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Abstract
Occupational data mining and analysis is an important task in understanding today’s industry and job market. Various machine learning techniques are proposed and gradually deployed to improve companies’ operations for upstream tasks, such as employee churn prediction, career trajectory modelling and automated interview. Job titles analysis and embedding, as the fundamental building blocks, are crucial upstream tasks to address these occupational data mining and analysis problems. A relevant occupational job title dataset is required to accomplish these tasks and towards that effort, we present the Industrial and Professional Occupations Dataset (IPOD). The IPOD dataset contains over 475,073 job titles based on 192,295 user profiles from a major professional networking site. To further facilitate these applications of occupational data mining and analysis, we propose Title2vec, a contextual job title vector representation using a bidirectional Language Model approach. To demonstrate the effectiveness of Title2vec, we also define an occupational Named Entity Recognition (NER) task and proposed two methods based on Conditional Random Fields (CRF) and bidirectional Long Short-Term Memory with CRF (LSTM-CRF). Using a large occupational job title dataset, experimental results show that both CRF and LSTM-CRF outperform human and baselines in both exact-match accuracy and F1 scores. The dataset and pre-trained embeddings have been made publicly available at https://​www.​github.​com/​junhua/​ipod.
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Introduction
There is a growing interest in occupational data mining and analysis tasks in recent years, especially with the rapid digitization of today’s economy and jobs. Furthermore, the advancement of AI and robotics are changing every industry and every sector, drastically altering the employment modes of the work force, especially those with high levels of repetition. Occupational data mining and analysis is also an important research area, which has spurred numerous works in related topics such as employee churn prediction [1–3], professional career trajectory modelling [4, 5] and predicting employee behaviors with various factors [6, 7], among others.
An important requirement for occupational data mining and analysis is the need for an occupation-related dataset to perform these tasks. Such a dataset could be collected from professional networking sites, derived from online resumes or other sources. While there has been research on these topics, a majority of the datasets used in these earlier research are not publicly available, which further impeds future research in this area. To address this limitation, we present the Industrial and Professional Occupation Dataset (IPOD), which is a publicly available dataset that contains 475,073 job titles/positions belonging to 192,295 users on a major professional networking site. Table 1 shows an overview of relevant datasets and our proposed IPOD dataset, as well as their respective sizes and availability. IPOD is the largest publicly available occupation-related dataset as far as we are aware. We believe that IPOD will be relevant and useful to researchers and industry practitioners who are involved in tasks related to occupational data mining and analysis.
For various occupational data mining and analysis problems, such as next job prediction, churn prediction and others, there is a need to represent the numerous jobs/occupation before using this representation as input to their respective algorithms. Many traditional works on occupational data mining and analysis use one-hot encoding or Bag-of-Words to represent job titles, which treats each job title as a distinct entity without being able to model any relationship between them. For example, “Data Scientist” and “Data Analyst” are treat as different jobs using this representation but the two jobs have more similarities than differences. To address this problem, we propose Title2vec, a contextual job title vector representation using a bidirectional Language Model approach.
In this paper, we add to this literature of works and make the following contributions:	To facilitate further research on occupational data mining and analysis, we present and make publicly available the Industrial and Professional Occupation Dataset (IPOD). This dataset consists of 475,073 entries of occupational positions, drafted by working professionals for their user profiles on a major professional networking site, with the motivations of displaying their career achievement, attracting recruiters or expanding professional networks. Out of 23 relevant datasets used in recent works, only three datasets were made publicly available and our proposed IPOD is the largest publicly available dataset among all these used in recent works, as shown in Table 1.Table 1A survey of related works that uses and/or provide occupational-related datasets


	Publication
	Data source
	Size
	Publicly available

	IPOD (our proposed dataset)  [10]
	Professional network
	475K
	Yes

	Mimno et al. [5]
	Resumes
	54K
	No

	Lou et al. [11]
	Linkedin
	67K
	No

	Paparrizos et al. [12]
	Web
	5M
	No

	Zhang et al. [13]
	Job site
	7K
	No

	Liu et al. [4]
	Social network
	30K
	No

	Li et al. [14]
	Linkedin
	–
	No

	Li et al. [15]
	High tech company
	–
	No

	Yang et al. [16]
	Resumes
	823K
	No

	Zhu et al. [17]
	Job portals
	2M
	No

	James et al. [1]
	APS
	60K
	Yes

	Yang et al. [2]
	Various channels
	–
	No

	Xu et al. [18]
	Professional network
	20M
	No

	Qin et al. [19]
	High tech company
	1M
	No

	Lim et al. [20]
	Linkedin
	10K
	No

	Shen et al. [21]
	High tech company
	14K
	No

	Zhang et al. [22]
	Resumes
	2.1M
	No

	Nigam et al. [23]
	Job portals
	4k
	No

	Meng et al. [24]
	Professional network
	414k
	No

	Van Huynh et al. [25]
	Job portals
	10k
	Yes

	Gugnani et al. [26]
	Job portals
	1.1M
	No

	Alanoca et al. [27]
	Resumes
	5k
	No

	Zhang et al. [28]
	Linkedin
	459k
	No


Apart from two datasets of comprising publications and authors [1] and job titles and descriptions [25], there are no publicly available occupational-related dataset from our survey. The first dataset [1] contains publications and authors from the American Physics Society (APS) but only describes the names and affiliations of physics scientists without their job title or appointments, while the second dataset [25] contains the job title and job description from a job portal but only pertaining to IT-related jobs. Our proposed dataset, IPOD is bolded and in the first row




	Using this large occupational dataset of job titles, we performed various occupational data analysis, such as investigating the effects of education on job retention, promotion to management in two distinct cities in US (Denver) and Asia (Singapore).

	To better model job titles and positions, we propose Title2vec, a contextual job title vector representation with a bidirectional Language Model [8] approach. This upstream embedding task map the raw job titles into a high-dimensional vector space that allows and boosts the performance of several downstream tasks such as occupational Named Entity Recognition. An example of this occupational NER task is shown in Fig. 1.[image: ]
Fig. 1An example of the occupational NER task, with tokens indicating RESponsibility, FUNction, and LOCation. The NE tags are also added with positional prefixes using BIOES scheme, i.e., Begin, Inside, Others, Ending and Single



	To further demonstrate the usefulness of Title2vec, we propose two models for solving this challenging occupational NER task. These two algorithms include a probabilistic machine learning model, namely Conditional Random Field (CRF), and a state-of-the-art recurrent neural network model, namely bidirectional Long Short-Term Memory with CRF (LSTM-CRF) [9]. We compared our algorithms against three baselines and results show that our proposed algorithms out-perform them in terms of Exact Match (EM) accuracy and F1 scores for both overall and tag-specific results.




The rest of this paper is structured and organized as follows. Firstly, “Related work” section discusses key works that are related to occupational data mining and analysis, and the use of embedding and named entity recognition techniques for related tasks. Thereafter, “Description of the industrial and professional occupations dataset (IPOD)” section provides an overview of IPOD and describes the key characteristics of this dataset. Using this dataset, “Job title embedding and named entity recognition” section then highlights the approach we proposed for generating job title embedding and describes the occupational name entity recognition task. Following which, “Experiments and results” section outlines our overall experimental methodology for evaluating the proposed algorithm and various baselines. “Occupational data analysis” section shows our occupational data analysis where we investigated retention duration in jobs and time to reach management. Finally, “Conclusion and future work” section summarizes the paper and highlights some future direction for this work.
Related work
In this section, we review related works, in the area of occupational-related datasets, general occupational data mining and analysis, contextual embedding and named entity recognition.
Occupational-related datasets
The recent years have seen numerous research on occupational data mining and analysis related tasks, which utilize some form of occupational-related datasets. To provide an overview of these datasets, we conducted a survey of papers that make use of these datasets and present 23 such papers that were published from 2008 onwards. Table 1 shows our literature review of the related publications that utilizes these types of occupational-related dataset. Out of these 23 datasets, only two been made publicly available, which are [1] by James et al. [25] by Van Huynh et al. and [10] that is described in this paper. The former dataset by James et al. [1] contains the affiliations that physics researchers belong to but does not include their job titles or positions, whereas our dataset comprises the job titles of general workers across the broader industry. Similarly, the dataset by Van Huynh et al. [25] contains 10k job titles and descriptions collected from a job portal but are only relating to jobs within the IT sector.
Named Entity Recognition is another related task to our work and existing NER corpora [29–32] typically use tags, such as LOCation, PERson, ORGanization, MISCellaneous, etc., that are more application for general tasks. In contrast, IPOD provides domain-specific NE tags to denote the properties of occupations, such as RESponsibility, FUNction and LOCation. Three experts created a gazetteer based on their expertise in occupational titles and labelled the various named entities in IPOD using this gazetteer. The labelling by the three exports have high reliability with no cases where all three annotators disagree, while inter-rater reliability is similarly high with a Percentage Agreement [33] of 0.853 and Cohen’s Kappa [34] of 0.778. We further process the labels by including prefix based on the BIOES tagging scheme [35], i.e., Begin, Inside, Ending, Single, and O indicating that a token belongs to no chunk, indicating the positional features of each token in a title.
Occupational data mining and analysis
Prior works on occupational data mining and analysis aim to accomplish a wide range of tasks, such as Career Modeling and Job Recommendation. In the area of Career Modeling, prior works address downstream tasks including career path modeling [4, 5], career movement prediction [1, 2], job title ranking [18], and employability [36]. In terms of Occupation-related Recommendations, past works focus on analysing Person-Job Fit [17, 19, 21] which commonly aims to suggest employment suitability of candidates for companies, and Job Recommendation [13, 37] which on the other hand provides decision analysis for the job seekers. These works commonly leverage real-world data from different sources, including Linkedin [4, 14], resumes [2, 5], job portals [13, 17] and tech companies [21].
The proposed solutions to these problems are based on different approaches. Most works utilize various machine learning approaches, such as linear classification models [1, 2, 4, 15], generative models [5, 18] and Neural Networks [5, 17, 19]. Some take algorithmic approaches, such as statistical inference [1, 5, 21], Graph-theoretic models [12, 36] and recommmender systems with content-based and collaborative filtering [13, 37]. Some works report their time complexity to be polynomial [4, 15].
Word embedding
Traditional word embedding methods aim to construct word-level vector representations that capture the contextual meaning of words. A Neural Network Language Model (NNLM) was initially proposed with the Continuous Bag of Words (CBoW) model and skip-gram model [38]. These efforts subsequently led to a series of NNLM-based embedding works [39], including the popular Word2Vec model [40]. Pennington et al. [41] proposed Global Vectors for Word Representation (GloVe) that uses a much simpler approach of constructing global vectors to represent contextual knowledge of the vocabulary, which also achieved good results. More recently, a series of high quality contextual models were proposed, such as Embeddings from Language Model (ELMo) [8], FastText [42] and Flair [43]. Both word-level contextualization and character-level features are commonly used for these works and frequently utilized for applications ranging from text classification [44–47] to prediction and recommendation systems [48–51].
Document embedding
While Word Embedding construct static continuous vectors at the word-level, recent works have also proposed methods to represent document-level embeddings. Transformer-based approaches have gained popularity among researchers and shown good results in recent years. Typical applications of these approaches uses pre-trained transformer-based models with very large datasets to construct the document-level embeddings, such as Bidirectional Encoder Representations from Transformers (BERT) [52] and variants of Generative Pre-trained Transformer (GPT) [53], among others. These approaches enables contextual embedding in both word level and document level. Lample et al. [54] proposed a novel Stacked Embedding approach that constructs a hierarchical embedding architecture of document-level embedding by stacking word-level embedding with character-level features and concatenating with an RNN, which performs well in NER tasks. Apart from document-level embeddings, there are various works that uses Siamese networks and its variants to generate sentence-level embeddings [55, 56].
Named entity recognition
Named entity recognition is a challenging task that traditionally involves a high degree of manually crafted features for different domains. While this task is challenging, the good news is that numerous general large-scale corpora, such as CoNLL-2003 [30] and Ontonotes [31], have been made available for training with deep neural architectures. Popular NER models are based on the LSTM architecture [9, 54], where feeding the sentence embeddings into an uni-directional or bi-directional LSTM encoder. Instead of decoding directly, some works also add a Conditional Random Field (CRF) layer at the end while training the classifier, and use Viterbi [57] to decode the probabilistic output into NE labels. In recent years, the popular transformer-based models [52, 53] have also demonstrated its capability for producing good results.
While manually tagging a large dataset requires tremendous amount of efforts, prior works leverage knowledge-based gazetteers developed by various unsupervised or semi-supervised learning approaches [58, 59], or rely on generative models [60, 61]. Tags can be further formatted with tagging schemes such as IOB [62] or BIOES [35], to indicate the position of tags in a chunk.
Description of the industrial and professional occupations dataset (IPOD)
In this section, we describe our data collection process and characteristics of the IPOD dataset.
Data collection
We obtained over 475,073 job titles based on the user profiles from Asia and the United States, as representatives of the world’s most competitive economies [63]. These job titles were based on the career history of 192,295 users with [image: $$56.7\%$$] from the United States and [image: $$43.3\%$$] from Asia. After collecting the data, we further pre-processed the data with the standard steps of lowercase conversion, replacement of certain punctuation to words (e.g., substituting & with and) and removing special symbols. While lemmatization is also a standard process, we observe that the original unshortened word suggests its most accurate named entity, i.e., Investor is labeled as RESponsibility while Investment is labeled as FUNction, and hence decided not to lemmatize or stem these words.
Description of dataset and tags
Job titles serve as a concise indicator for one’s level of responsibility, seniority and scope of work, described with a combination of responsibility, function and location. Table 2 shows examples of the occupational NE tags used in this dataset.Table 2Examples of occupational NE tags.
Modified from [10]



	Responsibility
	Managerial level:

	 lead, supervisor, manager, director, president

	Operational role:

	 engineer, designer, accountant, technician

	Seniority:

	 junior, vice, associate, assistant, senior

	Function
	Departments:

	 sales, marketing, finance, operations, strategy

	Scope:

	 enterprise, project, customer, national, site

	Content:

	 data, r&d, security, training, integration, education

	Location
	Regions:

	 APAC, SEA, Asia, European, north, central

	Countries/States/Cities:

	 China, America, Singapore, Colorado




Responsibility, as its name suggests, describes the role and duty of a working professional. As shown in Fig. 1, responsibility may include indicators of managerial levels, such as director, manager and lead, seniority levels, such as vice, assistant and associate, and operational role, such as engineer, accountant and technician. A combination of the three sub-categories draws the full picture of one’s responsibility.
Function describes business functions in various dimensions. Specifically, Departments describes the company’s departments the staffers are in, such as sales, marketing and operations; Scope indicates one’s scope of work, such as enterprise, project and national; lastly, Content indicates one’s content of work, such as data, r&d and security.
Finally, Location indicates the geographic scope that the title owner is responsible of. Examples of this NE tag include geographic regions such as APAC, Asia, European, and counties/states/cities such as China, America and Colorado.
Annotation process
The IPOD dataset defines the occupational domain-specific NE tags as RES, FUN, LOC and O, indicating the responsibility, function, location and others respectively. The labels are further processed by adding prefix using BIOES tagging scheme [35], i.e., Begin, Inside, Ending, Single, and O indicating that a token belongs to no chunk, indicating the positional features of each token in a title. For instance, a job title of chief financial officer Asia Pacific is tagged as S-RES S-FUN S-RES B-LOC E-LOC with the BIOES scheme [35].
We adopt a knowledge-based NE tagging strategy by creating a gazetteer of word tokens, with the help of three experts including a HR personnel, a senior recruiter and a seasoned business professional. These three experts developed the comprehensive gazetteer based on their expertise in occupational titles and subsequently labelled the various named entities in IPOD using this gazetteer. This process includes first running a uni-gram analysis of the job titles to retrieve the top 1,500 tokens in terms of occurrence frequency of the uni-grams, which are subsequently tagged by the three expert annotators. The distribution of IPOD based on these labels are presented in Table 3.Table 3Frequency count of named entities in IPOD


	 	RESponsibility
	FUNction
	LOCation
	Others

	Frequency count
	310,570
	255,974
	9,998
	66,948




Among the 1500 tokens tagged, every tag is agreed with at least two annotators, where 1169 (77.9%) are commonly agreed among all three annotators, and 331 (22.1%) are agreed with two annotators. Of particular note, there are no instances where all three annotators totally disagree, i.e., three different labels by each annotator. We further evaluate the Inter-Rater Reliability with two inter-coder agreements, observing a score of 0.853 based on Percentage Agreement [33] and 0.778 based on Cohen’s Kappa [34], which reflects a high level of agreement. Finally, the job titles are labelled with NE tags using BIOES scheme and formatted for NER tasks.
Job title embedding and named entity recognition
In this section, we describe our proposed job title vector representation called Title2vec and demonstrate its usefulness for an occupational NER task.
Job title embedding
A fundamental aspect of occupational data mining and analysis is to properly represent job titles, where standard one-hot encoding or Bag-of-Words are unable to accurately capture the relationship between different job titles. Towards this effort, we propose a contextual job title vector representation model, Title2vec. Title2vec is based on a bidirectional Language Model approach [8] where each token is represented with a contextual vector with 3072 dimensions, before passing through a bi-directional LSTM network. The forward LSTM predicts the probability of each token given its history, and the backward LSTM does the same in reverse order. Compared to uni-directional models, this approach enables us to better capture the meaning of a word in the context of its entire sentence or preceding and subsequent words.
Instead of training from scratch, we construct Title2vec by fine-tuning from a pre-trained model, namely the Embedding from Language Models (ELMo) [8]. The choice of ELMo is because it provides a language-level contextual meaning for word tokens that is highly similar, if not identical, to that in job titles. For instance, the word director appearing in a job title is similar to its counterpart that is mentioned in a Wikipedia article. Such a contextual language model also better captures the meaning of a word than its non-contextual counterpart. For example, the word “bank” has a different meaning in “senior bank officer” and “bank of the river”, which contextual embeddings are better able to represent.
Occupational named entity recognition
To demonstrate the effectiveness of Title2vec, we define an occupational Named Entity Recognition task. Unlike typical NER tasks that uses more general tags like LOCation, PERson, ORGanization, MISCellaneous, etc., the tags for the occupational NER tasks are more specific and relevant to job positions and titles. These occupation-specific tags also require a specialised dataset, which our proposed IPOD dataset is able to satisfy. Figure 1 illustrates an example of this occupational NER task, where the job title of “Senior Director of Sales (APAC) at Apple” is tagged with the named entities of B-RES, B-RES, O, I-FUN, I-LOC, O and O. Regarding these named entities, they refer to the RESponsibility, FUNction, and LOCation associated with the job title, with a further tagging of Beginning, Inside, Others, Ending and Single based on the BIOES scheme.
Occupational NER models and baselines
We propose two algorithms to address this occupational NER task. The first algorithm is based on Conditional Random Fields (CRF), which is a probabilistic machine learning model that produce joint probability of the co-occurrence of output sequence [64]. Our second algorithm belongs to the recurrent neural networks family, namely a bidirectional Long Short-Term Memory model with a CRF layer adding to the output layer (LSTM-CRF), as shown in Fig. 2. Variations of the LSTM-CRF model showed state-of-the-art results in some recent works for different downstream NLP tasks [9, 54]. Both the CRF and LSTM-CRF are decoded using a first-order Viterbi algorithm [57] that finds the sequence of NE tags with highest scores. As baselines for subsequent evaluation, we construct two baseline encoders based on a Logistic Regression (LogReg) classifier and a standard LSTM, both of which are decoded using a softmax layer. We also use a human annotation as our third baseline to highlight how these algorithms perform compared to a manual process.[image: ]
Fig. 2Bidirectional LSTM-CRF model for occupational NER task


Hyper-parameter optimization
To ensure an optimal selection of parameters, we conduct a grid search of hyper-parameters to fine-tune the performance of our proposed CRF and LSTM-CRF models. The search space includes varying learning rates (i.e., 0.1 or 0.01), number of LSTM hidden layers (1 or 2), number of hidden states (128 or 256), mini-batch size (32 or 128) and type of optimizer (Adam or SGD). We use Word Dropout and Variational Dropout [65] to prevent over-fitting, with probability of 0.05 and 0.5 respectively. In total, we perform a comprehensive evaluation of over 100 hyper-parameters sets, where each set of hyper-parameters is run with 10 epochs.
Table 4 shows the breakdown of the search space and the final hyper-parameters used for both models. We deploy a Cross Entropy loss function and a SGD optimizer with an initial learning rate of 0.1 and a mini-batch size of 32 for both proposed CRF model and baselines. For the two LSTM-based models, we use a single hidden layer with an initial learning rate of 0.1, LSTM state size of 256 and a mini-batch size of 128.Table 4Hyper-parameter search space and final values used


	Hyper parameter
	CRF
	LSTM-CRF

	Final
	Range
	Final
	Range

	Learning rate
	0.1
	[image: $$\{0.01,0.1\}$$]
	0.1
	[image: $$\{0.01,0.1\}$$]

	Mini-batch size
	32
	[image: $$\{32,128\}$$]
	128
	[image: $$\{32,128\}$$]

	Word dropout
	0.05
	–
	0.05
	–

	Variational dropout
	0.5
	–
	0.5
	–

	Type of optimizer
	SGD
	[image: $$\{\text {Adam}, \text {SGD}\}$$]
	SGD
	[image: $$\{\text {Adam}, \text {SGD}\}$$]

	LSTM layers
	–
	–
	1
	[image: $$\{1,2\}$$]

	LSTM state size
	–
	–
	256
	[image: $$\{128,256\}$$]




Experiments and results
In this section, we discuss our experimental evaluation and results.
Evaluation metrics
For evaluating the performance of our proposed algorithms against the three baselines, we use the standard metrics of Precision, Recall, Exact Match (EM) and the F1 score. The F1 score, formally defined as [image: $$F1 = 2 * Precision * Recall * (Precision + Recall)^{-1}$$], allows us to measure the average overlaps between the ground truth and predicted tags. The EM metric measures the percentage agreement between the ground truth and predicted tags with exact matches. These metrics are commonly used in various NLP tasks and allows us to evaluate the performance of our proposed algorithms against the various baselines.
Human performance
We construct the human performance baseline for IPOD using the NE tags annotated by the three domain experts. We choose the set of labels tagged by annotator 1 as the ground truth labels and compute against the other two annotation sets. We then take the average EM and F1 to indicate human performance. We record an EM accuracy of 91.3%, and an F1 of 95.4%. This shows a strong human performance as compared to those of other datasets, such as 91% EM for the CHEMDNER corpus [66], 86.8% EM and 89.5% F1 for SQuAD2.0 [67], and 77.0% EM and 86.8 F1 for SQuAD1.0 [68].
Experimental results
Table 5 shows the overall performance of our proposed CRF and LSTM-CRF models against the three baselines, in terms of precision (P), recall (R), exact match (EM) and F1 score. In all cases, our proposed CRF and LSTM-CRF models out-perform all baselines in terms of all metrics. When comparing between CRF and LSTM-CRF, we observe that the latter performs better overall with a slight under-performance in terms of precision. Interestingly, the results also show that the Human baseline out-performs the LogReg baseline.Table 5Comparison of results for occupational NER


	Models
	Precision
	Recall
	Exact match
	F1-score

	LogReg
	90.80
	93.20
	85.10
	92.00

	LSTM
	99.71
	99.90
	99.61
	99.80

	Human
	91.60
	99.60
	91.30
	95.40

	CRF
	99.90
	99.81
	99.71
	99.85

	LSTM-CRF
	99.86
	99.97
	99.83
	99.91


Bolded text is used to indicate the best performing values



For a more detailed analysis, we now examine the performance of the various algorithms on a per-tag basis. Table 6 shows the per-tag breakdown of the NER results, in terms of EM and F1. Our proposed CRF and LSTM-CRF algorithms offer similar levels of performance, and consistently out-perform both the LogReg and LSTM baselines across all three categories of tags. These results highlight the effectiveness of our proposed model against the baselines as well as the advantages over manual annotation (via the human baseline).Table 6Comparison of results stratified by NE Tags


	 	FUN
	LOC
	RES

	EM
	F1
	EM
	F1
	EM
	F1

	LogReg
	78.30
	87.80
	93.70
	96.80
	90.10
	94.80

	LSTM
	99.49
	99.74
	97.68
	98.83
	99.77
	99.88

	CRF
	99.35
	99.67
	98.96
	99.48
	99.99
	99.99

	LSTM-CRF
	99.88
	99.94
	98.70
	99.35
	99.82
	99.91


Bolded text is used to indicate the best performing values



Occupational data analysis
In addition to proposing the Title2vec model for job title embedding and evaluating it on the occupational NER task, we also perform a preliminary exploratory data analysis on the same dataset to uncover trends related to occupational data mining and analysis. In particular, we examine the retention duration in jobs and the time to reach management positions.
Retention duration in jobs
We first examine the number of years a user stays in a single job position, i.e., the retention rate of a job. Figure 3 shows the retention rate (in years) of users in US (Denver) and Asia (Singapore). In both regions, we can see that most users stay between 2 and 3 years in a single job, while the least number of users stay beyond 10 years in the same job. In general, there is a higher number of longer retention in jobs in Denver than in Asia, with no noticeable difference for those beyond 10 years.[image: ]
Fig. 3Retention rate of users in Denver and Asia in our dataset


Next, we investigate the hypothesis that the duration of education of a user can be used to predict the retention of the user in a job. We perform a simple linear regression analysis to determine if the number of years of education is able to predict how long a user will stay in a job. The analysis returned results of [image: $$R^2=0.0008, p=0.0016$$] for Asia and [image: $$R^2&lt;0.0001, p=0.2668$$] for Denver. This shows the amount of education in terms of duration significantly predicted employee retention for Asia ([image: $$b=-0.9422, p=0.0016$$]), but there is no sufficient evidence to indicate that for Denver ([image: $$b=-1.795, p=0.2668$$]).
Time to reach management position
Figure 4 illustrates the number of years users take to reach a management level position in Denver and Asia. The users are further split by the International Standard Classification of Occupations ISCO-08 codes of their job titles, which is a classification of different groupings of jobs based on their task and functions. Table 7 shows examples of the major groups of jobs based on ISCO-08.[image: ]
Fig. 4Time to reach management for users in our dataset

Table 7Major groups of jobs based on ISCO-08 classification


	ISOC-08 code
	Occupation group

	1
	Managers

	2
	Professionals

	3
	Technicians and associate professionals

	4
	Clerical support workers

	5
	Services and sales workers

	6
	Skilled agricultural, forestry and fishery workers

	7
	Craft and related trades workers

	8
	Plant and machine operators and assemblers

	9
	Elementary occupations

	0
	Armed forces occupations




Across most job categories, users in Asia take a longer time to reach a management level position than their counterparts in Denver. This trend is especially pronounced for those in job category 5 (Services and Sales Workers), with users in Asia taking three times longer than those in Denver. This observation could potentially be due to differing industry distributions and working culture in the two different regions.
Similar to the previous section, we now study the hypothesis of whether the number of years of education that a user has undertaken can be used to predict the time needed for him/her to reach a management position. To investigate this hypothesis, we conduct a simple linear regression analysis to determine if a user’s education duration (in years) is able to predict how long a user will take to reach a management position. This analysis produced results of [image: $$R^2=0.0002, p=0.5570$$] for Asia and [image: $$R^2=0.0010, p=0.0004$$] for Denver. The results highlight that the duration of education is able to significantly predict the time needed to reach a management position for users in Denver ([image: $$b=9.325, p=.0004$$]), but is insufficient to conclude the same for users in Asia ([image: $$b=6.382, p=0.5570$$]).
Conclusion and future work
In this paper, we explored the general research area of occupational data mining and analysis in terms of providing a relevant occupational-related dataset and the related tasks of job title embeddings and occupational NER. We presented the IPOD corpus that consists of 475,073 job titles from 192,295 users on a major professional networking site, with a knowledge-based gazetteer that includes manual NE tags from three domain exports annotators. As far as we are aware, IPOD is the largest publicly available dataset about occupational titles across the general industry.
We also addressed two challenging upstream tasks of occupational data mining and analysis, namely job title embeddings and occupational NER. Towards addressing these tasks, we proposed Title2vec, a contextual job title vector representation using a bidirectional Language Model approach and developed the CRF and bidirectional LSTM-CRF models for solving the important occupational Named Entity Recognition problem. Experimental results on the IPOD dataset show that our proposed CRF and bidirectional LSTM-CRF models out-perform the various baselines in terms of exact-match accuracy and F1 scores, for the overall NER task as well as on a per-tag basis. We also performed a preliminary exploratory data analysis of this dataset, examining the retention duration and time to reach management positions for these users.
For future work, there are various possible directions to explore. Firstly, we could explore BERT-based models for performing similar occupational NER tasks. However, we note that such BERT-based models would be more complex in terms of number of parameters than the current models examined in this paper. Moreover, our proposed LSTM-CRF model already achieved scores of more than 99.8% in terms of Precision, Recall, F1-score and Exact Match, thus any further improvements would not be relatively minor. Secondly, the job title embeddings generated by this model could be used to facilitate various downstream tasks, such as predicting job churning and recommending future job positions. Lastly, we can further expand on our preliminary exploratory data analysis by exploring how other user attributes (e.g., education level, discipline of study, work experience, etc.) affect retention duration and time to reach management.
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