Skip to main content

Advertisement

Table 2 Parameter sensitivity analysis with the chain data stream

From: The ubiquitous self-organizing map for non-stationary data streams

\(T\) \(\beta\) Mean \(E{^{\prime }}(t)\) Mean \(\lambda (t)\) Convergence t
500 0.5 1.5542e\(-\)02 9.9451e\(-\)01 5119
  0.6 1.5377e\(-\)02 9.9251e\(-\)01 6669
  0.7 1.5260e\(-\)02 9.8955e\(-\)01 6667
  0.8 1.5201e\(-\)02 9.8422e\(-\)01 6661
  0.9 1.5356e\(-\)02 9.7235e\(-\)01 6699
  1.0 1.5915e\(-\)02 8.7072e\(-\)01 7326
1000 0.5 1.5759e\(-\)02 9.9663e\(-\)01 7029
  0.6 1.5787e\(-\)02 9.9537e\(-\)01 7509
  0.7 1.5780e\(-\)02 9.9355e\(-\)01 7480
  0.8 1.5824e\(-\)02 9.9083e\(-\)01 7537
  0.9 1.5888e\(-\)02 9.8480e\(-\)01 7573
  1.0 1.6085e\(-\)02 9.3651e\(-\)01 7709
1500 0.5 1.6260e\(-\)02 9.9753e\(-\)01 9483
  0.6 1.6261e\(-\)02 9.9671e\(-\)01 9561
  0.7 1.6260e\(-\)02 9.9555e\(-\)01 9543
  0.8 1.6288e\(-\)02 9.9361e\(-\)01 9569
  0.9 1.6319e\(-\)02 9.9002e\(-\)01 9608
  1.0 1.6436e\(-\)02 9.6240e\(-\)01 9582
2000 0.5 1.6864e\(-\)02 9.9818e\(-\)01 8264
  0.6 1.6892e\(-\)02 9.9746e\(-\)01 7976
  0.7 1.6902e\(-\)02 9.9661e\(-\)01 8114
  0.8 1.6887e\(-\)02 9.9603e\(-\)01 8352
  0.9 1.6904e\(-\)02 9.9403e\(-\)01 8307
  1.0 1.6974e\(-\)02 9.7860e\(-\)01 8264
2500 0.5 1.7317e\(-\)02 9.9872e\(-\)01 10,022
  0.6 1.7339e\(-\)02 9.9836e\(-\)01 10,006
  0.7 1.7361e\(-\)02 9.9808e\(-\)01 9993
  0.8 1.7356e\(-\)02 9.9756e\(-\)01 10,035
  0.9 1.7383e\(-\)02 9.9613e\(-\)01 10,001
  1.0 1.7391e\(-\)02 9.8976e\(-\)01 10,027
3000 0.5 1.7819e\(-\)02 9.9910e\(-\)01 10,541
  0.6 1.7833e\(-\)02 9.9892e\(-\)01 10,518
  0.7 1.7839e\(-\)02 9.9856e\(-\)01 10,535
  0.8 1.7855e\(-\)02 9.9811e\(-\)01 10,510
  0.9 1.7856e\(-\)02 9.9701e\(-\)01 10,543
  1.0 1.7863e\(-\)02 9.9405e\(-\)01 10,532