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Abstract 

Increasingly, automatic face recognition algorithms have become necessary 
with the development and extensive use of face recognition technology, particularly 
in the era of machine learning and artificial intelligence. However, the presence 
of unconstrained environmental conditions degrades the quality of acquired face 
images and may deteriorate the performance of many classical face recognition 
algorithms. Due to this backdrop, many researchers have given considerable 
attention to image restoration and enhancement mechanisms, but with minimal 
focus on occlusion-related and multiple-constrained problems. Although occlusion 
robust face recognition modules, via sparse representation have been explored, they 
require a large number of features to achieve correct computations and to maximize 
robustness to occlusions. Therefore, such an approach may become deficient 
in the presence of random occlusions of relatively moderate magnitude. This 
study assesses the robustness of Principal Component Analysis and Singular Value 
Decomposition using Discrete Wavelet Transformation for preprocessing and city 
block distance for classification (DWT-PCA/SVD-L1) face recognition module to image 
degradations due to random occlusions of varying magnitudes (10% and 20%) in test 
images acquired with varying expressions. Numerical evaluation of the performance 
of the DWT-PCA/SVD-L1 face recognition module showed that the use 
of the de-occluded faces for recognition enhanced significantly the performance 
of the study recognition module at each level (10% and 20%) of occlusion. The 
algorithm attained the highest recognition rate of 85.94% and 78.65% at 10% 
and 20% occlusions respectively, when the MICE de-occluded face images were used 
for recognition. With the exception of Entropy where MICE de-occluded face images 
attained the highest average value, the MICE and RegEM result in images of similar 
quality as measured by their Absolute mean brightness error (AMBE) and peak signal 
to noise ratio (PSNR). The study therefore recommends MICE as a suitable imputation 
mechanism for de-occlusion of face images acquired under varying expressions.
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Introduction
The ability of humans to detect, identify and classify faces and other attributes of faces 
(gender, race, emotion) under variable conditions with some apparent efficiency derives 
from a network of brain regions (fusiform face area and anterior inferotemporal cortex) 
highly tuned to face information [1, 2]. The study of how machines are able to perform 
same tasks in real-time has attracted much attention among researchers due to rising 
security concerns and the fast-paced evolution of supportive technologies. The field of 
automatic face recognition concerns the use of machines to recognize the identity of 
persons or individuals from a database of stored face images.

Several studies [3–8] have shown that the performances of automatic face recognition 
modules are affected by the quality of the face images acquired and used for recogni-
tion. In most instances, image quality is problematic due to the acquisition of images 
from unconstrained environments. Image quality is often eroded due to imbalanced 
illumination effects, wild poses, noise, occlusions and varying facial expressions. When 
occlusions are the underlying cause of image degradation, the problem becomes more 
intractable as occlusions obscure salient features of the face needed for training recogni-
tion algorithms, thus creating larger intra-subject variability compared with inter-sub-
ject variability such that images of different individuals appear similar than images of 
the same individual [9]. This may be further compounded by the wide range or forms of 
occlusions which may include randomly occurring occlusions of different magnitudes. 
This not withstanding, only a few studies have focused on how to resolve occlusion-
related problems in face recognition.

References [4, 10, 11] have shown that enhancing the quality of acquired images prior 
to recognition improves the performance of face recognition algorithms. However, 
choosing the right image enhancement mechanism is often a challenging task. This is 
because the choice of enhancement mechanism is contingent on knowledge of the 
underlying cause of image degradation which, in most instances, is limited. Also, a com-
bination of more than one enhancement mechanism may be required to attain optimal 
results, but specifying the right combination of enhancement mechanisms is challeng-
ing and still continues to be a gap in literature that requires more research. To deal with 
occlusions in face images, some researchers have advocated for the use of occlusion-
invariant features or the non-occluded portions (sparse representation) of the face for 
recognition, many of which have attained remarkable successes [12, 13]. However, these 
approaches sometimes become deficient for some classes of occlusions, especially when 
there is significant loss of facial features or pixels. De-occlusion techniques, therefore, 
become indispensable in these situations. These methods may leverage on the inherent 
topology of the face [14] to reconstruct missing facial components or operate from the 
premise that missing facial pixels can be inferred from the observed facial pixels in order 
to restore the occlusions in face images [15]. A key stage in the de-occlusion process is 
the choice of de-occlusion mechanism. This is very crucial in automatic face recogni-
tion because inappropriate handling of occlusions could further degrade the quality of 
images and may lead to significant drop in the performance of an otherwise well-per-
forming face recognition module. Chan and Shen [16] considered the problem of image 
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restoration using a diffusion-based approach. Diffusion-based methods are considered 
optimal in filling small patches in an image [17]. The use of exemplar-based methods 
have also been explored in the literature [18]. The exemplar-based methods are known 
to be optimal for filling larger texture areas. However, the approach sometimes decreases 
the connectivity of structure and clearness of texture while increasing the time complex-
ity [19]. Some authors leveraged on the advantages of both diffusion based method and 
texture synthesis technique by first dividing the image into structure and texture layers, 
then using diffusion-based method to in-paint the structure layer and texture synthesis 
technique to in-paint texture layer. According to [19], this approach helps overcome the 
smooth effect disadvantage brought from the diffusion-based in-painting algorithm, but 
it is still very difficult to recover the larger missing structures. Refer to [20–22] for more 
information on occlusion-aware systems.

Occlusions in face images can be classified as a missing-data problem. Therefore, de-
occlusion as used in this study refers to any process that attempts to restore missing pix-
els in face images. In general missing value problems, the use of multiple imputation 
methods has been widely explored [4]. Such methods aim at finding plausible values for 
the missing data and are known to give unbiased results and can also account for the 
uncertainty in the imputations. This gives multiple imputation methods an edge over 
single imputation methods [23]. Despite the aforementioned advantages of multiple 
imputation methods, some researchers object to their use in handling missing values in 
datasets, arguing that imputation methods only synthesize numerical (non-real) values 
for the missing data [24]. Other researchers [25] on the other hand assert that imputa-
tion methods aim not to re-create the missing values in a dataset, but are a means of 
handling missing data in order to arrive at the proper statistical inferences under a given 
missingness mechanism. The Multiple Imputation by Chain Equations (MICE) [26], 
MissForest [27] and the Expectation Maximization (EM)-based methods (Regularized 
Expectation- Maximization (RegEM)) [28] are among the most successful contemporary 
multiple imputation methods in practice. These methods impute missing values in data-
sets based on multiple regression modules. The MICE uses the conditional distributions 
of variables with missing data and is based on Markov Chain Monte Carlo (MCMC) and 
attains imputations via Gibbs sampling; the MissForest draws imputations uses via ran-
dom forests models while the RegEM is a likelihood-based method [4].

In this study, we assess the robustness of DWT-PCA/SVD-L1 face recognition mod-
ule to image degradations due to random occlusions of varying magnitudes (10% and 
20%) in test images acquired with varying expressions. The study also helps identify the 
appropriate image restoration mechanism when dealing with moderately low levels of 
occlusions in face images acquired under varying expressions.

The rest of the paper is organised as follows: Section  Methods and materials dis-
cusses the data acquisition, the mathematical underpins of the adopted imputation 
mechanisms, recognition modules and their implementation. In section  Results and 
discussion, we evaluate the recognition modules under the adopted imputation mecha-
nisms and conclude by summarising the overall achievements of the study with some 
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recommendations and directions for future developments in section  Conclusion and 
recommendation.

Materials and methods
Data acquisition

The study used two standard face image datasets to benchmark the performance of the 
study algorithm.

Dataset 1 The Japanese Female Expression (JAFFE) dataset is homogenous in terms 
of race and gender. It contains face images of ten (10) female Japanese subjects captured 
along seven universally accepted principal emotions (neutral, angry, disgust, fear, sad, 
surprise and happy).

Dataset 2 The Cohn Kanade AU-Coded Facial Expression (CKFE) dataset is heteroge-
neous with regard to race and gender. It contains face images of twenty-two (22) subjects 
of mixed race and gender also captured along the above seven universally accepted prin-
cipal emotions.

The neutral expressions of subjects in the two datasets (totaling 32) were captured 
into the train-image database for training the study algorithm after face detection and 
cropping. Figure 1 depicts the face images of subjects in the train-image database.

All the other face images of subjects acquired under varying expressions (sad, happy, 
disgust, surprise, angry and fear) in each dataset were synthetically occluded (10% and 

Fig. 1 Train-image database



Page 5 of 22Mensah et al. Journal of Big Data           (2024) 11:60  

20% missingness or degradation) after face detection and cropping. Figure 2 (test-image 
database 1) and Fig.  3 (test-image database 2) contain expression-variant face images 
with 10% and 20% occlusions respectively.

The multiple-constrained (occlusions, varying expressions) face images in Figs. 2 and 
3 were subsequently reconstructed using the MICE, MissForest and RegEM imputation 
techniques respectively and captured into separate test-image databases.

De‑occlusion via imputation methods

Reconstructive methods seek to restore missing components or pixel information for the 
purposes of completeness, good visual effects, as well as providing relevant features for 
subsequent feature extraction.

Multiple imputation methods have been successfully used to deal with missing 
data problems in many applications. In this work, we use the MICE, MissForest 
and RegEM imputation methods to de-occlude occlusions in test faces based on 
the assumption that such methods can find plausible pixel values to replace miss-
ing components or pixels using information from the existing pixels (non-occluded 
portions of the face).

Fig. 2 Sample of face images with 10% occlusion acquired under varying expressions (test-image database 
1)
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Imputation algorithms

Let Yn×p = (Y1,Y2, . . . ,Yp) be the image matrix of an occluded face image. For each 
column (variable) Yj , j ∈ {1, 2, . . . , p} that contains missing pixels, Y is divided into four 

parts indicated below: Yn×p =
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, where

• Y
(obs)
j  −→ Observed pixels of Yj and kobsj ∈ {1, 2, . . . , n} is the corresponding row 

index set of the observed pixels.
• Y

(mis)
j  −→ Unobserved pixels of Yj and kmis

j ∈ {1, 2, . . . , n} is the corresponding row 

index set of the missing pixels. Note that, kmis
j = {1, 2, . . . , n} − kobsj .

• Y
k(j,obs)
−j  −→ The part of all other columns other than the jth column Yj with row 

index set same as kobsj .
• Y

k(j,mis)
−j  −→ The part of all other columns other than Yj with row index set same as 

kmis
j .

Fig. 3 Sample of face images with 20% occlusion acquired under varying expressions (test-image database 
2)
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Multiple imputation with chain equations (MICE)

Given the feature matrix of an occluded face image, the MICE algorithm imputes 
missing pixels using univariate conditional distributions for each variable feature 
given all other variables [26]. It is assumed that the face image feature matrix has a 
full multivariate distribution from which the conditional distribution of each feature 
is obtained, although such distribution may not be explicitly specified [29] as long as 
the distribution of each feature is stated, or may not exist [30, 31].

The MICE algorithm is an iterative method which imputes missing values based on 
the fitted conditional (regression) models until a stopping/termination criterion is 
met and uses the Gibbs sampler to generate multiple imputations.

Algorithm 1 MICE

MissForest

The MissForest [27] is a non-parametric multiple imputation technique based on ran-
dom forests [32]. Unlike MICE, the MissForest algorithm specifies a random forest 
model for each variable with missing pixels and uses the other variables to predict the 
missing values. As in the case of MICE, this process is iteratively done for all missing 
pixels until a stopping criterion is met. The advantage of using random forest mod-
els is that they provide much flexibility, address complex non-linear interactions [27], 
require little tuning and provide an internally cross-validated error estimates [33].

Algorithm 2 MissForest
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Regularized expectation‑maximization (RegEM)

The expectation-maximization (EM) imputation algorithm is an iterative optimization 
technique for estimating the parameter set ( ϑ ) of a probability model with incomplete data 
based on the notion of maximum [34]. Parameter estimation, via EM-based methods is 
done first by estimating the parameters of the data distribution through the existing data 
and then imputing the missing data based on the estimated distribution [35]. The EM algo-
rithm encompasses two steps; obtaining a probability distribution over all possible com-
plete versions of the incomplete data given the current parameter estimate (E-step) and 
re-estimating the underlying parameter set using these completions (M-step). In practice 
however, one need not specify this probability distribution explicitly, but rather need only 
compute expected sufficient statistics over these completions. The EM algorithm attempts 
to find the parameter set ϑ∗ that maximizes the log-likelihood of the observed pixel intensi-
ties by casting it as a prediction problem [36].

Assuming that the distribution of pixels is multivariate normal with parameter set 
ϑ = [µ,�] , then the missing pixel values can be imputed using a regression model. 
Although the normality assumption is plausible in many application areas, it can be 
replaced with other more complex densities, such as mixture of simplex ones [31].

In the presence of occlusions, the feature matrix and associated design matrix become 
ill-conditioned (as a result of missing pixel values). As a result, ordinary regression esti-
mates (such as least squares) and standard errors could be highly unreliable and can affect 
the stability of such models as well as the quality of predictions amidst multi-collinearity 
[37]. Under these circumstance a penalized regression method (ridge regression) is recom-
mended for ill-conditioned design matrices instead of least squares estimators. Specifically, 
given a linear regression model

Yn×1 vector of observations; Xn×p design matrix of rank p, βp×1 vector of unknown 
parameters and εn×1 vector of unobserved errors, the ridge regression estimate β̂ of β is

where γ is the ridge parameter to be selected and I is the n× n identity matrix. This can 
be obtained as a the solution to the least squares problem

where τ ≥ 0.
The visual quality of the de-occluded image depends on the regularization parameter γ . 

The method of generalized cross validation has been shown by [38] to give a better estimate 
of γ compared to the method of maximum likelihood. In generalized cross-validation, the 
estimate γ̇ of γ is obtained as a minimizer of the generalized cross-validation function

where A(γ ) = X(XTX + nγ I)−1XT.

(1)Y = Xβ + ε;

(2)β̂ = (XTX + γ I)TXTY ,

(3)β̂ = argmin
β∈Rp

||β|| < τ

[

(Y − Xβ)(Y − Xβ)T
]

,

(4)V (γ̇ ) =

1
n ||I− A(γ )Y ||2

1
nTrace(I − A(γ ))2

,
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According to [38], using the generalized cross-validation approach to estimate γ does 
not require knowledge of the noise variance σ 2 , making it a natural choice for solving 
regression-like problems where the design matrix is ill-posed since in such cases there is 
no way of estimating σ 2 from the data. The regularized EM using multiple ridge regres-
sion is carried out, starting with initial estimates of the mean µ and covariance matrix � , 
as follows:

• For each row of the feature matrix with missing values, obtain the multiple ridge 
regression parameters by regressing columns with missing pixel values on the col-
umns with observed pixel values using the mean and covariance matrix.

• Fill in the missing pixel values with their conditional expectation values, where the 
conditional expectation values are obtained as the product of the available pixel val-
ues and the estimated ridge regression coefficients β̂r.

• Re-estimate the mean and covariance matrix, where the mean is obtained as the 
mean of the completed feature matrix and the covariance matrix is obtained as the 
sum of the covariance matrix of the feature matrix and an estimate of the conditional 
covariance matrix of the imputation error.

Algorithm 3 RegEM

The test-image database 3 contains the MICE, MissForest and RegEM reconstructed 
images of test-image database 1.

Fig. 4 shows the reconstructed face images for some subjects under 10% degradation 
for the JAFFE and CKFE data sets.

The test-image database 4 contains the MICE, MissForest and RegEM reconstructed 
images of test-image database 2.

Fig. 5 shows the reconstructed face images for some subjects under 20% degradation 
for the JAFFE and CKFE data sets.

Research design

When face images are sent to the recognition module, they are preprocessed through 
mean centering and Discrete Wavelet transformation (DWT) mechanisms. The train 
images are the first to be preprocessed this way. Afterward, the preprocessed images 
are sent to the feature extraction unit where the PCA/SVD algorithm extracts 
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discriminative features. The extracted features are then stored in memory as a 
created knowledge for recognition.

As mentioned before, four test datasets were used in this study. It is worthy to 
note that only one of the adopted imputation mechanisms is used for de-occlusion 
at a time in a database before recognition. The test images are also preprocessed 
using mean centering and Discrete Wavelet transformation (DWT) mechanisms and 
their discriminative features are also extracted using the PCA/SVD algorithm for 
recognition.

The discriminative features are passed on to the classifier/recognition unit where 
they are matched with the stored knowledge created from the train images where 
a closer match is defined in terms of minimum recognition distance. We note that 
only one test image is passed to the recognition module along with the train images 
at a time. The design of the study recognition module is shown in Fig. 6.

Fig. 4 Sample of reconstructed face images with 10% occlusion acquired under varying expressions 
(test-image database 3)
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Preprocessing

Preprocessing is a key stage in digital image processing. The importance of preproc-
essing has been underscored by several research works [11, 39–42].

The goal of image enhancement is to accentuate, via denoising mechanisms, the 
defining features of the image by improving the image quality. Image enhancement 
can be carried out in the spatial domain or in a transformed domain of the image. The 
latter, particularly, has evolved over the years to effectively deal with image denois-
ing and enhance edge features [43]. In this study, we adopted mean centering and the 
Discrete Wavelet Transform as preprocessing mechanisms.

Fig. 5 Sample of reconstructed face images with 20% occlusion acquired under varying expressions 
(test-image database 4)
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Discrete wavelet transform (DWT)

The discrete wavelet transform (DWT) is a transform-domain-based image denoising 
method with multi-resolution property that allows the analysis of a signal (image) in 
different frequency resolutions [44]. This is particularly useful because some features 
of a face or signal have low frequency components while others have high frequency 
components [45]. According to [46], the use of wavelets gives superior performance 
in image denoising due to its multi-resolution property. DWT provides both spatial 
and temporal information about a given signal. As such, DWT-based image denoising 
is preferred to other transform-domain denoising mechanisms such as Fourier trans-
forms which only give the spatial information of a signal [6].

Denoising an image based on DWT consists of decomposing the face image, noise fil-
tering and image reconstruction. DWT decomposes an image into two sets of coeffi-
cients namely the approximation coefficients and detail coefficients. The decomposition 
is done by passing the image through a series of filters. First, the image is passed through 
a low-pass filter resulting in the approximation coefficients (LL-sub-band). The image 
is also decomposed simultaneously using a high-pass filter resulting in the detail coef-
ficients (Horizontal coefficients (LH-sub-band), Vertical coefficients (HL-sub-band) and 
diagonal coefficients (HH-sub-band) [47]. These sub-bands provide different resolutions 
of the image, with the LL sub-band being the low resolution form of the image and the 
remaining sub-bands being the high-resolution forms of the image. The LL-sub-band 
contains global information of the image and is less prone to noise while the remaining 
sub-bands contain local information such as eyes, nose and mouth [6].

DWT is the most stable invertible transform in transforming signals in diverse 
domains. Its efficiency in denoising signals is because of its multiresolution property 
which allows the analysis of a signal at different resolutions or scales, making it easier 
to identify patterns and anomalies in large datasets [48]. The wavelet transform involves 
the displacement of basic wavelet functions called mother wavelets [49]. Notable among 
them are the Haar, Daubechies, Coiflet, symlets and Morlet wavelets. In this study we 

Fig. 6 Research design
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chose the Haar wavelet as the mother wavelet and performed a one-level decomposition 
of the face images. This is because it is simple and orthogonal (rigid in transformation 
to preserve distance in the original image) in nature. After the one-level decomposition, 
a Gaussian filter is applied to normalize illumination and the image is reconstructed 
via inverse discrete wavelet transform. Figure 7 shows the DWT cycle using the Haar 
wavelet.

Mean centering

Given a matrix of face images whose columns are the vectorized forms of the face images 
of subjects, its corresponding mean-centered matrix of face images is obtained by sub-
tracting the mean intensity value of each column from each of their respective intensity 
values. The resultant mean-centered matrix is, thus, of zero mean.

Mean-centering is an integral part of eigenvalue analysis which ensures that the prin-
cipal components are proportional to the variance of the input data matrix with the first 
principal component reflecting the maximum variance, which otherwise would reflect 
the mean instead of the greatest variance [50].

Feature extraction

Dealing with high dimensional datasets such as the human face is computationally 
expensive. Besides, with the presence of a large number of features, a learning model 
tends to overfit and hence under-perform [51]. Therefore, feature extraction forms an 
integral part of every face recognition module. During feature extraction, the dimen-
sionality of the otherwise high-dimensional face images is reduced. This is because only 
the relevant features of each face are selected for classification and redundancy (noise) is 
removed.

Principal Component Analysis (PCA) is one such effective dimensionality reduction 
technique widely used in signal and image processing [14]. According to [52], PCA 
reduces the dimensionality of datasets whilst maintaining as much variability as possible 
and gives the best possible representation of a p-dimensional dataset in q dimensions 
(q < p) by maximizing variance (statistical information) in q dimensions.

Fig. 7 DWT preprocessing cycle for a MICE reconstructed image
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In PCA-based face feature extraction, discriminative facial features are obtained by 
projecting the given face images onto a feature space spanned by the principal compo-
nents, which are the eigenvectors of the variance-covariance matrix of the faces data 
matrix [53]. This approach to feature extraction in face recognition is efficient due to its 
ease of implementation and low processing steps. In addition, no knowledge of geom-
etry or any specific feature of face is required [54].

Several studies [55] have shown that the use of PCA for dimensionality reduction and 
feature extraction competes favourably with (and may outperform) other dimensionality 
reduction techniques, including independent component analysis [56] and linear discri-
minant analysis [57]. Based on the above merits, we adopted PCA for feature extraction.

Assessment of the quality of de‑occluded images

An attempt to resolve the challenges posed by occlusions to face recognition using 
multiple imputation methods may induce other artifacts or further degradations in the 
resultant faces. Image quality assessment is, therefore, crucial in this regard.

Image quality metrics are used to quantify the quality of the de-occluded images, and 
hence determine the best multiple imputation technique used to carry out de-occlusion. 
Here, we refer to the unoccluded images as clean images. The Discrete Shannon Entropy 
(E), Absolute mean brightness error (AMBE), Peak Signal-to-Noise Ratio (PSNR), and 
Contrast (C) were used in this context.

Entropy

The entropy of a face image characterizes the average level of information inherent in 
the face image. A relatively higher entropy after de-occlusion signifies better image qual-
ity and a good source of information that could be leveraged to enhance the classifica-
tion performance of face recognition modules, given the right choice of feature selection 
scheme. If the pixel intensity values in an image are seen as discretely sampled from the 
underlying image probability density P, then the discrete Shannon entropy with base 2 of 
the jth image is given by

where Pj(k) is the probability of occurrence of the kth pixel intensity value and L is the 
number of grey levels [49].

Absolute mean brightness error (AMBE)

The absolute mean brightness error quantifies the brightness preservation property of 
the multiple imputation schemes in carrying out de-occlusion. For the jth image (Ij) the 
AMBE is evaluated as the absolute difference between the mean brightness of the clean 
image and its respective de-occluded image (Ĩj) and is given by

where m(Ij) and m(Ĩj) represent the mean brightness of the clean image and de-occluded 
images respectively. The multiple imputation method that gives the least (average) 

(5)E(Ij) = −

L−1
∑

k=0

Pj(k) log2(Pj(k)),

(6)AMBE(Ij , Ĩj) = |m(Ij)−m(Ĩj)|,
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AMBE values has the highest brightness preservation and thus, conserves the brightness 
of the “clean” images.

Peak signal‑to‑noise ratio (PSNR)

The PSNR is computed as the ratio of the highest pixel value of the image to the noise 
(Mean Square Error) that affects the quality of the pixels, expressed in logarithmic deci-
bel scale. For the jth image, the PSNR is given by

where Maxj is the maximum possible pixel value and MSE is the mean square error. In 
the absence of noise, a de-occluded image and its respective “clean” image are identical, 
therefore the MSE is zero and the corresponding PSNR value is infinite. When noise is 
introduced as a result of the de-occlusion processes, the multiple imputation de-occlu-
sion method achieving the highest average PSNR values is preferred since it results in 
the best quality de-occluded images.

Contrast

The contrast of an image refers to the spread in the distribution of its pixel intensity val-
ues, which is measured by the range of pixel intensity levels. If the minimum and maxi-
mum intensity values are far apart, the image has good contrast, otherwise it has poor 
contrast. The standard deviation of intensity value is a natural characterization of an 
image contrast and this is used in this study.

For the jth image, the standard deviation of pixel intensity values is given by

where Pj(k) is the probability of occurrence of the kth pixel intensity value and L is the 
number of grey levels.

Results and discussion
Assessment of image quality after using the various de‑occlusion mechanisms

Figures 8, 9, 10 and 11 show the entropy, AMBE, PSNR and Contrast of the occluded 
face images after reconstruction with MICE, MissForest and RegEM imputation 
algorithms respectively.

From Fig.  8, the median entropy value is highest for the MICE de-occluded faces, 
followed by the RegEM, with the MissForest attaining the least median entropy value.

From Fig.  9, the MissForest has the least brightness preserving property compared 
with the MICE and RegEM, which have relatively lower and similar brightness 
conservation property with a few images having brightness significantly different from 
their respective clean images.

It can be seen from Fig.  10 that when the MissForest is used for de-occlusion, it 
results in images with the most noise since its associated PSNR values are relatively 

(7)PSNR = 10 log10
Maxj

MSE
,

(8)S(Ij) =

√

√

√

√

L−1
∑

k=0

(

k −m(Ij)
)2
Pj(k),
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lower compared to the MICE and RegEM. However, the distribution of PSNR values for 
MICE and RegEM are relatively similar on average, although that of MICE shows more 
variability.

Results from Fig. 11 show that the MICE and RegEM produce images with relatively 
lower contrast. Nonetheless, the images obtained as a result of MissForest de-occlusion 
have relatively higher contrast compared with their respective clean images.

Assessment of the performance of the study algorithm under the various de‑occlusion 

mechanisms

Sample results of matching the MissForest, MICE, and RegEM de-occluded test face 
images (of some subjects with happy facial expressions) to the train image database 
using the study algorithm are presented in Figs. 12 and 13.

Fig. 8 Entropy

Fig. 9 Absolute mean brightness error (AMBE)
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Figure  12 shows the decisions and recognition distances for six (6) subjects from 
the JAFFE database when de-occlusion was carried out at 20% random missingness. 
It is seen that all the six subjects were correctly matched for the MICE and RegEM 
de-occluded test images. However, there were two (2) mismatches for the MissForest 
de-occluded test faces.

Figure  13 shows the decisions and recognition distances for six (6) subjects from 
the CKFE database when de-occlusion was carried out at 20% random missingness. 
It is seen that, there were 3 mismatches each when the MissForest and RegEM de-
occluded test images were used for recognition but only one mismatch when the 
MICE de-occluded test faces were used for recognition.

Fig. 10 Peak signal to noise ratio (PSNR)

Fig. 11 Contrast
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Table  1 shows the average  recognition rates of the study algorithm when using the 
occluded and de-occluded test face at 10% and 20% rates respectively.

It can be seen from Table  1 that at a 10% occlusion rate, using the corresponding 
occluded and the MissForest, MICE and RegEM de-occluded images as test face 
images, the average recognition rates of the study algorithm (DWT-PCA/SVS-L1) 
were 41.40%, 68.75%, 85.94% and 84.44% respectively. Also, at 20% occlusion rate, the 
average recognition rates of the study algorithm using the corresponding occluded, 
and MissForest, MICE and RegEM de-occluded images, as test face images were 
23.63%, 54.69%, 78.65% and 76.54% respectively. At 10% and 20% degradation levels, 
the DWT-PCA/SVD-L1 recognition algorithm performed abysmally poor obtaining 
average recognition rates of 41.40% and 23.63% respectively when the occluded images 

Fig. 12 Recognition results per reconstruction method for the JAFFE database (20% occlusions)

Fig. 13 Recognition results per reconstruction method for the CKFE database (10% occlusions)
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were used as test images. The decline in the performance observed here was due to the 
increased degree of occlusion (from 10% to 20%).

It is also evident from Table 1 that, the de-occlusion mechanisms (MICE, Missforest, 
RegEM) enhanced the performance of the recognition algorithm at each level of occlu-
sion. Notably, the MICE de-occluded test face images gave the highest recognition rate 
(85.94% and 78.65% at 10% and 20% degradation levels respectively), followed closely 
by the RegEM de-occluded test face images (84.44% and 76.54% at 10% and 20% degra-
dation levels respectively), with the study algorithm attaining the least average recogni-
tion rates (68.75% and 54.69% at 10% and 20% degradation levels respectively) when the 
MissForest de-occluded test face images were used for recognition. However, there was 
a moderate decline in the performance of the study algorithm with increasing level of 
occlusion as well as corresponding de-occlusions. These results are consistent with the 
works of [6, 7].

Conclusion and recommendation
In this study, we performed a comparison of three (3) multiple imputation methods 
(Multiple Imputation with Chain Equations (MICE), MissForest and Regularized expec-
tation-maximization (RegEM)) as de-occlusion mechanisms in dealing with moderately 
low levels of occlusions in test face images, from two standard face image datasets (Japa-
nese Female Facial Expressions (JAFFE) and Cohn-Kanade Facial Expression (CKFE)) on 
the basis of their effect on image quality and the performance of a face recognition mod-
ule (DWT-PCA/SVD-L1). In assessing the image quality, both the MICE and RegEM 
methods outperformed the MissForest imputation methods when the Entropy,  PSNR 
and AMBE were used as the evaluation criteria. Except for the Entropy where MICE 
attained the highest average value, the MICE and RegEM resulted in images of similar 
quality as measured by their AMBE and PSNR. None of the methods produced images 
of similar contrasts as their respective clean images. Particularly, the MissForest resulted 
in over-enhanced contrast images while the MICE and RegEM de-occlusion mecha-
nisms produced relatively lower contrast images when compared to the clean images. 
This suggest that, the MICE and RegEM result in images with better details and better 
brightness conservation. The use of the multiple imputation-based test images improved 

Table 1 Average recognition rates of the study algorithm using the de-occlusion mechanisms at 
10% and 20% degradation levels

Degradation level (%) Method Average 
recognition 
rate (%)

Occluded 41.40

MICE 85.94

10% MissForest 68.75

RegEM 84.44

Occluded 23.63

MICE 78.65

20% MissForest 54.69

RegEM 76.54
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the performance of the study recognition module. Results from the numerical evalua-
tion showed that the study algorithm achieved the highest average recognition rate when 
de-occlusion was done using MICE (85.94% and 78.65% at 10% and 20% occlusion levels 
respectively), closely followed by the RegEM (85.94% and 78.65% at 10% and 20% occlu-
sion levels respectively), with the study algorithm attaining the least average recogni-
tion rates (68.75% and 54.69% at 10% and 20% occlusion levels respectively) when the 
MissForest de-occluded test face images were used for recognition. These results were 
consistent across the 10% and 20% occlusion levels. Similar findings were obtained by [4, 
6, 7] except that their works adopted different enhancement mechanisms for preproc-
essing the face images. Their underlying occlusion constraints were also acquired under 
different degrees of missingness and they did not assess the quality of the images after 
de-occlusion. The performance of the study recognition module (regardless of the mul-
tiple imputation method used for de-occlusion) appeared to be dependent on the level 
of occlusions. Particularly, the multiple imputation methods appear not to be robust to 
higher levels of occlusion. Despite this limitation, the study provides great insight into 
the use of multiple imputation methods in dealing with occlusions in the field of face 
recognition and its related areas.

Future work will focus on enhancing the recognition rate of the study algorithm, when 
multiple imputation-based de-occluded test face images are used for recognition, as well 
as improving the robustness of the study algorithm to higher levels of occlusions.
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