Skip to main content

Table 75 Modes of RF tuned hyperparameter values for experiments with the information theft dataset

From: IoT information theft prediction using ensemble feature selection

Parameter name Value
bootstrap True
class_weight balanced
criterion gini
max_depth 9
max_features log2
min_impurity_decrease 0.00000
min_samples_leaf 2
min_samples_split 5
n_estimators 174
  1. Parameter values for classifier yielding best results in terms of AUC