C, D
|
Concepts or Classes
|
\(C^{{\mathcal {I}}},D^{{\mathcal {I}}}\subseteq \Theta\)
|
R, S
|
Relations or Properties
|
\(R^{{\mathcal {I}}},S^{{\mathcal {I}}}\subseteq \Theta \times \Theta\)
|
\(C\sqsubseteq D\)
|
Class subsumption
|
\(C^{{\mathcal {I}}}\subseteq D^{{\mathcal {I}}}\)
|
\(R\sqsubseteq S\)
|
Property subsumption
|
\(R^{{\mathcal {I}}}\subseteq S^{{\mathcal {I}}}\)
|
\(C\sqcup D\)
|
Union of classes
|
\((C\sqcup D)^{\mathcal {I}}=C^{{\mathcal {I}}}\cup D^{\mathcal {{\mathcal {I}}}}\)
|
\(C \sqcap D\)
|
Intersection of classes
|
\((C \sqcap D)^{{\mathcal {I}}}=C^{{\mathcal {I}}} \cap D^{{\mathcal {I}}}\)
|
\(\lnot C\)
|
Complement
|
\((\lnot C)^{\mathcal {I}}=\Theta - C^{{\mathcal {I}}}\)
|
\(\exists R.C\)
|
Existential quantification
|
\({(\exists R.C)}^{\mathcal {I}}=\{a \in \Theta | \exists b, \langle a, b \rangle \in R^{\mathcal {I}} \wedge b \in C^{\mathcal {I}}\}\)
|
\(\forall R.C\)
|
Value restriction
|
\({(\forall R.C)}^{\mathcal {I}}=\{a \in \Theta | \forall b, \langle a, b \rangle \in R^{\mathcal {I}} \rightarrow b \in C^{{\mathcal {I}}}\}\)
|
\(\top\)
|
Top concept or Thing
|
\(\top ^{{\mathcal {I}}}=\Theta\)
|
\(\bot\)
|
Bottom concept or Nothing
|
\(\bot ^{{\mathcal {I}}}=\varnothing\)
|