
The design of an adaptive column‑store
system
George Chernishev* 

Introduction
This paper is an extended version of the conference paper [1]. The era of big data poses
new requirements for database management software. A contemporary DBMS should
provide a basis for efficient storage and handling of big data. The aspects of big data sup-
port in DBMS can be classified into two groups:

• • Performance-oriented aspects. Such a DBMS should be able to load, store and query
big data efficiently.

• • Management-oriented aspects. It should be easy for a database administrator to
manage DBMS handling big data.

Abstract 

A fully self-managed DBMS which does not require administrator intervention is
the ultimate goal of database developers. This system should automate deploying,
configuration, administration, monitoring, and tuning tasks. Although there are some
advances in this field, self-managed technology is largely not ready for industrial use
and remains an active area of research. One of the most crucial tasks for such a system
is automated physical design tuning. A self-managed approach for this task implies
that the physical design of a database should be automatically adapted to changing
workloads. The problems of materialized view and index selection, data allocation,
horizontal and vertical partitioning were studied for a long time, and hundreds of
approaches were developed. However, most of these approaches were static, thus,
unsuitable for self-managed systems. In this paper we discuss the prospects of an
adaptive distributed relational column-store. We show that the column-store approach
holds a great promise for construction of an efficient self-managed database. At first,
we present a short survey of existing physical design studies and provide a classifica-
tion of approaches. In the survey, we highlight the self-managed aspects. Then, we
provide some views on the organization of a self-managed distributed column-store
system. We discuss its three core components: an alerter, a reorganization controller
and a set of physical design options (actions) available to such a system. We present
possible approaches for each of these components and evaluate them. Several physi-
cal design problems are formulated and discussed. This study is the first step towards a
creation of an adaptive distributed column-store system.

Keywords:  Column-stores, Physical design, Self-management, On-line tuning

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

SURVEY PAPER

Chernishev ﻿J Big Data (2017) 4:5
DOI 10.1186/s40537-017-0069-4

*Correspondence:
chernishev@gmail.com
Saint-Petersburg University,
Saint Petersburg, Russia

http://orcid.org/0000-0002-4265-9642
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-017-0069-4&domain=pdf

Page 2 of 21Chernishev ﻿J Big Data (2017) 4:5

Recently, a novel type of DBMS, called column-store DBMS, has appeared. While its
performance in regards to the first group of aspects is excellent, its ability to support the
second group is an actual research problem.

Automatic database tuning is one of the oldest research problems in the database
domain. It spans about forty years of evolution and can be described by the three follow-
ing stages:

1.	 Separate attempts to automate a selection of various physical design structures: verti-
cal partitioning [2–5], horizontal partitioning [6–9], data allocation [10–13], indexes
[14–16] and materialized view selection [17]. These works usually consider only a
single aspect of database physical design. They typically provide an algorithm or an
idea not tied to a particular database system and do not employ the “what-if ” mecha-
nism. Instead, they propose their own cost models. This stage started in the 70s and
largely ceased in the middle of the 90s when the next approach had emerged.

2.	 The development of advisors or recommenders. An advisor is a tool which recom-
mends actions concerning database physical design using the knowledge of a data
schema and a workload. This approach is characterized by the integration with some
database system and the use of its query optimizer in the “what-if ” mode. Moreover,
the advisors often consider several physical design options simultaneously. Finally,
unlike the previous class, these are not only algorithms, but full-fledged tools. They
are aimed for industrial application and for the industrial end user. One of the first
such tools is the REDWAR [18] tool for database analysis. Later, there were the
AutoAdmin [19] tool for index recommendation, the DB2 advisor [20–23] (index,
materialized view, partitions, allocation), Oracle Advisor [24, 25] (index, materialized
view, partitioning support), various advisors for Microsoft’s products [26–30] (vari-
ety of physical structures), PostgreSQL [31–33], Ingres [34]. This stage started at the
end of the 80s and continues up to this day.

3.	 The self-management approach. In the majority of previous studies, it was the
administrator who made the decision whether to apply the proposed database reor-
ganization or not. Self-management approach aims for complete elimination of
human intervention in the database tuning cycle. To the best of our knowledge, the
first studies of this type appeared about ten years ago [35, 36]. It is essential to note
that several systems (or their parts) mentioned above can be also considered as self-
management ones.

A comprehensive survey of automatic physical design tuning, listing a large amount of
works involving all the aforementioned types, can be found in reference [37].

Self-management technology aims to automate the tasks of deploying, configuration,
administration, monitoring, and tuning of a database system to the largest extent pos-
sible [38]. The reason for the interest in self-managing systems is simple: it is widely
accepted that the contribution of these tasks to the Total cost of ownership (TCO) of a
database system is high. Some reports [29, 38–40] indicate that the TCO of a database
system is dominated by human-related expenses, while others [41] claim that it is not
true for very large scale systems.

Page 3 of 21Chernishev ﻿J Big Data (2017) 4:5

In this paper, we discuss the self-management aspects of a distributed relational col-
umn-store database. A column-store database is a database which keeps each attribute
in a separate file, unlike traditional row-stores, which use the slotted page layout [42].
This different storage model leads to different query processing schemes and subse-
quently to a different set of physical design options. Recently, several such systems [43,
44] emerged and quickly gained popularity in both academic and industrial communities
due to their exceptional performance on read-only workloads. The unique properties of
the column-stores hold a great promise for construction of an efficient self-managing
system. In this paper, we evaluate the prospects of self-managed distributed column-
store system development.

We propose the overall scheme of such a system which includes an alerter, a reor-
ganization controller and a list of possible physical design options (actions). We start
with the description of the environment and the alerter component. Next we present
two possible design approaches for controller construction. Finally, we discuss the novel
physical design options provided by the storage model, assess their impact on the physi-
cal design and meditate on the automating of their selection. We assume that the reader
is familiar with the basics of column-store technology. Otherwise, we suggest the follow-
ing surveys [44, 45].

To the best of our knowledge, this is the first work to consider on-line physical design
tuning in a distributed column-store database.

Database (self‑)tuning basics
The behavior of a database system can be described by the following formula [38]:

Here, the system configuration consists of a hardware setup (characteristics of the used
hardware), software setup (boot-time parameters), database physical design and so on
[38]. The workload characteristics include data schema information, query information
(frequencies, attributes involved), and their arrival patterns. The performance is repre-
sented by one of the performance metrics (response time, throughput, reliability, etc.) or
their combination.

Having a model involving all of these components, one may try to find the best con-
figuration—the configuration maximizing a given performance metric [38]. In this paper
we are interested solely in the physical design aspect of the configuration component.
If we restrict configuration to a set of physical design structures, we will get the gen-
eral formulation of the physical database tuning problem. Finding the best configuration
even for a single type of structures is usually an NP-hard problem [5, 8, 46, 47]. Thus, a
heuristic algorithm is required.

There are three popular methods for this kind of problems: integer programming [3,
33], a general heuristic algorithm [2, 4] and a domain-specific heuristic algorithm [20,
28, 30]. The latter is usually tightly coupled with a database system and relies on “what-
if” calls.

Most of the works up to 2005 considered the physical design problem as a static prob-
lem, i.e. the workload cannot change after the selection of a configuration. However,
a self-tuning system should be adaptive to the workload, thus a “dynamization” of the

f :configuration× workload → performance

Page 4 of 21Chernishev ﻿J Big Data (2017) 4:5

algorithm is needed (usually the selection algorithm is too expensive to be called multi-
ple times at will).

Here, the observe-predict-react cycle [38] comes into play. It is a general framework
for construction of an adaptive database system. The observe component monitors spec-
ified workload characteristics, such as the time it takes to process a given query or the
cardinality of a given relation. The predict component is used to assess performance of
the current configuration in the near future and to compare it with other possible con-
figurations. The react component is engaged when the current configuration is found
unfit and a new configuration should be selected.

There are several dimensions of a self-managed database [48]: Self-Configuration, Self-
Optimization, Self-Healing and Self-Protection. Automatic physical design tuning fits
into the first three of them. These dimensions were partially implemented in systems of
the past, but no fully self-managed system yet exists.

Now, let us review contemporary systems featuring self-management components.

Related work
On‑line tuning in row‑stores

In the recent years, there was a number of prototypes that employed the self-tuning
approach for the physical configuration in row-stores. The Table 1 contains a short sum-
mary of the related works. In this table, the second column describes what type of physi-
cal design structure the study concerns and the third column shows what platform was
used for the evaluation.

Continuous on-line tuning (COLT) [35] is a framework which adjusts the system con-
figuration in order to maximize query performance with respect to the active query set.
The proposed approach is to select the most beneficial indexes taking into account a
storage budget. The authors implemented it using the PostgreSQL database system.

The reference [36] describes the alerter component of a self-tuning system. This
component periodically checks whether there is a configuration which will result in a
performance improvement. The alerter produces the lower and upper bounds of the
improvement if a tuning component is run. Alerter component is designed for indexes,
but the authors also describe its application for materialized views.

An on-line selection of aggregation tables is considered in the reference [49]. Similarly
to the reference [36], the core component of this system is the alerter, which notifies the
user and presents a beneficial configuration and a supposed cost reduction. It is inter-
esting to note that the authors work not with a relational query language, but with the
MDX query language. The prototype was implemented as an extension of Mondrian, an
open source OLAP server.

AdaptPD [50] is an on-line tuning tool for vertical partitioning. The authors proposed
a “cache-and-reuse” technique for query cost estimation. The idea is to cache the query
plans that do not change across several configurations, thus reducing the number of
optimizer calls. Another difference of this work is the use of asymmetric configuration
transition costs. The authors use the SDSS astronomical database and Microsofts SQL
Server for experimental validation.

An on-line index tuning approach taking user feedback into account was proposed in
the reference [51].

Page 5 of 21Chernishev ﻿J Big Data (2017) 4:5

The reference [52] describes on-line physical design tuning in a multistore system. A
multistore system is a system which encompasses several different data stores (HDFS
and RDBMS) and allows for simultaneous querying of data kept in all types of stores.
Different types of data are stored in different systems, for example, HDFS can be used to
keep big log files and RDBMS may contain analytical business data. The building block
of the proposed physical design is the so-called opportunistic materialized view, which is
the byproduct of query processing on a Hadoop-based system. The system automatically
adapts to the dynamically changing workload. In order to achieve this, the authors tune
the set of opportunistic materialized views in each store and solve the data placement
problem. The same opportunistic materialized views are used for tuning of UDFs (user
defined functions) in the reference [53].

An approach combining an evolutionary algorithm with a workload compression
module is proposed in the reference [54]. In their work, the authors address the problem
of on-line index selection. Each chromosome holds a vector of plans for each of the seed
tasks (a query which passed through the compression module). The elements of a chro-
mosome are dynamically added or removed, depending on a changing workload.

Table 1  On-line tuning of row-stores, a summary

Study Structures Experiments Notes

COLT [35] Indexes PostgreSQL Uses storage budget constraint;
employs “what-if” optimizer mode;
manages active, hot and cold sets
of indexes

Alerter [36] Indexes, materialized views SQL server Uses storage budget and mininum
improvement constraints; Notifies
DBA and provides a set of candi-
date structures

Alerter [49] Aggregation tables Mondrian Uses soft storage budget constraint

AdaptPD [50] Vertical partitioning SQL server Employs “what-if” optimizer mode
with caching

WFIT [51] Indexes IBM DB2 Express-C Takes a workload and user feedback
into account

MISO [52, 53] Materialized views, storage
selection

Multiple Tuning of multistore system physical
design. Uses storage and transfer
constraints

EVO [54] Indexes Multiple Authors propose query plan transfor-
mations using genetic algorithm
for index selection

ARH [55] Automatic re-indexing PostgreSQL A set of heuristics is used to decide
when to trigger a re-indexing
process to counter an index frag-
mentation

Tuner [33] Multiple PostgreSQL An on-line tool which tunes several
physical structures—indexes, parti-
tions, and is capable of tracking
index interaction

AutoStore [56] Vertical partitioning Custom A comparison of on-line algorithms
for vertical partitioning

SMOPD [57] Vertical partitioning Custom Closed itemset mining for on-line
vertical paritioning

Page 6 of 21Chernishev ﻿J Big Data (2017) 4:5

The self-healing aspect of a self-managing database was considered in the reference
[55]. The authors developed a set of heuristics for the problem of index fragmentation.
These heuristics control the re-indexing process.

Continuous on-line tuning was used in an on-line tuning tool for PostgreSQL
described in the reference [33]. This tool is capable of recommending both indexes and
partitions using a unified model and is capable of adapting to changes in the workload.
Additionally, the tool recommends a beneficial order of index materialization. Several
other interesting algorithms and techniques are incorporated in this tool.

On-line vertical and horizontal partitioning is considered in the reference [56].
Authors employ the idea of attribute affinity used in the works of 80s and 90s (e.g. [4,
5]) and “dynamize” it. The result is called AutoStore, an automatically and on-line parti-
tioned database store.

SMOPD [57] uses closed item sets mining to perform an on-line vertical partitioning
of a set of tables.

There are many more approaches which involve physical self-tuning in row-stores, but
we are limited by the space to describe them all.

Database tuning for column‑stores

Column-stores, on the other hand, being a much younger field of research had signifi-
cantly less time to develop automatic tuners. Still, there are several relevant studies, a
short summary is presented in the Table 2. Let us consider them.

Reference [58] describes on-line physical design tuning for the in-memory database
SAP HANA [59]. This database is designed to handle both transactional and analytical
workloads. The goal of the proposed physical design tuning is to select a more beneficial
table storage mode: a column-store or a row-store. In order to provide such recommen-
dations the authors developed a cost-based model. The next idea is store-aware parti-
tioning which is as follows: split a table into different parts and keep them in different
stores.

H2O database system [60] proposes an on-line data reorganization with on-the-fly
query compilation. The data reorganization is represented by a change of vertical parti-
tioning schemes ranging from the row-store to the column-store.

Peloton [61] is an open-source in-memory adaptive DBMS designed for hybrid trans-
action-analytical processing. This system is able to adapt both vertical and horizontal
partitioning schemes. It produces table layouts ranging from NSM to DSM and thus, it

Table 2  Tuning of column-stores, a summary

Study Notes

SAP HANA [58] In-memory, data reorganization

H2O [60] Query compilation and data reorganization

Peloton [61] In-memory system, can adapt data layout

Vertica [62] Projection recommender, not online

C-store [63] Recommender of materialized views, not online

Cliffguard [64] Robust configuration recommender, works with Vertica

Snowflake [65] Commercial, distributed, relies not on tuning, but on data pruning

Page 7 of 21Chernishev ﻿J Big Data (2017) 4:5

can be considered an adaptive column-store. For vertical partitioning, it uses a modified
k-means algorithm. Unfortunately, Peloton is not a distributed system.

Vertica is a commercial distributed column-store database. It has an automatic physi-
cal design component [43] that helps to select a set of projections for a given storage
budget. A comprehensive description of this system is presented in the reference [62].
However, this designer is not an on-line tool.

Another study related to physical design in column-stores is the reference [63]. In
this paper, the problem of materialized view selection is considered. The proposed
cost model takes into account sort orders and inserts. However, this physical design
is intended for a centralized system, and it does not consider allocation. Also, this
approach is a static one, not an on-line one.

Cliffguard [64] is an automatic physical design tuning tool which aims not for the
best possible solution, but for a robust one. A robust solution is a solution that is robust
against parameter uncertainties (parameter changes or bad estimates). Essentially, this
approach allows to trade optimality for the desired level of robustness. The proposed
tool uses robust optimization theory and is built to interact with any existing (non-
robust) physical designer. Thus, it is able to recommend DBMS-specific structures. For
example, authors used it to recommend projections in the Vertica column-store system.

Snowflake [65] is an another commercial system capable of column-oriented data pro-
cessing for semi-structured data. It adopts a Software-as-a-Service model and aims to
free user from complex management tasks. Thus, it discards the physical design compo-
nent in favor of extensive data pruning.

We conclude our survey with the following:

• • Currently, there is a heightened interest in on-line tuners in row-stores.
• • There is a shortage of on-line tuning tools for column-store systems, especially for

distributed disk-based ones.

Column stores
A column-store database is a system which keeps each attribute separately, as opposed
to row-store systems. This leads to a number of conceptual differences. First of all, a clas-
sic approach to query engine construction—the Volcano model [66] needs to be mod-
ified. In column-stores, operators exchange not only data, but also positions (or IDs).
Furthermore, column-stores require introduction of operators which process positions
only. For example, consider Fig. 4a, the part with two DS1 and one AND1 operator. Each
of the DS1 operators returns positions from the corresponding attribute which satisfy a
given predicate. The AND1 operator calculates conjunction and returns the list of record
IDs which satisfy both of these predicates. The second difference is the need for recon-
struction joins. At some point of query plan positions have to be substituted with cor-
responding attribute values. This process is called materialization. It can be done in a
straightforward (and expensive) way using joins or using some kind of a DBMS-specific
technique.

Eventually, a number of architectural differences arise. Let us summarize them over
several different column-store implementations:

Page 8 of 21Chernishev ﻿J Big Data (2017) 4:5

• • A new approach to query processing: the problem of early/late materialization (when
to perform tuple reconstruction), novel query plans (in some approaches a query
plan is not a DAG anymore) and cost models, a new algebra of operations.

• • A new approach to operator design: new operators and their implementations are
possible.

• • Compression is ubiquitous in this class of systems.

See studies [44, 45, 67] for more detailed introduction.
There are several major research prototypes and a large number of commercial imple-

mentations [44, 45, 68]. Let us characterize the research ones briefly:

• • C-store is a disk-oriented column-store database. It features different sort orders,
compression (different compression method may be used for each column), late
materialization, special join operators and operations on compressed data.

• • MonetDB is a main memory-oriented column-store database. It puts a special
emphasis on efficient hardware usage, e.g. minimization of CPU cache misses or uti-
lization of hardware parallelism. It features a special algebra operating on columns,
adaptive indexing technologies (index is a by-product of query execution) and opera-
tors designed for an efficient hardware usage.

• • To address the shortcomings of MonetDB, a new main-memory system called Mon-
etDB/X100 was developed. The main novelties is the presence of block/vector of a
column processing and a cooperative scans.

• • Supersonic [69] is an open-source in-memory columnar query engine which is ori-
ented for efficient data processing. Its core features are cache consciousness, vector-
ized execution, instruction pipelining and SIMD usage.

• • Peloton [61] is an open-source in-memory DBMS designed for hybrid transaction-
analytical processing. This system has a built-in on-line tuning component.

All of these prototypes are local database systems, however there are commercial dis-
tributed implementations based on some of them. Also, there are academic attempts to
“distribute” some of these prototypes, for example, via a middleware approach.

The design of a self‑managed distributed column‑store system
Problem, environment and queries

We propose to construct a distributed adaptive column-store system which uses a sin-
gle column as a minimum unit of data storage. We consider starting from the classic
formulation of the physical design tuning problem [38]: given a workload, data scheme,
available hardware and, possibly, a set of user constraints (e.g. storage bound of each
node) find a configuration consisting of physical design structures which maximizes the
throughput of the system.

Environment

We consider the following environment. There is a set of nodes in a distributed column-
store system. Each of them has its own hardware characteristics: available disk space,
processing power, network link capacity and so on. Each node stores a number of

Page 9 of 21Chernishev ﻿J Big Data (2017) 4:5

columns or their parts and is capable of performing not only scans, but complex opera-
tors like joins and aggregations.

Queries

The queries and their characteristics (frequencies, involved attributes, selectivities of
their predicates) are used to control the reorganization.
The general scheme of a self-managed database system is presented in Fig 1. It has three
core components: alerter, reorganization controller and a set of actions. Let us discuss
them.

Alerter

The first problem is what we should adapt to, and what kind of information should use
the alerter component. There are several possible approaches:

• • The most common approach is to use a sliding window, which helps to keep track
of the recently processed queries. These recent queries allow us to compute some
aggregate characteristics, which are then used to decide whether to trigger reorgani-
zation or not.

• • Another approach is to use the knowledge of some predefined query patterns. For
example, we might know the existence of query patterns like it is done in the refer-
ence [70]. We can detect these patterns or rely on some external knowledge (e.g. we
know that data loading happens only at night).

• • A single query information can also be useful. Consider a query which takes a long
time to complete. We can predict its performance and evaluate its plan. Then, we can
start the evaluation and simultaneously start the physical reorganization. Later, we
switch its evaluation to a new plan while reusing the partial results obtained earlier.
The goal is to change it in such a way that the query would benefit from the reorgani-
zation on upcoming stages of processing.

Control of the reorganization

One of the key points of a self-managed database system is the control of the reorganiza-
tion. We can propose the following approaches:

Fig. 1  The core components of a DBMS self-management system

Page 10 of 21Chernishev ﻿J Big Data (2017) 4:5

• • A cost-based optimization for a particular query or a set of queries. This is the clas-
sic approach used since 70s in the area of physical design tuning. Nowadays, it is the
mainstream approach used almost in every industrial database [21, 28, 30, 33, 70]
and in a majority of academic studies.

• • A kind of heuristic strategy which will guide the search behavior of a system. This
“forgotten” approach was also used since earlier days of physical design tuning [37].
In this approach, no performance model is used; the process is guided by a rule set.
It was employed as a separate algorithm or as a pre-filtering step in later cost-based
studies [28] in order to lower computational complexity of the problem. Another
prominent example is the group of affinity-based approaches [4, 37].

• • A combination of both.

In spite of the evident fact that the cost-based approach is superior in terms of the qual-
ity of produced recommendations, a strategy may have several strong points over cost-
based optimization:

1.	 Firstly, a cost-based enumeration may be very expensive in terms of computation
resources. Thus, a continuous re-run of the optimization routines is impossible. One
may have to resort to query plan caching schemes or other types of result reuse.
However, the application of this approach is hindered by the following considera-
tions.

2.	 Not all queries may be known in advance. A good self-tuning system should be capa-
ble to cope with such a situation. Using a cost-based approach, we may not be able to
decide on any required action at all. At the same time, a strategy may offer a reason-
able action before the arrival of such a query, employing some rational assumptions
regarding the data distribution.

3.	 Not all queries may be run. We may optimize a workload which is not run, thus wast-
ing precious time and possibly harming a future workload.

4.	 Special use cases, such as incremental data loading. In this case, some sort of a strat-
egy like “create a new instance by mirroring the existing columnar layout of a par-
ticular node” can be employed.

5.	 Estimation errors (or even absence of the statistics at hand), which will lead to a drop
in the quality of recommendations.

Eventually, we should adopt an approach combining elements of cost-based and strategy
approaches. Let us now consider what a column-store system can do to adapt to chang-
ing workloads.

Actions
There is a number of actions which alter a column-store system’s physical design and
provide benefits for different queries. One can regard these action and their results as
the building blocks of a physical design for column store database. For example: rep-
licate, relocate and set up an adaptive index structure on some column. Let us discuss
these actions and compare them to their classic counterparts if they are available.

Page 11 of 21Chernishev ﻿J Big Data (2017) 4:5

Column relocation

A relocation of a column or a set of columns from one processing node to another. This
action may be taken basing on the “what-if” estimation for a particular query or accord-
ing to some strategy. In this case a strategy might look like “eliminate or minimize inter-
node communication for a given query”. This option existed since the earliest distributed
databases, relations were shipped around the network and allocated on the nodes. How-
ever, in the column-store case, there is a number of benefits for query processing and
physical design:

• • Faster relocation;
• • Incremental relocation;
• • Cheap vertical partitioning;
• • Corrective query processing;
• • Additional candidate configurations for physical design.

Fast relocation

In columns-stores relocation takes less time due to compression, a technique which col-
umn-store databases are particularly good at. Column-stores feature compression rates
up to 1:10, while row-stores usually provide a 1:3 rate [67].

Incremental relocation

The whole relation can be incrementally relocated on a per-column basis. There are two
approaches to relocation:

• • Perform column deletion when all columns of the relation were copied.
• • Perform column deletion right after it was copied. In this case, we immediately

obtain a chunk of free space which can be used in a number of ways. For example,
the node can start receiving columns of another relation.

Both of these strategies allow to run queries on partially relocated data. The first one
is straightforward: both the receiving and source nodes can be used for query process-
ing during the relation relocation. The receiving node can execute queries which involve
already moved data. The second strategy also allows to run queries, but in a different
way. Consider the following example presented in Fig. 2. There is a relation presented in
a column-store form which consists of five compressed attributes. It is being relocated
from one node to another using the immediate deletion strategy.

There are three stages in this process:

St 1:	 Start of relocation, attribute “A” is being moved to Node 2;
St 2:	� Attribute “A” was relocated to Node 2, attribute “C” is being moved. At this

stage, the system can run all kinds of queries employing both nodes (distributed
query processing);

St 3:	� At this stage, the system can run some queries locally. For example, query
requesting attributes “A” and “C” can be processed on Node 2 and query request-
ing attributes “B” and “E” can be processed on Node 1. The system can also run
all kinds of queries employing both nodes.

Page 12 of 21Chernishev ﻿J Big Data (2017) 4:5

Some of the row-store systems can also process queries in the middle of relocation [71,
section 5.3] (redefinition of partitions). However, it requires sophisticated algorithms to
run queries in the middle of the relation relocation process. Also, the applicability and
efficiency of these techniques is limited. Data layout of column-stores holds promise for
overcoming these deficiencies.

We can manipulate the relocation process in order to minimally affect the perfor-
mance of running queries. The column-stores offer new opportunities and promise to
enhance the already-known ones. The relocation can be halted for a short time when a
high-priority query comes in. It also can be postponed for a long time to avoid reloca-
tion during peak hours. A novel possibility is adjusting relocation, e.g. postpone the relo-
cation of not all, but some of the columns in order to obtain query processing benefits
in between. Another idea is to make relocation piggyback on the query reading the same
attribute, in a similar manner to the study [72]. Thus, one can reduce the negative effects
of interference between query execution and the relocation process to some extent.

In column-stores one can manage partial results of relocation—the columns which
had been already moved. It is possible to manipulate column relocation order to increase

Fig. 2  Relocation example, immediate deletion

Page 13 of 21Chernishev ﻿J Big Data (2017) 4:5

the “usefulness” of the relocated column set. For example, one can move “hot” columns
(the ones which are frequently needed) first, if the halt of relocation can happen. On-
the-fly adjustment of relocation orders is also possible.

Moreover, for query batch processing, one can devise a relocation schedule for a given
relation which will further minimize the interference and query processing costs. Con-
sider the next example presented in Fig. 3. Suppose that we have to execute the following
read-only queries: AC, BD, ACD, BE, CDE. The reorganization process is happening and
the starting configuration is the same as used on the last step of the previous example.
Here, for the sake of simplicity, we assume that the network communication cost domi-
nates all other costs.

This schedule is superior to other alternatives:

• • Execute without taking relocation into account. This alternative would require too
much of extra network communication.

• • Halt relocation, execute queries, resume relocation. This also requires too much net-
work communication.

• • Finish relocation, then execute. In this case no inter-node parallelism is possible and
query response time is large.

All these new techniques can be developed based on the cost models.

Cheap on‑line vertical partitioning

Vertical partitioning is a tool which allows to drastically improve performance of a rela-
tional database. This physical design option is a well-studied research topic, but the pro-
posed solutions are mostly static. Dynamic approaches started to appear only recently
[56, 57], due to the following reason. In a classic database it would involve a whole scan
of the original relation (all attributes would be scanned) and a formation of two new
ones. Thus, frequent repartitioning would be rather expensive in a classic case.

The opportunity to move columns for a lesser cost will allow us to perform on-line
vertical partitioning for column-stores. Both distributed and local (via column reorder-
ings, see next subsection) vertical partitioning schemes are possible. Thus, it will allow
to achieve a rapid response to workload changes and, in its turn, to improve the adaptiv-
ity of the system.

New aspects of corrective query processing (CQP)

Corrective query processing [73, section 7.1] is a technique used to correct query opti-
mizer errors on the fly by replacing the current plan without discarding partial results.
This study presents an example where query execution consists of three phases: ini-
tial, re-optimized and stitch-up. During the initial phase a query monitor detects that
assumptions which led to selection of initial plan do not hold. Then, the re-optimized
plan is calculated and run on the remaining data. Finally, both results are glued together.

The same idea can be employed in column-stores. For example, consider the following
query:
SELECT shipdate, linenum FROM lineitem WHERE shipdate<

CONST1 AND linenum < CONST2

Page 14 of 21Chernishev ﻿J Big Data (2017) 4:5

Fig. 3  Relocation schedule example

Fig. 4  Different query plans for a single query. a LM-parallel, b LM-pipelined

Page 15 of 21Chernishev ﻿J Big Data (2017) 4:5

There are two possible execution plans. They are shown in Fig. 4 (the figure and
query are adapted from the reference [74]). It is possible to perform on-line switching
from plan depicted on the top to the plan on the bottom, if filtering Shipdate’s column
produces too many results. In this case, “AND1” operator should be substituted by a
sequence of “DS3” and “DS1” operators. If filtering produces a low number of results,
on-line switching in the opposite direction is also possible.

Existing approaches involve classic databases and the horizontal partitioning approach.
Horizontal partitioning comes from the division of original data into initial and “reopti-
mized” parts. In column-stores one may try to come up with a different class of adapta-
tion schemes, where reorganization happens after the processing of the whole column.
This approach will allow to eliminate the stitch-up phase. In the same example it is pos-
sible to finish filtering the whole Shipdate’s column before moving to another plan.

The query processing specifics, namely a large number of operators in a plan and small
column sizes give hope that this kind of processing will perform well or will be profitable
in terms of resources.

The aforementioned approaches are essentially query processing adaptivity. The entity
which adapts is the query plan. There is also a place for physical design adaptivity too:
adapt not only the query plan, but also the required physical structures. Sufficiently large
query graphs and well-compressed columns can make this kind of an approach viable.

One of the promising scenarios of CQP in distributed environment is the following.
Having a query, one must compute two query plans. The first plan is the best plan which
can be run immediately, using existing physical design structures. The second query
plan involves physical design structures which would be constructed during the query
processing. The query execution is performed as follows: start the query processing and
physical redesign simultaneously. Having finished redesign, move processing to the sec-
ond plan. In order to make this scheme profitable, one must create a cost model which
involves costs of physical redesign, plan switching and running both plans.

To the best of our knowledge, both of these kinds of column-store adaptivity were not
considered in literature.

Additional candidate configurations for physical design

Column-stores have a much larger configuration space compared to row-stores. This
contributes to overall flexibility of physical design, which leads to an increase in the
number of beneficial configurations and to an improvement of the performance of the
whole system.

All these properties will greatly contribute to the adaptivity of the considered DBMS.

Column reorderings

A reordering of a set of columns is a specialization for a query or a group of queries. The
idea is to reorder the contents of a set of columns needed for a particular query accord-
ing to the ordering of some column set (usually the most selective predicate’s column).
This option was described in the original C-Store paper [75] and in the Star Schema
Benchmark [76, section 3.1] (multiple sort orders). Consider the following examples (the
query notation is adopted from the reference [75]):

Page 16 of 21Chernishev ﻿J Big Data (2017) 4:5

Table 3 contains the original data, which is represented by a relation with four attrib-
utes. This table is clustered by its primary key, id. This data can be considered as the fol-
lowing sort order: (id, name, wage, skill|id).

Next, Table 4 describes the sort order for the full wage query. The goal of this query
is to retrieve records using the wage value as the key. The name “full” means that all
original attributes would be requested. Note that all other attributes (columns) are
sorted according to this attribute. This sort order is denoted as follows: (id, name, wage,
skill|wage).

Finally, Table 5 contains the sort order for query (name, wage, skill|skill, name). This
query uses skill and name as the key and omits the id column.

In these papers, sort orders were described as a query speed-up technique, while we
can propose several sort order selection problems:

• • Sort Order Selection Problem (SOSP): find a single good sort order for a given work-
load;

• • Multiple Sort Order Selection Problem (MSOSP): find a good set of sort orders for a
given workload and a given storage budget;

• • Dynamization of SOSP and MSOSP: find a good set of sort orders for a dynami-
cally changing workload and a given storage budget. This formulation considers the
physical design problem in a dynamic environment, where query patterns change
over time. The system should adapt stored sort orders to provide the best perfor-

Table 3  Source data

Id Name Wage Skill

1 Ivan 80 C++
2 Petr 50 C++
3 Slava 30 Java

4 Vasya 60 Php

5 Sasha 70 Java

Table 4  Sort order for full wage query

Id Name Wage Skill

3 Slava 30 Java

2 Petr 50 C++
4 Vasya 60 Php

5 Sasha 70 Java

1 Ivan 80 C++

Table 5  Sort order for (name, wage, skill|skill, name) query

Name Wage Skill

Ivan 80 C++
Petr 50 C++
Sasha 70 Java

Slava 30 Java

Vasya 60 Php

Page 17 of 21Chernishev ﻿J Big Data (2017) 4:5

mance. While two previous formulations were already mentioned or even addressed
in the past [63, 75], to the best of our knowledge, there are no studies which consider
dynamic formulation for column-stores.

This option has no direct counterparts in the classic approach. It can be emulated by
replicating the whole table and, thus, is very costly and its application is limited.

Column duplication

A creation (deletion) of a single column copy or a copy of a column set. The idea is to
create a copy of some column transparently to the user, possibly modify it by other
actions and then employ it to speed up query processing. If the column is not needed
anymore, e.g. the cost-based estimator shows a more beneficial configuration or a new
strategy prescribes to drop it — it could be deleted.

This copy can be used during construction of a sort order or in a standalone manner.
Column-store technology offers the same benefits for this action: fast and incremental
duplication of a relation, scheduling, CQP adaptation, and an increase of the number of
useful configurations.

There is no direct analogue in the classic database systems. Most studies consider rep-
lication of the whole relation or its horizontal part. The closest approach is the creation
of a materialized view; however, to the best of our knowledge, there were no studies for
single-columnar views. Though the use of materialized views was considered for emula-
tion of the column-store database in a comparison [77].

Horizontal partitioning

Horizontal partitioning of a column and partition merge. Horizontal partitioning of a
relational database is a very well-studied problem, and there are many approaches to
it [37]. One may consider value-based partitioning and non-value-based [78] (range or
round-robin, for example), and primary and derived [6]. The column-store horizontal
partitioning has some advantages over its counterpart in classic systems:

• • The partition can be constructed for a lesser cost in terms of the number of accessed
pages. Thus, one can achieve higher repartitioning speed compared to row-stores.
This speed will provide a substantial benefit to an on-line tuning system, allowing
it to adapt faster. Compression can be a potential source of problems, but the light-
weight compression methods [43, 44] employed by the column-stores should not
present any difficulties.

• • The control of partitioning granularity—one can perform a partitioning of a subset
of columns. For example, we can horizontally partition the “fat” column only without
touching the rest. However, there could be queries which would benefit from parti-
tioning columns together.

• • The enlargement of the configuration space and the increased number of useful con-
figurations lead to improved performance of query processing.

If the partitioning is not needed anymore, one can collapse a set of partitions. This action
and the creation of a copy constitute a materialized view for a query, and vice versa. The

Page 18 of 21Chernishev ﻿J Big Data (2017) 4:5

action has no direct counterpart in classic databases, but it can be emulated. However, it
will require vertical partitioning or materialized view creation and thus, it is very costly.

Column‑store specific actions

• • Adaptive indexing. Adaptive indexing is a technique which constructs indexes on-
the-fly during query processing. This approach is extensively used in column-store
systems [44, 79–81]. To the best of our knowledge, there is only one study [82] related
to selection and management of such indexes. Moreover, employing these indexes in
a distributed environment looks promising because there are a lot of potential sce-
narios which may benefit from this structure. For example, one can keep two copies
of a column on different nodes and perform a reorganization without any overhead
for the processing. This can be achieved by alternating working and idle nodes. The
application of these indexes in a distributed context also was not studied.

• • Join index [75, section 2]. This is a structure used to speed up the reconstruction
of a tuple by linking parts of a single record in a different projections. The follow-
up paper [43, section 3.2] stated that early experiments showed that this technique
was inefficient due to several reasons. However, in case of an adaptive system these
results should be reconsidered since there are several novel scenarios. Unfortunately,
there are no published studies regarding these experiments.

As we can see, a lot of actions share the same idea with classic relational databases. How-
ever, due to the different query processing (see [44]) scheme and the specifics of the data
layout novel cost-based models are required.

Conclusion
In this paper, we discussed the design of a self-managed distributed column-store sys-
tem. Architectural novelties of a column-store system hold a great promise for con-
struction of an efficient self-managed database that would adapt its physical design to
changing workloads. We surveyed state-of-the-art self-managed database systems and
provided an overview of contemporary results. Next, we presented some thoughts on
the organization of a self-managed distributed column-store system. We discussed
the three core components: an alerter, a reorganization controller and a set of physi-
cal design options (actions) available to such a system. We described three approaches
for the design of the alerter and two for the reorganization controller. Several physical
design problems were formulated and discussed. Finally, we discussed available physical
design options—the building blocks of an adaptive distributed column-store system.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements
None.

This paper is an expanded version of the study [1].

Competing Interests
The authors declare that they have no competing interests.

Received: 10 December 2016 Accepted: 15 March 2017

Page 19 of 21Chernishev ﻿J Big Data (2017) 4:5

References
	1.	 Chernishev, G.: New trends in databases and information systems: ADBIS 2015 short papers and workshops,

BigDap, DCSA, GID, MEBIS, OAIS, SW4CH, WISARD, Poitiers, France, September 8–11, 2015. In: Proceedings,
chap. Towards self-management in a distributed column-store system. Cham: Springer; 2015. p. 97–107.
doi:10.1007/978-3-319-23201-0_12.

	2.	 Hammer M, Niamir B. A heuristic approach to attribute partitioning. In: Proceedings of the 1979 ACM SIG-
MOD international conference on Management of data, SIGMOD ’79. New York: ACM; 1979. p. 93–101.
doi:10.1145/582095.582110.

	3.	 Hoffer JA. An integer programming formulation of computer database design problems. Inf Sci. 1976;11:29–48.
	4.	 Navathe S, Ceri S, Wiederhold G, Dou J. Vertical partitioning algorithms for database design. ACM Trans Database

Syst. 1984;9:680–710. doi:10.1145/1994.2209.
	5.	 Lin X, Orlowska M, Zhang Y. A graph based cluster approach for vertical partitioning in database design. Data Knowl

Eng. 1993;11(2):151–69. doi:10.1016/0169-023X(93)90003-8.
	6.	 Ceri S, Negri M, Pelagatti G. Horizontal data partitioning in database design. In: Proceedings of the 1982 ACM

SIGMOD international conference on Management of data, SIGMOD ’82. New York: ACM; 1982. p. 128–36.
doi:10.1145/582353.582376.

	7.	 Ceri S, Navathe S, Wiederhold G. Distribution design of logical database schemas. IEEE Trans Softw Eng. 1983;4:487–
504. doi:10.1109/TSE.1983.234957.

	8.	 Sacca D, Wiederhold G. Database partitioning in a cluster of processors. ACM Trans Database Syst. 1985;10(1):29–56.
doi:10.1145/3148.3161.

	9.	 Bellatreche L, Woameno KY. Dimension table driven approach to referential partition relational data warehouses. In:
Proceedings of the ACM twelfth international workshop on data warehousing and OLAP. New York: ACM; 2009. p.
9–16. doi:10.1145/1651291.1651294.

	10.	 Copeland G, Alexander W, Boughter E, Keller T. Data placement in Bubba. In: Proceedings of the 1988 ACM SIGMOD
international conference on Management of data. New York: ACM; 1988. p. 99–108. doi:10.1145/50202.50213.

	11.	 Ghandeharizadeh S, DeWitt DJ. Hybrid-range partitioning strategy: a new declustering strategy for multiprocessor
database machines. In: Proceedings of the 16th International Conference on Very Large Data Bases. San Francisco:
Morgan Kaufmann Publishers Inc.;1990. p. 481–92.

	12.	 Ghandeharizadeh S, DeWitt DJ, Qureshi W. A performance analysis of alternative multi-attribute declustering strate-
gies. SIGMOD Rec. 1992; 21(2): 29–38. doi:10.1145/141484.130293.

	13.	 Wong E, Katz RH. Distributing a database for parallelism. In: SIGMOD Record. 1983; 13(4): 23–29.
doi:10.1145/971695.582201.

	14.	 Hammer M, Chan A. Index selection in a self-adaptive data base management system. In: Proceedings of the 1976
ACM SIGMOD international conference on management of data. New York: ACM; 1976. p. 1–8. .

	15.	 Stonebraker M. The choice of partial inversions and combined indices. Int J Paral Progr. 1974;3(2):167–88.
doi:10.1007/BF00976642.

	16.	 Bellatreche L, Boukhalfa K. Yet another algorithms for selecting bitmap join indexes. In: Bach Pedersen T, Mohania
M, Tjoa A, editors. Data warehousing and knowledge discovery, Lecture Notes in Computer Science.Berlin : Springer;
2010. doi: 10.1007/978-3-642-15105-7_9.

	17.	 Mami I, Bellahsene Z. A survey of view selection methods. SIGMOD Rec. 2012;41(1):20–9.
doi:10.1145/2206869.2206874.

	18.	 Yu PS, Chen MS, Heiss HU, Lee S. On workload characterization of relational database environments. IEEE Trans Softw
Eng. 1992;18(4):347–55. doi:10.1109/32.129222.

	19.	 Chaudhuri S, Narasayya V. Self-tuning database systems: a decade of progress. In: Proceedings of the 33rd interna-
tional conference on very large data bases. VLDB Endowment. 2007. p. 3–14.

	20.	 Rao J, Zhang C, Megiddo N, Lohman G. Automating physical database design in a parallel database. In: Proceedings
of the 2002 ACM SIGMOD international conference on management of data, SIGMOD ’02. New York: ACM; 2002. p.
558–569. doi:10.1145/564691.564757.

	21.	 Zilio DC, Rao J, Lightstone S, Lohman G, Storm A, Garcia-Arellano C, Fadden S. DB2 design advisor: integrated auto-
matic physical database design. In: Proceedings of the thirtieth international conference on very large data bases
- vol. 30, VLDB ’04, . VLDB Endowment. 2004. p. 1087–97.

	22.	 Valentin G, Zuliani M, Zilio D, Lohman G, Skelley A. DB2 advisor: an optimizer smart enough to recommend its
own indexes. In: Proceedings of 16th International Conference on Data engineering. 2000. p. 101–10. doi:10.1109/
ICDE.2000.839397.

	23.	 Zilio D, Zuzarte C, Lightstone S, Ma W, Lohman G, Cochrane R, Pirahesh H, Colby L, Gryz J, Alton E, Valentin G.
Recommending materialized views and indexes with the IBM DB2 design advisor. In: Proceedings international
conference on autonomic computing. 2004. p. 180–7. doi:10.1109/ICAC.2004.1301362.

	24.	 Eadon G, Chong EI, Shankar S, Raghavan A, Srinivasan J, Das S. Supporting table partitioning by reference in oracle.
In: Proceedings of the 2008 ACM SIGMOD international conference on management of data, SIGMOD ’08. New York:
ACM; 2008. p. 1111–22. doi:10.1145/1376616.1376727.

	25.	 Dageville B, Das D, Dias K, Yagoub K, Zait M, Ziauddin M. Automatic SQL tuning in oracle 10g. In: Proceedings of the
thirtieth international conference on very large data bases - Volume 30, VLDB ’04. VLDB Endowment 2004. p 1098–9.

	26.	 Bruno N, Chaudhuri S. Automatic physical database tuning: a relaxation-based approach. In: Proceedings of the
2005 ACM SIGMOD international conference on management of data, SIGMOD ’05. p. 227–38. New York: ACM;
2005. doi:10.1145/1066157.1066184.

	27.	 Agrawal S, Chaudhuri S, Kollar L, Marathe A, Narasayya V, Syamala M. Database tuning advisor for Microsoft SQL
server 2005: demo. In: Proceedings of the 2005 ACM SIGMOD international conference on management of data,
SIGMOD ’05. New York: ACM; 2005. p. 930–32. doi:10.1145/1066157.1066292.

	28.	 Agrawal S, Narasayya V, Yang B. Integrating vertical and horizontal partitioning into automated physical database
design. In: Proceedings of the 2004 ACM SIGMOD international conference on Management of data, SIGMOD ’04.
ACM, New York, 2004. p. 359–70. doi:10.1145/1007568.1007609.

http://dx.doi.org/10.1007/978-3-319-23201-0_12
http://dx.doi.org/10.1145/582095.582110
http://dx.doi.org/10.1145/1994.2209
http://dx.doi.org/10.1016/0169-023X(93)90003-8
http://dx.doi.org/10.1145/582353.582376
http://dx.doi.org/10.1109/TSE.1983.234957
http://dx.doi.org/10.1145/3148.3161
http://dx.doi.org/10.1145/1651291.1651294
http://dx.doi.org/10.1145/50202.50213
http://dx.doi.org/10.1145/141484.130293
http://dx.doi.org/10.1145/971695.582201
http://dx.doi.org/10.1007/BF00976642
http://dx.doi.org/10.1007/978-3-642-15105-7_9
http://dx.doi.org/10.1145/2206869.2206874
http://dx.doi.org/10.1109/32.129222
http://dx.doi.org/10.1145/564691.564757
http://dx.doi.org/10.1109/ICDE.2000.839397
http://dx.doi.org/10.1109/ICDE.2000.839397
http://dx.doi.org/10.1109/ICAC.2004.1301362
http://dx.doi.org/10.1145/1376616.1376727
http://dx.doi.org/10.1145/1066157.1066184
http://dx.doi.org/10.1145/1066157.1066292
http://dx.doi.org/10.1145/1007568.1007609

Page 20 of 21Chernishev ﻿J Big Data (2017) 4:5

	29.	 Agrawal S, Chaudhuri S, Kollar L, Marathe A, Narasayya V, Syamala M. Database tuning advisor for Microsoft SQL
Server 2005. In: Proceedings of VLDB, 2004. p. 1110–21.

	30.	 Nehme R, Bruno N. Automated partitioning design in parallel database systems. In: Proceedings of the
2011 international conference on management of data, SIGMOD ’11. New York: ACM; 2011. p. 1137–48.
doi:10.1145/1989323.1989444.

	31.	 Gebaly KE, Aboulnaga A. Robustness in automatic physical database design. In: Proceedings of the 11th interna-
tional conference on extending database technology: advances in database technology, EDBT ’08. New York: ACM;
2008. doi:10.1145/1353343.1353365.

	32.	 Maier C, Dash D, Alagiannis I, Ailamaki A, Heinis T. PARINDA: an interactive physical designer for PostgreSQL. In: Pro-
ceedings of the 13th international conference on extending database technology, EDBT ’10. New York: ACM; 2010.
p. 701–4. doi:10.1145/1739041.1739131.

	33.	 Alagiannis I, Dash D, Schnaitter K, Ailamaki A, Polyzotis N. An automated, yet interactive and portable DB designer.
In: Proceedings of the 2010 ACM SIGMOD international conference on management of data, SIGMOD ’10. New York:
ACM; 2010. p. 1183–6. doi:10.1145/1807167.1807314.

	34.	 Thiem A, Sattler KU. An integrated approach to performance monitoring for autonomous tuning. In: Proceedings of
the 2009 IEEE international conference on data engineering, ICDE ’09. Washington: IEEE Computer Society; 2009. p.
1671–78. doi:10.1109/ICDE.2009.142.

	35.	 Schnaitter K, Abiteboul S, Milo T, Polyzotis N. Colt: continuous on-line tuning. In: Proceedings of the 2006 ACM
SIGMOD international conference on management of data, SIGMOD ’06. New York: ACM; 2006. p. 1183–6. p. 793–5.
doi:10.1145/1142473.1142592..

	36.	 Bruno N, Chaudhuri S. To tune or not to tune?: A lightweight physical design alerter. In: Proceedings of the 32nd
international conference on very large data bases, VLDB ’06. VLDB Endowment .2006. p. 499–10.

	37.	 Chernishev G. A survey of dbms physical design approaches. In: SPIIRAS proceedings. 2013; 24:222–76. http://www.
mathnet.ru/trspy580.

	38.	 Chaudhuri S, Weikum G. Self-management technology in databases. In: L. Liu M. Özsu, editors. Encyclopedia of
database systems. Berlin: Springer; 2009. pp. 2550–5. doi:10.1007/978-0-387-39940-9_334DOIurl.

	39.	 Kwan E, Lightstone S, Storm A, Wu L. Automatic configuration for ibm db2 universal database: compressing years
of performance tuning experience into seconds of execution. In: Tech rep: performance technical report. New York:
International Business Machines Corporation; 2002.

	40.	 Dageville B, Dias K. Oracle’s self-tuning architecture and solutions. IEEE Data Eng Bull. 2006;29(3):24–31.
	41.	 Aboulnaga A, Salem K. Report: 4th int’l workshop on self-managing database systems (smdb 2009). 2009. p. 2–5.
	42.	 Ailamaki A, DeWitt DJ, Hill MD, Skounakis M. Weaving relations for cache performance. In: Proceedings of the 27th

international conference on very large data bases, VLDB ’01. San Francisco: Morgan Kaufmann Publishers Inc.;2001 .
p. 169–80.

	43.	 Lamb A, Fuller M, Varadarajan R, Tran N, Vandiver B, Doshi L, Bear C. The vertica analytic database: C-store 7 years
later. Proc VLDB Endow. 2012;5(12):1790–801. doi:10.14778/2367502.2367518.

	44.	 Abadi D, Boncz P, Harizopoulos S. The design and implementation of modern column-oriented database systems.
Hanover: Now Publishers Inc.; 2013.

	45.	 Chernishev G. Physical design approaches for column-stores. SPIIRAS Proc. 2013;30:204–22.
	46.	 Piatetsky-Shapiro G. The optimal selection of secondary indices is np-complete. SIGMOD Rec. 1983;13(2):72–5.

doi:10.1145/984523.984530.
	47.	 Harinarayan V, Rajaraman A, Ullman JD. Implementing data cubes efficiently. SIGMOD Rec. 1996;25(2):205–16.

doi:10.1145/235968.233333.
	48.	 Holze M, Ritter N. Towards workload shift detection and prediction for autonomic databases. In: Proceedings of the

ACM First Ph.D. Workshop in CIKM, PIKM ’07. New York: ACM; 2007. p. 109–116. doi:10.1145/1316874.1316892.
	49.	 Hose K, Klan D, Marx M, Sattler KU. When is it time to rethink the aggregate configuration of your olap server? Proc

VLDB Endow. 2008;1(2):1492–5. doi:10.14778/1454159.1454210.
	50.	 Malik T, Wang X, Dash D, Chaudhary A, Ailamaki A, Burns R. Adaptive physical design for curated archives. In:

Proceedings of the 21st International Conference on Scientific and Statistical Database Management, SSDBM 2009.
Berlin: Springer; 2009. p. 148–66. doi:10.1007/978-3-642-02279-1_11.

	51.	 Schnaitter K, Polyzotis N. Semi-automatic index tuning: keeping dbas in the loop. Proc VLDB Endow. 2012;5(5):478–
89. doi:10.14778/2140436.2140444.

	52.	 LeFevre J, Sankaranarayanan J, Hacigumus H, Tatemura J, Polyzotis N, Carey MJ. Miso: souping up big data query
processing with a multistore system. In: Proceedings of the 2014 ACM SIGMOD international conference on man-
agement of data, SIGMOD ’14. New York: ACM, 2014. p. 1591–602. doi:10.1145/2588555.2588568.

	53.	 LeFevre J, Sankaranarayanan J, Hacigumus H, Tatemura J, Polyzotis N, Carey MJ. Opportunistic physical design for
big data analytics. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data,
SIGMOD ’14. New York: ACM, 2014. p. 851–62. doi:10.1145/2588555.2610512.

	54.	 Kolaczkowski P, Rybinski H. Online index selection in rdbms by evolutionary approach. In: Hameurlain A, Liddle S,
Schewe KD, Zhou X, editors. Database and expert systems applications. Lecture notes in computer science. Berlin:
Springer; 2011. Vol. 6861, p. 475–84. doi:10.1007/978-3-642-23091-2_41.

	55.	 Morelli E, Almeida A, Lifschitz S, Monteiro JM, Machado J. Autonomous re-indexing. In: Proceedings
of the 27th annual ACM symposium on applied computing, SAC ’12. New York: ACM; 2012. p. 893–7.
doi:10.1145/2245276.2245450.

	56.	 Jindal A, Dittrich J. Relax and let the database do the partitioning online. In: Castellanos M, Dayal U, Lehner W, edi-
tors. Enabling real-time business intelligence. Lecture notes in business information processing. Berlin: Springer;
2012. vol. 126, p. 65–80. doi:10.1007/978-3-642-33500-6_5.

	57.	 Li L, Gruenwald L. Self-managing online partitioner for databases (smopd): a vertical database partitioning system
with a fully automatic online approach. In: Proceedings of the 17th international database engineering and applica-
tions symposium, IDEAS ’13. New York: ACM; 2013. p. 168–73. doi:10.1145/2513591.2513649.

http://dx.doi.org/10.1145/1989323.1989444
http://dx.doi.org/10.1145/1353343.1353365
http://dx.doi.org/10.1145/1739041.1739131
http://dx.doi.org/10.1145/1807167.1807314
http://dx.doi.org/10.1109/ICDE.2009.142
http://dx.doi.org/10.1145/1142473.1142592.
http://www.mathnet.ru/trspy580
http://www.mathnet.ru/trspy580
http://dx.doi.org/10.1007/978-0-387-39940-9_334
http://dx.doi.org/10.14778/2367502.2367518
http://dx.doi.org/10.1145/984523.984530
http://dx.doi.org/10.1145/235968.233333
http://dx.doi.org/10.1145/1316874.1316892
http://dx.doi.org/10.14778/1454159.1454210
http://dx.doi.org/10.1007/978-3-642-02279-1_11
http://dx.doi.org/10.14778/2140436.2140444
http://dx.doi.org/10.1145/2588555.2588568
http://dx.doi.org/10.1145/2588555.2610512
http://dx.doi.org/10.1007/978-3-642-23091-2_41
http://dx.doi.org/10.1145/2245276.2245450
http://dx.doi.org/10.1007/978-3-642-33500-6_5
http://dx.doi.org/10.1145/2513591.2513649

Page 21 of 21Chernishev ﻿J Big Data (2017) 4:5

	58.	 Rösch P, Dannecker L, Färber F, Hackenbroich G. A storage advisor for hybrid-store databases. Proc VLDB Endow.
2012;5(12):1748–58. doi:10.14778/2367502.2367514.

	59.	 Sherkat R, Florendo C, Andrei M, Goel AK, Nica A, Bumbulis P, Schreter I, Radestock G, Bensberg C, Booss D, Gerwens
H: Page as you go: piecewise columnar access in sap hana. In: Proceedings of the 2016 international conference on
management of data, SIGMOD ’16. New York: ACM, 2016. p. 1295–306. doi:10.1145/2882903.2903729.

	60.	 Alagiannis I, Idreos S, Ailamaki A. H2O: a hands-free adaptive store. In: Proceedings of the 2014 ACM SIG-
MOD international conference on management of data, SIGMOD ’14. New York: ACM, 2014. p. 1103–14.
doi:10.1145/2588555.2610502.

	61.	 Arulraj J, Pavlo A, Menon P. Bridging the archipelago between row-stores and column-stores for hybrid workloads.
In: Proceedings of the 2016 international conference on management of data, SIGMOD ’16. 2016. pp. 583–98 .
doi:10.1145/2882903.2915231.

	62.	 Varadarajan R, Bharathan V, Cary A, Dave J, Bodagala S. Dbdesigner: a customizable physical design tool for vertica
analytic database. In: 2014 IEEE 30th international conference on data engineering. 2014. p. 1084–95. doi:10.1109/
ICDE.2014.6816725.

	63.	 Rasin A, Zdonik S. An automatic physical design tool for clustered column-stores. In: Proceedings of the 16th
international conference on extending database technology, EDBT ’13. New York: ACM, 2013. p. 203–14.
doi:10.1145/2452376.2452402.

	64.	 Mozafari B, Goh EZY, Yoon DY. Cliffguard: a principled framework for finding robust database designs. In: Proceed-
ings of the 2015 ACM SIGMOD international conference on management of data, SIGMOD ’15. New York: ACM,
2015. p. 1167–82. doi:10.1145/2723372.2749454.

	65.	 Dageville B, Cruanes T, Zukowski M, Antonov V, Avanes A, Bock J, Claybaugh J, Engovatov D, Hentschel M, Huang J,
Lee AW, Motivala A, Munir AQ, Pelley S, Povinec P, Rahn G, Triantafyllis S, Unterbrunner P. The snowflake elastic data
warehouse. In: Proceedings of the 2016 international conference on management of data, SIGMOD ’16. New York:
ACM, 2016. p. 215–26. doi:10.1145/2882903.2903741.

	66.	 Graefe G. Query evaluation techniques for large databases. ACM Comput Surv. 1993;25(2):73–169.
doi:10.1145/152610.152611.

	67.	 Abadi DJ, Boncz PA, Harizopoulos S. Column-oriented database systems. Proc VLDB Endow. 2009;2(2):1664–5.
doi:10.14778/1687553.1687625.

	68.	 Idreos S, Groffen F, Nes N, Manegold S, Mullender S, Kersten M. MonetDB: two decades of research in column-
oriented database architectures. IEEE Data Eng Bull. 2012;35(1):40–5.

	69.	 Google. supersonic library. https://code.google.com/archive/p/supersonic/ (2017). Accessed 12 Feb 2017.
	70.	 Agrawal S, Chu E, Narasayya V. Automatic physical design tuning: workload as a sequence. In: Proceedings of the

2006 ACM SIGMOD international conference on Management of data, SIGMOD ’06. New York: ACM, 2006. p. 683–94.
doi:10.1145/1142473.1142549.

	71.	 Sockut GH, Iyer BR. Online reorganization of databases. ACM Comput Surv. 2009;41(3):14.
doi:10.1145/1541880.1541881.

	72.	 Zukowski M, Héman S, Nes N, Boncz P. Cooperative scans: dynamic bandwidth sharing in a dbms. In: Proceedings of
the 33rd international conference on very large data bases, VLDB ’07. VLDB Endowment. 2007. p. 723–34.

	73.	 Deshpande A, Ives Z, Raman V. Adaptive query processing. Found Trends Databases. 2007;1(1):1–40.
doi:10.1561/1900000001.

	74.	 Abadi D, Myers D, DeWitt D, Madden S. Materialization strategies in a column-oriented dbms. In: IEEE 23rd interna-
tional conference on data engineering, ICDE. 2007. p. 466–75. doi:10.1109/ICDE.2007.367892.

	75.	 Stonebraker M, Abadi DJ, Batkin A, Chen X, Cherniack M, Ferreira M, Lau E, Lin A, Madden S, O’Neil E, O’Neil P, Rasin
A, Tran N, Zdonik S. C-store: a column-oriented dbms. In: Proceedings of the 31st international conference on very
large data bases, VLDB ’05. VLDB Endowment. 2005. p. 553–64.

	76.	 ONeil PE, ONeil EJ, Chen X. The star schema benchmark (SSB). 2009. http://www.cs.umb.edu/~poneil/StarSchemaB.
PDF. Accessed 20 July 2012.

	77.	 Abadi DJ, Madden SR, Hachem N. Column-stores vs. row-stores: how different are they really? In: Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08. New York: ACM, 2008. p.
967–80. doi:10.1145/1376616.1376712

	78.	 Taniar D, Leung CHC, Rahayu W, Goel S. High performance parallel database processing and grid databases. New
York: Wiley; 2008.

	79.	 Idreos S, Kersten ML, Manegold S. Self-organizing tuple reconstruction in column-stores. In: Proceedings of the 2009
ACM SIGMOD international conference on management of data, SIGMOD ’09. New York: ACM, 2009. p. 297–308.
doi:10.1145/1559845.1559878.

	80.	 Graefe G, Kuno H. Self-selecting, self-tuning, incrementally optimized indexes. In: Proceedings of the 13th
international conference on extending database technology, EDBT ’10. New York: ACM, 2010. p. 371–81.
doi:10.1145/1739041.1739087.

	81.	 Idreos S, Kersten ML, Manegold S. Database cracking. In: CIDR. 2007. p. 68–78. http://www.cidrdb.org.
	82.	 Petraki E, Idreos S, Manegold S. Holistic indexing in main-memory column-stores. In: Proceedings of the 2015

ACM SIGMOD international conference on management of data, SIGMOD ’15. New York: ACM, 2015. p. 1153–66.
doi:10.1145/2723372.2723719.

http://dx.doi.org/10.14778/2367502.2367514
http://dx.doi.org/10.1145/2882903.2903729
http://dx.doi.org/10.1145/2588555.2610502
http://dx.doi.org/10.1145/2882903.2915231
http://dx.doi.org/10.1109/ICDE.2014.6816725
http://dx.doi.org/10.1109/ICDE.2014.6816725
http://dx.doi.org/10.1145/2452376.2452402
http://dx.doi.org/10.1145/2723372.2749454
http://dx.doi.org/10.1145/2882903.2903741
http://dx.doi.org/10.1145/152610.152611
http://dx.doi.org/10.14778/1687553.1687625
https://code.google.com/archive/p/supersonic/
http://dx.doi.org/10.1145/1142473.1142549
http://dx.doi.org/10.1145/1541880.1541881
http://dx.doi.org/10.1561/1900000001
http://dx.doi.org/10.1109/ICDE.2007.367892
http://www.cs.umb.edu/%7eponeil/StarSchemaB.PDF
http://www.cs.umb.edu/%7eponeil/StarSchemaB.PDF
http://dx.doi.org/10.1145/1376616.1376712
http://dx.doi.org/10.1145/1559845.1559878
http://dx.doi.org/10.1145/1739041.1739087
http://www.cidrdb.org
http://dx.doi.org/10.1145/2723372.2723719

	The design of an adaptive column-store system
	Abstract
	Introduction
	Database (self-)tuning basics
	Related work
	On-line tuning in row-stores
	Database tuning for column-stores

	Column stores
	The design of a self-managed distributed column-store system
	Problem, environment and queries
	Environment
	Queries

	Alerter
	Control of the reorganization

	Actions
	Column relocation
	Fast relocation
	Incremental relocation
	Cheap on-line vertical partitioning
	New aspects of corrective query processing (CQP)
	Additional candidate configurations for physical design

	Column reorderings
	Column duplication
	Horizontal partitioning
	Column-store specific actions

	Conclusion
	Authors’ contributions
	References

