach and finally apply differential privacy over the correlated big dataset.[image: ]
Fig. 3Step 1 of proposed methodology

[image: ]
Fig. 4Step 2 of proposed methodology

[image: ]
Fig. 5Step 4 of proposed methodology

[image: ]
Fig. 6Step 5 of proposed methodology


The proposed mechanism can be summarised as a sequence of steps in the following manner:	Step 1—Calculation of Data Correlation—The standard approaches to study data correlation are—Statistical Methods, Mutual Information Correlation Method, and Distance Correlation Analysis Method [5]. The statistical methods of data correlation analysis could only study the linear relationship among data. The MIC could explore the non-linear relationship of data along with the linear relationship, but it was inefficient in handling high dimensional data [4, 5]. But the distance correlation analysis could efficiently handle linear, non-linear, and high dimensional data. Thus in the presented work, we have used the distance correlation analysis method to generate the Data Correlation Matrix instead of the MIC method, which was used in [5].

	Step 2—Division into smaller data blocks—The enormous size of big data leads to increased overheads. The proposed mechanism divides the data into smaller data blocks to overcome this setback. It is done using a combination of the k-means clustering algorithm and the distance correlation matrix (generated in Step 1). The k-means clustering algorithm, along with the distance correlation matrix, divides the large dataset D into multiple smaller data blocks, i.e., [image: $$D_1, D_2, \ldots , D_n$$] such that [image: $$D_1 U D_2 U\ldots U D_n = D$$]. In other words, [image: $$D_i \Delta D_j = \phi$$] where [image: $$i \ne j$$].

	Step 3—Computing Correlation Sensitivity—This paper uses the Correlation Sensitivity method proposed in [5] as it is very appropriate. Correlation sensitivity states that sensitivity must be calculated of any query f only over [image: $$D_i$$] instead of the entire dataset D. This helps reduce the noise added for distortion. It also helps to improve data utility.

	Step 4—Noise Addition—The noise gets calculated using the correlation sensitivity (as calculated in Step 3) and using the Laplace Mechanism. This step solves the problems discussed in observations 3 and 4. It is a crucial step as the working and effectiveness of the differential privacy algorithm primarily depends on the sensitivity parameter. By reducing the magnitude of noise to be added, one can increase the data utility of the protected dataset. The calculated noise is added to the record value to generate a noisy value. [image: $$\begin{aligned} \hbox {N}(\hbox {D}) = \hbox {f}(\hbox {D}) + \hbox {noise} \,(\hbox {e}) \end{aligned}$$]



 where N(D) is the noisy data, f is the query executed over data D, and noise is the noise value calculated using correlation sensitivity and the Laplace mechanism.

	Step 5—Implementing Differential Privacy—In our proposed work, we used the parallel combination of differential privacy to apply the differential privacy algorithm over the partitioned dataset. This step is a solution to reduce the overheads associated with high-dimensional datasets. This step must be applied to all the formed data blocks to ensure the overall privacy protection of the big data.



Figures 3, 4, 5, and 6 give a schematic description of the steps of the proposed methodology.[image: ]
[image: ]


Experiment and analysis
Experimental setup
The experimental platform is a laptop with Intel® Core. i5-8250U CPU @ 1.6 GHz 1.80 GHz processor, 8 GB RAM, 64-bit operating system, x64-based processor, Windows 10. We used the MIC and Distance Correlation Analysis method to calculate the correlation between the records and performed a comparative study. We can present the algorithms adopted as Algorithm 1 and 2. Then we compiled the experiments and results and implemented the methodologies using the TensorFlow environment on Google Colabotary, with 13 GB RAM and 108 GB disk. The following subsection gives a detailed description of the datasets used.Table 3Dataset description


	S. no.
	Dataset
	Attributes
	Attributes considered for experimental purpose

	1
	New-York-City trip data-green Taxi-2016
	VendorID, lpep pickup datetime, Lpep dropoff datetime, Store and fwd flag, RateCodeID, Pickup longitude, Pickup latitude, Dropoff Longitude, Dropoff latitude, Passenger count, Trip distance, Fare Amount, Extra, MTA tax, Tip amount, Tolls amount, Ehail fee, improvement surcharge, Total amount, Payment type, Trip type
	VendorID, RateCode, Pickup longitude, Pickup latitude, Dropoff Longitude, Dropoff Latitude, Passenger count, Trip distance, Fare Amount, Extra, MTA tax, Tip amount, Tolls amount, improvement surcharge, Total amount, Payment type, Trip type

	2
	Chicago Crime Data
	Id, caseNo, date, block, IUCR, Primarytype, Description, location, arrest, domestic, beat, district, ward, community area, FBIcode, xcoordinate, ycoordinate, year, updated, latitude, longitude, location
	Id, caseNo, date, block, IUCR, arrest, domestic, beat, district, community area, FBIcode, xcoordinate, ycoordinate, year, updated, latitude, longitude, location

	3
	New-York-City trip data-2013
	Store and fwd flag, rate code, Dropoff latitude, Passenger count, Trip distance, Fare amount, Extra, MTA tax, Trip amount, Tolls amount, Ehail fee, Total payment, Trip type, Pickup Longitude, Pickup Latitude, Droffoff longitude, Vendor id, pickup hour, pickup day, Pickup month, pickup year, pickup minute, Dropoff hour, Dropoff day, Dropoff month, Dropoff year, Dropoff minute
	Store and fwd flag ,rate code, Dropoff latitude, Passenger count, Trip distance, Fare amount, Extra, MTA tax, Trip amount, Tolls amount, Total payment, Pickup Longitude, Pickup Latitude, Droffoff longitude, Vendor id, pickup hour, pickup day, Pickup month, pickup year, pickup minute, Dropoff hour, Dropoff day, Dropoff month, Dropoff year, Dropoff minute





Dataset description
In the present work, we utilized the following datasets. The main reason for considering these datasets is the existence of an adequate amount of data correlation and their privacy needs. Table 3 gives brief descriptions of the datasets, and Tables 4, 5, and 6 present the statistical features of the respective datasets. During the experiments and observations, these datasets get referred to as Dataset a, Dataset b, and Dataset c. 	1.
New-York-City trip data 2016: This dataset contains 19 attributes providing information about taxi trips in 2016.

 

	2.
Chicago Crime data: This dataset contains 22 attributes providing information about crime incidents. The researchers obtained the crime data of Chicago from the city of Chicago data portal.

 

	3.
New-York-City trip data 2013: This dataset contains 26 attributes providing information about taxi trips in 2013.

 



Table 4Statistical features of the dataset a


	Features [image: $$\rightarrow$$]
	Count
	Mean
	SD
	Min
	Max

	Attributes [image: $$\downarrow$$]
	 	 	 	 	 
	VendorID
	9999
	1.8638863
	0.34292631
	1.0
	9998.0

	RateCodeID
	9999
	1.0482048
	0.4243966
	1.0
	5.0

	Pickup longitude
	9999
	− 73.899834
	1.65348802
	− 74.073845
	0.0

	Pickup latitude
	9999
	40.7194723
	0.91256991
	0.0
	40.92078

	DropOff longitude
	9999
	− 73.8976524
	1.653648802
	− 74.07387
	0.0

	DroffOff latitude
	9999
	40.72007131
	0.91274002
	0.0
	41.178898

	Passenger count
	9999
	1.4497449
	1.1375009
	0.0
	6.0

	Trip distance
	9999
	3.05243424
	2.83776974
	0.0
	61.7

	Fare amount
	9999
	12.485061506
	8.74345086
	70.0
	222.5

	Extra
	9999
	0.49219921
	0.07028614
	− 0.5
	0.5

	MTA tax
	9999
	1.1725532
	2.09252519
	0.0
	33.37

	Tip amount
	9999
	1.17255325
	2.09252194
	0.0
	58.0

	Toll amount
	9999
	0.0592209
	0.5719925
	0.0
	41.178898

	Improvement surcharge
	9999
	0.2957995
	0.03912370
	1.0
	5.0

	Total amount
	9999
	14.99873372
	9.860037110
	1.0
	229.34

	Payment type
	9999
	1.58855885
	0.51321125
	1.0
	5.0

	Trip type
	9999
	1.010601
	0.1024193
	1.0
	2.0



Table 5Statistical features of the dataset b


	Features [image: $$\rightarrow$$]
	Count
	Mean
	SD
	Min
	Max

	Attributes [image: $$\downarrow$$]
	 	 	 	 	 
	ID
	7472435
	6785755.704
	3364129.889
	1000
	9999999

	Case number
	7472431
	305161.8421
	134932.5016
	JB299184
	ZZZ199957

	Date
	7472435
	Null
	Null
	01/01/2001
	12/31/2021

	Block
	7472435
	Null
	Null
	0000X E 100 PL
	XX unknown

	IUCR
	7472435
	1124.011711
	813.08648
	0110
	9901

	Primary type
	7472435
	Null
	Null
	ARSON
	Weapons violation

	Description
	7472435
	Null
	Null
	300 and under
	WireRoom/sports

	Location desc
	7463560
	Null
	Null
	CTA L platform
	YMCA

	Arrest
	7472435
	Null
	Null
	False
	True

	Domestic
	7472435
	Null
	Null
	False
	True

	Beat
	7472435
	1187.31387
	702.93333
	0111
	2535

	District
	7472388
	11.294631
	6.9475874
	001
	16

	Ward
	6857594
	22.72791258
	13.8358939
	1
	9

	Community area
	6858956
	37.53571709
	21.540734015
	0
	9

	FBI code
	7472435
	12.1414402
	7.3373007
	01A
	26

	X co-ordinate
	7396684
	1164568.996
	16850.99545
	0
	1205119

	Y co-ordinate
	7396684
	1885737.64226
	32278.566004
	0
	1951622

	Year
	7472435
	2009.4327
	5.855461479
	2001
	2021

	Updated on
	7472435
	Null
	Null
	01/01/2007
	12/31/2021

	Latitude
	7396684
	41.84206024
	0.088805891
	36.6194463
	42.0229103

	Longitude
	7396684
	− 87.67161265
	0.06109258
	− 87.5245293
	− 91.68656568

	Location
	7396684
	Null
	Null
	19446395, − 9.
	2910333, − 8.



Table 6Statistical features of the dataset c


	Features [image: $$\rightarrow$$]
	Count
	Mean
	SD
	Min
	Max

	Attributes [image: $$\downarrow$$]
	 	 	 	 	 
	Store and Fwd flag
	7472431
	1.48811223
	0.58421322
	0.0
	1.0

	DroffOff latitude
	6857594
	40.72007131
	0.91274002
	0.0
	41.178898

	PassengerCount
	7472435
	3.222114
	2.8712441
	1.0
	6.0

	Trip distance
	7472435
	3.05243424
	2.83776974
	0.0
	68.7

	Fare amount
	7472435
	14.485061506
	9.74345086
	72.0
	254.42

	MTA tax
	7396684
	3.1725532
	2.88417522
	1.24
	58.37

	Trip amount
	7472435
	1.17255325
	2.09252194
	0.0
	58.0

	Tolls amount
	7463560
	5.44124560
	3.88891100
	0.0
	41.178898

	Total payment
	7472435
	15.99873372
	9.860037110
	5.0
	302.34

	Pickup longitude
	6857594
	− 73.899834
	1.65348802
	− 74.073845
	0.0

	Pickup latitude
	6857594
	40.7194723
	0.91256991
	0.0
	40.92078

	Drop off longitude
	6857594
	− 73.89765
	1.653648802
	− 74.07387
	0.0

	Vendor ID
	7472435
	12.1414402
	7.3373007
	01A
	26BZ

	Pickup month
	7472435
	5.4433841
	4.3200112
	1
	12

	Pickup year
	7472435
	2013
	0.2211384
	2013
	2013

	DropOff month
	7396684
	4.7770122
	4.0998411
	1
	12

	DropOff year
	7396684
	2013
	0.06109258
	2013
	2013





Analysis and results
We used data correlation analysis, epsilon values, data size, mean average error, and data utility to analyze the proposed methodology results. For ease, we have named the methodology proposed in [5] as cdp-method and the method proposed in the current work as d-method.

Data correlation
There are numerous methods to study data correlation among data. Our proposed methodology used distance correlation, and the method proposed by [5] used mutual information correlation (MIC) for the same. Figures 7 and 8 present the correlation coefficients calculated using distance correlation and mutual information correlation for Dataset a. Datasets b and c adopted the same methodology. One can observe that Distance correlation analysis can measure the data correlation better than MIC.

Epsilon values
Epsilon is an important parameter that affects differential privacy protection, also known as the Privacy Budget. The lower the value of epsilon, the higher the level of privacy protection, which lowers the utility of the data. Higher perturbation results in a higher loss of original data values, but at the same time, it provides higher privacy protection levels. The observations from the experimental analysis suggest that the proposed d-method, when compared with the cdp method [5], provides nearly equal privacy performance. We depicted the above using Fig. 11, where we compared both the methods for privacy performance using three different datasets.

Datasize
As per the traditional assumptions of differential privacy, the privacy protection levels do not vary with the amount of data. This is considered one of the advantages of differential privacy. The comparative analysis of the cdp method [5] and proposed d-method shows that both the methods have a meager impact on privacy performance with increasing data size and have nearly identical curves, as shown in Fig. 12.

Number of clusters
Figure 9 shows the variation of privacy performance epsilon with changing values of r, i.e., the number of data subsets formed from the large datasets. Observations show that a small value of r results in a more significant value of r-MAE, which results in a more unsatisfactory privacy protection performance. Nevertheless, after a threshold value of r, the value of r-MAE becomes stable, and one can obtain optimal privacy protection performance. This result is similar to the development of [5]. Hence, one can say that in terms of variation of the value of r, the proposed method is equally efficient to the cdp-method [5].[image: $$\begin{aligned} r-MAE = \sum _{i=1,\epsilon }^{r}\frac{MAE_i,_\epsilon }{r} \end{aligned}$$]

 (11)




Data utility
Data utility and Data Privacy have an inherent trade-off nature. So when we see an incline in the data utility, it implies a decline in data privacy and vice versa. Due to this, the measurement of data utility becomes very important. Various metrics have been used to measure the data utility, which measures the data privacy level. We have used information gain as the metric for measuring data utility. The more the information gained more is the data utility. Table 7 states the information gain values of different clusters using the cdp-method [5] and d-method, respectively. Also, Fig. 10 is the same graphical representation. After comparison of data utility values between the cdp-method [5] and the d-method, we observed that the d-method incurs greater Information Gain values for all the clusters implying a better data utility. Then both the methods are compared against the conventional Differential Privacy Algorithm, and one can observe that the conventional DP provides the least data utility, followed by the cdp-method [5]. The d-method offers the highest Data Utility. Table 8 depicts these values.
Table 7Information gain values for different clusters using cdp-method [5] and the proposed d-method


	Cluster no.
	Dataset a
	Dataset b
	Dataset c

	Info gain values using cdp-method
	Info gain values using d-method
	Info gain values using cdp-method
	Info gain values using d-method
	Info gain values using cdp-method
	Info gain values using d-method

	Cluster 1
	0.0
	0.163
	0.038
	0.144
	0.019
	0.078

	Cluster 2
	0.020
	1.0
	0.055
	0.312
	0.176
	0.221

	Cluster 3
	0.026
	0.149
	0.070
	0.971
	0.036
	0.349

	Cluster 4
	0.039
	0.731
	0.085
	0.712
	0.069
	0.918

	Cluster 5
	0.084
	0.096
	0.091
	0.196
	0.088
	0.159


The values are normalised for easy interpretation


Table 8Information gain values for conventional DP, cdp-method [5] and d-method


	Info gain values when using Conventional DP
	Info gain values when using cdp-method
	Info gain values when using d-method

	0.00
	0.313
	1.00


The values are normalised for easy interpretation



[image: ]
Fig. 7Distance correlation matrix

[image: ]
Fig. 8MIC correlation matrix

[image: ]
Fig. 9Epsilon versus r-MAE trend for the different datasets

[image: ]
Fig. 10Information gain values for cdp method [5] versus proposed d method

[image: ]
Fig. 11Epsilon versus MAE Trend for the different datasets

[image: ]
Fig. 12Datasize versus MAE trend for the different datasets




Conclusion
The experimental analysis showed satisfactory results of the proposed mechanism. This paper initially studied how the existence of correlation among data can adversely affect the privacy guarantees of any privacy algorithms. We looked at the above with the help of an extensive literature survey and other experimental analyses. One can observe a noticeable difference when data were clustered: (i) on a general basis and (ii) based on the existing correlation. The clusters formed were very different for the two cases. It further strengthens the notion that correlation dramatically impacts how data gets interpreted and is considered for privacy mechanisms. The proposed mechanism used the distance correlation analysis technique to study the correlation among data in real-world datasets. This correlation analysis technique is selected because it can handle high-dimension, linear, and non-linear data, as most real-world datasets are high-dimensional and non-linear by nature. To address the large size of the real-world dataset, the proposed mechanism has used the cdp-method, i.e., the divide and conquer approach, further combined with the parallel combination of Differential Privacy Protection Mechanism and PySpark technology to ensure the privacy of data. Results showed that the distance correlation analysis method is better than the MIC method in correlation analysis and data utility. Other results were similar to the results of the cdp-method, which proved that the proposed methodology provides better data utility while maintaining the data privacy levels offered by the cdp-method. We can shortly summarize these observations as the following: 	1.
This paper studied the adverse effect of data correlation in real-world datasets.

 

	2.
We used the distance correlation analysis technique to study the correlation among data. It could efficiently handle high-dimensional data, unlike the traditional MIC analysis method.

 

	3.
Divide and conquer methodology is used to handle the big dataset, and a parallel combination of Differential Privacy Mechanism ensures privacy protection for the entire dataset. This is similar to the cdp-method.

 

	4.
Experimental results showed that distance correlation offered the required privacy protection of correlated data and maximum data utility. [image: $$\begin{aligned} DataUtility(Conventional DP)&lt; DataUtility(cdp-method) &lt; DataUtility(d-method) \end{aligned}$$]





 

	5.
The proposed work utilized the big data framework, ‘PySpark,’ to handle Big Data efficiently. The researchers of the cdp-method used no such technology.
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Algorithm 2 Clustering Algorithm

1: Input: Given a large dataset D containing n records and p features, i.e., D of size n*p

2: Output: B dataset containing k independent blocks from dataset D

3: CLUSTERINGALGORITHM()

4 Initialize k randomly chosen records from D as initial cluster centers.

5: Choose a clustering algorithm.

6: Choose distance evaluation metric for clustering algorithm i.e. MIC or distance correlation
7 Choose number of iterations as a stopping criterion.

8: D =ry,r2, 73, Tiy...7n|1 < i < n, where r; is a record of length p.

9: InitialCentroid = c1,c2,......ck|]1 <k <n
10: Repeat till given number of iterations
11: fori=1,2,3,.....,ndo
12: forj=1,2,...,.kdo
13: dist = DistanceEvaluationMetric(D[i], InitialCentroid]i])
14: Assign the record to the cluster where the distance has the maximum value
15: Calculate the mean of each cluster, update the centroid of a cluster with the cluster’s

mean.

16: Group all the records based on clusters and form a new dataset B.
17: Output is new Dataset B with k independent blocks, B = dj,d2,ds,...,d;, where

d1Ud2Uds. .. ... Udy, =D
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Algorithm 1 Algorithm to compute Distance Correlation

LN RWNH

: DISTANCECORRELATION(X,Y)

Inputs to the algorithm are two two dimensional arrays X and Y
(They will have dimension = (n*m)*2)

: if No.OfRows(X) == No.OfRows(Y) then

Proceed to next step
else
Raise Error

. end if

N = No. of rows(X)

: Store the matrix in variable a, a = pairwiseDistance(X)
: Store the matrix in variable b, b = pairwiseDistance(Y)

nn n_n n_n

: A = a—mean of "a” along column — mean of "a" along row + mean of complete "a
: B = b - mean of "b" along column — mean of "b"” along row + mean of complete "b"
: DCov24y = sum(A xB)/(n % n)

: DCov2xx = sum(A x A)/(n *n)

: DCov2yy =sum(B xB)/(n * n)

: DCor = v (DCov2xy)

\/(\/(DCOVZXX*DCov2yy))

: Return DCor





