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Abstract 

Large Language Models (LLMs) are characterized by their inherent memory inef-
ficiency and compute-intensive nature, making them impractical to run on low-
resource devices and hindering their applicability in edge AI contexts. To address this 
issue, Knowledge Distillation approaches have been adopted to transfer knowledge 
from a complex model, referred to as the teacher, to a more compact, computationally 
efficient one, known as the student. The aim is to retain the performance of the original 
model while substantially reducing computational requirements. However, traditional 
knowledge distillation methods may struggle to effectively transfer crucial explainable 
knowledge from an LLM teacher to the student, potentially leading to explanation 
inconsistencies and decreased performance. This paper presents DiXtill, a method 
based on a novel approach to distilling knowledge from LLMs into lightweight neural 
architectures. The main idea is to leverage local explanations provided by an eXplain-
able Artificial Intelligence (XAI) method to guide the cross-architecture distillation 
of a teacher LLM into a self-explainable student, specifically a bi-directional LSTM 
network.Experimental results show that our XAI-driven distillation method allows 
the teacher explanations to be effectively transferred to the student, resulting in bet-
ter agreement compared to classical distillation methods,thus enhancing the student 
interpretability. Furthermore, it enables the student to achieve comparable perfor-
mance to the teacher LLM while also delivering a significantly higher compression 
ratio and speedup compared to other techniques such as post-training quantiza-
tion and pruning, which paves the way for more efficient and sustainable edge AI 
applications

Keywords: Knowledge distillation, eXplainable Artificial Intelligence, Low-resource 
devices, Edge AI, Large language models, Sustainable AI

Introduction
In recent years, Large Language Models (LLMs) have gained significant traction for their 
remarkable natural language understanding and generation capabilities [1–3]. However, 
LLMs are often characterized by their inherent memory-inefficient and compute-inten-
sive nature. For instance, BERT (Bidirectional Encoder Representations from Transform-
ers) encompasses 110 million parameters in its base version, while the GPT-3 contains 

*Correspondence:   
rcantini@dimes.unical.it

1 University of Calabria, Rende, 
Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00928-3&domain=pdf


Page 2 of 17Cantini et al. Journal of Big Data           (2024) 11:63 

175 billion parameters, requiring at least 320 gigabytes of storage in half-precision (i.e., 
16-bit floating point) [4].

The diffusion of low-resource devices, such as mobile and Internet-of-Things (IoT) 
ones, driven by novel edge AI paradigms, led to the increasing need for finding effi-
cient ways to deploy and run complex deep learning models on such small and com-
pact devices [5, 6]. In this context, different techniques for model compression such as 
pruning and quantization have emerged, as well as some approaches relying on Knowl-
edge Distillation (KD) [7, 8]. In particular, knowledge distillation has been leveraged to 
transfer knowledge from a complex model, referred to as the teacher, to a more com-
pact, computationally efficient one, known as the student. Despite the ability of such 
approaches to achieve comparable performance to the original model while significantly 
reducing computational demands, they may struggle to transfer the rationale behind 
the teacher’s decision process to the student. Indeed, as the field of artificial intelligence 
continues to progress, there has been a growing emphasis on transparency and inter-
pretability in deep learning systems. The demand for eXplainable Artificial Intelligence 
(XAI) has arisen as a response to the need for comprehensibility in the decision-making 
processes of complex predictive models.

Only a few efforts have been made in the literature to leverage recent advancements 
in XAI to drive the learning process of deep learning models [9, 10]. In this paper, we 
propose DiXtill, a novel approach to distilling knowledge from transformer-based 
LLMs into lightweight neural architectures, specifically a bi-directional Long Short-
Term Memory network. The main idea behind DiXtill is to leverage local explanations 
to guide the distillation process of a teacher model into a self-explainable student. This 
XAI-driven distillation process aims at transferring the knowledge and the explanations 
from the teacher to the student model, thus enhancing both the performance and inter-
pretability of the distilled student model.

Our method allows the student to achieve comparable performance to the teacher 
LLM, while also delivering significantly higher compression ratio and speedup compared 
to post-training quantization and pruning, thus easing the deployment and inference on 
low-resource devices. In addition, experimental results show how the teacher’s explana-
tions can be effectively transferred to the student model during the distillation process. 
In particular, we measured a strong agreement between the teacher’s word attributions, 
computed by the Integrated Gradients method, and those of the self-explainable student 
learned during the distillation process.

The contribution of our work can be summarized as follows:

• We identify a limitation of traditional knowledge distillation methods in conveying 
explainable knowledge from a teacher LLM to the student.

• We propose to integrate local explanations within the distillation process of a teacher 
LLM into a self-explainable lightweight student, which enhances both the accuracy 
and interpretability of the distilled model.

• By employing a cross-architecture knowledge distillation process, a significantly 
smaller and more computationally efficient model can be attained compared to other 
compression techniques such as quantization and pruning, which instead retain the 
same complex architecture as the teacher model.
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The remainder of the paper is organized as follows. "Related work" section discusses state 
of the art about knowledge distillation, deployment of LLM on resource-constrained 
devices, and XAI techniques. "Proposed method" section  describes the proposed DiX-
till method. "Experimental evaluation" section  presents the experimental evaluation and 
the obtained results. Finally, "Conclusion" section concludes the paper.

Related work
Knowledge distillation

The literature on knowledge distillation encompasses a wide range of techniques, which 
can be broadly categorized into three classes [8, 11, 12]: (i) offline, where a pre-trained 
teacher model guides the student model training; (ii) online, where both models are 
updated simultaneously in a single end-to-end training process; and (iii) self-distillation, 
where either the same model serves as both the teacher and student  [13], transferring 
knowledge from deeper to shallower layers, or the student is a separate model sharing 
the same architecture as the teacher.

The knowledge is transferred from the teacher model to the student by minimizing a 
loss function that encourages the student network to mimic the teacher network’s label 
predictions. The commonly used loss function for knowledge distillation is a linear com-
bination of the cross-entropy and the Kullback–Leibler (KL) divergence loss between 
the softened probability distributions of the teacher and student models. Specifically, 
a temperature scaling factor τ is generally used to smooth the probability distributions 
and reveal inter-class relationships learned by the teacher [8]. Hence, the loss function is 
mathematically expressed as follows:

where S is the student, T is the teacher, α is a hyperparameter for the convex combi-
nation, and pF (τ ) is the probability distribution scaled with temperature τ , obtained 
as pF (τ ) = softmax(z/τ) , where z = F (x) are the output logits computed by a 
given model F . Recent research has also explored the impact of the KL loss func-
tion on logit matching and of such softening on generalization. Notably, as an alter-
native to the KL divergence, the Mean Squared Error (MSE) has been used in the 
literature  [14, 15] to promote the matching between teacher and student logits z, for-
mally: LMSE(zT , zS) = ||zT − zS ||

2
2.

Deployment of LLMs on low‑resource devices

To enable the deployment of LLMs on devices with limited computational resources, 
several techniques such as distillation, quantization, and pruning have been leveraged in 
the literature [16]. Knowledge distillation has been explored to reduce the size of LLMs 
and allow them to operate under constrained computational scenarios. One notable 
example is DistilBERT [17], which is a lightweight Transformer model obtained by dis-
tilling BERT base with 40% fewer parameters than the original BERT. Other attempts 
have been made to distill knowledge from large models to lightweight neural archi-
tectures, using a cross-architecture knowledge distillation process  [18]. For example, 
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Tang et al.  [15] proposed a method to distill knowledge from BERT into a single-layer 
bi-directional LSTM, demonstrating comparable performance to the original network 
without external training data or additional input features. Quantization involves reduc-
ing the precision of model parameters (e.g., weights and activations from 32-bit floating-
point values to 8-bit integers) to achieve smaller memory footprints and faster inference 
times. Generally, a deep neural model can be quantized using two main approaches: 
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT)  [19]. The 
former quantizes the model parameters after training without modifying its underly-
ing architecture, while the latter integrates quantization into the model’s training pro-
cess, allowing it to adapt to low-precision representations and ensuring higher accuracy 
compared to PTQ. However, since QAT methods cannot easily scale to large models 
like LLMs [20], common PTQ-based algorithms are generally used in the case of LLMs, 
including Activation-aware Weight Quantization (AWQ) [20], GPTQ [21], and dynamic 
quantization, which computes the range for each activation based on the data range 
observed at runtime. Finally, another common method for the compression of large 
models is pruning, which aims to reduce the size of the model by removing unneces-
sary network elements. This technique can be applied in an unstructured manner  [4], 
by removing individual weights to build an irregular sparse structure, or in a structured 
one  [22], by removing high-granularity components of the network, such as neurons, 
channels, or layers. While unstructured pruning significantly reduces model size, con-
ventional hardware like GPUs struggle to leverage the unstructured sparse patterns to 
accelerate model inference  [23]. Consequently, several structured pruning techniques 
have gained popularity in the landscape of LLM compression, such as attention head 
pruning  [24], which involves removing individual attention heads without significant 
impacts on performance and without requiring model retraining.

Explainable artificial intelligence

Deep learning models pose a challenge in offering interpretable explanations for their 
predictions, hindering their practical utility in crucial domains such as healthcare and 
legal contexts [25]. To address this issue, eXplainable Artificial Intelligence (XAI) tech-
niques have emerged, which can be distinguished between local explainers, which only 
explain the reasoning behind an individual prediction, and global explainers, which 
instead provide a rationale for the whole dataset  [26]. XAI approaches can be further 
categorized into post-hoc and interpretable-by-design methods. Post-hoc methods aim 
at interpreting black-box models after training. Most post-hoc techniques are currently 
model-agonistic since they make any assumption about the structure of the deep learn-
ing model to be explained but treat it as a black-box model. In contrast, self-explainable 
models are inherently designed for interpretability during the prediction phase, pro-
viding ante-hoc explanations that faithfully represent the model’s reasoning. However, 
these methods are not flexible and may not easily be integrated with other deep learning 
models [27, 28]. Among post-hoc methods, LIME (Locally Interpretable Model-Agnostic 
Explainer) [29] is a local and model-agnostic explanation technique that extracts fea-
ture importance scores by perturbing real samples and observing the corresponding 
changes in the model’s predictions. Then a simple and interpretable model is built that 
approximates the original model’s behavior in the neighborhood of the original samples. 
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Another common explanation method, grounded in cooperative game theory, is SHAP 
(SHapley Additive exPlanation) [30]. The method computes the contribution of each fea-
ture to the predicted outcome using the Shapley value, which is a measure that fairly 
distributes the credit among a set of players (i.e., the input features) contributing to a 
certain outcome (i.e., the model prediction). Integrated Gradients (IG) [31] is a model-
specific explanation method that calculates feature attributions to the prediction by 
accumulating gradients along a path from a baseline instance to the specific instance of 
interest. By using integration, IG captures the sensitivity of the model’s output to varia-
tions in each input feature, revealing influential features for a given prediction.

Besides using XAI methods to provide the user with useful insights into the ration-
ale behind the model decision process, some attempts have been made in the field of 
Explanation-Guided Learning (EGL) to investigate how explanations can be leveraged to 
improve the learning process of deep models [32]. As an example, Nigisetty et al. [9] pro-
posed xAI-GANs, a new class of Generative Adversarial Networks that incorporate local 
explanations of the classification made by the discriminator into the gradient descent 
process to provide richer corrective feedback to the generator. Zeng et al. [33] proposed 
a method to generate end-to-end attributional explanations for deep networks, leverag-
ing attribution maps from an adversarially trained counterpart model to supervise the 
learned explanations. Another method was proposed by Alharbi et al. [10], consisting of 
leveraging convolutional autoencoders to transfer both the knowledge and explanations 
from a teacher to a student, represented by Convolutional Neural Networks at different 
scales.

Proposed method
The proposed method, namely DiXtill, provides a novel approach to distilling knowl-
edge from LLMs into lightweight neural architectures, thus easing the deployment on 
resource-constrained devices. As depicted in Fig. 1, the main idea behind DiXtill is to 
leverage local explanations provided by an Explainer as a complement to the usual pre-
diction-based supervision, to guide the distillation process of a Teacher LLM into a Self-
explainable student.

The teacher is an LLM based on the Transformer  [34] architecture, such as BERT 
(Bidirectional Encoder Representations from Transformers)  [35] and GPT (Generative 
Pre-trained Transformer)  [36]. The student model is a bi-directional Long Short-Term 
Memory (LSTM), which generates both a classification and an explanation via masked 
attention. In the following sections, the architecture of the self-explainable student 
network and the distillation process will be delineated in detail, describing how expla-
nations are transferred from the teacher to enhance both the effectiveness and interpret-
ability of the distilled student.

Self‑explainable student model architecture

The student model consists of a bi-directional Long Short-Term Memory network 
enhanced with masked attention. The use of such a mechanism allows for improv-
ing classification performance and provides interpretability, by dynamically assigning 
weights to individual input words in proportion to their significance for the model’s 
classification.
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The student model is composed of three main trainable modules, i.e., the Embed-
ding layer, the Bi-LSTM network, and the Masked attention layer. Given an input sen-
tence x, composed of a sequence of words w1,w2, . . . ,wk , the embedding layer learns 
a continuous vector representation of x, i.e., a sequence of k d-dimensional vectors 
E = e1, e2, . . . , ek , where ei ∈ ℜd is the embedding of wi , and E ∈ ℜd×k is the embed-
ding matrix. Subsequently, the matrix is inputted into the bi-directional Long Short-
Term Memory (bi-LSTM) layer, which learns a sequence of hidden states denoted as 
h1, h2, . . . , hk . Such representations are obtained by concatenating the left-to-right 
(i.e., 

−→
hi  ) and right-to-left (i.e., 

←−
hi  ) components, which consist of u-dimensional vec-

tors, thus generating a hidden states matrix H ∈ ℜ2u×k . Afterward, a weight is com-
puted for each hidden state in H by the masked attention layer. Specifically, a score 
vector σ is calculated to determine the unnormalized importance of each of the k ele-
ments in the sequence for the model’s classification. This vector is obtained using a 
Bahdanau-like attention mechanism [37], implemented by a parameterized feed-for-
ward neural network, in which a trainable matrix U ∈ ℜ2u×2u is employed to perform 
a linear projection of H, which is subsequently fed into a tanh layer. Following this, a 
learnable vector v ∈ ℜ2u is utilized to calculate the ultimate vector σ ∈ ℜk , formally: 
σ = vT tanh(U ·H).

An attention mask is incorporated to prevent the model from attending to padding 
tokens. Specifically, for each sequence, a mask vector µ ∈ ℜk is computed such that 
µi = 0 if wi corresponds to the PAD token, µi = 1 otherwise. This vector is then used 
to mask the attention scores σ by computing the Hadamard product σ = σ ⊙ µ . Then, 
the µ vector is adjusted to transform values corresponding to a mask of 0 into highly 
negative numbers, whereas values associated with a mask of 1 remain unaltered. This 
ensures that when computing the α weights through the softmax distribution, ele-
ments masked with 0 receive exponentially small values, preventing the model from 

Fig. 1 Distillation process in DiXtill. The Explainer, the Teacher LLM, and the Student are indicated in red, green, 
and blue colors, respectively
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attending to those masked elements. Overall, the masking process is performed as 
follows: σi = σi · µi −→ µi = (µi − 1) · 104 −→ σ̃i = σi + µi.

At this point, the attention weights α ∈ ℜk are computed by applying a softmax func-
tion to the unnormalized adjusted scores σ̃ , converting them into a distribution. Finally, 
a weighted average of the bi-LSTM hidden states H is determined, resulting in the vector 
ĥ ∈ ℜd , which is fed to a linear layer to compute the output logits z:

Here, Wout ∈ ℜm×d and bout ∈ ℜm are trainable weights, where m is the number of 
classes. The model predicts the class c for the input sequence x as c = argmax

m
(z) , along 

with an explanation E(x) . The explanation is built starting from the vector of masked 
attention scores σ as a set of pairs (wi : σi) , denoting the influence of each word wi on the 
model classification of x into class c.

Incorporating explanations into the distillation process

As mentioned before, the key idea behind the XAI-driven approach introduced by DiX-
till involves utilizing local explanations to guide the distillation of a teacher LLM into 
a compact self-explainable bi-LSTM enhanced with masked attention, to improve both 
the effectiveness and interoperability of the distilled student.

In DiXtill, a post-hoc explanation technique is leveraged to compute an explana-
tion ET (x) of the teacher predictions for each training instance x. Such an explanation 
is required to be a list of (wi : σ

T
i ) , in which σT

i  are the word attributions specifying 
to what extent each word wi ∈ x influences the teacher prediction for each particular 
instance. Therefore, the proposed method integrates well with the most popular post-
hoc XAI approaches in the literature, such as SHAP, LIME, and Integrated Gradients 
(IG). Specifically, in DiXtill we used Integrated Gradients for computing teacher expla-
nations for the training data. We chose IG due to its ease of implementation, theoretical 
justifications, and computational efficiency when compared to alternative approaches 
such as LIME or SHAP, which allow it for scaling to large networks such as those of 
LLMs, and feature spaces. In addition, IG is specifically designed to work well with a 
variety of deep networks, while methods such as LIME and SHAP may provide explana-
tions that are inconsistent and unstable [38]. The IG method highlights feature impor-
tance by computing the gradient of the model output prediction with respect to its input 
features. Specifically, let x ∈ ℜd and x′ ∈ ℜd be the input instance and a baseline, respec-
tively; in the case of text data, the baseline may be a zero d-dimensional vector. The inte-
grated gradient for an input x and a baseline x′ is obtained by cumulating the gradients 
computed on all points lying on the straight path connecting the input and the baseline. 
Formally, the IG along the ith dimension for a particular instance x is defined as follows:

Here, F : ℜd → [0, 1] is a function representing the model to be explained, and ∂F (x)
∂xi

 is 
the gradient of F (x) along the ith feature.

(2)z = Wout · ĥ+ bout , where: αi =
eσ̃i

∑k
j=1 e

σ̃j
, ĥi =

k
∑

j=1

Hij · αj

(3)(xi − x′i)×

∫ 1

α=0

∂F (x′ + α × (x − x′))

∂xi
dα
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Once explanations for the teacher are computed, these can be leveraged to guide the 
distillation process. In particular, DiXtill introduces an extension of the classical dis-
tillation loss, by adding an XAI-based term, i.e., LXAI , which promotes the alignment 
between the explanation provided by the teacher and the student for each training 
instance x by using a cosine distance loss. Let ET (x) and ES(x) be the explanation of the 
teacher and the student prediction for an input instance x, respectively. Word attribu-
tions can be extracted from the explanations, which are the σT vector for the teacher, 
statically computed by IG, and the σ S vector for the student, dynamically computed 
by the student itself, and learned via backpropagation. The LXAI loss term is defined as 
follows:

Therefore, the overall loss is defined as: L = (1− α)LCE + α(LKD + LXAI ) , where:

• LCE is the standard cross-entropy loss of the student with respect to the real hard 
training labels y weighted by a factor (1− α).

• LKD is the distillation loss term, represented by a normalized version of the Kull-
back–Leibler divergence scaled by a factor α . It is computed between the softmax 
predictions of the teacher and the student models, softened with temperature τ , and 
it is defined as: 1− exp

(

−KL(pT (τ ), pS(τ )
)

.
• LXAI is the aforementioned XAI-based loss term, scaled by a factor α , forcing the 

student to align the learned explanations (i.e, the unnormalized attention weights σ S ) 
to those of the teacher computed via the IG method.

Experimental evaluation
In this section, we present the experimental evaluation we carried out to assess the effec-
tiveness of DiXtill. The experiments were conducted using FinBERT [39], a BERT model 
pre-trained on financial communication text. Specifically, the FinBERT model was fine-
tuned on the Twitter Financial News dataset, which is an English-language dataset con-
taining an annotated corpus of finance-related tweets for sentiment analysis. The dataset 
contains 9 938 training instances and 2 486 instances for testing purposes. The model 
determines the financial sentiment of given tweets, which can be classified as bearish, 
bullish, or neutral.

As concerns the student model configuration, we used a Glove word embedding layer, 
which produces 50-dimensional vector representations, and 50 hidden LSTM units 
with a sequence length equal to 150. In addition, each model was trained for 15 epochs 
using the SGD optimization algorithm with a momentum of 0.9 and a learning rate of 
0.01. Moreover, as suggested by Hinton et al. [8], we used a value of 0.9 for the α hyper-
parameter, which assigns a considerably higher weight to the distillation loss LKD and 
the attributions alignment term LXAI introduced by DiXtill, compared to the standard 
cross-entropy loss term LCE . Finally, the temperature value τ was set to 5 for all distilla-
tion techniques employing temperature scaling.

In the following sections, we demonstrate how our XAI-driven distillation method 
outperforms state-of-the-art techniques in terms of performance. Then, we discuss 

(4)LXAI =
1

2

(

1−
σT · σ S

||σT || ||σ S||

)



Page 9 of 17Cantini et al. Journal of Big Data           (2024) 11:63  

how our method compares to other compression techniques, ensuring a better bal-
ance between performance and model size. Finally, we evaluate the consistency of the 
self-computed explanations of DiXtill and those related to the other distillation meth-
ods, showcasing how the proposed method can ensure a high level of faithfulness and 
interpretability.

Comparison with knowledge distillation methods

Here we compare the performance of DiXtill against different models, including (i) 
the baseline student model trained from scratch without knowledge distillation, using 
a standard cross-entropy loss; (ii) two distilled student models, obtained with KL 
knowledge distillation  [8] and matching logits with MSE  [14, 15], respectively; (iii) 
the teacher LLM, used as the upper bound for classification performance.

For each model, we evaluated the accuracy, macro F1 score, Matthews correlation, 
and multiclass ROC AUC score, using the One-vs-Rest (OvR) approach. Results are 
reported in Table 1 and Fig. 2.

Achieved results show that the teacher (i.e., the reference model) provides an upper 
bound for performance, reaching an accuracy of 85.5% and a macro F1 score of 81%. 
When employing traditional knowledge distillation with the KL divergence loss, there 
is a noticeable decrease in accuracy to 82.7% and in macro F1 score to 76%. Simi-
lar performances are achieved by using the MSE-based knowledge distillation, which 
further reduces the accuracy to 81.6% and macro F1 to 75.2%. As a baseline, train-
ing a student model from scratch without any distillation results in the lowest accu-
racy of 80.2%. These results highlight the challenges of distilling an LLM into a small 
bi-LSTM, as well as learning from scratch without any teacher guidance. Conversely, 
the performance achieved by using DiXtill, which shows an accuracy of 84.3% and a 
macro F1 score of 78.9%, indicates that incorporating local explanations during distil-
lation enables competitive performance comparable to those of the teacher, with a 
remarkable reduction of the number of parameters, decreasing from 0.11 billion to 
less than a million.

In addition, we investigated the performance of DiXtill at different temperature 
values, ranging from 1 to 5, as reported in Table  2. Specifically, as τ increases, the 
softmax function generates a softer probability distribution, facilitating the transfer 
of richer information from the teacher to the student model during the distillation 
process.

Table 1 Classification performance comparison of different knowledge distillation methods

Results achieved by DiXtill are highlighted in bold. In addition, the performance of the baseline student (trained without 
distillation) and the teacher models are reported

Method Accuracy Macro F1 Matthews Corr. Macro AUC 

Student w/o distillation 0.802 0.725 0.618 0.901

Distillation with KL 0.827 0.762 0.655 0.916

Distillation with MSE 0.816 0.752 0.642 0.907

DiXtill 0.843 0.789 0.689 0.926
Teacher 0.855 0.810 0.721 0.949
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Comparison with quantization and pruning methods

In this section, we present the results of the comparison between DiXtill and two 
alternative methods for model compression applied to the pre-trained FinBERT 
model, namely dynamic post-training quantization (PTQ), and attention head prun-
ing (AHP). Regarding quantization, the weights of the teacher model are quantized 
using static int8, while activations are dynamically quantized (per batch) to int8. 
For pruning we followed the methodology outlined in  [24], which involves pruning 
multiple heads from the entire model within each layer. Specifically, we analyzed 
the model performance by selectively masking each attention head. Heads whose 
removal resulted in the most significant drop in classification performance were 
retained, while those whose masking did not affect performance were deemed redun-
dant and pruned accordingly  [24]. For the sake of simplicity, we initially discuss the 

Fig. 2 Classification performance comparison with other knowledge distillation methods. Dotted lines 
indicate the upper and lower bounds achieved by the teacher (in green) and the student without distillation 
(in black), respectively

Table 2 Performance achieved by DiXtill at different temperature values

Bolded values indicate the best temperature

Metric Temperature

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

Accuracy 0.834 0.835 0.838 0.840 0.843
Macro F1 0.775 0.778 0.782 0.779 0.789
Matthews corr. 0.671 0.678 0.677 0.679 0.688
Macro AUC 0.924 0.923 0.925 0.926 0.926
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performance of a pruned model in which 6 out of 12 attention heads per layer are 
retained, denoted as AHP-6.

To fairly compare PTQ and AHP to DiXtill, in Table 3 we measure the model size 
and the compression ratio Cratio = Sr

Sc
 , which is defined as the ratio of the reference 

model size r to the size of the compressed model c, where a higher compression ratio 
means that the model is more compact and efficient. In addition, we provide the 
inference time computed for a batch of 32 test samples and the speedup relative to the 
teacher model, determined as the ratio between the inference time of the reference 
model and that of the compressed one.

We compared DiXtill to the other compression methods in terms of classification 
performance, by also computing for each classification metric the performance drop 
relative to the teacher model. Particularly, we define the performance drop for a given 
metric m as Pm

drop = 1−
P

m
c

Pm
r

 , where Pm
c  is the performance of the compressed model c 

concerning the metric m and Pm
r  is the performance of the reference model r (e.g., the 

teacher) for the same metric. Results achieved are reported in Table 4.
The dynamically int8 quantized model maintains a high accuracy of 85.2% , com-

parable to that of the original 32-floating point model. This suggests that the quanti-
zation process, which reduces the precision of model weights and activations, has a 
minimal impact on the overall performance. However, int8 quantization only reduces 
the model size from 439 MB to 182.5 MB, resulting in a compression ratio of 2.40× , 
while maintaining inference times similar to those of the teacher model, enabling a 
modest speedup of 1.52× . On the other hand, attention head pruning, while dem-
onstrating a marked reduction in inference time by a factor of 2.18× , falls short in 
achieving a significant compression ratio compared to the original teacher model. 
Notably, when 50% of attention heads are pruned, the resultant model size remains 
prohibitively large for deployment on edge devices, yielding a mere compression ratio 

Table 3 Comparison of compression ratio and speedup between DiXtill, PTQ, and AHP models, 
relative to the teacher model

Results achieved by DiXtill are highlighted in bold

Method Size
(Cratio)

Inference time
(Speedup)

AHP-6 365 MB ( ↑ 1.20×) 0.28 s ( ↑ 2.18×)

PTQ 182.5 MB ( ↑ 2.40×) 0.40 s ( ↑ 1.52×)

DiXtill 3.45 MB ( ↑ 127×) 0.07 s ( ↑ 8.7×)

Teacher 439 MB 0.61 s

Table 4 Comparison of classification performance between DiXtill, PTQ, and AHP models

Method Accuracy
(PAcc

drop
)

Macro F1
(PF1

drop
)

Matthews corr.
(PMatt.

drop
)

Macro AUC 
(PAUC

drop
)

AHP-6 0.832 ( ↓ 2.6e
−2) 0.743 ( ↓ 8.2e

−
2) 0.652 ( ↓ 9.5e

−2) 0.938 ( ↓ 1.2e
−2)

PTQ 0.852 ( ↓ 3.5e
−3) 0.808 ( ↓ 2.5e

−3) 0.719 ( ↓ 2.8e
−3) 0.948 ( ↓ 1.1e

−3)

DiXtill 0.843 ( ↓ 1.4e
−2) 0.789 ( ↓ 2.6e

−2) 0.689 ( ↓ 4.5e
−2) 0.926 ( ↓ 2.4e

−2)

Teacher 0.855 0.810 0.721 0.949
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of 1.20× . Furthermore, this method exhibits the most substantial decline in overall 
classification performance compared to the other compression techniques.

In contrast, DiXtill allows for distilling knowledge from a large BERT-like model to a 
very lightweight Bi-LSTM network, with a size of only 3.45 MB, achieving a remarkable 
compression ratio of 127× . Our method also reduces inference time by an order of mag-
nitude with a speedup of 8.7× , proving effective in alleviating computational burdens 
during inference compared to the teacher model and other compression methods.

It is worth pointing out that to achieve higher compression ratios for the pruned 
model, more attention heads can be removed. However, this approach results in a 
marked degradation of classification performance, as illustrated in Fig.  3a. This figure 
depicts the evolution of the macro F1 score as the number of pruned heads increases 
from 0 (i.e., no pruning is performed) to 11 (i.e., only the most important head within 
each layer is retained from the original model), in comparison to the performance of the 
teacher and other compressed models. Notably, performance drop becomes unaccep-
table when pruning more than 6 attention heads, with a significant decrease observed, 
reaching a macro F1 score of 0.4 when employing only 1 head. In line with the results 
of [24], in some cases removing an attention head may result in increased performance 
(e.g., pruning 1, 2, or 3 heads within each layer in our experiments). Furthermore, a 
cross-domain analysis of classification performance and speedup, shown in Fig.  3b, 
reveals that DiXtill consistently outperforms other methods in terms of reduced model 
size, classification performance, and speedup.

Evaluating agreement between teacher and student explanations

In this section, we evaluate the consistency of the self-computed explanations of DiXtill 
and those related to the other distillation methods outlined in "Comparison with knowl-
edge distillation methods" section, computed through IG. Specifically, given F  as the set 
of features (i.e., words) of the sample x to be explained, we measured the pairwise agree-
ment between the explanations obtained for the teacher T (i.e., ET (x) ) and the different 
distilled students S (i.e., ES(x) ). We used the following metrics [40]:

Fig. 3 Comparison of DiXtill, PTQ, and AHP models at varying numbers of heads pruned, in terms of macro 
F1, compression ratio, and speedup
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• Feature agreement. It is computed as the fraction of common features between the 
sets of top-k attributions of ET (x) and ES(x) of a given student model S. Formally: 
1
k
|{f ∈F | f ∈ topf (E

T (x), k) ∧ f ∈ topf (E
S(x), k)}|.

• Sign agreement. It measures to what extent ET (x) and ES(x) of a given stu-
dent model S agree by also considering the feature attribution signs for 
the top-k features. Therefore, this is a stricter measure, computed as: 
1
k
|{f ∈F | f ∈ topf (E

T (x), k) ∧ f ∈ topf (E
S(x), k) ∧ sgn(ET (x), f )= sgn(ES(x), f )}|.

The results depicted in Fig. 4 demonstrate the superior agreement achieved by DiXtill 
compared to other distillation techniques.

Lastly, for the sake of completeness, some examples of explanations learned by the 
distilled student are reported in Fig.  5, showing word attributions for the different 
classes considered.

As can be seen in Fig. 5, the student model effectively captures the patterns linking 
the provided test instances to the correct class, also providing a high-quality explana-
tion of its predictions. In particular:

• In the first example, the text is correctly classified as bearish, with the model 
focusing on words like cut, stock, and price. Indeed, a bearish sentiment in the 

Fig. 4 Evaluation of explanation agreement between the teacher and different student models obtained 
with DiXtill and other distillation methods

Fig. 5 Example of explanations produced by DiXtill for a bearish, bullish, and neutral test instance, plotted 
with the Captum library [41]
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financial domain reflects a pessimistic outlook among investors, anticipating a 
decline in asset prices and an overall market downturn.

• In the second example, the model correctly identifies the provided text as bullish, 
focusing on words like raised, stock, and price. Notably, a bullish sentiment indicates 
a positive perspective among investors, foreseeing an increase in asset values and 
overall market expansion.

• The last example is correctly classified as neutral by the model, as it does not convey 
any explicit bearish or bullish tendency. In this case, the model focuses on the words 
little, impact, credit, and suisse, where Credit Suisse is a global financial services com-
pany based in Switzerland.

Discussion

Our research showcased the efficacy of the proposed XAI-driven distillation method in 
transferring explainable knowledge from an LLM to a lightweight self-explainable stu-
dent network. This allows the student to achieve comparable classification performance 
to the teacher LLM, outperforming other traditional distillation methods, such as KL 
distillation and matching logits with MSE. Moreover, by integrating teacher explana-
tions into the distillation process, DiXtill allows for achieving a higher level of inter-
pretability and faithfulness of the distilled student model, whose explanations, learned 
via backpropagation, show a stronger agreement with those of the teacher, compared 
to traditional distillation techniques. In terms of computational and memory efficiency, 
employing a cross-architecture knowledge distillation approach enables the use of a 
substantially smaller and more compact student network, which facilitates deploy-
ment and inference on resource-constrained devices. Conversely, common compression 
techniques, such as post-training quantization and attention head pruning, retain the 
same complex neural architecture as the teacher model, resulting in lower compression 
ratios and speedup compared to DiXtill. As a consequence, despite ensuring a high level 
of accuracy, such techniques may fail to produce models compact enough for deploy-
ment on resource-constrained devices, such as IoT ones. Furthermore, the compres-
sion achieved by quantization techniques is constrained by the representation range of 
weights and activations, while, as noticed in our experiments, performance achieved 
through attention head pruning deteriorates dramatically as more heads are removed 
beyond a certain threshold.

Conclusion
Despite their remarkable performance in natural language understanding and gen-
eration tasks, Large Language Models are inherently memory- and compute-intensive, 
which hinders their deployment on resource-constrained devices. To tackle this issue, 
compression techniques such as quantization and pruning have emerged as promising 
solutions, alongside approaches based on knowledge distillation.

In this paper, we propose DiXtill, a novel approach to distilling explainable knowledge 
from an LLM into a lightweight, self-explainable neural architecture, leveraging local 
explanations as a complement to the usual prediction-based supervision. In particular, 
an additional loss term is introduced to quantify the degree of misalignment between 
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attribution-like explanations of the LLM predictions, obtained with the IG method, and 
the attention-based explanations of the student.

Our experiments, involving the distillation of a pre-trained BERT-like LLM into an 
attention-enhanced bi-LSTM student model, reveal that our approach enables the stu-
dent to achieve comparable performance to the teacher while also showing higher inter-
pretability compared to traditional distillation. Furthermore, it allows for delivering 
a significantly higher compression ratio and speedup compared to other compression 
techniques such as post-training quantization and attention head pruning. This facili-
tates deployment and inference on resource-constrained devices, enabling more efficient 
and sustainable edge AI applications.

As a future direction, we will investigate how to address potential negative transfer 
issues, such as the presence of biases in the pre-trained model’s explanations, which may 
negatively impact student performance. Furthermore, we will consider the distillation of 
different LLMs, as well as more lightweight student architectures to enable deployment 
on even more constrained devices such as microcontrollers.
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