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Wilfried Yves Hamilton Adoni1  , Tarik Nahhal1  , Brahim Aghezzaf1   and Abdeltif Elbyed1  
(1)Laboratoire Informatique Modélisation des Systèmes et Aide à la Décision, Faculty of sciences, Hassan II University of Casablanca, Km 8 Route d’El Jadida, Maarif, B.P 5366, Casablanca, Morocco

 

 
Wilfried Yves Hamilton Adoni
Email: adoniwilfried@gmail.com
Email: wilfried.adoni09@etude.univcasa.ma

 
Tarik Nahhal
Email: t.nahhal@fsac.ac.ma

 
Brahim Aghezzaf (Corresponding author)
Email: b.aghezzaf@fsac.ac.ma

 
Abdeltif Elbyed
Email: a.elbyed@fsac.ac.ma



Received: 9 February 2018Accepted: 20 April 2018Published online: 3 May 2018
Abstract
This paper deals with an efficient parallel and distributed framework for intensive computation with A* algorithm based on MapReduce concept. The A* algorithm is one of the most popular graph traversal algorithm used in route guidance. It requires exponential time computation and very costly hardware to compute the shortest path on large-scale networks. Thus, it is necessary to reduce the time complexity while exploiting a low cost commodity hardwares. To cope with this situation, we propose a novel approach that reduces the A* algorithm into a set of Map and Reduce tasks for running the path computation on Hadoop MapReduce framework. An application on real road networks illustrates the feasibility and reliability of the proposed framework. The experiments performed on a 6-node Hadoop cluster proves that the proposed approach outperforms A* algorithm and achieves significant gain in terms of computation time.
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Introduction
With the increasing size of road networks (4.4 billions of vertices and 6 billions of uploaded GPS points, according to OpenStreetMap data stats 2018 [1]), there has been vast improvement in hardware architecture for intelligent transportation system. The traditional GPS systems embedded in vehicles are only designed to find the shortest paths in small or medium road networks. With the increase in the size of road-networks, implementing efficient GPS programs has become challenging. This is mainly due to impractical computational time taken to compute the optimal path.
The basic algorithms used for the Single Source Shortest Path Problem (SSSPP) are not suited for intensive computation in large-scale networks because of long latency time. This is one of the crucial problem of route-guidance systems for highway vehicles including the Vehicle Routing Problem (VPR), Traveling Salesman Problem (TSP) and Pickup and Delivery Problem (PDP).
Currently, there are lot of approach of SSSPP such as label setting, dynamic programming, heuristic and/or bidirectional heuristic. However, they are inefficient when applied to NP-complete problems due to the large graph size, the hardware requirements and the time complexity. One of the problems emanating from the SSSPP is path finding in large road networks particularly with A* algorithm [2].
A* is mostly used in computer game and artificial intelligence. It is based on heuristic approach and presents great interest in the area of logistics/transportations, bioinformatics and social networks. The main problem is that A* is not adapted for intensive computation on large networks that consisting of millions of vertices and edges. It needs more resources in term of hardware configuration and the computational time increases significantly when we encounter larger graph size. For example, it will be very difficult for car drivers who travels long distances to get high quality solution in order to take a right decisions in some cases where the quick response is a necessity.
In this context, several research studies have been carried out in order to improve the efficiency of graph traversal algorithms based on Big Data technology. This new technology has attracted the attention of business and academic communities (e.g. vehicle controls on big traffic events [3]) because of its ability to meet the 5V (Volume, Velocity, Variety, Veracity and Value) challenges related to shortest path queries in large graphs. Most of the the efficient approaches [4–9] dedicated to these routing problems are based on the concept of parallel and distributed computing provided by Hadoop MapReduce [10].
We focus on an enhanced version of A* that runs in parallel and distributed environment with low cost commodity computers. Our objective is to define a high quality path in reasonable computational time. This research work is inspired by papers [6, 7]. The key contributions of this paper are as follow:	Firstly, we propose a MapReduce framework that promotes parallel and distributed computing of shortest path in large-scale graph with A* algorithm.

	Secondly, our experimental analysis proves that the MapReduce version of A* outperforms the direct resolution approach of A*, and significantly reduce the time complexity with high quality results. In addition, our framework is reliable on real road network and works well with the scalability of network size.

	Finally, we show by comparison that the proposed MapReduce framework of A* algorithm is more effective than the MapReduce framework of Dijkstra algorithm presented in [6, 7].



The remainder of this paper is organized as follows.“Related work”  section reviews some works about sequential and distributed path-finding algorithms. “Background” section presents the background knowledge required to understand the complexity of the problem. An overview of MapReduce framework of A* is detailed in “Proposed MapReduce version of A*”. The results of analysis are presented in “Experimental results” section followed by discussion and concluding remarks in “Discussion” section. Finally, “Conclusion and further works” section concludes this study followed by outline of future works.

Related work
Sequential shortest paths computing
For some time now, the shortest path problem has aroused more interest especially when applying it in the fields of transportation engineering and artificial intelligence. So several path-finding algorithms have emerged and there is a rich collection of literature in the current state of art [11–15]. The problem of concern is that SSSPP consists of finding the best path from an origin to a destination in graph.
Dijkstra [16] presented a Dijkstra’s algorithm for finding the shortest path from an origin-to-destination vertex in directed graphs with unbounded non-negative weights. Dijkstra’s algorithm works as breadth-first search [17]. It maintains a set of candidate vertices in a temporary queue and tends to expand the search space in all directions. Dijkstra’s algorithm is much faster than Bellman–Ford’s algorithm [15] and runs in [image: $$O(n^2)$$] [18–20] but is limited to smaller-scale graphs.
In another related work, Xu et al. [21] introduced a Fibonacci head [22] to improve the Dijkstra’s algorithm, this approach allowed to reduce the computational time to [image: $$O(m+n\log (n))$$] and is very practical to find the shortest path in graph containing large numbers of vertices. Orlin et al. [23] followed this work by integrating binary heaps to speed up the process of finding edges which minimizes the path length, their contribution allowed to improve the time complexity to [image: $$O(m\log (m))$$].
In another early contribution, Ira and Poh [24] proposed a bidirectional search method consisting of partitioning the global search domain under two and compute simultaneously the path on the two sub-domains. This approach is inspiring but presents some limitations due to hardware requirements when the search domain became very large. Other classes of path-finding algorithms that use heuristic approaches aim to reduce the space domain and avoid unpromising vertices. Currently the best known shortest path approach that uses heuristic approach is A* algorithm [2].

Distributed shortest paths computing
When the data is too large, sequential algorithms became traditional and inefficient. In this sense, many related works have been performed to improve the velocity of existing path-finding algorithms [4–9]. Presently, the most promising strategy for intensive path computation in large-scale graph is the parallel and distributed model. The use of this approach comes from the failure to handle big graph with traditional technique [25]. There have been a lot of studies on parallelizing the shortest path algorithms. Work conducted by Djidjev et al. [4] aims to improve by twofold the path computation in large graph with Floyd–Warshall algorithm. The authors proposed a parallel model of Floyd–Warshall based on Graphics Processing Unit (GPU).
Cohen and Jonathan [26] proved that the concept of distributed computing with MapReduce-based approach could be applied successfully in large-scale graph problems such as graph mining [5] and shortest path problem [6, 7].
MapReduce paradigm attracts more interest in the era of parallel processing and provides an innovative approach for intensive computation on scale-free network [5]. In this scope, Aridhi et al. [5] proposed a parallel and distributed solution for large-scale graph mining via the technique of graph partitioning under subgraphs. The experiments revealed that their approach reduces significantly the execution time and works well with the increasing number of cluster nodes (computers).
In recent papers [6, 7], the authors presented the MapReduce-based approach for shortest path problem in large-scale network. The proposed approach works in four stages including the map and reduce stages. Before the map stage, they had partitioned the graph into subgraphs and mapped them to each node. Next, Dijkstra’s program [16] is running on each machine to generate a set of intermediate paths. Finally in the reduce stage, all intermediate paths are aggregated to obtain the final shortest path. The authors contributions enabled a significant gain in terms of time complexity. In another work, Zhang and Xiong [8] followed the same approach for the search of dynamic path in large road network based on cloud computing. In addition, Seunghyeon et al. [27] proposed a parallel version of Girvan–Newman algorithm based on the concept of Hadoop MapReduce to improve the computational time in large-scale network.


Background
Hadoop and MapReduce
According to Hadoop documentation [10], Hadoop is an Apache open source framework inspired by Google File System [28]. It allows parallel processing on distributed data sets across a cluster of multiple nodes connected under a master-slaves architecture. Hadoop consists of two main components: HDFS [28] and MapReduce [29, 30].
The first component is the Hadoop Distributed File System (HDFS). HDFS is designed to support very large file of data sets. It is also distributed, scalable and fault-tolerant. The Big Data file uploaded into the HDFS is split into block file with specific size defined by the client and replicated across the cluster nodes. The master node (NameNode) manages the distributed file system, namespace and metadata. While the slave nodes (DataNode) manage the storage of block files and periodically report the status to NameNode.
The second one is the MapReduce programming model for intensive computation on large data sets in parallel way. To ensure good parallelism, the data input/output needs to be uploaded into the HDFS. In MapReduce framework, the master node works as JobTracker and the slave nodes as TaskTracker. The JobTracker assumes the responsibility and coordinates the job execution. The TaskTracker runs all tasks submitted by the JobTracker. As shown in Fig. 1, the MapReduce job runs in two main stages:	1In the Map stage, the mappers (map tasks) are assigned to slave nodes that host the blocks data. Each mapper takes line-by-line the records of its input and transforms them into <key, value> pairs. Next, the map function defined by the user is called to produces another intermediate <key, value> pairs. The intermediate results are sorted locally by keys and sent to the reduce stage when all map tasks are completed.


 

	2In the Reduce stage, the reducers (reduce tasks) read the map stage outputs and group all values which share the same key to produce for each key an iterate values <key, iterable[value]>. Next the reduce function defined by the user is applied over the sorted intermediate data sets to produce a set of smaller <key, value> pairs and write finally its result into the HDFS.


 




[image: A40537_2018_125_Fig1_HTML.gif]
Fig. 1The job execution workflow of MapReduce framework






A* algorithm
A* or some extended version (HPA*, SMA*, MA* and IDA*) [14, 31, 32] of it, is one of the most used algorithm for SSSPP and was originally presented by Hart et al. [2] in 1986. It can be viewed as an extension of Dijkstra algorithm [16] by adding a heuristic function h that guides the search [11].
Suppose that a road network is denoted by a graph G [image: $$=$$] (V, E) where:	V is the finite set of vertices of the graph G.

	E is the set of edges, such as: if [image: $$(v, u) \in E$$], then there is an edge between the vertices v and u.

	We define the length function [image: $$l{:V} \times V \mapsto R^+$$], which for each edge (v, u), we associate a length l(v, u) if there is an edge between v and u, else [image: $$\infty $$] if there is no edge.

	For each vertex [image: $$v \in V$$], we define a distance [image: $$d{:V}\mapsto R^+$$] such as [image: $$d(v)= \infty $$] if we cannot reach the goal vertex from v.



As shown in Fig. 2, A* takes advantage of heuristic function to avoid the exploration of unnecessary vertices that do not seem to be promising. A* incorporates an estimate of the path cost d(v) in which we can determine: (1) the costg(v) from the starting vertex s to any vertex [image: $$v \in V$$] and (2) the rest of the ’path-completion’ h(v) from v to goal vertex e [33].[image: A40537_2018_125_Fig2_HTML.gif]
Fig. 2Vertex evaluation with A* heuristic





The principle of path-finding with A* can be described as follows:	Step 1 initialization
set [image: $$O = \emptyset $$] and [image: $$S = \emptyset $$];
begin by setting [image: $$g(v) = \infty $$] for each vertex [image: $$v \in V$$];
next set current vertex [image: $$c = s$$], [image: $$g(s) = 0$$] and [image: $$d(s) = h(s)$$];
finally set [image: $$c = s$$] and let [image: $$S = \{s\}$$];

	Step 2 vertex expanding
for each vertex [image: $$v \in V$$] where edge [image: $$(c ,v) \in E$$]; if [image: $$g(v) > g(c) + l(c, v)$$] then update [image: $$g(v) = g(c) + l(c, v)$$]; set [image: $$d(v) = g(v) + h(v)$$], set [image: $$d(v) = g(v) + h(v)$$] and when [image: $$v \notin O$$] let [image: $$O = O+\{v\}$$];

	Step 3 selection of promising vertex [image: $$v^*$$]
identify vertex [image: $$v^*\in O$$] where [image: $$d(v^*) \le d(v)$$] for all [image: $$v \in O$$]; set [image: $$O = O-\{v^*\}$$] and [image: $$S = S+\{v^*\}$$];
set [image: $$c = v^*$$];

	Step 4 stopping criteria
if [image: $$c = e$$] then the path has been found;
elseif [image: $$O = \emptyset $$] then failure;
otherwise go to step 2.



Like Dijkstra [16], A* works with two main queues: the ‘open-list’ O containing all candidate vertices and the ’close-list’ S that contains promising vertices. It applies a Depth-First-Search algorithm [34] to expand deeper-and-deeper all candidate vertices until the ’open-list’ is empty or until the goal vertex e is found. Then the search backtracks to explore in the most recent vertex [image: $$v \in V-O$$] that is not visited. To find the most promising vertex [image: $$v^*$$], A* evaluates for each candidate vertex [image: $$v \in O$$] a temporary distance d(v) such as [image: $$d(v) = g(v) + h(v)$$]. A* guarantees to find the optimal path if for every edge [image: $$(v, u) \in E$$], h(v) verifies the triangle inequality: [image: $$h(v) \le l(v, u) + h(v)$$] and [image: $$h(e) = 0$$]. Then for every vertex [image: $$v \in V$$], the heuristic h(v) is said to be admissible.
Each time a new vertex is added in the priority queue, the ‘open-list’ needs to be sorted again and takes O(log(n)) time to complete all operations of enqueue and dequeue. For this reason, all vertices [image: $$v \in O$$] persist temporarily in memory. Hence, it can result in serious performance bottlenecks and runs very slowly because of exponential space memory consumption for infinity large number of vertices. In terms of the depth of the solution, A* runs in [image: $$O(l^b)$$] time where l is the length of the shortest path and b is the average number of successors per state. It is more logic to describe the time complexity taking account of vertices and edges of the graph, therefore it should be [image: $$O((n+m)log(n))$$]. To improve the computation time in large graph, we assume that it’s necessary to:	1.Reduce the graph size by deleting some unnecessary vertices and edges of the graph;


 

	2.Use sophisticated computers equipped with lot of ram memory for data persistence or run A* with multitasks approach such as HPA* [32];


 

	3.Use MapReduce approach to run the A* program under a distributed environment.


 



Reducing the graph size before applying A* search can take quite some time ([image: $$O(log(n^b))$$]) to perform the graph reconstruction after removing some unnecessary vertices. In some cases, there is a risk of removing some promising vertices that can affect the path optimality. Using powerful computers equipped with a lot of RAM memory and CPU power is another technique. However, difficulties arise when reaching hardware memory limits at a few million vertices. In this sense, the basic idea is to propose a parallel and distributed version of A* based on MapReduce. Let’s see if the proposed approach is well suited to face the graph’s scalability in term of volume, the velocity in terms of time complexity and result quality in terms of veracity.


Proposed MapReduce version of A*
As shown in Fig. 3, the proposed MapReduce framework of A* (MRA*) is composed of four main stages:	1.Input stage: partition of the initial graph


 

	2.Map stage: computation of intermediate paths


 

	3.Reduce stage: concatenation of intermediate paths


 

	4.Output stage: storage of full path


 



The MRA* job submitted from the master node is split into mappers and reducers that run respectively in the map and reduce stages. The set of stages are synchronized so that the output of the previous stage is chained to the input of the next stage. The intermediate paths computing take place in the Map and Reduce stages. Consider that [image: $$t_{map}$$] and [image: $$t_{red}$$] are respectively the time passed in the map and reduce stages, thus the total computation time [image: $$ T_{MRA^*}$$] required by the MapReduce-A* framework to satisfy the full path computation is calculated as follows:[image: $$\begin{aligned} T_{MRA^*}= & {} t_{map} + t_{red} \end{aligned}$$]

 (1)


[image: A40537_2018_125_Fig3_HTML.gif]
Fig. 3Overview execution of MapReduce-A* framework





Input stage: partition of the initial graph
The input stage (pre-processing stage) consists of uploading the initial graph data with specific size [image: $$G_{size}$$] into the HDFS and partitioning it into set of subgraphs. By default, Hadoop splits physically the graph data into little files based on the defined block size [image: $$B_{size}$$] and replicates them across the cluster nodes. Then the total number of block [image: $$N_{block}$$] occupied by the graph can be obtained using the following formula:[image: $$\begin{aligned} N_{block} &= E\left[ \frac{G_{size_{}}}{B_{size}}\right] + \theta \nonumber \\ \mathrm{where}\, \theta &= \left\{ \begin{array}{l} 0,\quad if\,G_{size} \equiv B_{size} \\ 1,\quad else \end{array} \right. \end{aligned}$$]

 (2)

The graph partitioning is done by the Graph_Partition procedure (see Algorithm 1), it takes 3 parameters:	l: subgraph length in km;

	A: source vertex;

	E: target vertex.



This procedure starts by computing the straight line distance L between the source vertex A and the target vertex E by using the Euclidean_Distance function (see Algorithm 2). Next, the obtained distance is divided by the diagonal length d in km to determine the total number of subgraphs [image: $$N_{graph}$$] using the following formula:[image: $$\begin{aligned} N_{graph}= & {} \frac{L}{d} \nonumber \\= & {} \frac{L}{l\times \sqrt{2}} \end{aligned}$$]

 (3)

Each subgraph is delimited by its starting (C.lon, C.lat) and ending (D.lon, D.lat) positions. The Subgraph_Position function (see Algorithm 3) is called to determine the GPS position of each subgraph. Next, we proceed to the creation of the subgraphs by invoking the Create_Subgraph function (see Algorithm  4). Finally, the set of vertices and edges of each generated subgraph is stored into the HDFS in form of key-value pairs as the Fig. 4 shows. It’s important to note that, the variation of the number of subgraphs [image: $$N_{graph}$$] relative to the number of block [image: $$N_{block}$$] has an impact on the result quality, especially the path cost [image: $$C_{MRA*}$$]. The optimality error [image: $$\epsilon $$] between A* and MRA* is calculated as follows:[image: $$\begin{aligned} \epsilon= & {} \frac{{C_{MRA*}-C_{A*}}}{C_{A*}} \times 100\% \end{aligned}$$]

 (4)


[image: A40537_2018_125_Fig4_HTML.gif]
Fig. 4Overview of vertex structure. Each vertex is identified by a unique key and all connected edges are enclosed in the adjList array





Algorithm 2 describes the Euclidean_Distance function for computing the distance between two points of the graph. It takes as input the starting and ending vertices (points A and E) and applies the Euclidean formula [2] to determine the distance L.
[image: A40537_2018_125_Figa_HTML.gif]

[image: A40537_2018_125_Figb_HTML.gif]

Figure 5 illustrates a travel from Kingsport to Santa Rosa. The estimated travel distance is given by the straight line (vector [image: $$\overrightarrow{AE}$$]) based on the Euclidean_Distance function. While, the projected line (arc [image: $$\widehat{AE}$$]) passes through approximately Kingsport in north Carolina (point A), northeast of Missouri (point B), midwest of Nebraska (point C), northwest of Utah (point D) and Santa Rosa in California (point E). The application of Subgraph_Position function described in Algorithm 3 allows to split the projected line and calculates the ending position of each subgraph. It consists of four steps and takes four parameters:	d: diagonal length in km;

	i: ith subgraph;

	(A.lon, A.lat): GPS coordinates of the source vertex (point A);

	(E.lon, E.lat): GPS coordinates of the target vertex (point E).




[image: A40537_2018_125_Fig5_HTML.gif]
Fig. 5Overall view of the path from A to E. a 3D view of the plan OAE on the the earth’s surface. b Travel from Kingsport (point A) to Santa Rosa (point E) with 2D view of OpenStreetMap. The graph is partitioned into 4 subgraphs following the projected arc [image: $$\overset{\frown }{AE}$$]





[image: A40537_2018_125_Figc_HTML.gif]

The first step (lines 11–12) consists of converting the GPS coordinates of the input points into cartesian coordinates. This step is necessary because it ensures high accuracy on large road network. In the second step (lines 14–16), we use the converted coordinates to calculate the normal vector (a, b, c) of the plane OAB (see Fig. 5a) assuming that O is the center of the earth with its cartesian coordinates (0, 0, 0). In the third step (lines 18–21), the obtained vector is used to determine the ending position of the ith subgraph. As shown in Fig. 5b, the point B is the ending point of the 1st subgraph, it partitions the projected arc [image: $$\overset{\frown }{AE}$$] into vectors [image: $$\overrightarrow{AB}$$] and [image: $$\overrightarrow{BE}$$]. The length of vector [image: $$\overrightarrow{AB}$$] is equal to [image: $$d \times i$$]. Moreover, the length of vector [image: $$\overrightarrow{AE}$$] is equal to [image: $$r \times \alpha $$] where r is the earth radius and [image: $$\alpha = \widehat{(\overrightarrow{AO}, \overrightarrow{OE})}$$] is the angle between [image: $$\overrightarrow{AO}$$] and [image: $$\overrightarrow{OE}$$] (see Fig. 5a). Then we can deduce that the angle [image: $$\beta = \widehat{(\overrightarrow{AO}, \overrightarrow{OB})}$$] between [image: $$\overrightarrow{AO}$$] and [image: $$\overrightarrow{OB}$$] is equal to [image: $$d \times r \times i$$] [6]. The obtained angle [image: $$\beta $$] value is used to compute the cartesian coordinates (B.x, B.y, B.z) of the point B by assuming that the unit of the normal vector (a, b, c) represents the rotation axis. The last step (line 23) is to convert back the cartesian coordinates of the point B into GPS coordinates (B.lon, B.lat) for cartographic projection.
The Create_Subgraph function described in Algorithm 4, is called after finding the position of the subgraph. It takes as input the GPS coordinates of the position and length in km of the subgraph. Next, it builds from the original graph G(E, V) a new subgraph [image: $$G'(E', V')$$] where the positions of the vertices are into the boundary M delimited by the starting (point C) and ending position (point D) of the subgraph.
[image: A40537_2018_125_Figd_HTML.gif]


Map stage: computation of intermediate paths
The map stage consists of computing the intermediate paths on each subgraph in parallel way by using the A*_Mapper procedure (mapper). This is made possible by taking the subgraphs from the input stage and assigning each mapper to one of them. However, if the average size [image: $$G'_{size}$$] in byte of the generated subgraphs is greater than or equal to the used block size, then the total number of mapper [image: $$N_{map}$$] is equal to the number of block [image: $$N_{block}$$] occupied by the initial graph, else the number of mapper used is equal to the number of subgraph [image: $$N_{graph}$$].[image: $$\begin{aligned} N_{map} = \left\{ \begin{array}{l} N_{block},\quad if \, B_{size} \le G'_{size} \\ N_{graph},\quad if \, B_{size} > G'_{size} \end{array} \right. \end{aligned}$$]

 (5)

It is important to note that the velocity of all path computations depends on the number of cluster nodes [image: $$N_{node}$$] and the number of core processors [image: $$N_{core}^{map}$$] allocated per node. In addition, the time complexity [image: $$m_{i,j,k}$$] of the ith mapper assigned to the kth core of the jth node is about [image: $$O((n'+m')log(n'))$$] where [image: $$n'$$] is the number of vertices and [image: $$m'$$] the number of edges of the ith subgraph. When one node finishes running its mappers, it waits until all other nodes complete their tasks before sending the results to the reduce stage. Therefore the total time [image: $$t_{map}$$] passed in the map stage is calculated as follows:[image: $$\begin{aligned} t_{map} = \max \left\{\sum _{i=1}^{N_{node}}\sum _{j=1}^{N_{map}}\sum _{k=1}^{N_{core}^{map}}m_{i,j,k}\right\} \end{aligned}$$]

 (6)

The A*_Mapper procedure described in Algorithm 5 takes the subgraph data as key-value pairs according to the structure of the vertices (see Fig. 4). The proposed algorithm is based on the classical version of A*. It consists of 3 steps. The first step (lines 9–15) is the initialization phase. The second step (lines 16–20) consists of exploring and selecting the most promising vertices until the target vertex found. This is achieved through the Expand_Vertex and Select_Vertex functions. In the final step (lines 21–24), the Generate_Path function is called for the extraction of the path from the selected vertices. Afterward, the result is stored locally until the other map tasks are completed before sending it to the reduce stage.
[image: A40537_2018_125_Fige_HTML.gif]

Algorithm 6 describes the Expand_Vertex function, it takes as input parameters the openlist O, the subgraph [image: $$G'$$] and the current vertex c to expand. Next, it explores in depth the neighborhood of the current vertex. For each expanded vertex, it evaluates the cost and verifies the triangle equality before adding it to the openlist.
[image: A40537_2018_125_Figf_HTML.gif]

Algorithm 7 describes the Select_Vertex function, it takes as input parameters the openlist O and the closelist S. It returns the most promising vertex [image: $$v^*$$] where [image: $$d(v^*) \le d(v)$$] for each vertex v in the openlist O.
[image: A40537_2018_125_Figg_HTML.gif]

Algorithm 8 describes the Generate_Path function, it takes as input the closelist S and concatenates the edges between the vertices contained in S in order to build an intermediate path.
[image: A40537_2018_125_Figh_HTML.gif]


Reduce stage: concatenation of intermediate paths
In the reduce stage, the set of intermediate paths from the map stage are concatenated based on the path key. This is achieved by running the A*_Reducer (reducer) in parallel way. The total number of reducer [image: $$N_{red}$$] used to complete the reduce stage depends on the number of nodes [image: $$N_{node}$$] and the number of core processors [image: $$N_{core}^{red}$$] allocated per node. The right number of reducers used to ensure good parallelism is calculated as follows [10]:[image: $$\begin{aligned} N_{red} = \left\{ \begin{array}{l} 0.95 \times N_{node} \times N^{red}_{core} \\ 1.75 \times N_{node} \times N^{red}_{core} \end{array} \right. \end{aligned}$$]

 (7)

With 0.95, we assume that all nodes have the same hardware configurations (ram and cpu speed) and run averagely the same number of reduce tasks in the same gap of time. While with 1.75, the hardware configurations of the cluster nodes are different. The faster nodes will run more reduce tasks and lunch immediately another wave of reducers when they finish. So the total time [image: $$t_{red}$$] passed in the reduce stage depends on the time [image: $$r_{i,j,k}$$] of the ith reducer assigned to the kth core processor of the jth node. It’s calculated as follows:[image: $$\begin{aligned} t_{red} = \max \left\{\sum _{i=1}^{N_{node}}\sum _{j=1}^{N_{red}}\sum _{k=1}^{N_{core}^{red}}r_{i,j,k}\right\} \end{aligned}$$]

 (8)

The A*_Reducer procedure described in Algorithm 9 takes as input the array of intermediate paths which share the same path key and concatenates them. The ending extremity of the [image: $$(i-1)th$$] path becomes the starting extremity of the [image: $$i^{th}$$] path so on until concatenation of the last path. Then the reducer waits until the other reducers complete its tasks before emitting the result to the master node.
[image: A40537_2018_125_Figi_HTML.gif]


Output Stage: Storage of full path
In the last stage, the master node uploads the full path into the HDFS. Each path is written into a separate file. The full path is obtained by merging the content of the reduce files. To ensure fault tolerance, the cluster copies each file onto a separate peer node according to the replication factor.


Experimental results
The performance tests were conducted on a 6-nodes Hadoop cluster. The configuration of the cluster is composed of 1 master node and 5 slave nodes as shown in Fig. 6. The nodes are connected through a local area network composed of a set of Ethernet cables Cat-5 100 Mbps that are directly plugged into a switch DES-1016D 100 Mbps. Each node within the cluster is equipped with a 4-core 2.3 GHz Intel i5 processor based on Linux SUSE-3.0.101 32 bit. The tests have been achieved on Hadoop 2.2.0. All computations have been executed ten times and the presented values are the average values of the executions. Table 1 presents all set of parameters of our experiment.[image: A40537_2018_125_Fig6_HTML.gif]
Fig. 6Test environment






                Table 1Experimental parameter set


	Parameter type
	Parameter designation
	Parameter value

	
                            [image: $$N_{node}$$]
                          
	No. of cluster nodes
	6

	
                            n
                          
	No. of graph vertices
	[8000, 100,000]

	
                            [image: $$G_{size}$$]
                          
	Graph size in Gbit
	[0.2, 16.6]

	
                            [image: $$B_{size}$$]
                          
	Block size in Mbit
	{64, 128, 256}

	
                            [image: $$G'_{size}$$]
                          
	Subgraph size in Gbit
	[0.3, 2]

	
                            l
                          
	Subgraph length in km
	[20, 400]

	
                            [image: $$N^{map}_{core}$$]
                          
	No. of map cores
	{1, 2, 3, 4}

	
                            [image: $$N^{red}_{core}$$]
                          
	No. of reduce cores
	{1, 2, 3, 4}




              

Data set
The real-world road data used are benchmark data gathered from OpenStreetMap (OSM) spatial database [35]. The data are stored in the .osm.pbf data format, an alternative to XML based formats (KML and GML). The XML file contains points, ways, relations and nested tags in each of these objects. The graph data covers all types of road networks, including local roads, and contains weighted edges to estimate the travel distances/times. We used QGIS Desktop 2.18.3 and JOSM’s (Java OpenStreetMap Editor) tool to extract information. The criteria of filtering is based on ’osm_tab’, we extracted all objects whose tag keys corresponds to ’highway’.
Application: road trip from northern to southern Morocco
This section presents a case of application of the proposed framework on Moroccan road network in order to find the shortest path from Tangier (northern Morocco) to Dahkla (southern Morocco). It is the equivalent of nearly 1800 km of road trip. The extracted graph consists of 726,467 vertices. Firstly, the road network is split into five subgraphs as shown in Fig. 7. Each partition is assigned to one node of the cluster and is delimited by its starting point and ending point (see Table 2). Secondly, the computation of the intermediate paths is carried out in parallel way across the cluster node, as shown in Fig. 8. We get 5 paths, each path represents a partial solution. Next, the full path is obtained by merging several times all partial solutions (see Fig. 9). Finally, the full solution is written into the HDFS and each part of the solution is written in separated files as shown in Fig. 10.Table 2Subgraph boundaries


	Subgraph
	Starting point
	Ending point

	Name
	Lat
	lon
	Name
	Lat
	lon

	1
	Tangier
	35.759
	− 5.818
	El Gara
	33.24
	− 7.15

	2
	El Gara
	33.24
	− 7.15
	Ait M’Hamed
	31.857
	− 6.498

	3
	Ait M’Hamed
	31.857
	− 6.498
	Ikiafene
	29.663
	− 9.638

	4
	Ikiafene
	29.663
	− 9.638
	Boukraa
	26.341
	− 12.841

	5
	Boukraa
	26.341
	− 12.841
	Dahkla
	23.03
	− 15.02






                  [image: A40537_2018_125_Fig7_HTML.gif]
Fig. 7Input stage: road network partitioning. The road network is split into five subgraphs. Each subgraph size is equal to 350 km




                  [image: A40537_2018_125_Fig8_HTML.gif]
Fig. 8Map stage: computation of partial solutions. The intermediate paths are computed across the five slave nodes




                  [image: A40537_2018_125_Fig9_HTML.gif]
Fig. 9Reduce stage: concatenation of partial paths. The set of intermediate paths are merged to build the full path




                  [image: A40537_2018_125_Fig10_HTML.gif]
Fig. 10Output stage: writing of the full paths. The full path solution is uploaded to the distributed file system, the user can visualize the solution via the HDFS browser




                

Ratio of MapReduce-A* efficiency versus direct resolution
To prove the efficiency of the proposed framework, we performed tests with different road graphs on a single-node cluster. This means that only one node plays both the master and slave roles. Table 3 reports the computational times between A* and our MRA*. Columns [image: $$T_{A^*}$$] and [image: $$T_{MRA^*}$$] contain respectively the computation times in seconds of A* and [image: $$MRA^*$$]. We remarked that the proposed version of A* outperformed the sequential A* and it reduces considerably the time complexity. For example with a graph size of 7 Gbit composed of 70,000 vertices and 3.6 billion of data recording in its adjacent matrix, we computed the shortest path in 2939 s (00:26:40) with our [image: $$MRA^*$$] approach versus 177,948 s (49:25:48 [image: $$\approx $$] 2 days 27 min) with [image: $$A^*$$]. In many worst cases, we had to kill and rerun the execution of the sequential A* program when we faced problem with Java heap memory. The improvement ratio shows that the proposed approach is on average 150 times faster than sequential A*. By deduction we noted that [image: $$MRA^*$$] is also 15 times faster than HPA* (another extension of A*), given that it has been shown in [31] that HPA* is on average ten times faster than A*.Table 3Comparison of computational time in seconds time between [image: $$A^*$$] and [image: $$MRA^*$$] into a 1-node cluster


	
                              n
                            
	No. data
	
                              [image: $$G_{size}$$]
                            
	Time with A*
	Time with MRA*
	Ratio

	
                              [image: $$T_{A^*}$$]
                            
	
                              [image: $$t_{map}$$]
                            
	
                              [image: $$t_{red}$$]
                            
	
                              [image: $$T_{MRA^*}$$]
                            
	
                              [image: $$\frac{T_{A^*_{ }}}{T_{MRA^*}}$$]
                            

	8000
	64 × 106
	0.25
	1,5752
	157
	11
	168
	94

	15,000
	22.5 × 107
	0.5
	35,331
	183
	18
	201
	159

	20,000
	40 × 107
	0.8
	51,469
	233
	36
	269
	191

	25,000
	62.5 × 107
	1.2
	77,378
	330
	53
	366
	211

	30,000
	90 × 107
	2
	101,909
	405
	76
	481
	212

	40,000
	16 × 108
	3
	129,343
	698
	91
	789
	164

	50,000
	25 × 108
	5
	152,863
	1035
	103
	1137
	134

	60,000
	36 × 108
	7
	177,948
	1397
	203
	1600
	111

	80,000
	64 × 108
	11.5
	269,102
	1790
	408
	2198
	122

	90,000
	81 × 108
	14
	31,4425
	2100
	568
	2668
	118

	100,000
	10 × 109
	16.6
	359,747
	2257
	682
	2939
	122

	Average ratio of time improvement
	
                              149
                            






Influence of number of core processors on the computational time
The first topic of interest consists of analyzing the impact of increasing number of core processors per node on the computational time. Figure 11 shows that the increasing number of cores reduces the total computational time. Whenever a new core processor is used, the computational time is improved considerably, in particular the time of the map stage. We also remarked that the map time occupies on average 90% of total time. This is explained by the fact that the tasks in the map stage run on all the vertices of the graph, unlike the reduce stage where the tasks run on the selected vertices (vertices in closelist).[image: A40537_2018_125_Fig11_HTML.gif]
Fig. 11Impact of number of core processors on the computational time (with graph of 60,000 vertices)






Influence of number of Hadoop nodes on the computational time
The second topic of interest is the impact of the increasing cluster nodes on the computational time. We performed a tests with a graphs size ranging from 103 Mbit to 16.6 Gbit. Figure 12 shows the influence of the number of slave nodes on the computational time. We remarked that the computational time varies strongly and is significantly improved when extending the cluster from 1 to 6 nodes. The addition of new nodes promote the decreasing of the exponential time complexity until the linearity time is reached. For example, with the same graph of 60,000 vertices, the time decreases from 1600 to 764 s with 2 nodes and from 764  to 322 s with 3 nodes. Beyond 3 nodes, the addition of new nodes does not improve the computational time. This means that the nodes 4, 5 and 6 are not used by the framework for the path computation. This leads us to consider that there exists an optimal number of nodes for a given graph that satisfies the full path computation.[image: A40537_2018_125_Fig12_HTML.gif]
Fig. 12Influence of number of nodes on the the computation time






Influence of number of subgraphs on the computational time and the result quality
The third topic of interest concerns the impact of number of subgraphs size on the computational time and the result quality. We performed the tests on a graph size of 1.6 Gbit containing 25,000 vertices. We physically split the graph under 9 blocks ([image: $$N_{block} = 9$$]) while varying the total number of subgraphs from 1 to 16 ([image: $$N_{graph}\in [1,16]$$]). The results in Fig. 13 show that when the number of subgraphs is lower than the number of blocks ([image: $$N_{graph}<N_{block}$$]), then the obtained result is optimal ([image: $$\epsilon = 0$$]). On the other hand, when the number of subgraphs is greater than the number of blocks ([image: $$N_{graph}>N_{block}$$]), then the time is improved but to the detriment of the result quality (e.g. [image: $$\epsilon \in ]0,0.5\%[$$]). The best time that guarantees optimal results is obtained when the number of subgraphs is equal to the number of blocks ([image: $$N_{graph}=N_{block}=9$$]).[image: A40537_2018_125_Fig13_HTML.gif]
Fig. 13Impact of number of subgraphs on the computational time and the result quality






Influence of blocks size and subgraphs length on the computational time
This topic of interest concerns the impact of blocks size variation on the computational time. We performed different tests by physically splitting the graph under blocks size [image: $$B_{block}\in \{64,128,256\} Mbit$$] while varying the subgraphs length l from 40 to 400 km (this corresponds respectively to a subgraphs size ranging from 0.34 to 2 Gbit). Table 4 reports the obtained results. We remarked that the computation time is faster with small blocks size (e.g. [image: $$B_{block}=64$$] Mbit). Also, this time increases with the increasing subgraphs length. Thirdly, when the subgraphs size is equal to or larger than the blocks size ([image: $$G'_{size}\ge B_{size}$$]), the time does not improve and remains constant. For example with the blocks size fixed to 64 Mbit, the time remains equal to 460 s for all subgraphs size [image: $$G'_{size}\ge 64$$].Table 4Impact of blocks size and subgraphs length on the computational time in seconds


	
                              l
                            
	
                              [image: $$G'_{size}$$]
                            
	Total time [image: $$T_{MRA^*}$$]

	
                              [image: $$B_{size} = 64$$]
                            
	
                              [image: $$B_{size} = 128$$]
                            
	
                              [image: $$B_{size} = 256$$]
                            

	60
	0.3
	371
	376
	368

	78
	0.4
	412
	409
	409

	100
	0.5
	463
	464
	464

	109
	0.6
	460
	517
	532

	125
	0.7
	458
	596
	605

	156
	0.8
	459
	753
	754

	200
	1
	461
	1003
	1065

	265
	1.3
	460
	1008
	1149

	400
	2
	461
	1004
	1164

	Average time
	
                              445
                            
	
                              681
                            
	
                              726
                            






MapReduce-A* versus MapReduce-Dijkstra
In this section, we compare our framework with the MapReduce framework of Dijkstra proposed by Aridhi et al. in [6]. We performed tests with the data sets of the french road network graph used in [6]. Figure 14 compares the computation time of our MapReduce-A* approach with the computation time of MapReduce-Dijkstra approach while ranging the subgraphs length l from 15 to 200 km. The test was also performed by varying the cluster size from 1 to 6 nodes. As shown in Fig. 14, we remarked that the two frameworks run more quickly in large cluster nodes and in all cases, they only use 4 nodes of the cluster to satisfy the shortest path computation. However the computation times differ according to the variation of the subgraphs length l in km. In the first two cases, when the subgraphs length are small (l = 15 km and l = 50 km), we remarked that the proposed framework is faster than MapReduce-Dijkstra framework. On the other hand, in the last two cases with large subgraphs (l = 100 km and l = 200 km), the MapReduce-Dijkstra framework presents better time performance. Like the MapReduce-Dijkstra, the proposed MapReduce-A* framework consumes low number of machines in the cluster and is on average 1.15 time faster than MapReduce-Dijkstra. Moreover, our framework computes the full path in only one iteration instead of MapReduce framework of Dijkstra that requires many iterations.[image: A40537_2018_125_Fig14_HTML.gif]
Fig. 14Comparison of the computational time of MapReduce-Dijkstra [6] and MapReduce-A*







Discussion
In this section, we are discussing about two topics related to the experiment results. The first topic concerns the optimal usage of the cluster. A cluster is defined as optimal if all nodes within the cluster participate in the full path computation. The answer to this question depends on the cluster configuration and the number of generated subgraphs. For the moment there is no formula for determining the optimal number of nodes for a given graph. However, a solution emanating from our experimental study consists of firstly splitting the graph under [image: $$N_{node}$$] [image: $$\times $$] [image: $$N^{map}_{core}$$] subgraphs in the input stage. Secondly, in the map stage we set the number of mappers to be equal to the number of subgraphs ([image: $$N_{map}$$] = [image: $$N_{graph}$$]). Third, in the reduce stage, we fix the number of reducers to [image: $$N_{node}$$] [image: $$\times $$] [image: $$N^{red}_{core}$$]. This solution allows an optimal usage of the cluster but does not guarantee the optimal solution.
The second topic treats the optimality of the obtained solution. As shown in the experimental analysis, the quality of results depends on two parameters: the subgraphs length in km and the blocks size. We have remarked that when we set the subgraphs length l so that the subgraphs size [image: $$G'_{size}$$] are on average equal to the blocks size [image: $$B_{size}$$], then we get a result without optimality error ([image: $$\epsilon $$] = 0). So to conclude, the optimal solution is obtained when [image: $$G'_{size} \approx B_{size}$$].

Conclusion and further works
To sum up, in this paper, we proposed a novel parallel and distributed version of A* for computing the shortest path in large-scale road networks. The proposed approach is based on MapReduce framework. The experiments demonstrated that our framework presents better performance and reduces significantly the computation time, it is scalable and works well in large cluster. In addition to that, it is reliable and can be used in GPS systems for navigating on very large road networks. In the light of all these, our work represents a contribution and may attract more interest for other graph traversal algorithms. It can be adapted and extended to social network analysis (e.g Facebook or Twitter) or DNA sequencing problem related to bioinformatic in order to accelerate the process of determining the order of nucleotides within DNA graph. For future work, we are interested in :	Adapting the traveling salesman problem to such framework.

	Proposing a novel framework based on Big Data graph analysis tools such as Neo4j or Apache Shindig to better explore the road network graph.
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Algorithm 4: Creation of subgraph

Tunction Create Subgraph
input
I: ength of the subgraph in km
(C.lon, C.lat): GPS coordinate of the starting vertex C
(D.lom, D.lat): GPS coordinate of the ending vertex D
output
G/(E',V"): subgraph G composed of set of edges E' and vertices V'
begin
G(E,V)
G(B, V') = 0:
M = Margin(C.lon, C.lat, D.lon, D.lat);
for each vertez v € V do
if v is in the bound of M and v ¢ V" then
add the vertex v into V';
for each edge ¢ € E and edge ¢ connected to vertez v do
if edge e ¢ £’ then
| add the edge e into E;
end
end
ond

end
set C' and D' as starting and ending vertex of G';
return G'(E',V');

riginal graph data such as G CG;
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Algorithm 5: Intermediate path computing

‘procedure A* Mapper

input

G/(V', E): subgraph as key-value pairs

s starting vertex

< ending vertex

output

SP: shortest path of the subgraph

begin

o dev)

0 O =0; // openlist
/1 closelist

o
Euclidean Distance(s, c);
S+ (s}

10 while O # 0 and c.key # c.key do
1 | O := Expand.Vertex(0, G, <);
o Promising Vertex(O, 5);
0 end
1 SP = Generate Path(S):

22 store result locally;

23 wait until all map tasks have been completed;
2aemit(key : pathld, val : SP);
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Algorithm 9: Paths aggregating

procedure A* Reducer

input

[SP: array of intermediate paths.
output

FSP: the final shortest path
begin

FSP = null

for cach path p € SP.valuc do
| FSP'= concat(FSP, p);
end
wait until all reduce tasks have been completed;
emit(key: pathld , val: FSP);
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Algorithm 2: Compute the euclidean distance between two points

‘function Euclidean Distance
input

A: source vertex

E: target vertex

output

L: euclidean distance

begin

Atgn = Elon-Aldon;

Atge = Elat-Alat;

Li=y/ah, + A%,

return L;
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Algorithm 7: Select most promising vertex

function Select Vertex

2 input

s O: openlist

4+ 5: closelist

5 output

o v*: promising vertex

 begin

& for each vertez v* € O do

o | for each verter v O — {1} do
0 if d(v*) < d(v) then
a §:=5+ (v

a 0:=0-1{v);
N ond

w | end

s ond

o return v*;
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Algorithm 1: Graph partition into subgraphs

T procedure Graph Par
2 input

a I: subgraph length in km
+ A: source vertex

o E: target vertex

o output

7 [G'): array of subraphs

s begin

o [@]:=0;

to L := Euclidean Distance(A, E);
wodi=1xVE

i
s (C.lon, C.lat) = (Adon, Alat);

14 for i = 1 - Norapy, do

s | if i = Nyragh then

o | | (Dlon Dlat) := (Elon, Elat);

v | end

w | else

w | | (Do, D.lat) := Subgraph.Position(A.lon, A.lat, E.lon, E.lat,i, d);
0 | end

21 | G'li] i= Create Subgraph(C.lon, C.lat, D.lon, D.lat);
22 | upload G'[i] into the HDFS;

22 | (Cdon, Clat) = (D.lon, D.lat);

4 end
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Algorithm 3: Finding subgraph position

+ function Subgraph_Position
2 input
s (Adon, Alat): GPS coordinate of the source vertex A
a (Elon, E.lat): GPS coordinate of the target vertex E
o d: diagonal length in km
o i: the it* subgraph
* output
o (B.lon, B.lat): GPS position of the it* subgraph
o begin
0 // Step 1: Converting GPS position of points A and E
1 (Az, Ay, A.z) = r x(cos(A.lat) x cos(A.lon), cos(A.lat) x sin(A.lon), sin(A.lat)):
E: E.2) = r x(cos(E.lat) x cos(E.lon), cos(E.lat) x sin(E.lon), sin(E.lat)};
Galculate the normal vector (a,b,c) of the plan OAE
X BBy x A
EzxAz-AzxE.
2 x Ey - Bax A
7 // Step 3: Calculate ¢!
1= cos(B)) x a2 + cos(8)] x Az +[(1 = cos(8)) x ax b= e x sin(8)] x Ay+[(1—
c0s(8)) X a X ¢+ b X sin(§) X Az;
(8) X a X b+ x sin(8)] x Az + [(1 = cos(8)) x b2 + cos(8)] x Ay +[(1—
)) X @ x c+bx sin(8) X Az
1 cos(8)) X a x ¢~ bx sin(8)] x Az +[(1~cos(8) x b x c+bx sin(B)] x Ay+
[(1 — cos(8)) x € + cos(8)] x Az
22 // Step 4: Converting the cartesian coordinates of the subgraph position into GPS
coordinates
23 (B.lon, B.lat) := (arctan2(B.y, B.x), arcsin(B.z/r));
2areturn (B.lon, B.lat);

cartasian coordinates of the subgraph position
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Algorithm 6: Explore vertex in deeper

Tunction Expand Vertex
; input

: openlist

G/(V', E): subgraph as key-value pairs

@ vertex to expand

output

O openlist

begin

for each vertez v € V* and edge v.val.adjList.(c.key,vkey) € E' do

0 | f 9(v) > g(c) + w(ckey, v-key) then

N () i= g(0) + wle-key, v key):

a d(v) i= g(v) + Euclidean.Distance(v.val.lon, v.val.lat, ¢.val.lon, e.val.lat);
N if v ¢ O then

ok
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Algorithm 8: Build intermediate path

Tunction Generate_Path
; input

5: closelist

output

SP: intermediate path

begin

vertex p = getFirstElement(S);

SP = null;

for each vertex v € S — {p} do

w0 | edge e = vvaladiList.(p ey, vkey):
u | 5P =i concat(SP, e);

2 | p=iv

s end

1a return SP;
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