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Abstract
Apache Spark is one of the most widely used open source processing framework for big data, it allows to process large datasets in parallel using a large number of nodes. Often, applications of this framework use resource management systems like YARN, which provide jobs a specific amount of resources for their execution. In addition, a distributed file system such as HDFS stores the data that is to be analyzed by the framework. This design allows sharing cluster resources effectively by running jobs on a single-node cluster or multi-nodes cluster infrastructure. Thus, one challenging issue is to realize effective resource management of these large cluster infrastructures in order to run distributed data analytics in an economically viable way. In this study, we use the Machine Learning library (MLlib) of Spark to implement different machine learning algorithms, then we manage the resources (CPU, memory, and Disk) in order to assess the performance of Apache Spark. In this paper, we present a review of various works that focus on resource management and data processing in Big Data platforms. Furthermore, we perform a scalability analysis using Spark. We analyze the speedup and processing time. We deduce that from a certain number of nodes in the cluster, it is no longer necessary to add additional nodes to improve the speedup and the processing Time. Then, we investigate the tuning of the resource allocation in Spark. We showed that it is not only by allocating all the available resources we get better performance but it depends on how to tune the resource allocation. We propose new managed parameters and we show that they give better total processing time than the default parameters used by Spark. Finally, we study the Persistence of Resilient Distributed Datasets (RDDs) in Spark using machine learning algorithms. We show that one storage level gives the best execution time among all tested storage levels.
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Introduction
Many applications generate and handle very large volumes of data, like social networking, cloud applications, public web sites, search engines, scientific simulations, data warehouse and so on. These large volumes of data are coming from a variety of sources and are both unstructured and structured data. In order to transform efficiently this massive data of various types into valuable information and meaningful knowledge, we need large-scale cluster infrastructures. In this context, one challenging problem is to realize an effective resource management of these large-scale cluster infrastructures in order to run distributed data analytics.
Resource management techniques are very important to manage cluster infrastructures. They allow us to share cluster resources among multiple applications. Each application can reserve multiple containers and usually each container is a reservation for a number of cores and an amount of memory. They usually follow the master-slaves architecture [1], with a central master responsible for scheduling and orchestration, while slaves host application containers.
This research is a follow-up work to our previous studies. In [2], we showed how Spark performance decreased when using large data, in fact, Spark pays for more memory consumption. Moreover, we proposed to increase memory driver, to improve performances for computing data. Therefore we used RDDs so as to optimize processing time and storage space according to our needs, this method improved performance and decreased the execution time. In [3] we focused on machine learning algorithms adapted for Big Data processing in distributed systems. We evaluated MLlib and Mahout though several experiments by increasing data up to 10  GB, in order to compare the behaviors of MLlib and Mahout according to data size on three different algorithms. As obtained in this study, MLlib is much faster than Mahout but we noted that when data is extremely large, the memory is not enough to store newly results, then, Spark’s MLlib crashes. In this study, we deal with the problem of resource management using the framework Apache Spark [4]. We chose this framework because it is the most powerful open source project in Big Data with more than 1200 developers that have contributed to Spark [5]. It is built to perform sophisticated analysis and it is designed as a computing platform for fast processing, general-purpose, and easy to use [6]. It allows to process a huge quantity of data coming from several sources. Apache Spark extends the MapReduce [7] paradigm and uses it on other levels [8]. It makes very fast processing compared to traditional engines because it supports in-memory computing across DAG (directed acyclic graph) [9]. Apache Spark relies on Hadoop ecosystem (MapReduce, YARN and HDFS). MapReduce has been useful and it began as a general batch processing system [10], but in most cases, it takes a long time to run jobs especially when it comes to processing huge quantities of data [11, 12]. The learning curve to writing a MapReduce job is also difficult as it takes specific programming knowledge and the know-how. MapReduce is not designed for iterative processes [13].
In this paper, we perform simulations using different number of nodes in the cluster and different data size. We analyzed the speedup and the processing time in order to assess the scalability of Spark. Then, we study the tuning of resource allocation in Spark. We present some recommendations for tuning and for a specific configuration, we propose new managed parameters and we show that these managed parameters give a better total processing time than the default parameters. Finally, we studied the RDDs’ Persistence in Spark. We discuss the types of persistence in spark and we explain the different storage levels of RDDs’ persistence. We conduct several simulations using different machine learning algorithms and using different storage levels.
The rest of the paper is structured as follows: the second section presents related work. The third section gives a brief overview of Apache Spark and MLlib. While the fourth section, details our experimental setup and the fifth section explain our experimental evaluation and results. Our conclusions and future works are drawn in the final section.

Related work
In this section, we present a review of literature and we show some works that have focused on resource management and data processing in Big Data plateforms.
Resource management mechanisms
Starfish [14] is a self-tuning system for big data analytics, it is built on top Hadoop in order to provide a good performance automatically, the authors proposed a cost-based optimization method to provide automatic configuration for users, they used what-if engine to estimate job performance with different parameters and configuration without executing the job. In [15], the authors proposed a new approach for tuning configuration parameters of spark based on machine learning, this method is composed of binary classification and multi-classification in order to tune the configuration parameters automatically, they chose a random sample from the parameter space, then they generated a parameter list of 500 records for each type of workload, the experimental results showed that a Decision Tree (C5.0) provides good accuracy and computational efficiency. In [16], the researchers introduced a system architecture that gathers several mechanisms for adaptive resource management, they stretched out Apache Hadoop’s scheduling and data placement to enhance resource usage and job runtime for periodic jobs, then they developed a Hadoop submission tool that allows users to allocate resources for specific target runtime.

Apache Spark and in-memory processing
Since its appearance in [4], Apache Spark quickly becomes the most popular complement of Apache Hadoop [17]. In [18], the authors described the weaknesses of MapReduce which are related to its performance limits. The authors identified a list of problems related to the processing of Big Data with MapReduce, for example: MapReduce consumes very high communication, it makes a selective access to input data, and it is wasteful processing. Despite the success that has had MapReduce, it remains always limited to analyze a huge amount of data. Gu et al. [19] evaluated the performance of Hadoop and Apache Spark. In their study, they show that Spark is very consuming memory, and Spark is efficient than Hadoop when there is enough memory to do an iterative treatment. On the other hand, if there is not enough memory, Hadoop is better than Spark to store the intermediate results that are recently created. Singh and Reddy [13] talked about the size of data to be processed. They said that Spark and Hadoop can analyze a large amount of data, but Hadoop remains too slow for iterative tasks, so if users need to optimize cluster performance, Spark is more appropriate in this case. Spark keeps data in memory while computing what makes it 40 times faster than Hadoop and it can be used interactively to query large datasets at sub-second latency [20].

Data processing in Apache Spark
The authors [21] treated a distributed Newton method for solving logistic regression (LR) and linear support vector machines (SVM) then they implemented these methods on Spark instead of MapReduce because this last one is insufficient on iterative algorithms; Moreover, they studied several implementation problems that affect the running time. After conducting through empirical investigations, they proved that the distributed Newton method was powerful for LR and linear SVM with fault tolerance provided by Spark. The authors [22] implemented Java RMI (remote method invocation) technique to let users to leverage Local GPU (graphics processing unit), Remote GPU and no GPU. Moreover, they evaluated the performances of HeteroSpark [22] using three machine learning algorithms including logistic regression, K-means, and Word2Vec, and they compared it with the original Spark, In fact the results showed that HeteroSpark is the most efficient. Maillo et al. [23] presented a new K-nearest neighbor (KNN) based on Apache Spark, they implemented multiple ’Reduces’ to speed up the computing. Furthermore, they compared Apache Spark and Apache Hadoop using datasets up to 10 million instances to show the advantages of the new KNN based on Apache Spark.

Performance evaluation of Apache Spark through machine learning techniques
Smart-MLlib [24] is a new Machine Learning library, it is build on c++ and MPI (message passing interface) based on middle-ware system,, it allows to implement machine learning from a Scala program using application programming interface (API) of Spark. To assess the performances of Smart-MLlib, the authors used different machine learning algorithms such as linear regression, K-means, support vector machines, and Gaussian mixture models. As a result of this implementation, they proved that their new Smart-MLlib library scaled well than Spark’s MLlib for each evaluation. Applying machine learning on a large and complex dataset requires a considerable number of physical resources to process this data, in [25], the authors explored Apache Spark MLlib version 2.0 as an open-source, distributed, scalable, and platform independent Machine Learning library, and they performed different real-world machine learning experiments to evaluate the qualitative and quantitative attributes of the platform. Alternating direction method of multipliers (ADMM) [26], it is a method used to solve a generic convex problem for most machine learning algorithms, this solution helps to transform the problem to an iterative system of linear equations, the authors implemented ADMM in Apache Spark and they compared this solution with MLlib then they showed that ADMM solution is like an alternative to MLlib for big-data problems, this approach has the added advantage of machine learning algorithms.
Our work differs from previous studies in the literature. In this study, we used different techniques to study and improve the performance of Big Data processing. In general, users try to improve performance by increasing the memory, the number of cores, and the number of nodes randomly to get better performances, but sometimes this technique could mitigate them, therefore it is necessary to find optimal resource management to improve performances. So for this paper, we rated the scalability using various data size and number of nodes, and we evaluated MLlib through several experiments by choosing different datasets to examine the behavior of MLlib and study the processing time using machine learning algorithms. Then, we allocated to executors all the available cores on each node to improve the computation time, but this method mitigated the performance instead of improving them, to remedy this problem, we proposed to adjust the parameters in an appropriate manner. In consequence, we suggest that performance improvement has to be done in a more informed way about the effects of each parameter including memory, number of executors, and cores to get better performance. Finally, we used RDD persistence to decrease the computation time and make the whole cluster more efficient and fast.


Background
In this section, we give a brief overview of Apache Spark and MLlib.
Apache Spark
Apache Spark is an open source Big Data processing framework, it is designed for fast computing and easy to use. It is based on MapReduce paradigm and it uses it to a whole other level. Spark runs on Hadoop clusters such as Apache YARN [27], Apache Mesos [28], and standalone [29] with its own scheduler. Spark provides parallel distributed processing, fault tolerance on commodity hardware, and scalability [30]. Spark adds to the concept with cached in-memory distributed computing, low latency, high-level APIs and stack of high-level tools. MapReduce was designed as a fault tolerant framework that ran on commodity systems, Spark comes with the same framework to run data processing on commodity systems as well as using a fault tolerant framework. Apache Spark provides API (application programming interface) in different programming languages including Scala, Java, Python and R [31]. This framework permit to write the concept of data transformations and machine learning algorithms using the parallelism technique. It is also possible to write computations that are fast for different distributed storage systems for example HBase and HDFS.

MapReduce
In 2004, the MapReduce paradigm was invented by Google for large data processing, this model allows parallel and distributed computing of huge quantity of data through a cluster. In fact, it aims to process data by partitioning and aggregation of intermediate results. The basic idea of the MapReduce paradigm is to process data in parallel, while data splitting, distribution, synchronization and fault tolerance are handled automatically by the MapReduce framework. MapReduce has main functions: map() to split out and distribute the different data partitions, it is done by a node that distributes the data to other nodes; and reduce() to collect the computed results in parallel and merge them into a single global result.

Resilient Distributed Dataset
Resilient Distributed Dataset [32, 33] or RDD is the main component in Apache Spark, it is a distributed collection of elements parallelized into the cluster. The most instructions of processing data consist of performing operations in RDDs. There are two types of RDD operations. Transformations and Actions. Transformations do not return any value and create a new RDD based on an existing one, nothing is evaluated during the transformation statements. When actions are called, they return a value from an RDD.
In the midst of RDDs’ strengths, it recovers lost data after each failure. Overall, data is partitioned over worker nodes. Partitioning is done automatically three times by Spark, however it is possible to control the number of partitions that can be created.

Spark architecture and processing data
Apache Spark runs applications independently through its architecture [34] in the cluster as shown in Fig. 1, these applications are combined by SparkContext Driver program, then Spark connects to several types of Cluster Managers (such as YARN, Mesos) to allocate resources between applications to run on a Cluster, when it is connected, Spark acquires executors on the Cluster’s Worker Nodes, to perform calculations and store data for the application, besides Spark sends the application code passed to SparkContext to the executors, finally, SparkContext sends tasks to executors to execute.[image: A40537_2019_240_Fig1_HTML.png]
Fig. 1Apache Spark architecture. Apache Spark runs applications independently through its architecture in the cluster, these applications are combined by SparkContext Driver program, then Spark connects to several types of Cluster Managers to allocate resources between applications to run on a Cluster, when it is connected, Spark acquires executors on the cluster nodes, to perform calculations and store data for the application, besides Spark sends the application code passed to SparkContext to the executors, then, SparkContext sends tasks to executors in order to be executed





Apache Spark processes data through several steps. firstly, a RDD is created by parallelizing the data in the driver program or by loading the data from the external storage system such as HDFS or HBase; then, the results of RDDs are saved to be apply to the data. Once a new action is called, the whole RDD must be recalculated, intermediate results are saved in memory; finally, the output is returned to the driver.

MLlib of Apache Spark
MLlib (Machine Learning library) is distributed machine learning library of Spark [35]. MLlib aims to large-scale learning settings that benefit from data-parallelism or model-parallelism to store and operate on data or models [36]. It gathers parallel algorithms that run better on clusters. There are other classic machine learning algorithms that are not integrated because they were not designed for parallel processing [37].
Apache Spark MLlib aims to make machine learning scalable and useful, it includes different tools for example [38]: machine learning algorithms (including Classification, Clustering, and Collaborative Filtering). Pipelines (for evaluating and tuning ML Pipelines), Persistence (for saving and loading algorithms and pipelines) and Utilities (for data management and optimization algorithms).


Experimental setup
Methodology
After the installation of Apache spark, we save input data in HDFS (Hadoop distributed file system), since Spark can read from any Hadoop input. In this study, we chose different data size to perform our simulations using a different number of nodes in the cluster and different data size. Then, we use the Machine Learning library (MLlib) of Spark to implement different machine learning algorithms including K-means, GMM, LR, and SVM. We perform a scalability analysis using Spark. We analyze the speedup and processing time. Besides, We investigate the tuning of the resource allocation in Spark. We show that it is not only by allocating all the available resources we get better performance but it depends on how to tune the resource allocation. We propose new managed parameters and we show that these managed parameters give a better total processing time than the default parameters used by Spark. Then we manage the resources (CPU, memory, and Disk) in order to assess the performance of Apache Spark. Moreover, we study the RDDs’ Persistence in Spark using machine learning algorithms. After each processing experimental, spark saves the results in HDFS. Figure 2 summarizes the methodology of our approach.[image: A40537_2019_240_Fig2_HTML.png]
Fig. 2Flow chart of our methodology. This figure represents the flow chart to show the alignment of all steps of this study






Description of machine learning algorithms
This section describes in detail the four algorithms used in our experimental study.
K-means
K-means clustering algorithm is an iterative algorithm and it is an example of unsupervised machine learning problem. It aims to classify dataset using several clusters or K clusters fixed before starting the procedure of clustering. The k-means algorithm aims to minimize the objective function given by Eq. (1):[image: $$\begin{aligned} J=\sum _{k=1}^{K}\sum _{i=1}^{m}\Vert x_i - c_k\Vert ^2 \end{aligned}$$]

 (1)


	K: The number of clusters.

	m: The number of data examples.

	[image: $$x_i$$]: The data example i.

	[image: $$c_k$$]: The centroid for cluster k.

	[image: $$\Vert x_i - c_k\Vert ^2$$]: The distance function.



K-means algorithm proceeds as follows: (1) Select K random examples as starting centers, (2) Find all examples closest to each center, (3) Find the center or the mean of each cluster, (4) If the center changed, iterate again (repeat the steps (2) and (3) until to find the closest center).
[image: A40537_2019_240_Figa_HTML.png]


Gaussian mixture model
Gaussian mixture model (GMM) is a linear combination of several Gaussian components and it is an example of unsupervised machine learning problem. It is particularly used in cases where the data in studies cannot be modeled by a simple Gaussian. In other words, if the data structure is composed of several groups, it must be represented by a Gaussian mixture model rather than a simple Gaussian distribution.The model is constructed by the following Eq. (2):[image: $$\begin{aligned} g(x,\Phi ) = \sum _{k=1}^KP_kf(x,\theta _k) \end{aligned}$$]

 (2)


	K: The number of Gaussians we want to model.

	[image: $$\theta _k=(\mu _k,\sum _k)$$]: The parameter of each normal distribution.

	[image: $$P_1,\ldots ,P_K$$]: The proportions of different groups or the mixture weight such that: [image: $$\sum _{k=1}^KP_k=1$$].

	[image: $$\Phi =(P_1,\ldots ,P_K,\theta _1,\ldots ,\theta _K)$$]: It is mixture parameter.

	[image: $$f(x,\theta _K)$$]: It is the normal multi-dimension distribution parameterized by [image: $$\theta _K$$].



GMM algorithm is done using the following steps: (1) Select the initial K Gaussians, (2) Determine the responsibility of each Gaussian to every data point, (3) Update the Gaussian weights, means, and covariance matrices, (4) iterate again (repeat the steps (2) and (3) until convergence).
[image: A40537_2019_240_Figb_HTML.png]


Logistic regression
Logistic regression (LR) is an iterative algorithm for binary classification and it is an example of supervised learning problem. LR attributes observations to a collection of categories. It is a special case of Generalized Linear models that predicts the probability of the outcomes. Logistic regression is based on the following main hypothesis (3):[image: $$\begin{aligned} f(x)=\sigma {(W_Tx)} \end{aligned}$$]

 (3)


	[image: $$\sigma$$]: The logistic function [image: $$\sigma {(z)=\dfrac{1}{1+ \exp (-z)}}$$].

	W: The weights vector.

	x: The data example.



LR is done using the following iterative process: (1) Choose W at random, (2) Compute the gradient [image: $$\dfrac{\sigma }{W}$$], (3) Update each [image: $$W_j$$] by adding a function of W so as to improve its value, (4) Repeat step (2) and (3) until to find the best value of W.
[image: A40537_2019_240_Figc_HTML.png]


Support vector machine
Support vector machine (SVM) is a supervised machine learning algorithm, it is used for classification problems and it can sometimes be used for regression problems. SVM algorithm aims to find a hyper plane in N-dimensional space (N is the number of features) so as to classify the data points.
To have an idea about the mathematical formula of SVM, we take the example inspired by Schôlkof [39] who puts the principle of SVM into practice. In this example, the nonlinearly separable data in [image: $$R^2$$] become linearly separable in [image: $$R^3$$] due to the transformation [image: $$\psi$$] defined by the Eq. (4):[image: $$\begin{aligned} \begin{aligned} \psi : R^2&\Rightarrow R^3\\ (x_1,x_2)&\Rightarrow (x_1^{2},\sqrt{2}x_1x_2,x_2^{2})\\ \end{aligned} \end{aligned}$$]

 (4)

SVM algorithm works as follows: (1) Select the initial weights; (2) For each point, accumulate the partial derivatives of the hinge-loss function; (3) Update the weights with applying the gradient-descent rules by taking into consideration the partial derivatives found in the step (2), the number of points and the iteration number; (4) iterate again (repeat the steps (2) and (3) until convergence).
[image: A40537_2019_240_Figd_HTML.png]



Datasets chosen in the experimental study
The datasets we investigated are the HIGGS dataset and SUSY dataset found at the UCI Machine Learning Repository [40].
Higgs dataset contains 28 features and 11,000,000 examples that describe the difference between a signal process which produces Higgs bosons and a background process which does not [41]. SUSY datasets contains 18 features and 5,000,000 examples that describe the difference between a signal process which produces supersymmetric particles and a background process which does not [41].

Environment
The experimental studies are performed on Google Cloud Platform (GCP) which is a cloud computing platform provided by Google, it provides the same infrastructure that Google uses internally. This platform offers a wide range of products and services. In this work, we used Cloud Dataproc service [42], which is fully managed for the use of Apache Spark and Apache Hadoop clusters.
We chose several clusters to perform various experimental studies, each cluster has different environment, Table 1 shows the characteristics of each environment, every cluster has different memory and the number of cores, for primary disk, we used 100GB size and SSD persistent disk type.Table 1Environments


	Environment
	Memory (GB)
	Cores per node
	Nodes

	Env1
	2
	2
	4

	Env2
	10
	4
	8

	Env3
	15
	4
	12





In the cluster, we have Apache Spark version 2.3 and Apache Hadoop version 2.9. The Master node is equipped with the YARN Resource Manager, HDFS NameNode, and all job drivers. Each Worker node contains a YARN NodeManager and a HDFS DataNode. In this study, we use HDFS of Apache Hadoop to save the input data and the results. Figure 5 shows the cluster and Table 2 summarizes all the information about software configuration.Table 2Software configuration


	Software name
	Version

	Spark
	2.3

	Virtualization platform
	KVM

	OS
	Debian GNU/Linux 9

	Kernel
	Linux 4.9.0-8-amd64

	Architecture
	x86-64







Results and discussion
Scalability analysis
Analysis of the speedup
In this part, we rated the scalability of four algorithms. We set the dataset size to 1 GB, 2 GB, 4 GB and 6 GB in CSV format; at the same time, we increased the number of nodes, all the nodes have 15 GB in memory per node and 4 cores per node.
The speedup is one of the main performance characteristics of distributed systems. It is usually defined as the ratio of application’s processing time on a single node to the processing time, of the same workload, on a system composed on n nodes. The notion of speedup was established by Amdahl’s law, which was particularly focused on parallel processing. The speedup can be used more generally to show the effect on performance after any resource enhancement. The speedup is calculated as follows:[image: $$\begin{aligned} speedup = T_1/T_n, \end{aligned}$$]


[image: $$T_1$$]: is the processing time with one single node, and [image: $$T_n$$]: is the execution time with n nodes.
Figures 3,  4,  5 and  6 present the scalability characteristics using different number of nodes (4, 8, 12 and 16) and different data size (1 GB, 2 GB, 4 GB and 6 GB). All figures for the four algorithms show that for small size of dataset (specially 1 GB size), we can see an almost linear speedup improvement with the addition of the new nodes in the cluster. However, for Figs. 3 and  6, for large size of dataset (specially 6 GB size), we note that the speedup curve becomes asymptotic, the speedup does not improve linearly with the addition of nodes.[image: A40537_2019_240_Fig3_HTML.png]
Fig. 3Scalability of GMM. This figure presents the scalability characteristics using GMM algorithm and different number of nodes (4, 8, 12 and 16) and different data size (1 GB, 2 GB, 4 GB and 6 GB)




[image: A40537_2019_240_Fig4_HTML.png]
Fig. 4Scalability of K-means. This figure presents the scalability characteristics using K-means algorithm and different number of nodes (4, 8, 12 and 16) and different data size (1 GB, 2 GB, 4 GB and 6 GB)




[image: A40537_2019_240_Fig5_HTML.png]
Fig. 5Scalability of LR. This figure presents the scalability characteristics using LR algorithm and different number of nodes (4, 8, 12 and 16) and different data size (1 GB, 2 GB, 4 GB and 6 GB)




[image: A40537_2019_240_Fig6_HTML.png]
Fig. 6Scalability of SVM. This figure presents the scalability characteristics using SVM algorithm and different number of nodes (4, 8, 12 and 16) and different data size (1 GB, 2 GB, 4 GB and 6 GB)





So, from this scalability analysis, we can deduce that from a certain number of nodes in the cluster, it is no longer necessary to add additional nodes to improve the speedup. Thus, we must investigate other techniques in order to enhance the speedup and to improve the execution performance of Spark applications.

Analysis of the processing time
In this part, we analyze the processing time using different environments (Env1, Env2 and Env3) and using different datasets (HIGGS and SUSY) described above in CSV format. These environments have the same characteristics that are described in Table 2.
The trends in Figs. 7, 8,  9, and  10 are clear. All figures show that when we use HIGGs dataset (the biggest dataset) the total processing time of spark is slower than when we use SUSY dataset (the smallest dataset). The figures also show that the total processing time decreased when increasing the number of nodes. We also noted that for all tested algorithms except GMM algorithm, the difference in total processing time is not significant between Env2 (8 nodes) and Env3 (12 nodes). Thus, an important conclusion could be drawn from these simulations which is the fact that increasing the number of nodes will obviously contribute to reduce the total processing time but from a certain number of nodes, the value of the execution time will stagnate and the total processing time will not continue to decrease. This remark leads us to study (in the following section of this paper) the importance of tuning resource allocation in order to run data in an economically viable way. Another important remark in Fig. 7 is that when we use GMM algorithm using Env1 and using the biggest dataset (HIGGS), Spark becomes too slow and it crashes. We can explain that by the fact that Spark involves in-memory based storage for RDDs, therefore, the Spark’s memory crashed because there is not enough space to save the intermediate results.[image: A40537_2019_240_Fig7_HTML.png]
Fig. 7Running time of GMM algorithm. This figure shows the running time of GMM algorithm using two datasets, when we use HIGGs dataset (the biggest dataset) the total processing time of spark is slower than when we use SUSY dataset (the smallest dataset)




[image: A40537_2019_240_Fig8_HTML.png]
Fig. 8Running time of K-means algorithm. This figure shows the running time of K-means algorithm using two datasets, when we use HIGGs dataset (the biggest dataset) the total processing time of spark is slower than when we use SUSY dataset (the smallest dataset)




[image: A40537_2019_240_Fig9_HTML.png]
Fig. 9Running time of LR algorithm. This figure shows the running time of LR algorithm using two datasets, when we use HIGGs dataset (the biggest dataset) the total processing time of spark is slower than when we use SUSY dataset (the smallest dataset)




[image: A40537_2019_240_Fig10_HTML.png]
Fig. 10Running time of SVM algorithm. This figure shows the running time of SVM algorithm using two datasets, when we use HIGGs dataset (the biggest dataset) the total processing time of spark is slower than when we use SUSY dataset (the smallest dataset)







Tuning resource allocation
Increasing Spark executors’ cores
Each Spark executor when submitting an application has the same fixed default value of cores (one single core). It is possible to change this value with the flag ’- -executor-cores’ when invoking ’spark-submit’ or ’spark-shell’ from the command line, or even by adjusting ’spark.executor.cores’ property in ’spark-defaults.conf’ file or on a ’Spark-Conf object’.
The number of cores controls the number of tasks that an executor can run at the same time. For example, set ‘– –executor-cores 6’ signifies that each executor will run a maximum of six tasks simultaneously. To some extent, when we increase the number of cores, we will get better performances as a result of more parallelism and more tasks that will be executed simultaneously.
In this section, we allocate to executors all the available cores. In our simulation, we use Higgs Dataset in CSV format and environment 3 (described above) with 12 nodes and each node has 4 cores. In this experiment, we consider Fat executors which means one executor per node and we allocate the four available cores for each executor.
Figure 11 shows the results of this approach. We tried to improve the performances, but instead of that, the performances have been mitigated. The total processing time has greatly increased for all tested algorithms. We can conclude that the performance deteriorates because of the following reasons:	The ApplicationMaster, which is a non-executor container, requires CPU that must be accounted for.

	When we run spark application, there will be several daemons that will run in the background (Hadoop and YARN daemons). So, we must leave at least 1 core per node for these daemons.

	When the number of cores is too high, the spark application spends more time and this is because of switching between threads, consequently, it required more computing and eventually more processing time.

	The HDFS client has difficulty processing many concurrent threads. Increasing number of cores per executor can lead to bad HDFS I/O throughput.



So, the result of this experiment is that we must avoid allocating 100% of available cores to executors and we must leave CPU resources for the ApplicationMaster and for Hadoop and YARN daemons.[image: A40537_2019_240_Fig11_HTML.png]
Fig. 11Processing time before and after increasing the number of cores. This figure shows the processing time before and after increasing the number of cores, in this step we tried to improve the performances by allocating all the available cores, but instead of that, the performances have been mitigated. The total processing time has greatly increased for all tested algorithms






Some recommendations for tuning resource allocation

                    	The ApplicationMaster would need at least a memory ≥ 1 GB and 1 Executor [43].

	In case of using YARN for cluster manager, it is necessary to leave at least 1 core per node for YARN’s daemons [43].

	it is better to use 64 GB as an upper limit for one executor because when using a big memory for executors could produce garbage collection delays [43].

	For HDFS client, it has trouble processing several concurrent threads. In preference, one must keep the number of cores per executor below than five [43].




                  

Tuning CPU and memory in Spark
The two important resources that Spark manages are CPU and memory. Disk and network I/O also affect Spark performance as well, but Apache Spark does not manage efficiently these resources. It is important to equilibrate the use of RAM, number of cores, and other parameters so that processing is not strained by any one of these cluster resources.
In Table 3, we mentioned the default values configured automatically by Spark, such as:	– –driver-memory: the memory needed by the ApplicationMaster to run the driver, it is set by default to 1 GB.

	– –num-executors: the number of executors per node. It is set by default to ‘allocated dynamically’, which means Spark uses dynamic allocation to adds and removes executors dynamically.

	– –executor-memory: the memory assigned to each executor. It is set by default to 1 GB.

	– –executor-cores: the number of cores per executor (which control the concurrent tasks that an executor can run) is set by default to 1.



In order to reduce processing time and improve Spark’s performance, we proposed to tune these parameters taking into account the above recommendation using Higgs dataset.
We consider the following configuration cluster: 12 nodes, 5 cores per node and 15 GB RAM per node.	First of all, we leave 1 core and 4 GB per node for Hadoop and YARN daemons, So:	Num cores available per node = 5−1 = 4

	Available RAM per node = 15−4 = 11 GB






	The total available cores in the cluster is 4 × 12 = 48 cores.

	In order to avoid using tiny executors (as seen in the above recommendations), we chose 2 cores per executor. So:	Number of available executors = (total cores/num-cores-per-executor) = 48/2 = 24 executors.






	We leave 1 executor for ApplicationMaster, So:
– –num-executors = 23 executors.

	Number of executors per node: 23/12 [image: $$\simeq$$] 2
So, we have 2 executors on all nodes except one node which has one executor because we leave one executor for the ApplicationMaster.

	Memory per executor = 11 GB/2 = 5.5 GB

	We need to count the spark.yarn.executor.memoryOverhead which is the memory requested to YARN for each executor, it is calculated by: [image: $$\begin{aligned} MemoryOverhead= & {} Max(384\,MB,Memory\_per\_executor\times 7\%) \\ MemoryOverhead= & {} Max(384\,\text{MB}, 5.5\,\text{GB}\times 7\%) = 0.385\,\text{GB} \end{aligned}$$]





	Finally, the optimal memory for each executor:
– –executor-memory = [image: $$(Memory\_per\_executor - MemoryOverhead)$$]
– –executor-memory = [image: $$5.5 - 0.385 \simeq 5\,\text{GB}$$].




Table 3Tuning Spark parameters


	Property name
	Default value
	Configured value

	– –driver-memory
	1 GB
	4 GB

	– –num-executors
	allocated dynamically
	2

	– –executor-memory
	1 GB
	5 GB

	– –executor-cores
	1
	2






                    [image: A40537_2019_240_Fig12_HTML.png]
Fig. 12Processing time with default and Managed parameters. This figure shows the processing time with default and managed parameters, the performance has been improved after making tuning on some parameters




                  
Resource allocation is a crucial technique while submitting any spark application. Figure 12 shows that the performance has been improved after tuning on some parameters (Table 3). In this analysis, we highlighted the impact of tuning resource allocation, because not only by allocating all the available resources we will get better performance, but it also depends on how to tune the parameters like – –driver-memory, – –num-executors, – –executor-cores and – –executor-memory.


RDDs’ persistence in Spark
Persistence is an optimisation technique for interactive and iterative Spark computations. It help saving interim partial results so they can be reused in subsequent stages. These interim results as RDDs are thus kept in memory or in more solid storages.
In general, we need to persist data when a dataset is likely to be re-used such as in iterative algorithms and machine learning algorithms. By default, every RDD operation executes the entire lineage. If an RDD will be used multiple times, it is recommended to persist it in order to avoid re-computation.
There is two types of persistence in Spark:	Memory persistence: In-memory persistence is a suggestion to Spark, if not enough memory is available, persisted partitions will be cleared from memory (Least recently used partitions cleared first), transformations will be re-executed using the lineage when needed.

	Distributed persistence: Resiliency is a product of tracking lineage, RDDs can always be recomputed from their base if needed, RDD partitions are distributed across a cluster. By default, partitions are persisted in memory in Executor JVMs.



There is different types of persistence Levels in Spark. By default, the persist method stores data in memory only, the persist method offers other options called storage levels.
Storage levels allow us to control:	Storage location (memory or disk),

	Format in memory,

	Partition replication.



Table 4 summarizes the characteristics of each storage level.Table 4Storage levels of RDDs persistence


	Storage level
	Characteristics

	memory_only
	Storing data in memory if it is possible. when the RDD size is higher than memory size, It will not cache the partitions which have not enough space, In consequence, it will not recompute these partitions whenever required. This level provides very high space for storage and reduces the CPU computation time

	memory_and_disk
	For this level, it is possible to store the partitions in disk if there is no enough space in memory. consequently, it will retrieve these partitions whenever required. This level provides very high space for storage and reduces the CPU computation time

	disk_only
	Storing all the partitions only on the disk, it provides more space efficient. For this level, the storage space becomes small and the computation time becomes high

	memory_only_ser
	This level stores the RDD as serialized Java object and only in memory. It provides more space efficient compared to deserialized levels. However, it raises the CPU overhead. For this level, the storage space becomes small and the computation time becomes high

	memory_and_disk_ser
	This level stores the RDD as serialized Java object in memory and on disk. It provides more space efficient compared to deserialized level. However, it raises the CPU overhead. For this level, the storage space becomes small and the computation time becomes high





In this part, we use RDD persistence to optimize data processing, this method is for interactive and iterative computations, it aims to save the results of RDDs evaluations. When we persist data, we can use the results later if it is required, this allows the computation overhead to decrease. Data persistence is done by default using the storage level ‘memory_only’.
RDDs persistence is an essential technique for interactive and iterative algorithms. in other words, after persisting an RDD, each node saves the partition in memory and reuse it for future computation. This operation decreases the computation time and makes the whole cluster more efficient and fast.
There are two methods of persistence: cache() and persist().
The first method cache() is for storing all the RDD in-memory, it has only one storage level ‘memory_only’. While persist() has different storage levels, including: ‘memory_only’, ‘memory_and_disk’, ‘disk_only’, ‘memory_only_ser’, and ‘memory_and_disk_ser’.
In this context, we tried to carry out experimental simulations to assess the RDD persistence by choosing several storage levels, using environment 3 (described above) and using HIGGS dataset.
Figure 13 shows the results of the simulations. We persist a dataset when it will be reused, that is to say, when an RDD will be used several times, we will persist it to avoid the re-computation and save the processing time. As shown in Fig. 13, ‘memory_only_ser’ level has less execution time because it stores serialized data in memory, it provides more space efficiency, and it raises the CPU overhead. We persist in order to use the RDD efficiently over parallel operations and it saves space by saving the serialized objects in memory if required. For Disk level, we can use it when the re-computation is more expensive than disk read for example with expensive functions or filtering large datasets.[image: A40537_2019_240_Fig13_HTML.png]
Fig. 13Processing time using different storage levels of RDDs persistence. This figure shows the results of experimental simulations to assess the RDD persistence by choosing several storage levels. ‘memory_only_ser’ level has less execution time compared to the other levels, because it stores serialized data in memory, it provides more space efficient, and it raises the CPU overhead







Conclusion and future works
Resource management in large-scale is a very challenging problem. In this paper, we used the framework Apache Spark to manage the resources (CPU, memory and Disk).
First of all, we performed a scalability analysis using Spark. We analyzed the speedup and the processing time. We conducted several simulations using different number of nodes and using different data size. We deduced from these simulations that from a certain number of nodes in the cluster, it is no longer necessary to add additional nodes to improve the speedup and the processing time. So, we must investigate other techniques in order to improve the performance of Spark applications.
In this paper, we were also interested in tuning the resource allocation in Spark. We showed that it is not only by allocating all the available resources we get better performance but it depends on how to tune the resource allocation. We presented some recommendations for tuning and for a specific configuration, we proposed new managed parameters and we showed that these managed parameters give a better total processing time than the default parameters.
Finally, we studied the RDDs’ Persistence in the context of machine learning algorithms use. We discussed the types of persistence in spark and we explained the different storage levels of RDDs’ persistence. We conducted several simulations using these different storage levels. The results show that the storage level ‘memory only ser’ gives the best execution time among all tested storage levels. We have studied the RDDs’ persistence by choosing two storage levels that let us control storage location (memory or disk) and the format in memory (serialized or not). An interesting direction for future work is to study a new storage level which is Disk Persistence with Replication. It is important to control Partition Replication because we can save data on multiple locations. So, in case a node goes down, replicated data on disk will be used to recreate the partition if possible without recomputation. Using Disk Persistence with Replication is especially interesting when recomputation is more expensive than storing in memory.
In this paper, we have also studied the tuning of resource allocation. Another direction for future work would be to study the other aspects in tuning the performance and scalability of Apache Spark. We will study the tuning of the number of partitions of a dataset, the tuning of Spark Shuffle Operations (for example: (i) How to choose the right arrangement of actions and transformations in order to minimize shuffles ; (ii) When to Add a shuffle transformation because sometimes an extra shuffle can be advantageous when it increases parallelism). We will also study how to reduce the size of data structures (using Kryo serialization) and how to choose efficiently the data formats (using extensible binary format like Avro, Parquet, Thrift, or Protobuf and storing in a sequence file).
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Algorithm 2 Scala source code that uses GMM Algorithm

val input = sc.textFile(input.csv)
val plnput = data.map(s = Vectors.dense(d.trim.split(" ").map(_.toDouble))).cache()

val gmm = new GaussianMixture().setK(2).run(plnput)

gmm.save(sc, " output/gmmModel”)
val model = GaussianMixtureModel.load(sc,” output/gmmModel")
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Algorithm 4 Scala source code that uses SVM Algorithm

val input = MLULtils.loadLibSVMFile(sc, "input.csv")

val split = input.randomSplit(Array(0.7, 0.3), seed = 1234) //70%for train and 30% for test
val training = split(0).cache()

val test = split(1)

val model = SVM.train(training, 50)

model.save(sc, " output/svmModel”)
val sameModel = SVMModel.load(sc, " output/svmModel")
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Algorithm 3 Scala source code that uses Logistic Regression Algorithm

val input = MLUtils.loadLibSVMFile(sc, "input.csv”)

val split = data.randomSplit(Array(0.7, 0.3), seed = 1234) //70%for train and 30% for test
val train = split(0).cache()

val test = split(1)

val model = new LogisticRegressionWithLBFGS().setNumClasses(10).run(train)

model.save(sc, " outputLRModel")
val sameModel = LogisticRegressionModel.load(sc,” outputLRModel")
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Algorithm 1 Scala source code that uses K-means Algorithm

val input = sc.textFile(input.csv) //load data
val plnput= input.map(d = vectors.dense(d.split(" ').map(_.toDouble))).cache() //parse data

val c =2 //two classes
val i= 16 //number of iterations
val cluster = KMeans.train(plnput,c,i)

cluster.save(sc, output/kmeansModel") //save the model
val model = KMeansModel.load(sc, output/kmeansModel’) //load the model





