Skip to main content

Table 35 Maximum AUC by classifier for the keylogging attack type; mean and standard deviations of AUC, (10 iterations of 5-fold cross-validation)

From: IoT information theft prediction using ensemble feature selection

Experiment name Mean SD
AUC AUC
LR Tuned RUS 1:3 7 Agree 0.99639 0.00227
CatBoost RUS 1:1 6 Agree 0.99807 0.00165
DT 4 Agree 0.99608 0.00232
Light GBM RUS 1:1 6 Agree 0.99737 0.00176
RF Tuned RUS 1:3 4 Agree 0.99707 0.00190
MLP RUS 1:3 7 Agree 0.99630 0.00212
NB Tuned RUS 1:3 7 Agree 0.99516 0.00173
XGBoost RUS 1:1 5 Agree 0.99693 0.00192