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Abstract
Background
The design used to create labelled data for training prediction models from observational healthcare databases (e.g., case-control and cohort) may impact the clinical usefulness. We aim to investigate hypothetical design issues and determine how the design impacts prediction model performance.

Aim
To empirically investigate differences between models developed using a case-control design and a cohort design.

Methods
Using a US claims database, we replicated two published prediction models (dementia and type 2 diabetes) which were developed using a case-control design, and trained models for the same prediction questions using cohort designs. We validated each model on data mimicking the point in time the models would be applied in clinical practice. We calculated the models’ discrimination and calibration-in-the-large performances.

Results
The dementia models obtained area under the receiver operating characteristics of 0.560 and 0.897 for the case-control and cohort designs respectively. The type 2 diabetes models obtained area under the receiver operating characteristics of 0.733 and 0.727 for the case-control and cohort designs respectively. The dementia and diabetes case-control models were both poorly calibrated, whereas the dementia cohort model achieved good calibration. We show that careful construction of a case-control design can lead to comparable discriminative performance as a cohort design, but case-control designs over-represent the outcome class leading to miscalibration.

Conclusions
Any case-control design can be converted to a cohort design. We recommend that researchers with observational data use the less subjective and generally better calibrated cohort design when extracting labelled data. However, if a carefully constructed case-control design is used, then the model must be prospectively validated using a cohort design for fair evaluation and be recalibrated.
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Background
It is widely known in medicine that prevention is better than cure. Prognostic models that can determine a personalized risk of some future illness could be used to identify high risk individuals that would benefit from interventions. Making decisions based on personalized risk could improve patient care [1]. Big observational healthcare databases, such as electronic health records or insurance claims data, are potential data sources that could be used to develop patient-level prediction models. A recent review of prognostic models for cardiovascular outcomes showed that the number of models being published is increasing over time, but most published models have issues (e.g., methodology details missing in publication, lack of external validation and standard performance measures not used) [2]. This problem is observed across outcomes where many models fail to adhere to best practices for model development and reporting [2–4]. In addition, many published models have not been widely tested on diverse populations, so the models may perform poorly when transported to different patients such as low-income populations [4]. There may be even bigger problems with some prognostic models developed on observational data due to the process used to create labelled data for the machine learning algorithms.
Observational healthcare databases contain time-stamped medical events (e.g., drugs prescribed or administrated, medical diagnoses and symptom observations) for a collection of patients who are included in the data. These are often large databases containing millions of patients’ data and could be utilized by machine learning models [5]. The first stage in developing prognostic models is processing the time-stamped data into labelled data consisting of a set of features (aka predictors) for each patient and class labels indicating whether each patient has the outcome during the time at risk. After extracting the label data, supervised machine learning algorithms are then applied to the labelled data to learn associations between the features and the class label. The idea is that these associations will generalize to new data (e.g., when models are applied in a clinical setting) [6]. It is widely known that if you provide junk data to machine learning algorithms you will get useless models returned [7]. The process used to extract labelled data when developing prognostic models using observational databases is subjective, but this choice impacts the labelled data quality, and therefore the model quality. Furthermore, if a model is only internally validated (using held out data such as a test set) then the data used for validation is also problematic. If there are issues in the labelled data creation, then this is unlikely to be identified by internal validation, but the negative consequences may become apparent if the model is used in a real clinical setting.
There are two data extraction designs that are predominately used to extract labelled data from observational healthcare databases for prognostic model development: the cohort design [8] and the case-control design [9, 10]. Alternative designs are generally a mixture of the case-control and cohort designs, such as the nested case-control and the case-cohort design [11]. A nested case-control design is a cohort design where patients in the cohort who do not experience the outcome during the time-at-risk are sampled but all patients who experience the outcome are included. For the case-cohort design, a cohort of patients is defined and then a random sub-sample of the cohort is selected in addition to all patients who have the outcome during the time-at-risk. Both alternative designs are effectively cohort designs with under-sampling of the non-outcomes.
Figure 1 illustrates the differences between the cohort and case-control designs. In Fig. 1, part A shows a set of patients and their medical timelines from birth to death. Healthcare databases often only capture a section of a patient’s medical observations. An index point in time is required when developing prediction models using observational data, where data prior to index are used to construct features and data after are used for class labelling. Part B illustrates that the index for a case-control is the outcome date and part C shows that for the cohort design the index date is when a patient satisfies some specified criteria (e.g., experiences some medical event while being outcome free).
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Fig. 1llustration of how longitudinal data (part A) can be converted into labelled data using the case-control design (part B) and the cohort design (part C). The case-control design centers around the outcome date and uses data prior to this date to construct features. The cohort design centers around the date a patient satisfies criteria, using data prior to this to construct features and data post this to identify class labels


In the cohort design the set of patients included in the labelled dataset is defined as the ‘target population’ and each patient requires a well-defined target index date (a point in time where they satisfy some entrance criteria and do not currently have the outcome recorded [8]). Features per patient in the ‘target population’ are engineered using the patient’s medical event records in the database prior to (or on) the patient’s target index date. The patients are followed for some time-at-risk period post the target index date to identify whether they develop the outcome. Class labels (outcome vs no-outcome) are determined by identifying whether the outcome event is recorded during the time-at-risk interval after the target index date. For example, to use a cohort design to create labelled data to predict stroke in patients with atrial fibrillation, the target population would be ‘patients newly diagnosed with atrial fibrillation’ with the target index of initial atrial fibrillation diagnosis, the outcome would be ‘stroke’ and the time-at-risk would be 1 day to 5 years following index. Features are engineered using data recorded prior to (or on) the initial atrial fibrillation date and class labels are determined based on whether a patient has the stroke recorded during 1 day to 5 years after the initial atrial fibrillation date per patient. Alternatively, a case-control design [9, 10] picks the point in time when a set of patients experience some outcome (cases), then finds some other patients (controls) paired with a date that matches the cases on certain criteria (such as age and gender) but have no record of the outcome. The design requires that the user specifies a time interval prior to the outcome event date (or each control’s matched date) to engineer features for the patients. Class labels are based on whether the patient was a case (outcome) or matched control (non-outcome). For example, to predict stroke in patients with atrial fibrillation, the cases would be patients with stroke and a history of atrial fibrillation, and the controls would be patients with no stroke during a specified time period who have a history of atrial fibrillation and match the cases on certain criteria. The index is the stroke date for the cases and a randomly chosen date for the controls. Features could be engineered using all data recorded prior to the outcome date (or matched date) and class labels are whether they had the stroke or were a control.
Case-control designs are known to have numerous issues. It is widely known that case-control designs are problematic when you wish to assess absolute risk [12]. A recent study argued that case-control designs have a temporal bias which impacts their ability to predict the future [13] and it is widely accepted that the design leads to miscalibrated predictions. Researchers have argued that external validation of case-control prognostic models using a cohort design is essential [14]. When researchers have access to electronic health records or other longitudinal healthcare datasets, they can choose what design to use. Unfortunately, prediction models developed using the case-control design are still being published even when the researchers could have used a cohort design [15–17]. If the case-control design results in researchers extracting inappropriate labelled data, then the models developed using a case-control design may be invalid clinically even though they appear to perform well during model development (i.e., on the test set). There is a need to demonstrate that case-control designs are problematic and can be avoided when researchers have access to observational healthcare databases.
In this paper we empirically investigate various theoretical issues that can occur when using the case-control design to create labelled data used to develop prediction models using observational databases. We provide examples to show the case-control design can be avoided, when a researcher has access to observational data, since any prediction problem can be formed as a cohort design. We replicate two published patient-level prediction studies that employed a case-control design and show that a cohort design could have been used to achieve equivalent or better discrimination and better calibration.
Issues with using a case-control design to extract data
Table 1 highlights that the case-control design may be problematic due to the potential issue with selection bias and lack of a well-defined point in time to apply the model. These issues can be seen in Fig. 1. There are no well-defined criteria indicating when the case-control model should be applied clinically, as the development index date is the outcome date, but this date is unknown when the model is being applied to predict the outcome. A model developed using a cohort design model has a clear application date, the date when the index target population criteria is satisfied. The case-control design may have generalizability issues as controls could be very healthy patients compared to the cases. In addition, the case-control design often has an incorrect matching ratio and controls are under-sampled. This is likely to impact performance metrics such as the area under the precision-recall curve and calibration and may lead to optimistic internal validation performance. It is important that a model’s predicted risks are correct when using prognostic models for decision making (i.e., if the model tells ten people they have a 10 % risk, then one of them should experience the outcome). If a model overestimates risk, then interventions may be given to people unnecessarily. If a model underestimates risk, then a patient who could benefit from an intervention may be missed. Over or under-sampling outcomes often leads to models that are miscalibrated for the clinical setting they will be implemented, this is a key issue with the case-control design.

Table 1The potential issues with the case-control designs


	Issue
	Description
	Issue in cohort design?
	Issue in case-control design?

	Subjective data extraction methodology choices
	The design requires subjective methodology choices that may differ between researchers
	Not if problem is well defined with specified target population, outcome and time-at-risk
	Yes—matching choice can differ (e.g., matching criteria, matching ratio, whether to remove unmatched cases)

	Selection bias
	Data used to train model may not be representative of target population
	Potentially if the database has a bias
	Potentially due to poor matching design and if the database has a bias

	Covariate issue/protopathic bias [13]
	Includes problematic covariates that are precursors of the outcome (e.g., symptoms/tests of outcome)
	Potentially if the target population index date is chosen incorrectly. Easily solved by improving target population criteria or adding a gap between index and time-at-risk (e.g., predict outcome 60 days to 365 days after index)
	Potentially an issue if using data around outcome record (e.g., 1 day before) for feature engineering. Can be difficult to solve.

	Performance metric bias
	Optimistic performance reported due to under-sampling non-outcomes
	No
	Potentially if matching ratio not representative of true outcome ratio (e.g., precision will be higher in case-control data with outcome class over-represented)

	Miscalibration issue
	The predicted risk does not match the true risk
	Yes (moderate chance)—if the outcome proportion changes over time or the machine learning model does not calibrate well
	Yes (high chance)—if the outcome proportion is not representative due to over-representing the outcome class or the machine learning model does not calibrate well

	Ill-defined time to apply model
	No clear point in time for clinical implementation of model (where the performance has been assessed)
	No—index well defined by target population criteria
	Yes—no clear index as design is centered around outcome (which is unknown at the point in time the model will be applied)




Defining any prediction problem as a cohort design
We assert that any prediction problem, including those previously evaluated as case-control designs, can be appropriately implemented as a cohort design. In general, a cohort design will consist of a target population (patients you want to predict the outcome for) and an index event corresponding to when you want to predict the outcome occurring. We present the different types of prediction problems and provide example inclusion criteria and index dates for defining the problem as a cohort design, see Table 2.

Table 2Different types of prediction problems and examples of how they fit the cohort design


	Prediction type
	Target population
	Outcome
	Example target cohort inclusion criteria and index

	Target cohort criteria
	Index

	Disease onset
	General population
	Disease (e.g., depression)
	A visit (outpatient or inpatient) during 2010, > 365 days observation in database, age ≥ 8, no prior illness
	First valid visit in 2010

	Disease progression
	Early-stage disease patients
	Advanced stage disease
	Diagnosed with disease, > 365 days observation in database
	Initial disease record date

	Treatment choice
	Patients dispensed treatment 1 or 2
	Treatment 1
	Dispensed treatment 1 or 2, > 365 days observation in database
	First recorded date of treatment 1 or 2

	Treatment response
	Patients dispended a treatment
	Desired effect (e.g., disease cured)
	Dispensed treatment at adequate therapeutic level, > 365 days observation in database
	First recorded date of treatment

	Treatment safety
	Patients dispended a treatment
	An adverse event
	Dispensed treatment, > 365 days observation in database
	First recorded date of treatment

	Treatment adherence
	Patients dispended a treatment
	> X% days covered during some follow-up
	Dispensed treatment, > 365 days observation in database
	First recorded date of treatment




Methods
Replication of case-control patient-level predictions and cohort comparison
We selected two published patient-level prediction models that used a case-control design to develop the models using observational healthcare data. These examples were chosen due to (i) the availability of similar data (US claims data containing patients across all ages), (ii) the papers defining the data extraction clearly, and (iii) due to the models’ medical applications (dementia [18] and diabetes [19]) being commonly used for in the field of prognostic model development.
The first predicted future Alzheimer’s risk [9] and the second predicted future type 2 diabetes risk [10]. We replicated the two case-control models by following the published process, but because we do not have access to the same patient-level data, we instead use the Optum® De-Identified Clinformatics® Data Mart Database—Socio-Economic Status (Optum Claims), a US claims database. Optum Claims contains outpatient pharmacy dispensing claims, inpatient and outpatient medical claims which provide procedure codes and diagnosis codes. The data also contain selected laboratory test results for a non-random sample of the population. We used data prior to December 31 2014 to develop the Alzheimer’s model and data prior to November 30 2012 to develop the type 2 diabetes model, to best match the data used in the published papers. We also developed equivalent cohort design models for both outcomes where the target population was patients with a healthcare visit and the outcomes were the same as those used in the development of the case-control.
The use of Optum Claims was reviewed by the New England Institutional Review Board (IRB) and were determined to be exempt from broad IRB approval.
Models were developed using a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression model [20] trained on 75% of the data and internally validated on the remaining 25% of the data. The optimal hyper-parameter (regularization value) was determined using 3-fold cross validation on the 75% data used to train the model.
To fairly compare the performance of the two designs we applied the models when patients visit their healthcare provider and have not experienced the outcome before, but used data collected in a time period after the data used to develop the models. This was accomplished by applying the models to predict the 3-year risk of Alzheimer’s and type 2 diabetes at the point in time a patient visits their healthcare provider and is free of the disease being predicted. For this evaluation we used a ‘temporal’ validation set: visits post December 31 2014 for Alzheimer’s and post November 30 2012 for type 2 diabetes. This validation aims to mimic how the models would be used clinically.
Replication study 1: dementia
Case-control data construction
Following the design by Albrecht et al. [9], cases were defined as patients aged 18 or older diagnosed with dementia or prescribed a dementia drug for the first time between 2008-01-01 and 2014-12-31, with 1095 days prior observation and 180 days post observation. Patients must also have another record of dementia or dementia drug in the following 180 days. Patients were excluded if they had a diagnosis for nutritional deficiencies or alcohol or substance dependency within 3 months of the index date, or had a hospice claim during the 6 months prior to index. Controls were selected based on matching on age, gender and having a visit within 30 days around the matched case index date but were excluded if they had a dementia drug or condition record, had a diagnosis for nutritional deficiencies or alcohol or substance dependency within 3 months of the index date, or had a hospice claim during the 6 months prior to index. Four controls were matched per case. The index date was the date of the initial dementia record for the cases and the matching visit date for the controls.
Candidate predictors were constructed using conditions, procedures, measurements, observations and visit counts recorded between 1095 and 730 days prior to index. We also included age at index and gender variables.
Cohort data construction
To reformulate the prediction problem as a cohort design, we defined the target population as patients with a visit between 2008-01-01 and 2011-12-31 who were aged 18 or older with no prior dementia conditions or drug records and 365 days or more prior observation. Index date was the first valid visit. The outcome was the first record of dementia condition or drug with another dementia condition or drug recorded in the 180 days following with no diagnosis for nutritional deficiencies or alcohol or substance dependency within 3 months prior and no hospice claim during the 6 months prior. For those in the target population we predicted who will have the outcome 1 day after index until 1095 days after index (within 3 years after index). There were many patients (12,861,202) with a valid visit, so we randomly sampled 1,000,000 patients from the target population for model development.
For consistency between designs, we used similar predictors constructed using conditions, procedures, measurements, observations and visit counts recorded between 365 days prior and 0 days prior to index. We also included age at index and gender variables.
Validation data construction
To evaluate how a model would perform in a realistic clinical setting, we picked a validation population consisting of eligible target patients: the first visit a patient had between 2015-01-01 and 2015-12-31 satisfying a minimum of 365 days observation prior to index, aged 18 or older and no prior dementia condition or drug records. The outcome was the same as defined for the cohort data construction and we predicted whether the outcome would occur 1 day after index until 1095 days after index (within 3 years after index).
We then applied the models generated from the case-control and cohort designs to predict the risk for each patient in the validation data at their first valid visit and evaluated the models’ performances in predicting the 3-year risk of dementia.
Replication study 2: type 2 diabetes
Following the design by McCoy et al. [10], we defined cases as patients aged 18 to 89 diagnosed with type 2 diabetes or prescribed a type 2 diabetes drug for the first time between 2008-01-01 and 2012-11-30, with 1095 days prior observation. Patients must also have another record of type 2 diabetes condition or drug in the 180 days following the initial event. Patients were excluded if any of the following criteria were met:

	They had a record of disorders of pancreatic internal secretion (ICD-9 code 251.8) within 1095 days prior to the index date.

	They had a record of poisoning by adrenal cortical steroids (ICD-9 code 962.0) within 1095 days prior to the index date.

	They had a record of secondary diabetes diagnosis (ICD-9 codes 249.x) any time prior.




Controls were selected based on matching on location and enrolment time. 10 controls were matched per case without replacement from a pool of candidate eligible controls who were aged 18 to 89 and:

	No type 2 diabetes condition or drug recorded prior to 2012-11-30.

	No record of disorders of pancreatic internal secretion (ICD-9 code 251.8) within 1095 days prior to the index date.

	No record of poisoning by adrenal cortical steroids (ICD-9 code 962.0) within 1095 days prior to the index date.

	No record of secondary diabetes diagnosis (ICD-9 codes 249.x) any time prior.



.
The index date for cases was the date of the first record of type 2 diabetes condition or drug and the matched case’s index date for the controls. The authors also stated that they excluded patients with only routine care records or no encounters [10]. As it was not clear how this would be defined in our data, we chose to remove patients with less than 3 condition records to ensure cases and controls were active in the databases.
Candidate predictors were constructed using conditions and drugs recorded between 1095 and 1 days prior to index. We also included age at index, gender, ethnicity, and race variables.
Cohort data construction
Reformulated as a cohort design, the target population was defined to be patients with a visit between 2008-01-01 and 2009-11-30 who were aged between 18 and 89 with no prior type 2 diabetes condition or drug records and 365 days or more prior observation. Patients were excluded if they had disorders of pancreatic internal secretion or poisoning by adrenal cortical steroids in the prior 365 days or secondary diabetes diagnosis any time prior to index. Index date was the first valid visit. The outcome was the first record of type 2 diabetes condition or drug with another type 2 diabetes condition or drug recorded in the 180 days following. For those in the target population we predicted who will have the outcome 1 day after index until 1095 days after index (within 3 years after index). There were 7,966,573 patients with a valid visit, so we randomly sampled 4,000,000 patients from the target population for model development. This sample size was chosen so that case-control and cohort designs had a similar number of outcomes.
For consistency between designs, we used similar predictors constructed using conditions, and drugs recorded between 365 days prior and 0 days prior to index plus age at index, gender, ethnicity, and race.
Validation data construction
To evaluate the models in a realistic clinical setting we picked a validation population consisting of eligible target patients: the first visit a patient had between 2012-12-01 and 2014-12-31 satisfying a minimum of 365 days observation prior to index, aged between 18 and 89, no prior type 2 diabetes condition or drug records, no disorders of pancreatic internal secretion or poisoning by adrenal cortical steroids in the prior 365 days and no secondary diabetes diagnosis any time prior to index. The outcome was the same as defined for the cohort data construction and we predicted whether the outcome would occur 1 day after index until 1095 days after index (within 3 years after index).
We then applied the models from the case-control and cohort designs to predict the risk for each patient in the validation set at their first valid visit and evaluated the models’ performances in predicting the 3-year risk of type 2 diabetes.
Results
Dementia
For the case-control design we identified 118,694 eligible cases in Optum Claims. Restricting the cases to those with 4 or more matching controls left 11,016 cases and 44,064 controls. We excluded 8671 ineligible controls (met exclusion criteria) to end up with a final dataset containing 11,016 cases and 35,393 controls in Optum claims. The case-control model was trained using the 46,409 patients with 11,016 dementia patients (~ 250 in 1000) and obtained an internal area under the receiver operating characteristic curve (AUC) of 0.657. This was consistent with the original development paper’s reported performance of 0.65. The cohort model was trained using a 1,000,000 target patient sample with 4108 patients (~ 4 in 1000) diagnosed with dementia within 3 years of their visit. The cohort model obtained an internal AUC of 0.944 (0.937–0.950).
Inspecting the models showed that the case-control model lacked the age variables that were included in the cohort model. This is due to the cases being matched to controls on age and gender, so neither of these will be predictive in the case-control design. Many other variables seemed to be included in both models (including amnesia, organic mental disorder, Parkinson’s disease, mood disorder, seizure and memory impairment).

 The validation data contained 12,264,784 patients with 103,518 (~ 8 in 1000) having dementia recorded within 3 years. The case-control model obtained an AUC of 0.560 and the cohort model obtained an AUC of 0.897. The discrimination difference was due to age not being included in the case-control model. When evaluating both models on subsets of patients within each 5-year age group the cohort model discrimination performance was still better than the case-control model, see Table 3. The mean observed dementia risk in the validation data was 0.84%. The cohort model’s mean predicted risk was 0.70%, indicating the cohort model slightly under-estimated risk. The case-control model’s mean predicted risk was 23.95 %, so it severely over-estimated risk. The discrimination and calibration plots can be seen in Fig. 2.
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Fig. 2The ROC and calibration plots for the models predicting dementia on the validation dataset (cohort left and case-control right)



Table 3The AUC performance of both models predicting dementia when applied to each subset of patients within each 5-year age group


	Dementia temporal Validation AUC performance

	Age group
	Cohort design
	Case-control design

	ALL
	0.897
	0.560

	Age group: 18–19
	0.652
	0.511

	Age group: 20–24
	0.668
	0.547

	Age group: 25–29
	0.683
	0.520

	Age group: 30–34
	0.684
	0.595

	Age group: 35–39
	0.673
	0.572

	Age group: 40–44
	0.699
	0.604

	Age group: 45–49
	0.699
	0.601

	Age group: 50–54
	0.712
	0.629

	Age group: 55–59
	0.726
	0.653

	Age group: 60–64
	0.720
	0.671

	Age group: 65–69
	0.689
	0.661

	Age group: 70–74
	0.666
	0.642

	Age group: 75–79
	0.650
	0.634

	Age group: 80–84
	0.631
	0.629

	Age group: 85–89
	0.613
	0.616




Type 2 diabetes
For the case-control model we found 65,991 eligible patients aged 18 to 89 diagnosed with type 2 diabetes or prescribed a type 2 diabetes drug for the first time between 2008-01-01 and 2012-11-30, with 1095 days prior observation. Two-hundred and three patients were excluded due to pancreatic internal secretion, 3 were excluded due to poisoning by adrenal cortical steroids and 93 were excluded due to secondary diabetes. A further 952 were excluded due to having less than 3 condition records between 2008-01-01 and 2012-11-30. This left us with 64,730 cases. We identified 5,974,383 patients aged 18–89 with no diabetes records prior to 2012-11-30 but with 3 or more condition records during 2008-01-01and 2012-11-30. We excluded 2007 patients with pancreatic internal secretion, 283 patients with poisoning by adrenal cortical steroids and 0 patients with secondary diabetes. This left us with 5,972,093 candidate controls. We then matched on location and enrolment time to find 646,539 controls. The case-control model trained using the case-control data, with 711,269 patients and 64,730 patients having type 2 diabetes (~ 91 in 1000), obtained an internal AUC of 0.833. The cohort model was trained using a 3,993,438 target patient sample (4,000,000 were sampled but 6,562 of these left the database at index so had no time-at-risk and were excluded) with 54,898 patients (~ 14 in 1000) diagnosed with type 2 diabetes within 3 years of their visit. The cohort model obtained an internal AUC of 0.742.
The models appeared to contain similar predictors such as ‘polycystic ovaries’, ‘abnormal glucose tolerance in mother complicating pregnancy’, ‘metabolic syndrome X’, ‘older age’, ‘hypoglycemic disorder’, ‘polyuria’, ‘chronic nonalcoholic liver disease’, being ‘Hispanic’ and ‘obesity’. The case-control model identified ‘glycosuria’, which may be a symptom of existing type 2 diabetes rather than a predictor of future risk.

 The validation data contained 8,939,289 patients with 251,659 (~ 28 in 1000) having type 2 diabetes recorded within 3 years. The case-control model obtained an AUC of 0.733 and the cohort model obtained an AUC of 0.727. When evaluating the case-control and cohort models on the subset of patients in each 5-year age group, the models performed similarly in terms of discrimination, see Table 4. The mean observed diabetes risk was 2.8 %. The cohort model mean predicted risk was 1.6 % (under-estimated risk) and the case-control mean predicted risk was 7.7 % (over-estimating risk). The discrimination and calibration plots can be seen in Fig. 3.

Table 4The AUC performance of both models predicting type 2 diabetes when applied to each subset of patients within each 5-year age group


	Type 2 diabetes temporal Validation AUC performance

	Age group
	Cohort design
	Case-control design

	ALL
	0.727
	0.733

	Age group: 18–19
	0.701
	0.712

	Age group: 20–24
	0.713
	0.710

	Age group: 25–29
	0.707
	0.704

	Age group: 30–34
	0.701
	0.705

	Age group: 35–39
	0.709
	0.716

	Age group: 40–44
	0.710
	0.718

	Age group: 45–49
	0.708
	0.715

	Age group: 50–54
	0.705
	0.707

	Age group: 55–59
	0.693
	0.696

	Age group: 60–64
	0.676
	0.678

	Age group: 65–69
	0.623
	0.628

	Age group: 70–74
	0.597
	0.601

	Age group: 75–79
	0.572
	0.574

	Age group: 80–84
	0.552
	0.549

	Age group: 85–89
	0.549
	0.551
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Fig. 3ROC and calibration plots for predicting type 2 diabetes models on the validation dataset (cohort left and case-control right)


Discussion
This study illustrated (i) that creating labeled data from observational healthcare databases using a case-control design has many theoretical flaws, (ii) the case-control design results in miscalibrated prediction models and (iii) that any prediction problem trained using a case-control design can be transformed into a cohort design. We empirically compared two published prediction models trained using labelled data constructed from a case-control design against equivalent cohort designs to show that a cohort design could have been used to obtain similarly discriminative models. However, the cohort design model is more likely to be trained in a population representing the true target population and be better calibrated compared to the case-control design that often over represents the outcome in the labelled data.
For the cohort and case-control designs the mean predicted risk tended to be similar to the outcome proportion in the training data. This was problematic for the case-control design as the outcome is often overrepresented (due to the non-outcomes being under-sampled) resulting in models that drastically over-estimated risk. For example, the case-control dementia design used a 1:4 match ratio, which resulted in ~ 25 % of the patients in the training data having the outcome. This caused calibration issues as only 0.84% of the target population patients had the outcome, so the case-control model design resulted in very inaccurate risk estimates. Unless the case-control matching uses the true ratio (this is highly unlikely), any models developed using this design will be miscalibrated and will require an extra recalibration step to ensure risk estimates are accurate. The cohort design was not immune to miscalibration, as the outcome proportion can change over time. This is the reason we saw slight to moderate under-estimation of risk in this study examples. This is a known issue and can be reduced by restricting the data used to develop the model to more recent data [21]. The temporal change in outcome proportion observed in this study may have been inflated by the data converting to ICD-10 from ICD-9 between the model development and validation dates due to improved diabetes coding. For example, type 2 diabetes patients may have had unspecified diabetes recorded in ICD-9 but when the coding became more granular, they may have had specific type 2 diabetes recorded in ICD-10.
Alternative designs for sampling the patients such as the nested case-control and the case-cohort under-sample the non-outcomes and would have the same calibration issues that were observed with the case-control design. Both designs would require recalibration after the model is trained and should be validated in data where the outcome class proportion matches reality.
The case-control design and cohort design models appeared to include similar variables. However, the case-control design model sometimes included variables that appear to be symptoms/early tests of the outcome. These are not useful if the model’s purpose is to predict new outcomes in patients who are outcome free. The inclusion of these variables did not seem to impact the performance in the type 2 diabetes model. The case-control design model is also unable to include variables that are used to match cases and controls. The dementia model matched on age and gender, but this resulted in these variables being missing from the model, which greatly impacted the overall discrimination. The authors recommended developing separate case-control design models for different age groups [9], but this strategy reduces the outcome count used for training each model and may not be possible for rare outcomes.
The case-control design model internal discriminative performance appears to be an overestimate of the true discrimination (dementia internal AUC of 0.66 but external AUC of 0.56 and type 2 diabetes internal AUC of 0.83 but external AUC of 0.72). Metrics that vary based on how unbalanced the data are, such as the precision, would be affected even more when the data becomes more imbalanced. Therefore, any model developed using a case-control design (or any design that over or under-samples one class) needs to be fairly evaluated on cohort design data.
The results show that a well specified case-control design can avoid selection bias issues and we did not see discriminative issues when applying the model at a random visit, even though the case-control design has an ill-defined application date. The case-control matching is subjective, and a poorly designed matching strategy could in theory limit the generalizability of the model. In addition, the case-control designed model needs to be validated using cohort design data to fairly evaluate its performance. Table 5 summarizes the theoretical issues with the data extraction design we observed or did not observe in this study and how they could be avoided.

Table 5Summary of issues observed and potential solutions


	Issue
	Issues observed in study
	Solution

	Cohort
	Case-control

	Subjective methodology choices
	No
	Yes – the case-control designs used different matching criteria
	Use a cohort design

	Selection bias
	NA
	Did not appear to be a problem in the two predictions investigated
	NA

	Covariate issue
	NA
	1. Symptoms appeared in the diabetes model but didn’t impact performance.
2. The dementia model was unable to include variables used to match controls
	Use covariates to stratify patients and develop separate models

	Performance metric bias
	Yes—due to temporal changes the internal validation was slightly optimistic
	Yes—due to incorrect matching ratios and potentially non-generalizable development population the internal validation was very optimistic
	Perform external validation with cohort design to fairly assess performance
Train models on more recent data
Recalibrate if necessary

	Miscalibration
	Some—due to temporal changes the risk was under-estimated
	Yes—due to incorrect matching ratios the risk was over-estimated in both examples

	Ill-defined time to apply model
	NA
	Not a problem for the two predictions investigated—the models appeared to perform reasonably when applied at the validation index event (even though they were not developed using this index)
	NA




Limitations of this study are that we only replicated two case-control based models. The replications were done to demonstrate the known issue with case-control designs and to investigate other hypothetical issues. Interestingly, the two examples replicated did not show evidence of issues with target population sample bias or the ill-defined time to apply the model, but these issues could occur for other prediction tasks when using a case-control design. As the case-control models we replicated were previously published, they may represent the prediction tasks where a case-control design is less problematic. However, given the theory showing case-control designs are problematic and the results of this study, a cohort design appears more reliable, and we show that it can be used in place of a case-control design.
Conclusions
In this paper we discussed potential issues when developing a prediction model from labelled data constructed using a case-control design from observational healthcare data. We argued that using a cohort design to extract labelled data for developing prediction models is preferred and overcomes bias and clinical application issues that can plague the case-control design. We replicated two published prediction models developed using a case-control design and showed that these models could have been developed with a cohort design. The cohort design models had equivalent discrimination compared to case-control design models when applied to data representing realistic clinical applications of the models. However, the cohort design models were better calibrated than the case-control design models. Calibration is important, as accurate individual risk estimates are needed when using models clinically for decision making. The AUC discrimination metric only provides a measure of how well a model can rank patients based on risk. A highly discriminative model could be harmful for decision making if it is not well calibrated. The case-control design is more difficult to implement since it requires the specification of often subjective matching criteria. This may have a big impact on the model’s generalizability. As a result, we recommend that other researchers either avoid using a case-control design when developing patient-level prediction models using observational healthcare data or ensure they validate any case-control design model on cohort design data and perform any recalibration if necessary. The cohort design ensures a well-defined point in time for applying the model, provides fairer performance metrics and results in a better calibrated model.
Appendix 1: Temporal change of data
See Figs. 4, 5.
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Fig. 4The outcome count per year (showing an increase during the years used to validate the models)
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Fig. 5The outcome count per year (showing an increase during the years used to validate the models)
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