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Introduction
High Performance Computing (HPC) is increasingly becoming an indispensable 
resource in healthcare research due to its capabilities in addressing complex and data-
intensive tasks  [1–3]. The exponential growth of health data next to simulation and 
modeling drives the adoption of HPC, which encompasses i.a., genomic sequencing, 
biomedical imaging, electronic health records (EHRs), and wearable device data [4–8]. 
Effectively managing and analyzing such data poses significant challenges in storage, 
management, and analysis, necessitating the computational power offered by HPC. In 
genomics, HPC allows researchers to analyze genomic data at a scale and speed pre-
viously impossible, revealing genetic bases of various diseases and helping develop 
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personalized treatments  [9, 10]. Similarly, HPC plays a crucial role in drug discovery 
and computational modeling [11, 12]. Drug discovery processes are traditionally time 
and resource-intensive. However, HPC allows researchers to conduct molecular dynam-
ics simulations to understand drug-protein interactions at the atomic level, speeding 
up the process and reducing costs  [13–15]. Furthermore, HPC-enabled computational 
modeling allows the simulation of biological systems or disease progression, providing 
insights to inform treatment strategies  [16, 17]. The deployment of HPC in Artificial 
Intelligence (AI) for healthcare has also experienced substantial growth. HPC enables 
the implementation of advanced AI techniques, which necessitate substantial compu-
tational power to efficiently handle extensive data volumes and complex deep neural 
networks [18, 19]. Biomedical imaging stands as a prime example where HPC assumes 
a crucial role [20]. By leveraging HPC, AI tools can swiftly process and analyze high-
resolution images, facilitating real-time analysis of complex imaging data and leading to 
expedited and more precise diagnoses [21, 22]. In addition, HPC-enabled convergence 
of AI and simulation has significantly improved the quality and speed of traditional sim-
ulation in healthcare [23, 24].

Investigating the literature on HPC adoption in healthcare can generate valuable 
insights that are beneficial for the business and economic side of healthcare by provid-
ing a comprehensive understanding of the current landscape and potential future direc-
tions. These insights can guide strategic planning and investment decisions of HPC in 
healthcare businesses, highlighting promising areas for further exploration and develop-
ment. However, the substantial volume of literature, combined with the rapid pace of 
technological advancements, makes manual analysis very difficult and time consuming. 
As a result, there is a recognized need for an automated literature analysis framework to 
accurately process the vast corpus of literature, transforming it into meaningful insights 
for business or strategic decision making within the healthcare sectors.

Topic modeling, a family of typically unsupervised machine learning approaches, aims 
at discovering hidden semantic structures, or ‘topics’, within a corpus of text  [25]. The 
underlying principle of topic modeling is to classify text documents into different topics 
based on the frequency and co-occurrence of words [26]. The strength of topic modeling 
lies in its capacity to handle large and unstructured datasets, rendering it an invalua-
ble tool for exploratory data analysis. Prominent techniques employed in topic mode-
ling include Latent Dirichlet Allocation (LDA) [27], Non-negative Matrix Factorization 
(NMF)  [28], and Latent Semantic Analysis (LSA)  [29]. With a broad range of applica-
tions in areas such as text mining, information retrieval, and digital humanities, topic 
modeling continues to garner considerable interest [30–32]. Topic modeling has become 
an increasingly popular tool in scientific research and literature review [33–35]. Its usage 
spans various scientific research fields, including marketing, medical, and social sci-
ences [34, 36, 37]. In the context of literature reviews, topic modeling has been used to 
identify trends and patterns in large bodies of literature. For instance, it has been used 
to analyze collective behavior and social movements by sociologists [37], and also been 
adopted to understand the big data themes from biomedical research [38].

LDA is arguably one of the most widely used algorithms for topic modeling. How-
ever, it has been characterized by certain constraints, including the prerequisite of data 
cleaning and pre-processing, the requirement to specify model parameters such as α 
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(document-topic density), β (topic-word density) and topic numbers hyperparameters. 
Moreover, the challenges associated with the interpretability and validation of the gener-
ated topics also need to be addressed [39, 40], which is why alternatives such as entity 
linking (EL) have been frequently deployed, especially in case of shorter texts [41]. In 
response to these limitations, recently developed deep learning algorithms such as 
Top2Vec, offer alternative approaches for topic modeling [40]. Top2Vec transforms each 
word in a text collection into a vector representation within a semantic space using an 
encoding model such as doc2vec or state of the art transformers. Consequently, it auton-
omously identifies topics within the text and generates jointly embedded topic, docu-
ment, and word vectors. Comparative studies between LDA and Top2Vec have been 
conducted, revealing that Top2Vec tends to yield qualitatively superior results compared 
to LDA [42, 43].

In this study, we propose an automatic literature analysis framework, using a complex 
question of the impact of HPC on healthcare as the test-bed. The primary contributions 
of this work are twofold: 

1. We present an automatic literature analysis framework, from document (i.e. sci-
entific article) retrieval and analysis to various interactive visualizations to depict 
research trends, topics evolution, interconnection across research areas and high 
impact papers. This adaptable pipeline can be easily applied to other domains by 
modifying the initial query keywords.

2. By deploying the automated literature analysis framework, we investigate the 
research trends of HPC utilization in healthcare. Our analysis reveals notable shifts 
in research focus, spanning from visualization and rendering in surgical practice 
and traditional numerical simulation to emerging topics such as drug discovery, AI-
driven medical image analysis, and genomic analysis. These insights provide valu-
able indications for future investment and strategic development of HPC within the 
healthcare sector, guiding decision-making and resource allocation.

Materials and methods
In this section, we provide a comprehensive description of the data and analysis process 
employed in our study. Figure  1 illustrates the automatic literature review framework 
implemented in our study, which consists of four distinct stages: paper retrieval and 
extraction, data preprocessing, topic modeling, and visualization. The subsequent sec-
tions provide detailed explanations of each stage. The code for the automated literature 
review framework is publicly available in a GitHub repository.1

Paper retrieval and extraction

Data source

Scopus2 has been utilized in our study as it is the largest publicly available abstract and 
citation database of peer-reviewed literature, including scientific journals, books and 
conference proceedings.

1 https:// github. com/ tuoha i1992/ Autom atic- liter ature- analy sis- pipel ine..
2 https:// www. elsev ier. com/ solut ions/ scopus.

https://github.com/tuohai1992/Automatic-literature-analysis-pipeline
https://www.elsevier.com/solutions/scopus
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Type of articles included in the study

In this study, conference papers, journal papers, books or book chapters, editorial mate-
rials, early access workshop papers and presentations published in English are included. 
Conference proceeding front matters, meeting abstracts, errata and papers without 
abstracts are excluded from the analysis. Since the publication year 2023 is not yet com-
plete, studying trends beyond 2022 may introduce bias. Therefore, we limit our analysis 
to publications up until end of 2022.

Paper retrieval pipeline

We establish an automatic paper record retrieval and query expansion pipeline through 
the Scopus API.3 During the initial phase of query construction, we take into account 
the co-occurrence of HPC keywords such as ‘high performance computing’ and ‘super-
computing’ along with the most prevalent health-related terms like ‘healthcare’, ‘health’, 
‘clinic’,‘medicine’, ‘disease’, and ‘treatment’. With each iteration of the literature search, we 
implement query expansion by incorporating additional relevant keywords extracted 
from the retrieved scientific paper documents. To achieve this, we perform a frequency 
analysis of keywords extracted from the titles and abstracts. Keywords that are identi-
fied as HPC or healthcare-related and occur with a frequency of 50 or higher, but are 
not previously included, are considered as new keywords and subsequently added to 
the expanded query. Such automatic query expansion process results in inclusion of 
the synonyms of HPC, such as ‘high-performance computing’, ‘high performance com-
puter’, and ‘supercomputer’, along with broader or narrower healthcare-related terms like 
‘patient’, ‘diagnosis’, ‘drug’, ‘therapy’, ‘pharmaceutical’, ‘surgery’, and others. This process is 

topic modeling

Data preprocessing  Paper Extraction

Define Keywords Scopus API Paper search result Key word frequency
analysis

Keyword expansion

Remove conference
proceeding front matter, paper

without abstract .etc

Visualizations

Define optimal topic
number using dendrogram

....
Trends, topic intersections,
paper highlights .......

Top2Vec

Paper embedding
Clustering & topic

generation
lower dimensional

embedding
Remove healthcare
unrelated  topic and

papers 

Merge topic & topic words
regeneration

Topic remodeling

LLM

Fig. 1 Automatic literature review pipeline consists of four stages: paper retrieval and extraction, data 
preprocessing, topic modeling, and visualization

3 https:// dev. elsev ier. com/.

https://dev.elsevier.com/
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repeated until no new keywords emerge, indicating the completion of the search query 
expansion. Fig. 2 presents the flowchart for the studies included in our automated litera-
ture analysis. Initially, 2185 studies were identified through an initial query search, and 
an additional 2969 studies were included via query expansion. After excluding studies 
not directly related to healthcare ("Identify outlier topics not focusing on HPC adop-
tionin healthcare and remodeling" for detailed explanations), a total of 2703 studies were 
incorporated into the analysis. The extracted literature serves as an input for further 
processing in the subsequent steps.

Data preprocessing

Based on the output obtained from Scopus, we retain the title, abstract, publication date, 
and citation number for subsequent topic modeling and visualization. Given that the 
Top2Vec algorithm does not require stop-word lists nor stemming, or lemmatization, 
the title and abstract of each literature piece are merged as the model input without fur-
ther preprocessing.

Topic modeling

Algorithm choice

We adopt the Top2Vec model for topic modeling, an innovative unsupervised machine 
learning algorithm designed for automatic topic detection and document embed-
ding  [40]. This model is unique as it combines the strengths of word embeddings, 
dimensionality reduction, and density-based clustering to identify topics from a given 
set of documents without any prior knowledge or human intervention.

The first step in the Top2Vec algorithm involves transforming the documents into 
dense vector representations using chosen embedding algorithm to capture the semantic 

Fig. 2 Flow diagram of our automatic literature analysis
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meanings of the documents, including the context in which words are used, and repre-
sents them as high-dimensional vectors. This process results in a document embedding 
space where semantically similar documents are located close to each other. We pro-
cess the input literature by employing five distinct embedding techniques available in the 
Top2Vec algorithm to generate combined document and word vectors. These techniques 
include doc2vec [44], two Universal Sentence Encoder models [45, 46], and two BERT 
models [47, 48]. We implement the CV coherence score in our topic modeling evalua-
tion, a metric initially introduced by Röder et al. in their comprehensive examination of 
coherence measures for topic modeling algorithms [49]. The CV coherence score com-
bines cosine similarity with Normalized Pointwise Mutual Information (NPMI). This 
selection is premised on the strong correlation that the CV coherence score maintains 
with human ratings, outperforming other evaluative measures. Consequently, we choose 
the embedding model demonstrating the highest CV coherence score for our study.

Once the documents are represented as vectors, the Top2Vec model applies the 
UMAP (Uniform Manifold Approximation and Projection) algorithm to reduce the 
dimensionality of these vectors  [50]. UMAP is a manifold learning technique used for 
dimension reduction. It preserves both the local and global structure of the data, mean-
ing that it maintains the distances between nearby points (local structure) and distant 
points (global structure). This results in a lower-dimensional space where clusters of 
document vectors represent unique topics.

Following the dimensionality reduction, the model uses HDBSCAN (Hierarchical 
Density-Based Spatial Clustering of Applications with Noise), a density-based cluster-
ing algorithm, to identify these clusters [51]. HDBSCAN works by finding regions of the 
reduced space where there are higher densities of document vectors, and it groups these 
together as clusters. Each cluster represents a unique topic in the document set and the 
centroid of each cluster is identified as a ‘topic vector’. This topic vector is a point in 
the reduced space that best represents the semantic meaning of each topic. The topic 
vectors are subsequently converted back into the word space to provide interpretable 
topics. This is done by identifying the n-closest word vectors to the resultant topic vec-
tor. For each topic, the top 50 words are returned, arranged in order of proximity to the 
topic. One of the key advantages of the Top2Vec model is that it automatically deter-
mines the optimal number of topics based on the data. Additionally, it provides both the 
keywords for each topic and the documents that are most semantically similar to each 
topic, offering a comprehensive understanding of the topics present in the document set.

Identify outlier topics not focusing on HPC adoption in healthcare and remodeling

During the literature extraction process, articles that contain healthcare and high-per-
formance related keywords within the title, abstract, or keyword sections are extracted 
via the Scopus API. However, initial topic modeling results reveal that certain articles 
do not relate to HPC adoption in healthcare. This discrepancy can be attributed to mul-
tiple factors. Firstly, while some articles include the terms ‘high performance comput-
ing’ and ‘health’ or ‘healthcare’ in their titles or abstracts, they predominantly address 
aspects of system health such as fault tolerance, job scheduling, and interconnection, 
rather than human health. This results in these articles being categorized under topics 
such as system architecture or networks. Secondly, many abstracts begin with a broad 
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statement, such as “high-performance computing has been widely used in several indus-
tries, including healthcare...” but the remainder of the abstract primarily discusses the 
adoption of HPC in domains other than healthcare.

The GPT-3 series model has demonstrated promising results in binary semantic text 
classification  [52]. To fully automate our analysis pipeline and minimize potential bias 
from human judgment, we employed text-davinci-003, the most advanced model 
in the GPT-3 series, for non-healthcare related topic detection. Similar to studies  [53, 
54], following the first round of topic modeling that generates keywords, we design 
prompts using the text-davinci-003 text completion API4. These prompts incor-
porate the top 20 keywords from each topic, aiming to produce binary outputs that 
determine whether the keyword combination for each topic pertains to the healthcare 
domain. To align with our expectation of binary output (Yes or No), we adjust the max_
tokens parameter indicating the upper limit of tokens to be generated, to a smaller 
value of 5. The temperature parameter is set to 0 to limit the randomness of the gen-
erated responses, ensuring a more focused and deterministic output. All other hyper-
parameters are retained at their default values. If a topic is classified as unrelated to 
healthcare, the articles under that topic are identified as outliers and removed from the 
dataset. Once all topic keywords have been examined, the remaining literature proceed 
to the second round of topic modeling.

Identify optimal topic number using dendrogram

Upon evaluating the preliminary output from the Top2Vec model after the outlier 
detection phase, we observe that certain topics demonstrate substantial similarity and 
an increased granularity. Examples include multiple themes associated with virus and 
epidemic research, genomic research, and drug discovery (cf. Section   and Fig.  3 for 
detailed observations). Merging similar topics to identify an optimal topic number could 
prove beneficial in subsequent analysis, providing a more overarching perspective on 
HPC adoption trends in healthcare.

Agglomerative hierarchical clustering with dendrogram is a technique used to aggre-
gate similar data points or objects into clusters based on their pairwise distances [55]. 
This technique initiates with individual data points and sequentially merges these based 
on their proximity relationships. For the computation of similarities between topic vec-
tors, cosine similarity has been utilized. This measure proves to be particularly beneficial 
when processing high-dimensional data, such as semantic word embeddings  [56, 57]. 
Cosine similarity takes into account both the magnitude and direction of each vector, 
property making it more robust compared to the common alternatives like Euclidean 
distance, which considers only the magnitude. In the context of our hierarchical cluster-
ing, we have adopted the average linkage method [55].

The outcome is a dendrogram that displays hierarchical relationships. The methodol-
ogy starts with the calculation of a distance matrix that captures the distances between 
topic vectors. The closest clusters are sequentially merged, and the distances are updated 
correspondingly. The dendrogram is constructed to portray the merging process, with 

4 https:// platf orm. openai. com/ docs/ models/ gpt-3-5.

https://platform.openai.com/docs/models/gpt-3-5
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branch lengths representing dissimilarity. By studying the dendrogram, an appropri-
ate cutting point can be identified to determine the number of clusters. Hierarchical 
clustering provides a comprehensive visualization and organization of topics, aiding in 
understanding its inherent structure and interrelationships. Therefore, dendrogram has 
been utilized to visualize the topic merging process and to determine the optimal topic 
number.

Topic merging

Having determined the optimal number of topics using the dendrogram, we proceed to 
consolidate the topics. Top2Vec provides a function hierarchical_topic_reduc-
tion designed to decrease the number of topics identified by the algorithm5. However, 
the process operates by iteratively merging the smallest topic based on the number of 
associated documents with the most similar topic until the predetermined number of 
topics is reached. We conjecture that this approach, which prioritizes the size of the top-
ics rather than their similarity for merging, may not be optimal. Specifically, the topic 
associated with the smallest cluster of documents in each merging iteration could repre-
sent an emergent topic, potentially displaying considerable divergence from other topics. 
Thus, merging topics based primarily on their sizes could introduce bias into the pro-
cess. Therefore, in line with the methodology of agglomerative hierarchical clustering, 
we advocate for an iterative merging of topics based primarily on their similarity, rather 
than their respective sizes.

Visualization

Visualizing the trends of HPC adoption in healthcare based on application domain

To visualize trends of HPC adoption in healthcare, we employ four types of graphi-
cal representations: Word clouds, stacked area charts, normalized stacked area charts, 
and violin plots. Before proceeding with visualization, we again utilize the text-
davinci-003 model via the OpenAI API to summarize the topic in less than 10 words 
based on the top 20 keywords extracted from each topic.

As a variant of the classic area chart, stacked area chart partitions the area into seg-
ments, each representing a specific topic. The x-axis denotes the publication years, 
and the y-axis represents the cumulative count of publications. The thickness of each 
segment within a given year directly corresponds to the number of publications for that 
particular topic. This not only allows for an easy understanding of the distribution of 
individual topics over time but also visualizes the total volume of publications for each 
year. Additionally, the normalized stacked area chart effectively highlights the compara-
tive size of each topic within the overall research landscape, enabling the identification 
of shifts in academic concentration across time. It provides a comprehensive, aggregate 
perspective of topic prevalence over the years, underlining research trend evolution.

The violin plot serves as another efficient visualization tool for presenting the trends 
of publication based on topics across different publication years. It merges the attrib-
utes of a box plot and a kernel density plot to provide a comprehensive view of the data 

5 https:// github. com/ ddang elov/ Top2V ec.

https://github.com/ddangelov/Top2Vec
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distribution. The ‘violins’ broadness represents the density of publications, facilitating 
an intuitive comprehension of the prevalent topics for a specific year. It provides an 
intuitive comparison of publication activity across multiple topics and years, providing 
insights into the transformation of scholarly focuses over time.

Visualizing the correlation and convergence of topics

In our study, we capitalize on the UMAP generated by Top2Vec and adapt it to produce 
an interactive bubble chart to illustrate the correlation and convergence of topics. Given 
that UMAP reduces the high-dimensional document vectors to a two-dimensional 
space, the similarity of each document within a given topic is depicted by their prox-
imity in this visual representation. Furthermore, we choose to symbolize the centroid 
of each topic with a triangle marker and prominently feature the top three most-cited 
papers from each topic for subsequent reading and analysis. To effectively illustrate the 
correlation and convergence among various topics, we construct a circle centered at the 
centroid of each topic, encompassing 70% of the literature associated with the topic. The 
areas of overlap among these circles serve as indicators of potential convergence across 
diverse topics.

Results
In the results section, we first compare different embedding models utilized within the 
top2vec algorithm, highlighting the performance differences and selecting the most fit-
ting model for our data. Secondly, the process of topic merging is delineated through 
dendrograms, guiding the optimal selection of the number of topics. This is further com-
plemented by visualizing the trends of HPC adoption in healthcare applications through 
an array of graphical representations including word clouds, stacked area charts, nor-
malized stacked area charts, and violin charts. The correlations and convergence of 
topics are further explored through bubble charts. providing insights into the inter-rela-
tionships between different subject areas. Finally, through all the analysis results men-
tioned previously, we engage in an in-depth discussion of what we have learned from the 
past and present of HPC adoption in healthcare to identify its future strategic opportu-
nities. This sets the stage for a comprehensive understanding of the evolution and poten-
tial of HPC in the healthcare domain.

Embedding model comparison results

As described in section , we use CV coherence score to evaluate five embedding models. 
As shown in Table 1, the Doc2Vec model achieves the highest coherence score of 0.622. 

Table 1 Embedding model evaluation results

Embedding model Model types CV coherence

Doc2vec Doc2vec 0.622
Universal sentence encoder large Universal sentence encoder 0.423

Universal sentence encoder multilingual large Universal sentence encoder 0.391

All-MiniLM L6-v2 BERT 0.351

Paraphrase-multilingual MiniLM-L12-v2 BERT 0.332
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This is followed by the Universal Sentence Encoder Large model with a score of 0.423, 
the Universal Sentence Encoder Multilingual Large model with 0.391, the all-MiniLM-
L6-v2 model scoring 0.351, and lastly the paraphrase-multilingual-MiniLM-L12-v2 
model with 0.332. Based on these outcomes, the Doc2Vec model is chosen as our default 
embedding model for Top2Vec due to its superior performance.

Visualizing the process of topic merging using dendrograms for optimal topic number 

selection

As described in section , we employ a dendrogram to intuitively determine the optimal 
number of topics by visualizing the merging process of agglomerative hierarchical clus-
tering. As presented in Fig. 3, Top2Vec initially identified 24 topics in the topic modeling 
phase. The merging points indicate the remaining number of topics after consolidation. 
Among these, we observe several similar topics with high granularity. Specifically, six 
topics are related to genomics analysis, two pertain to epidemic and virus research, and 
two are associated with drug discovery (as shown in the red boxes with dashed lines). To 
effectively illustrate the primary trends of HPC adoption in healthcare, we merge topics 
with similar concepts by following the aggregation pathway in the dendrogram. After 
completing the merging process, we find that the residual number of topics is reduced 
to 11. Therefore, we identify an appropriate cutoff at these eleven topics (marked by a 
vertical grey dashed line) and merge the topics following the methodology outlined in 
section  . New keywords for each topic are generated by identifying the n-closest word 
vectors to the resulting topic vector.

Trends of HPC adoption in healthcare applications

Figure 4 illustrates word clouds for eleven distinct topics, derived from the merging 
process. Each sub-word cloud’s title serves as a summary of the topic words, which 
are generated by the text-davinci-003 model as discussed in "Visualizing the 
trends of HPC adoption in healthcarebased on application domain" section. The iden-
tified topics include ‘Healthcare ICT infrastructure’, ‘Genomic Analysis’, ‘Numerical 
simulation of blood flow and cardiology’, ‘Drug Discovery’, ‘Deep learning medical 

Distance

Fig. 3 Dendrogram of hierarchical clustering with Identified optimal topic number
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Fig. 4 Word clouds of eleven topics derived from Top2Vec. The main application domains include genomic 
analysis, drug discovery, medical image analysis, surgery visualization and epidemic research

Fig. 5 Stacked area chart illustrating trends in HPC adoption in healthcare cross application domains over 
time. Each segment represents a specific topic. The thickness of segments reflects topic-specific publication 
volume

Fig. 6 Normalized stacked area chart depicting the relative distribution of HPC adoption in healthcare across 
application domains over time. Each segment represents a specific topic. The thickness of segments reflects 
normalized proportion of publication counts
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image analysis’, ‘Medical imaging registration & reconstruction’, ‘Surgery visualization 
and rendering’, ‘Epidemic research’, ‘Neuroscience and brain activity analysis’, ‘Radia-
tion Therapy Planning’, and ‘Elderly patient surgical risk and outcome’.

As indicated by the stacked area chart and normalized stacked area chart in Figs. 5 
and 6, the utilization of HPC in healthcare has seen significant growth over the past 
four decades. Based on the data extracted from Scopus, the pioneering paper high-
lighting HPC’s contribution to healthcare, specifically the rapid analysis of long elec-
trocardiogram (ECG) records, was published in 1974  [58]. Notably, the number of 
annual publications on this topic triples after year 2020, compared to that of the year 
2010. Prior to 2005, the majority of the literature focuses on healthcare ICT infra-
structure. However, there has been a marked upsurge in studies pertaining to genom-
ics analysis since 2000.  At the end of 1999, IBM announced the Blue Gene project, 
which was focused on investigating biomolecular phenomena, such as genomics and 
protein folding, through the use of a petaFLOPS supercomputer  [59]. This initiative 
was recognized as a significant milestone in leveraging supercomputing power to 
support bioinformatics research. Starting in 2010, the utilization of HPC becomes 
prevalent in drug discovery efforts. Mak et al. explore the role of AI in drug discov-
ery, notably enhanced by supercomputing, illustrating its widespread use throughout 
the pharmaceutical product lifecycle  [60]. This includes support in drug screening, 
predicting bioactivity and toxicity, and categorizing drug molecules. The study shows 
that the application of AI spans the entire spectrum of the pharmaceutical industry, 
from drug discovery to product management, highlighting its critical role in enhanc-
ing pharmaceutical research and development processes. Since 2015, research-
ers extensively employ HPC in medical image analysis, leveraging deep learning 
techniques. Additionally, the outbreak of COVID-19 in 2019 triggered a noticeable 
increase in HPC’s application in pandemic-related research.

Fig. 7 Violin chart depicting the distribution of HPC adoption in healthcare across application domains over 
time. Violin width represents publication density
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The violin chart presented in Fig. 7 confirms the insights derived from the stacked area 
chart, specifically the extensive investigation of healthcare ICT infrastructure in the past 
thirty years. From 2005 onwards, a marked shift has been observed in the utilization 
of HPC in medical imaging research. Initially, the focus was predominantly on image 
registration and reconstruction. However, after 2015, there was a significant transition 
towards the incorporation of deep learning techniques for medical image analysis. An 
analysis of the integration of deep learning in medical image examination shows a signif-
icant increase in related publications during 2015 and 2016, due to the development of 
deep convolutional networks [61]. This trend was significantly influenced by Krizhevsky 
et  al.’s contribution to the ImageNet Large Scale Visual Recognition Challenge (ILS-
VRC) in 2012 with their proposed convolutional neural network (CNN) architecture, 
AlexNet, which set new standards by winning with an unprecedented margin [62]. Fol-
lowing this, the development of even more sophisticated, deeper network architectures 
has continued to advance the field, making deep convolutional networks the preferred 
method in computer vision. Fluid dynamics simulations of blood flow and cardiology, 
which adopted HPC relatively early, witnessed a significant surge after 2008. Addition-
ally, visualization and rendering in surgical practice, among the earliest applications of 
HPC, were hot research topics from 1990 to 2010, although interest has waned since. 
Moreover, research related to epidemic spreading emerged around 2003, concurrent 
with the SARS-CoV-1 outbreak in Asia, and experienced a tremendous increase in HPC 
utilization during the global spread of COVID-19, underscoring HPC’s growing impor-
tance in managing global health crises. The 2021 survey paper highlights a multifaceted 
role of Deep Learning in helping combat the COVID-19 pandemic through advances in 
various domains, such as Natural Language Processing, Computer Vision, Life Sciences, 
and Epidemiology [63]. It details how the application of these technologies differs based 
on the availability of large datasets and the structuring of learning tasks, and offers guid-
ance for future research directions on COVID-19, emphasizing the need for integrated 
approaches across disciplines. Another noteworthy observation is the rising popular-
ity of research on risk and treatment outcomes for elderly patients since 2019, possibly 
correlated to pandemic research, given the heightened concern for elderly individuals 
during this crisis. Additionally, the exploding healthcare expenses and the increasing 
average age of the global population further underscore this emphasis.

Visualizations of topics correlation and convergence

A bubble chart is constructed using UMAP to visually represent the coverage area of 
each topic (Fig.  8). Translucent circles were utilized to depict the extent of coverage, 
while centroid topic vectors are indicated by triangular markers. Additionally, square 
markers are employed to symbolize the three most-cited papers for each topic. The 
top six keywords associated with each topic are also presented beneath their respec-
tive vectors. All publications form a point cloud, depicted in the background. The 
chart also incorporates interactive visualization mechanisms: hovering the mouse cur-
sor over each square marker brings up details such as the paper’s associated topics, ID, 
title, citation count, and abstract. This bubble chart provides substantial insights into 
the correlation and potential convergence trends of the topics, observable through the 
distances and overlaps between them. As indicated in Fig.  8, a notable observation is 
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the proximity of topics related to deep learning for medical image analysis to neurosci-
ence and brain research. This suggests an extensive application of HPC-enabled medi-
cal imaging analysis within neuroscience research.  The review underscores the growing 
trend towards utilizing GPU-enabled deep learning for brain MRI segmentation, attrib-
uted to its self-learning capabilities and adaptability to large datasets [64]. With ongoing 
improvements in deep learning frameworks, these methods are increasingly surpassing 
traditional machine learning techniques, establishing a new benchmark in the domain 
of medical imaging analysis. In addition, the research related to simulations of cardio-
vascular & blood flow, epidemic research, and drug discovery closely aligns with and 
overlap the topic of surgical risk and outcomes for elderly patients, indicating a focus 
on elderly patient outcomes across these topics. Furthermore, by examining the posi-
tion of highly-cited papers within the bubble chart, we notice that some papers either 
represent pioneering studies, or span multiple domains, applying specific techniques to 
innovative fields. For instance, one of the highly cited papers titled ‘High performance 
computing for deformable image registration: Towards a new paradigm in adaptive 
radiotherapy’ [65] (marked with a black arrow), is located in the intersection area of the 
topics ‘medical imaging registration & reconstruction’ and ‘radiation therapy planning’. 
This paper highlights the implementation of HPC for near real-time deformable image 
registration in radiotherapy, indicating that interdisciplinary papers might contribute to 
greater popularity and citation rates.

Identifying opportunities through analysis of past and present HPC adoption in healthcare

Historical analysis of HPC adoption within the healthcare sector illustrates a compel-
ling transformation from a specialized technology into a foundational tool for mod-
ern medicine. Originally, HPC was predominantly utilized for complex modeling and 

topic 0: Healthcare ICT infrastructure
topic 1: Genomic Analysis
topic 2: Numerical simulation of blood flow and cardiology
topic 3: Drug Discovery
topic 4: Deep learning medical image analysis
topic 5: Medical imaging registration & reconstruction
topic 6: Surgery visualization and rendering
topic 7: Epidemic research
topic 8: Neuroscience and brain activity analysis
topic 9: Radiation Therapy Planning
topic 10: Elderly patient surgical risk and outcome

Fig. 8 Bubble chart showing topic coverage areas based on UMAP. Translucent circles represent each topic’s 
coverage area, centered at the topic’s centroid and encompassing 70% of associated literature. Centroid topic 
vectors are represented by triangular markers, and the three most-cited papers are indicated with square 
markers. A text box provides in-depth details on highly cited papers, including associated topics, ID, title, 
citation count, and abstract
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biological computations within academic research. However, its role has become more 
encompassing, opening new and fascinating medical and business opportunities over 
time. The convergence between simulation and AI, such as neural rendering, seamlessly 
melds computer graphics and deep learning, opening new avenues in diagnostics and 
personalized care. Concurrently, the consistent growth in genomics and drug discov-
ery, accelerated by HPC, allows businesses to create dynamic models for pharmaceutical 
development, reducing cost and time-to-market. In addition, the rise of HPC in global 
epidemic research presents unique opportunities for developing real-time health moni-
toring systems, aligning commercial interests with public health needs, and enhancing 
our response to global health crises. The integration of HPC with emerging technologies 
such as AI and the Internet of Things (IoT) has further fostered innovative applications 
in telemedicine and remote monitoring, creating opportunities for healthcare providers 
to offer services across geographical boundaries. The fusion of technological advance-
ments with unique patient needs has the potential to give birth to virtual care platforms, 
personalized treatment protocols, or even community-based wellness programs. These 
innovations align with the growing focus on aging populations, offering a compassionate 
and tailored approach to healthcare that could become a promising business domain.

The landscape of HPC adoption in healthcare represents an invitation to visionary 
business thinking, reflecting a future where innovation meets well-being. Collabora-
tion among technology vendors, healthcare institutions, pharmaceutical companies, and 
startups can leverage the lessons learned from the past and the current state of HPC 
technology to forge partnerships, develop new products, and create service models that 
cater to an increasingly interconnected and data-driven healthcare environment. The 
analytical understanding of this evolution can serve as a guide for future endeavors, 
nurturing an ecosystem where technological advancement is aligned with healthcare 
requirements. In this convergence, both sectors stand to gain substantially from sus-
tained cooperation and exploration. More importantly, as regulatory landscapes evolve 
to embrace technological advancement, it is imperative for stakeholders to understand 
the historical growth and current trends in HPC adoption in healthcare, as it will guide 
strategic decision-making and foster further innovation and growth in this interdiscipli-
nary field.

Discussion
This study presents an automatic literature analysis framework that utilizes advanced 
topic modeling techniques (Top2Vec), within the context of the field of HPC adoption 
in healthcare as the testbed. Through this framework, we effectively process and ana-
lyze a substantial volume of scientific literature. The interactive visualizations shed light 
on the key trends and recognized the emerging research directions in a highly efficient 
manner. Given that the landscape of HPC adoption in healthcare is extensive and rapidly 
evolving, the automatic literature analysis offers a scalable and practical approach for 
researchers and stakeholders to identify trends and potential avenues for future explo-
ration. Continuous tracking of these developments is necessary to maintain a dynamic 
understanding of the HPC landscape in healthcare, which enables the anticipation of its 
future.
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One of the main limitations of using topic models, such as Top2Vec is the necessity 
for human intervention to determine the optimal number of topics, which is the only 
step requiring human input in our otherwise fully automatic literature analysis pipeline. 
Although metrics such as perplexity and coherence scores can provide guidance towards 
an optimal topic number, existing literature suggests that these metrics may occasion-
ally be misleading and do not always align with human judgement [66, 67]. Determining 
the ideal number of topics within a topic model is a subjective decision that depends 
on the specific context and goals of the analysis. It requires a balance between having a 
sufficient number of topics to capture the underlying themes in the data and avoiding 
excessive fragmentation or overlap between topics. Therefore, human experience and 
judgment play a critical role in defining the optimal topic count. For this reason, we have 
integrated the use of a dendrogram to assist in determining the optimal topic count in a 
more intuitive manner.

Another challenge in using topic modeling is related to semantic understanding. While 
topic models are highly effective in identifying word and document patterns, they fun-
damentally lack the ability to understand the meaning of the words. This limitation can 
lead to topics that are difficult to interpret or exhibit semantic inconsistencies, making 
manual review and interpretation necessary. One possible approach to tackle this chal-
lenge is through EL, which can enhance topic modeling by providing an additional layer 
of explainability  [41, 68]. By linking entities to a knowledge base, EL provides contex-
tual understanding, which refines the interpretability of the topics. It effectively resolves 
ambiguities where identical names might refer to distinct entities, thereby improving the 
precision of topic clusters. Moreover, while topic modeling can significantly aid in ana-
lyzing the vast volumes of scientific literature, it cannot replace the critical and contex-
tual understanding that researchers bring to literature review. It should be regarded as a 
supplementary tool designed to assist in guiding literature exploration rather than serv-
ing as an autonomous solution. Given these limitations, future research should strive 
to fine-tune this methodology, improve the interpretability of the resulting topics, and 
investigate alternative methods for model evaluation. Despite the inherent challenges, 
topic modeling remains a potent instrument for managing and comprehending the ever-
expanding corpus of scientific literature.

In conclusion, we propose an automatic literature analysis framework which can be 
easily applied across diverse literature domains, exemplifying its utility through the 
examination of literature within the field of HPC adoption in healthcare. The insights 
derived from this study are expected to guide researchers and practitioners toward rec-
ognizing emerging opportunities and challenges in the deployment of HPC in health-
care. These findings would contribute to a more informed and strategic incorporation 
of HPC in healthcare settings, holding the potential to transform medical research and 
clinical practice in the years to come.
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