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Abstract 

Synthetic data generation describes the process of learning the underlying distribu-
tion of a given real dataset in a model, which is, in turn, sampled to produce new data 
objects still adhering to the original distribution. This approach often finds applica-
tion where circumstances limit the availability or usability of real-world datasets, 
for instance, in health care due to privacy concerns. While image synthesis has received 
much attention in the past, time series are key for many practical (e.g., industrial) 
applications. To date, numerous different generative models and measures to evaluate 
time series syntheses have been proposed. However, regarding the defining fea-
tures of high-quality synthetic time series and how to quantify quality, no consensus 
has yet been reached among researchers. Hence, we propose a comprehensive survey 
on evaluation measures for time series generation to assist users in evaluating syn-
thetic time series. For one, we provide brief descriptions or - where applicable - precise 
definitions. Further, we order the measures in a taxonomy and examine applicability 
and usage. To assist in the selection of the most appropriate measures, we provide 
a concise guide for fast lookup. Notably, our findings reveal a lack of a universally 
accepted approach for an evaluation procedure, including the selection of appropriate 
measures. We believe this situation hinders progress and may even erode evaluation 
standards to a “do as you like”-approach to synthetic data evaluation. Therefore, this 
survey is a preliminary step to advance the field of synthetic data evaluation.
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Introduction
Time series are ubiquitous. For instance, (IoT) sensors in factories, medical machin-
ery in hospitals, personal smart devices, or financial transaction systems produce 
these real-valued, sequential data, leading to a seemingly unlimited pool of data 
to learn from. Indeed, various research problems surround time series, including 
forecasting [1], classification [2], and anomaly detection [3]. Over the last decades, 
another task has emerged involving the creation of even more data with a given set 
of desired properties: Time series synthesis [4]. The synthesis is vital as there are cir-
cumstances limiting the availability or usability of real data, such as time series col-
lected in the healthcare sector [5]. While sharing datasets is common practice, for 
instance, to ensure reproducible results, this has to be done with extreme care for 
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medical datasets, as simply publishing the data as-is can endanger patient privacy. 
One way to reliably prevent this is by training a model on the real data capturing all 
relevant properties, that is, the data distribution, and artificially creating new patient 
data samples. We call this process synthesis or generation, and in this work, we are 
interested in time series synthesis specifically. While some synthesis tasks are suffi-
ciently addressed with straightforward methods like averaging two real time series [6] 
or applying time warping to an original sample [7], others with complex data distri-
butions and patterns require deep neural networks to model and reproduce the data 
properties [8]. In any case, the evaluation of the generated data is always crucial.

The aim of our work is not the design and implementation of a new generation 
method but rather to provide means for the fundamental problem of evaluating the 
synthesis. In other words, we want to facilitate the following research questions. 

1. How can the quality of a synthesized time series be determined?
2. What qualifies a (set of ) synthesized time series as being “good”?
3. What are the most effective methods to evaluate quality of synthesized time series?

Currently, there is no consensus within the research community on how to answer these 
questions satisfactorily [4, 9, 10]. Instead, a plethora of evaluation approaches exists, 
with each using a unique set of measures. Hence, the evaluation of generative models 
in general and time series generators in particular is widely considered an active area of 
research. It presents formidable challenges owing to several inherent complexities. First, 
the absence of a definitive ground truth poses a significant hurdle, as there is no authori-
tative benchmark against which generated time series can be objectively evaluated. Sec-
ond, assessing the synthesis quality becomes a multidimensional task, encompassing 
various aspects such as fidelity, diversity, generalizability, and privacy considerations. 
Therefore, a holistic measure has to consider many quality criteria, while more specific 
measures may only deliver a complete view in combination. Furthermore, designing 
universally applicable evaluation measures becomes intricate, as the criteria for success 
may vary across different applications, demanding a nuanced and adaptable approach 
to assessment in synthetic time series generation. Last, the challenges are exacerbated 
in evaluating synthetic time series due to the absence of an intuitive understanding of 
the data, as opposed to image, video, or even audio data. While synthetic images, for 
instance, can be plotted and quickly evaluated by human judges at least qualitatively, 
time series are often too noisy, long, or high-dimensional to be effectively analyzed visu-
ally. Consequently, this study aims to provide an overview and analysis for experienced 
researchers. In addition, this work can be an entry point to the field for novices to time 
series synthesis and generally a foundation for unifying the evaluation process in the 
future.

The contributions of this work can be summarized as follows.

• This is the first comprehensive review of evaluation measures for synthetic time 
series. In this work, we collect 83 measures from 56 works targeting time series 
data or general measures that apply to time series.
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• To promote organization of knowledge, we propose a taxonomy of these measures 
under different aspects of quality in order to structure this long list.

• We offer a valuable analysis of the usage statistics of evaluation measures in the lit-
erature, examining their applicability with respect to conditional generators, embed-
dings, time series length, the number of channels, and dataset sizes.

All this introduces novices to the topics of time series generation and its evaluation 
while still providing value to experienced colleagues as a reference and summary. For 
those interested in a quick selection of measures, we refer to Table 1 as a guidepost.

The remainder of this survey article is structured as follows: In “Related work” sec-
tion, we introduce previous reviews and explain what sets our work apart from them. 
In “Approach” section, we describe our approach regarding both the review and analysis 
part. In “Evaluation measures for synthetic time series” and “Analyzing evaluation meas-
ures” sections, we present the findings of the literature review and subsequent analysis, 
respectively. In Sect. “Conclusion”, we conclude the survey and outline further research 
directions.

Related work
This chapter provides an overview of closely related or significant prior surveys and 
comparative studies on the evaluation of synthetic time series and related data types.

Evaluation in related fields of data synthesis

The evaluation of generative models for the synthesis of time series and other data types, 
such as images or text, is considered an open problem by many researchers [4, 11–13]. 
To gain a wider awareness of the current standing in related fields of data synthesis, we 
provide a selection of works on generative adversarial networks (GANs), sequential data 
in general, software libraries and frameworks, tabular data, audio, and text.

A few years ago, Xu et al. [14] already set out to address the problem of how to “evalu-
ate the evaluation metrics” for GANs in particular, with a focus on images. Firstly, they 
introduced six generator-agnostic measures, namely inception score (IS),Fréchet incep-
tion distance (FID), Wasserstein-1 distance (WD), mode score, kernel 112 maximum 
mean discrepancy (MMD), and classifier two-sample test (C2ST). Furthermore, the 
authors briefly describe four conditions they consider necessary for measures to adhere 
to. These are distinctiveness, robustness to transformations, efficiency, and detect-
ing overfitting. An experiment is conducted for each condition and presented measure 
to check if the latter suffices said conditions. In a concluding discussion, the strengths 
and weaknesses of the six measures are outlined. While insightful, the list of measures 
considered is minimal and outdated. Many novel measures have been presented in the 
meantime, especially data type-agnostic ones, which can be adapted to any type of data. 
Overall, our focus is pointed toward time series, not images.

In a recent article, Brophy et  al. [4] reviewed state-of-the-art GAN models for time 
series generation, augmentation, and imputation. They provide background on the 
workings of this learning paradigm and a classification of methods. The work primar-
ily covers the latest popular architectures but also features a short section on evalua-
tion strategies for this type of model. The overview contains some elementary measures, 
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mostly applicable only to individual time series but not datasets. As presented there, it is 
a listing of popular measures used, but neither a complete nor critical one. Furthermore, 
the categorization of knowledge is limited to “quantitative” and “qualitative”.

Lately, Eigenschink et  al. [15] proposed an evaluation framework for (mainly deep) 
generative models for synthesizing all kinds of sequential data: Text, audio, video, and 
time series. They aimed to overcome the isolated evaluation of generators in these areas 
and present a universally applicable set of criteria to check. Namely, they argue for five 
categories: Representativeness, novelty, realism, diversity, and coherence. The paper 
then goes into the current usage of measures in and the relevance of each category for 
the different data types. However, their table of measures for synthetic time series is very 
sparse, with six works reviewed and 13 measures found and limited to healthcare and 
mobility.

Recently, Borji [11] surveyed recent developments in GAN evaluation measures 
research, updating a previous paper on the topic [16]. Again, the work is not restricted 
to the time series domain but to one class of generation methods. Moreover, the focus 
is on image generation as it dominates research on synthetic data in general. It furnishes 
an extensive array of measures accompanied by concise explanations and numerous gen-
erated images. The measures are organized into sections based on their similarity rather 
than grouping them by applicable data types. No additional structure is provided. Thus, 
those relevant to time series need to be tediously searched for, while most measures we 
found were not covered there. Lastly, our analysis is tailored toward time series.

For the field of tabular data synthesis, Dankar et al. [17] introduced a scheme of four 
abstract criteria generated data may be tested on to demonstrate utility to end users: 
attribute fidelity, bivariate fidelity, population fidelity, and application fidelity. For each 
criterion, a representative measure was selected by the authors based on popularity and 
consistency after reviewing relevant literature. Still, only tabular data is considered here. 
Most of those measures cannot trivially be applied to time series.

Another related field of synthetic data is audio generation. Deep learning (DL) tech-
niques have been used excessively to generate artificial music inspired by human-made 
samples. In a survey by Ji et  al. [18], past developments and future directions of DL-
based generators are presented, including typical evaluation measures of the domain. 
The authors found that there is no unified evaluation criterion, neither present nor to be 
expected, as music is a form of art and thus made to appeal to humans. Instead, there are 
various suggestions for how to approximate human evaluation.

The division of evaluation strategies into human assessment and machine-computed 
measures can equally be found in text generation. In a survey by Fatima et al. [19], how-
ever, the evaluation by human language and domain experts is attributed little impor-
tance. This is due to the intensive labor and cost involved as well as subjectivity and 
susceptibility to human error, while quantitative measures are correlated well enough 
with human perception. Another study conducted by Iqbal and Qureshi [12] also sees a 
variety of evaluation measures present. However, it concludes that evaluation is still an 
open research problem, as many methods poorly correlate with human assessments.

Assefa et al. [20] presented a review of the current standing and developments of syn-
thetic data generation in finance, which addresses the evaluation of the similarity of 
real and generated datasets, among other things. They mention four works relevant to 
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evaluating time series, while our survey not only considers these works but is domain-
independent, includes far more measures, and analyses them.

Recently, Figueira and Vaz [13] published a survey on the generation and evaluation 
of tabular data with a focus on GANs. In a short section on evaluation measures, they 
list only seven that are also applicable to time series data, which our work contains as 
well. They do not provide sources for some of the measures and refrain from significant 
further analysis.

Summary of delimiters

Above, we identified several mismatches between this survey and prior works. Most 
address specific domains or data types other than time series [12, 14, 18, 19], while a 
transfer of findings is non-trivial. Another one addresses the evaluation of sequential 
data generation, but in too broad a scope to provide detailed insights for time series 
[15]. Others are tailored towards images or are data type-agnostic but limit their scope 
to GANs [4, 21]. Compared to the reviewed articles, our study goes into more detail in 
the time series domain, both in terms of works covered and subsequent organization of 
knowledge.

Approach
We first describe the terminology we use in our study in Subsection  “Terminology”. 
Afterwards, we outline our approach to literature search, selection, and the subsequent 
analysis part in Subsection “Acquisition and systematization of knowledge”.

Terminology

This section briefly defines the key terminology used in this work.

Definition 1 A “measure” is a qualitative or quantitative scoring function that assigns 
some sort of numerical or categorical value of quality to synthetic data or its generator.

In some works, the notation “metric” is used instead of measure. However, we opted 
for the latter since the former encompasses mathematical characteristics that might only 
hold for some of the proposed measures found in the literature.

Definition 2 Let Dr = {x1, . . . , xn} ⊆ X  be a dataset of individual data samples 
xi from data space X  collected by observing some real-world environment. Dr fol-
lows a distribution Pr , that is, xi ∼ Pr . A synthesis or generation of a new dataset 
Dg = {x1, . . . , xm} ⊆ X  or stream means to apply an (unconditional) generator function 
gθ : Z → X  m times. Z is some input that can trigger the generation of the desired sam-
ples and is typically just Gaussian noise. θ is a set of parameters that are learned using 
Dr . We call Dg synthetic or generated data.

For convenience, we reference additional literature on statistical and deep learning-
based data synthesis by [22] and [23], respectively. Examples of classic time series mod-
els include SARIMA and Holt-Winter [24], while deep learning models often utilize 
recurrence [25], adversarial learning [26], or autoencoding [27].
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Definition 3 We say a generator gθ is conditional if it is of the form gθ : Y × Z → X  , 
that is, it accepts an additional input to create a data object.

For instance, the additional input can be a class label or, specifically for time series, the 
previous time step xt−1.

Definition 4 Let Y be a stochastic process Y = {Yt} indexed over time t with random 
vectors Yt = (Y 1

t , . . . ,Y
d
t )

T of dimension d ∈ N
+ . Then, a time series X is a sequence of 

realizations xt = (x1t , . . . , x
d
t )

T of these random vectors for some t.

In practice, a time series is simply a finite set X = {xt | t is a point in time} of obser-
vations xt ∈ R

d , d ∈ N
+ , typically some measurement or event. For our purposes, we 

implicitly assume an ordering on X given by time t. Often, the observations are also 
equidistant, but not necessarily. Still, some generators and measures assume this. Also 
see Fig. 1 for illustrative examples.

Definition 5 Let X = {xt1 , xt2 , . . . , xtl } be a time series with xti ∈ R
d . Then, we define 

the length l of X as the number of observations, l = |X | , and the dimensionality as d, the 
number of dimensions of the associated Euclidean space Rd . Furthermore, if d = 1 , we 
say X is univariate, and otherwise, that is, d > 1 , multivariate.

We typically denote a general data space by X  , an unspecified data object by x ∈ X  , a 
time series by X ∈ R

l×d , and one of its channels Xc ∈ R
l×1 . Furthermore, D,Dr ,Dg ⊂ X  

are datasets and f : X → � an embedding function from the data space into some other 
feature space � , usually � = R

d . Lastly, many evaluation measures depend on distance 
functions δ : X × X → R

+
0  between two time series. While the authors of the reviewed 

works exclusively used the Euclidean distance (ED) and dynamic time warping (DTW), 

Fig. 1 Illustration of six exemplary time series. The top row depicts univariate sequences, where a is the 
exemplary real time series and the remaining two its syntheses. b can be considered a successful generation, 
demonstrating the same chaotic structure. c, however, has a clear seasonal pattern and linearly falling trend. 
The bottom row contains three multivariate time series with three channels (blue, orange, and green). d 
was sampled from the real data distribution,e, f from different synthetic ones. In this case, both are partially 
realistic: e accurately depicts the negative correlation between the blue and orange channel but with the 
green channel intersecting them. In (f), the correlation is positive, in contrast.
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respectively, it should be mentioned that some measures might improve in accuracy or 
execution time when combined with other time series distance functions or time series 
models. Examples include Bag-of-SFA-Symbols (BOSS) [28], complexity invariance dis-
tance (CID)time series shapelets [29], complexity invariance distance (CID) [30], and 
maximum shifting correlation distance (MSCD) [31].

Acquisition and systematization of knowledge

We conducted thorough searches for previous publications related to the evaluation of 
time series generation and synthesis. To this end, we applied the technique of Webster 
and Watson [32] to conduct a comprehensive literature review. The process consisted of 
four steps as described below:

Keywords and Data Sources The first step consists of a broad search for statement 
candidates based on the following keyword sets and their permutations:

• {autoencoder, generative adversarial network, boltzmann machine, ∅}
• {time series, data}
• {synthesis, generation, ∅}
• {evaluation, measure, metric, ∅},

leading to search queries such as “time series synthesis”, “data synthesis evaluation”, or 
“generative adversarial network time series generation”. We used Google Scholar,1 the 
IEEE Xplore,2 and ACM DL digital libraries.3

Conducting/Filtering In the second step, we went through the first 30 results of each 
search query in the order they were returned in, and filtered out papers whose titles and 
short summaries were not connected to time series generation or time series synthe-
sis evaluation, that is, being false positives. Then, we read the abstract of the remain-
ing papers and again selected all mentioning at least one of the keywords above. This 
resulted in 56 papers that were studied.

Extracting Data As a third step, we performed a detailed review of the selected 
papers, extracting name and definition of the measures contained as well as other infor-
mation relevant to our analysis, such as year of publication, the evaluation goals, and 
code availability. For the measure names, we use abbreviations from the original work if 
possible, and otherwise our own where deemed appropriate.

Synthesizing Knowledge Certainly, there are many ways to approach the analysis of 
the collection of measures found. Hence, we list the nine dimensions considered in this 
study in Table  1 and briefly justify each choice. They are ordered by appearance. For 
someone interested in finding a suitable measure quickly, this may serve as a guidepost. 
We suggest starting with the dimension of highest personal priority, going to the respec-
tive location in this article, and making an initial selection of measures. Afterwards, the 
reader may return to this table, select the next-most relevant dimension, and refine the 
selection repeatedly until satisfaction.

1 URL: https:// schol ar. google. de/.
2 URL: ieeex plore. ieee. org/ Xplore/ home. jsp.
3 URL: dl. acm. org.

https://scholar.google.de/
https://www.ieeexplore.ieee.org/Xplore/home.jsp
https://www.dl.acm.org
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Table 1 Guidepost for measure selection

Dimension Location Description

Sample-/distribution 
level

Sec. "Evaluation meas-
ures for synthetic time 
series"

While most measures operate on entire datasets, some can produce 
scores for individual samples as well. Hence, we partition the presen-
tation of measures into distribution-level measures, comparing entire 
datasets, in Subsection "Distribution-level measures" and sample-level 
measures, evaluating individual synthetic time series, in Subsec-
tion "Sample-level measures".

Dependence on 
embeddings

Sec. "Evaluation meas-
ures for synthetic time 
series"

Many measures, especially in the specialized evaluation literature, 
operate in the real vector space rather than on time series. In such 
cases, training a time series embedding model on each dataset is nec-
essary to prepare real and synthetic data to be received by a measure. 
However, this step certainly yields additional effort.

Code availability Tables 2 & 5 Naturally, researchers and practitioners alike are interested in a fast 
and easy evaluation. Having a publicly available implementation of 
the measure helps to facilitate that.

Conditional Genera-
tion

Tables 2 & 5 Some generators can be conditioned on additional inputs, such as 
class labels, resulting in labeled datasets. Hence, it is essential to dif-
ferentiate measures designed for such data from those that were not. 
Also see Definition 3.

Miscellaneous limita-
tions

Tables 2 & 5 It is also important to know whether a measure imposes further 
restrictions regarding data type, generator, additional inputs, and the 
like. These can be found in Column “Applicability”.

Categorization Subsec. "Taxonomy of 
evaluation measures 
and criteria"

The collection of measures is quite extensive. Hence, we propose a 
structure on said collection based on what we believe to be the pri-
mary concern for selecting a measure: The quality aspect(s) assessed 
by a measure, which we denote by evaluation criterion, such as fidelity 
or diversity.

Community adapta-
tion

Subsec. "Theory and 
practice of evaluation 
measures"

Popularity and publishing context are likely factors influencing the 
selection of measures. Hence, we analyze the impact measures have 
via the number of their reuses. To account for context, we propose 
differentiating the reviewed works into two groups.

Result classification Figure 22 Moreover, we report the type of result as either quantitative or qualita-
tive and integrate it into our categorization. In the latter case, we also 
include range and optimum, which can be found in the measure’s 
description in Section "Evaluation measures for synthetic time series".

Quantitative con-
straints

Subsec. "Requirements 
on the input data 
format"

Measures often impose limitations on the data they can operate on, 
specifically regarding time series length, dimensionality, and the size 
of input datasets. For instance, they must have constant length, be 
multivariate, or have a minimum amount of samples in each dataset.

Overview of our approach to analyzing the measures found and guidepost for measure selection. Listed are the dimensions 
considered for analysis, their location in the article, and their description

Evaluation measures for synthetic time series
As the list of measures proposed in the past is quite extensive, we subdivide them 
into two groups based on whether they can be applied to individual synthetic samples 
(referred to as “sample-level”) or only directly on a reasonably sized dataset (referred 
to as “distribution-level”). Hence, if a measure is calculated for a single real time series 
but requires an entire synthetic dataset, we deem it distribution-level. At the same time, 
this is a soft differentiation, meaning that many sample-level measures can be adapted 
towards the distribution-level and vice versa.

Distribution‑level measures

Below, we provide an introduction to each distribution-level measure found. This list is 
sorted alphabetically to foster a faster look-up for non-sequential reading. A summary 
can be found in Table 2.
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Agreement rate. This measure tracks the usability of the synthetic data in a down-
stream machine learning (ML) task, namely an improvised classification [33]. Figure 2 
depicts the computation of this measure with the help of a flow chart. Generally speak-
ing, an ML algorithm A is trained on synthetic data Dg and evaluated on real Dr to judge 
Dg ’s practical value. More specifically, each data sample is annotated by setting one of its 
own features (an attribute of tabular data, a channel for time series, etc.) as a class label. 
If the model is conditional, this step is redundant. Then, the real dataset is split into train 
and test components, Dr = (Dtrain

r ,Dtest
r ) . Afterwards, a classifier is trained separately 

on Dtrain
r  and the synthetic Dg , yielding two models, Mr and Mg , respectively. Finally, the 

agreement rate ragree is defined as the fraction of Dtest
r  for which both models make the 

same class assignments. More formally, it is

where 1{·} is the indicator function. The rate falls in [0, 1], with higher being better. An 
embedding is implicitly given by adjusting the classifier’s input layers for differently 
shaped inputs.

Algorithm comparison. Given real and synthetic datasets Dr and Dg , respectively, Lin 
et al. [34] first create train-test-partitions Dr = (Dtrain

r ,Dtest
r ),Dg = (Dtrain

g ,Dtest
g ) . For a 

downstream task T, of which one assumes it might be a good indicator for the utility 
of the synthetic data, they select a group A of algorithms and an appropriate perfor-
mance score s for T. Now, algorithm comparison is a measure that evaluates a synthesis 
on whether it preserves the ranking within A with regard to s when applied to task T. To 
give an example, T might be the classification of time series, the group of algorithms be 
given by A = { multi-layer perceptron, linear support vector machine, naive Bayes, deci-
sion tree, logistic regression} , and s be the F1 score. Note that this setting is only appli-
cable to labeled datasets, that is, conditional generators. A flow chart illustrating the 
procedure is given in Fig. 3. To apply this measure, they train each algorithm on Dtrain

r  
and Dtrain

g  , which returns two sets of trained models Mr and Mg . Second, Lin et al. [34] 
evaluate all models Mr ∈ Mr on Dtest

r  and Mg ∈ Mg on Dtest
g  . As a result, they obtain the 

same number of scores, grouped in two sets as well. To this pair of sets, one can apply 

(1)ragree :=
1

|Dtest |

∑

x∈Dtest

1
{

Mr(x) = Mg (x)
}

,

Fig. 2 Flow chart for measure agreement rate. The illustration depicts the application of agreement rate 
to real dataset Dr and generator function g. A denotes the set of ML algorithms, T the given task, and Mx a 
trained ML model for algorithm A. This figure serves as an orientation for other train on synthetic, test on real 
(TSTR)-based measures as well
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the Spearman rank correlation coefficient, which is the Pearson correlation coefficient 
(PCC) between the ranks of each model’s score within each group. As a result, we get a 
scalar value rs ∈ [−1, 1] , indicating to what degree each algorithm performs equally on 
the generated data relative to the other algorithms, compared to their performance on 
real data. The higher it is, the better.

Annealed importance sampling (AIS) is a quantitative measure for evaluating log-
likelihoods for decoder-based generative models [35]. By that, we mean parameterized 
neural networks defining a generative distribution by transforming samples from some 
simple distribution to the data manifold. AIS is a Monte Carlo algorithm commonly 
used to estimate normalizing constants, and employed here to estimate the log-likeli-
hood log p(xtest) the model assigns to a held-out test sample [36]. The measure requires 
an embedding f : X → R

k as well as a held-out test set (AIS ∈ R , the higher the better).
Approximate entropy (ApEn). This is a channel-wise entropy measure specifically 

for time series used to determine their regularity and complexity. For more details, we 
refer to [37]. In [38], the measure is applied to all available real and synthetic data, while 
Leznik et al. [9] sample subsets R ⊆ Dr with |R| = 500 and G ⊆ Dg with |G| = 10 . The 
latter approach is used to guide GAN training. ApEn yields a score for each channel 
of every sample in both the real and synthetic dataset. To retrieve a final measure, the 
individual scores are aggregated first via calculating the mean for each channel over all 
samples in each dataset separately, and then applying the squared difference between 
scores on real and synthetic time series over the channels. A smaller value indicates bet-
ter performance.

Augmentation test. This measure is designed to probe the usefulness of the synthe-
sized data Dg for augmenting the real data Dr [39]. To this end, the authors split the real 
data into training, validation and test sets Dr = (Dtrain

r ,Dval
r ,Dtest

r ) . The generator only 
gets to learn from the training set to create Dg . Next, the augmented dataset Daug is cre-
ated by merging Dtrain

r  with Dg , Daug := Dtrain
r ∪ Dg . Furthermore, an ML task is defined 

to measure the usefulness of Daug and an appropriate algorithm A selected. Training is 
conducted on Daug to learn a model M1 and separately on Dtrain

r  for a baseline model 
M2 , while validation is performed on Dval

r  in both cases. Validation and testing is con-
ducted with respect to some measure s appropriate for the selected task. In the context 

Fig. 3 Flow chart for measure algorithm comparison. Following Fig. 2, this flow chart visualizes the 
application of algorithm comparison to real dataset Dr and generator function g. T denotes the downstream 
task, A the chosen set of ML algorithms, s a performance measure for T, Mx a trained model, and finally sx a 
score. n := |A|
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of their work, the authors chose a classification task as they had a labeled dataset. In 
principle, other tasks that do not require labels are also imaginable. For instance, Jeha 
et al. [40] employ prediction, but without reference to [39]. The performance of M1 and 
M2 is measured in terms of precision and area under ROC curve (AUROC) on the test 
set. For Dg to be useful for augmentation, we expect s(M1) > s(M2) , the greater the dif-
ference the better. The applicability to labeled datasets depends on the choice of the task.

Average cosine similarity (ACS). This measure compares pairs of real and synthetic 
time series with respect to their cosine similarity and computes a score for each class by 
averaging [41]. In this setting, class labels for both datasets are required. Let Dr and Dg 
be real and synthetic datasets. Instead of calculating the cosine similarity directly on the 
time series, the authors define an embedding f : Rl×d → R

7·d for time series of length l 
and dimensionality d, which extracts a vector of seven features from each of the d chan-
nels and concatenates them. Namely, these are median, mean, standard deviation, vari-
ance, root mean square, maximum, and minimum. For each class c, ACS is defined by

where Dc
r ,D

c
g denote the samples of class c in dataset Dr and Dg , respectively 

(ACSc ∈ [−1, 1] , the higher the better).
Average euclidean distance (AED) focuses on the distribution of amplitudes in the 

frequency domain within the synthetic dataset [42]. The goal is to ensure preserva-
tion of inter-channel correlation within the synthetic time series. The measure tar-
gets those with two channels exclusively. To do so, they first transform all synthetic 
samples into the frequency domain and extract the most likely amplitude in both 
channels of each sample. Then, they interpret the two amplitudes of each sample as 
a coordinate in the 2D plane. This allows them to compute the distance to the line 
through the origin with slope 1. However, the calculation may fail on time series with-
out any seasonality.

Average Jensen-Shannon distance (JS distance) computes the distance between the 
distribution of each feature over the real dataset and the distribution of the correspond-
ing feature over the synthetic dataset [41]. More precisely, the measure assumes a parti-
tion of the datasets into (the same) classes, with the score being computed for each class 
separately. To this end, they first define the feature vector f(X) for each time series X via 
f : Rl×d → R

7·d , which is the same embedding used for ACS above. The seven features 
extracted are identical as well. Now, one can determine the distance between the distri-
butions of each of the 7d features and take the average to arrive at a score AJSDc for class 
c as

JSD′  is an approximation of the conventional Jensen-Shannon divergence (JS divergence) 
on distributions, taking just two sets of samples. Furthermore, Dc

r ,D
c
g denote the samples 

of class c in dataset Dr and Dg , respectively. It holds AJSDc ∈ R≥0 , the lower the better.

(2)ACSc :=
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∣
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∣
Dc
g

∣

∣

∣
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∣
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∣
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(3)AJSDc :=

7d
∑

i=1

JSD′({f (X)i | X ∈ Dc
r}, {f (X̂)i | X̂ ∈ Dc

g }).
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Average Wasserstein distance (AWD) compares the distribution of amplitudes in the 
frequency domain within the real dataset to that of the synthetic dataset [42]. The goal 
is to ensure the diversity with respect to the syntheses’ periodicity. To this end, fast Fou-
rier transform (FFT) is used to determine the most likely period in each channel of each 
sample. Afterwards, the WD between the amplitudes extracted from real dataset on one 
side, and synthetic dataset on the other, is calculated for each channel, and finally aver-
aged across channels. For the resulting real-valued score holds lower is better. However, 
the calculation may fail on time series without any seasonality and an order over the 
samples in both datasets is required, but not provided.

Classification accuracy score (CAS) is an evaluation method for conditional genera-
tive models proposed in [43]. Sometimes, they are also denoted by gθ (x|y) , where the 
typically random input z is left aside, and gθ is viewed as producing samples x condi-
tioned on an additional input y, here, a tag or class label. The idea is to train another 
model on the produced dataset for a downstream task, in this case classification using 
the class labels assigned during generation. The accuracy of this model on a held-out, 
real test set is the CAS for the generator. Compared to the score computed with a clas-
sifier trained on the real dataset, this measure tells if the utility of the synthesis is on par 
with the original. The entire procedure is depicted in Fig. 4. The closer the two are, the 
better the synthesis. Furthermore, it provides insight into problems with generating spe-
cific classes.

Classifier two-sample test (C2ST) is no measure specialized on the evaluation of 
synthetic data, but rather assesses whether two sets of data points are sampled from the 
same distribution [44]. As the name suggests, this is realized through a binary classifier 
c : X → [0, 1] combined with a hypothesis test. The basic procedure is also illustrated 
in Fig.  5. Specifically for the evaluation of generative models, these two sets are real 
dataset Dr sampled from P and synthetic set Dg sampled from Q. First, the authors split 
off a substantial part of Dr to train the generator on, denoted by Dgen

r  . Afterwards, they 
split the remaining part of Dr and Dg into two parts each, one for training the classifier 
and the other for calculating the p-value of the hypothesis test based on the classifica-
tion accuracy of c. This leaves them with Dr = (D

gen
r ,Dtrain

r ,Dtest
r ),Dg = (Dtrain

g ,Dtest
g ) 

with |Dtrain
r | = |Dtrain

g |, |Dtest
r | = |Dtest

g | . Additionally, each data point in Dtrain
r ,Dtest

r  is 
assigned label 0 and, similarly, Dtrain

g ,Dtest
g  label 1. After training c, one applies the model 

to Dtest := Dtest
r ∪ Dtest

g  and obtain classification accuracy

(4)Atest :=
1

|Dtest |

∑

(z,l)∈Dtest

1

{

1

{

c(z) >
1

2

}

= l

}

,

Fig. 4 Flow chart for measure CAS. The control flow goes from left to right. Ds represent datasets, “Clf”s 
classifier models, “acc” the accuracy measure itself, and As the actual accuracy values
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which acts as the two-sample test statistic. z is a data point, l its label, and 1{·} the indica-
tor function. If indeed P = Q , Atest should be around 12 , indicating a random assignment 
of samples to classes. For a predefined significance level s, one can now compute p-value 
p̂ = Pr(A ≥ Atest | P = Q) , that is, the probability that the test returns an accuracy A as 
high as it was, given that P = Q holds. Finally, if p̂ < s , one rejects this hypothesis, oth-
erwise we can confidently assume the equality. Besides this final result, C2ST has the 
additional advantage of interpretable intermediary results. On the sample-level, one 
can see which samples are identified with high confidence and thus cause the generator 
trouble, and which are already close to real data. On the distribution-level, one can also 
relate directly to Atest as a score to compare to other generators’ performance. Besides, 
an embedding is implicitly given by the classifier.

Computational complexity. With this term, we refer to a group of measures track-
ing the efficiency of generators concerning resource requirements and costs incurred. 
Although applicable on a sample-level in many cases, the usual approach is to com-
pute measures for many synthetic samples and break down the result by providing an 
expected time/resources/cost per sample. The scope can be limited to the generation 
process itself or may include training or preparation of the generator. Bindschaedler 
et al. [33] evaluate their model with respect to time taken for inference, producing over 
one million samples in total. They specify the experimental setup as well as the param-
eters tested. Kulkarni et al. [45] provided the CPU time of model training and sample 
inference each. Clearly, the goal is to provide generators with fast and reliable conver-
gence during resource-aware training while allowing quick and easy generation of high-
quality samples. Note that this is irrelevant to the end user of the synthetic data but can 
still be a limiting factor for many creators of synthetic data, which might indirectly affect 
quality.

Confusion matrix. This measure requires labeled real and synthetic datasets with a 
matching set of classes, that is, the same labels in both cases [46]. By aggregating the 
result of a downstream classification task in a confusion matrix, one can quickly deter-
mine classes of generated samples that cause the generator most trouble synthesizing. 
On the other hand, classes that are overwhelmingly correctly recalled by the classifier 
indicate that the generative model learned what sets such samples apart from other 
classes. Figure 6 contains two example matrices. First, a classifier is trained and validated 
on the real data. Afterwards, one samples a synthetic dataset and infers the class label 

Fig. 5 Flow chart for measure C2ST. Depicted are only the major parts of C2ST. Starting on the left, both 
input datasets are split into multiple subsets, before being used for training the generator, training the 
classifier “Clf”, or evaluating it, respectively. This is done with accuracy “acc”. Afterwards, the hypothesis test is 
applied for significance level s to get p-value p̂ on the right
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for each sample therein. Finally, we can compute and visualize the confusion matrix. 
Generally, a concentration of probabilities on the main diagonal is desirable. The classi-
fier model is expected to compute its own data embedding.

Context-FID is an evaluation measure that aims to quantify the similarity of real 
and synthetic time series distributions following the example of the existing FID score 
for image synthesis. Specifically, this approach replaces the image feature extractor of 
regular FID, InceptionV3 [47], with the encoder component of an unsupervised time 
series embedding model [48]. After the embedding model is trained for each dataset 
separately, it infers latent space encodings for a batch of real and synthetic samples, 
respectively. This is followed by computing the Fréchet distance [49] between these 
two subsets. Figure  7 depicts the essential idea. Unfortunately, the authors do not 
provide details on the training procedure for the embedding model. In any case, the 
lower the score, the closer the two distributions presumably are and, therefore, the 
better the synthesis, with 0 being the best [40].

Correlation structure. This measure compares the correlations found in multivari-
ate time series of the real dataset to those of the synthetic dataset. Initially, Remlinger 
et  al. [50] described it as the “term-by-term mean squared error (MSE) between 
empirical correlation from reference samples on one side and from generated samples 
on the other side”. However, this is very vague, as it remains unclear which correlation 
is used, how it is applied, and how the MSE are aggregated. While Boursin et al. [51] 
propose covariance matrix for correlation and average as aggregation, it still does not 
specify the arrangement of input vectors for the covariance from the three dimen-
sions samples, time steps, and channels. Hence, as code is unavailable as well, a defi-
nition cannot be given here.

Coverage. Naeem et  al. [52] proposed this measure to improve upon the recall 
measure by a change of perspective from regions around synthetic samples to such 
around real samples as follows. The measure is calculated via the indicator function 
1{·} on sample level, which is then aggregated over all real samples x ∈ Dr . The func-
tion returns 1 if there exists a synthetic sample x̂ within a k-dimensional ball B around 

Fig. 6 Example for measure confusion matrix. Two confusion matrices are shown for the classification of 
labeled synthetic data objects into six classes of activities. White indicates a PCC of 0, saturated orange 1, e.g. 
the main diagonal in the ideal matrix
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the real sample, else 0. Its radius is given by the distance to the K th-nearest neighbor 
(dNNK  ) in Dr . An example is given in Fig. 8. Formally, coverage C is defined by

Like recall, coverage falls into the range [0, 1] where 1 is best and requires an embedding 
f : X → R

k into Euclidean space. The measure is not to be confused with the category 
of the same name.

Data-copying test (CT ) checks a particular type of overfitting behavior of generator gθ 
to the real data [53]. Data copying refers to the tendency to reproduce minimal variations 
of a subset of the data instead of covering the entire true data distribution. In this regard, 
it differs from over-representation of a certain data region. In preparation, they split the 
real dataset into a train set, which may be presented to the generator, and a held-out test 
set for evaluation only, Dr = (Dtrain

r ,Dtest
r ) . Additionally, they sample the generator to cre-

ate a synthetic dataset Dg . Assuming that overfitting manifests itself in synthetic samples 
that are generally too close to training data, the measure employs a hypothesis test on the 
average distance between the train and test datasets, respectively, the train and synthetic 
datasets. H0 suggests that these are approximately even. To improve regional awareness, 
the authors apply the test on each set of a data space partition. Without further details, this 
finally yields a measure CT (D

train
r ,Dtest

r ,Dg ) . The only requirement is a distance function 
on the data points. For time series, this may be DTW, for instance. In principle, one can use 

(5)C :=
1

|Dr |

∑

x∈Dr

1{∃x̂ ∈ Dg : x̂ ∈ B(x, dNNK (x,Dr))}.

Fig. 7 Flow chart depicting the steps of Context-FID. The process starts on the left with the two input 
datasets and ends with the computed score on the right. The gray-shaded area represents the steps repeated 
for each sampled data batch. Each iteration results in the Fréchet distance for the respective batch. These 
intermediate values are aggregated using mean and standard deviation

Fig. 8 Visualization of the computation of coverage and density [52] using k-dimensional balls and the 
distance to the K th-nearest neighbor for K = 2
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embeddings for data spaces that do not support an adequate distance calculation. Further-
more, it holds CT ∈ R , where 0 is optimal, Ct ≪ 0 signals data copying, and Ct ≫ 0 implies 
model underfitting.

Density is intended to improve the precision measure by putting less weight on outli-
ers in the real data. Naeem et al. [52] calculate the measure via indicator function 1{·} on 
sample level, which is then aggregated over all real samples x and finally synthetic samples 
x̂ . The function returns 1 if the synthetic sample is within a k-dimensional ball B around 
the real sample with dNNK as radius, else 0. An example is given in Fig. 8. In summary, one 
obtains density D by

Unlike precision, density may take values beyond 1, D ∈ R≥0 . However, it still holds that 
higher is better and an embedding f : X → R

k is required.
Dependence scores subsume two scores designed to compare the dependence proper-

ties of the real and synthetic time series [54, 55]. Note, however, that both of them are only 
applicable to an individual, univariate real time series X ∈ R

l and a set Dg of its syntheses. 
First, denote the autocorrelation Corr : Rl × R

l → [−1, 1] of the time lag τ ≤ l between 
the current time step t and a previous step t − τ of time series X for all possible t. Formally, 
they define the autocorrelation function (ACF) as

Both scores build on these intra-time series correlations. The first variant, sACF , uses the 
ACF as defined above, the second one, sLE , modifies the function slightly by comput-
ing the correlations between the squared lagged times series and the time series itself, 
that is, Corr(X2

t−1,Xt), . . . , Corr(X
2
t−τ ,Xt) . Hence, one obtains for the ACF variant the 

definition

The formulation of sLE is analogous using the modified autocorrelation function 
( sACF, sLE ∈ R≥0 , where smaller is better).

Discriminative score is based on the performance of a binary classifier on a combined 
synthetic-real dataset [26]. First, each sample from real and generated data is labeled either 
“real” or “synthetic”, depending on where it was taken from. A dataset with two classes is 
created from these labeled samples and split into train and test sets again. Then, the authors 
train a simple two-layer long short-term memory (LSTM) network in standard supervised 
fashion to classify the merged dataset. They report its accuracy on the held-out test set 
minus 0.5 as discriminative score. Hence, it ranges from an optimal 0.0 to a worst 0.5. We 
depict this procedure in Fig. 9. An embedding is implicitly given by adjusting the classifier’s 
input layers for differently shaped input. An application to labeled data is impractical.

(6)D :=
1

K
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Distribution of reconstruction errors (DRE). Based on the nearest neighbor 
approach, this measure is intended to detect a generator just memorizing and reproduc-
ing noisy versions of its training data. While others do this by calculating the dNNK  (for 
K = 1 ) for all synthetic samples, Esteban et al. [56] suggest a supposedly less computa-
tionally expensive approach. The idea is to put the actual Dg aside and explicitly generate 
the nearest synthetic neighbor for all x ∈ Dr , and then test if the neighbors of the train 
set samples of Dr are systematically closer than those of held-out test samples Dtest

r  . This 
is implemented by minimizing the reconstruction error Lr(x) between x and a generated 
neighbor, given by

where K : X × X → R is the kernel function used in MMD. Moreover, gθ is the (poten-
tially) parameterized generator function and we have z ∈ Z as its input. However, find-
ing z such that gθ (z) is the approximate nearest neighbor still requires performing this 
optimization to approximate convergence for each x. Only then, given these x̂ = gθ (z) , 
the authors can compare the results for Dtrain

r  , which gθ was trained on, with Dtest
r  , which 

serves as a baseline. Namely, they test if the distribution of the reconstruction errors 
over Dtrain

r  is significantly different from that over Dtest
r  . If that is the case and the aver-

age reconstruction error is lower for the train than the test set, one can be confident that 
the generator memorized the data. In order to test the hypothesis of divergence, they 
employ the Kolmogorov-Smirnov two-sample test with a predefined significance level. A 
produced p-value below this level supports the hypothesis, while a good, generalizing gθ 
should fail the test.

Distribution visualization. With this term, we refer to a group of seven evaluation 
measures that employ some data transformation, feature extraction, or representation 
learning technique to map the data into a low-dimensional space. The image of both 
datasets in this space can then be visualized and inspected by a human judge. Hence, this 
is not about the visual assessment of individual time series but the dataset collectively. 
Usually, the synthesis is considered successful if the arrangement of real sample images 
matches that of synthetic samples. If they diverge strongly in shape or sample density, 
the generator performed poorly. The most prominent examples of such mappings are 
principal component analysis (PCA) and t-distributed stochastic neighbor embedding 
(t-SNE) [26]. For convenience, we depict such a visualization on the right in Fig.  10. 
Without going into further detail, we just mention other measures here: QQ-plots and 
scatter plots are used in [57] and [45], respectively, to visually compare the similarity of 

(9)Lr(x)(z) := 1− K (gθ (z), x),

Fig. 9 Depiction of measure discriminative score. The control flow starts with the input datasets on the left, 
and ending with the final score on the right. The procedure is very similar to C2ST
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sets of geographic trajectories. Pastor-Serrano et al. [58] visualize the latent space dis-
tribution of their autoencoder model. Wang et al. [39] propose another approach called 
dimension-wise probability, which is similar to [59]. Both Pan et al. [60] and Xu et al. 
[61] evaluate their methods by computing and visualizing probability density functions 
(PDFs) of marginal distributions.

Distributional metric. The measure proposed in [55] compares real data distri-
bution P and synthetic Q via their respective empirical probability density func-
tions (PDFs) fP and fQ . These are determined using a binning approach. Let d 
be the dimensionality of the time series and 0 ≤ c < d be a channel. Further, let 
Bc = {B1

c , . . . ,B
n
c } be a binning of the real time series dataset Dr for channel c, such that 

∀B ∈ Bc,X ∈ D :
∣

∣{xt ∈ X | xct ∈ B}
∣

∣ ≈ 20 for suitable n. Naturally, this requires the time 
series to be sufficiently long to define a reasonably accurate density function over the 
binning. The construction of B is not further specified. Instead, they define the empirical 
PDF fc : Bc → R≥0,Bc �→ |Bc| for each c separately. The authors follow this procedure 
for both real dataset Dr and its synthesis Dg , which gives them functions f rc  for P and f gc  
for Q, respectively. However, they reuse the bins defined for Dr on Dg . This gives them a 
measure Mepdf for the absolute difference of all these pairwise empirical distributions in 
the form of

It holds that Mepdf ∈ R≥0 , where lower is better.
Distributional scores. The term refers to two closely related measures to capture the 

propensity of the generator to synthesize extremal values [55]. However, it is defined 
in a way that allows direct application to real time series Dr with |Dr | = 1 , that is, the 
comparison of (an arbitrary number of ) synthetic time series to a single original, for 
instance when the latter is extremely long, while each synthesis is relatively short. Let 
f ∈ {skew, kurtosis} denote the higher moment used in the measure. The remainder of 
their calculation is identical. For real time series X ∈ Dr and synthetic dataset Dg , define 
the respective measure by

(10)Mepdf :=
1

d

∑

c

∑

B∈Bc

∣

∣

∣
f rc (B)− f

g
c (B)

∣

∣

∣
.

Fig. 10 Two examples of distribution visualization measures: a t-SNE and b QQ-plot
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Xc, X̂c denotes the cth channel of the respective time series. DSf ∈ R≥0 , lower is better.
Duality gap. Based on concepts from game theory, duality gap is a distribution simi-

larity measure for guiding and evaluating GAN models. Although data type-agnostic, 
it relies on the presence of a generator and discriminator positioned as opponents in a 
zero-sum game. In this context, duality gap measures the sub-optimality of both entities’ 
performance compared to an equilibrium, a game state in which no entity can increase 
its reward unless the opponent behavior changes as well. The game objective, which 
measures their performance, was left generic by the authors. For instance, it might be 
the accuracy of a separate binary classifier trained on real and generated data. How-
ever, this also means that researchers need to agree on a universal classifier architec-
ture to make results comparable between publications. Figure 11 contains the specifics. 
The measure is always a non-negative real number, 0 is optimal. Note that duality gap 
is tailored towards GANs and primarily indicates a model’s convergence or divergence, 
not the quality of generated samples [62]. Recently, Sidheekh et  al. [63, 64] proposed 
two variants called perturbed and proximal duality gap, which are more accurate than 
the plain version, especially in cases where the two-player game need not converge to a 
Nash equilibrium for the generator to model P.

Feature-based correlation analysis. In order to analyze the correlation structure 
between the channels of individual time series, Seyfi et al. [42] utilize a feature extrac-
tion tool called pycatch22 [65]. Specifically, it computes 22 numerical features for 
each channel of all multivariate time series in both Dr and Dg , which are expected 
to be of equal length and dimensionality d > 1 . Afterwards, for each pair of chan-
nels (Xi,Xj) with 1 ≤ i < j ≤ d , a 22× 22-matrix of Pearson correlations between the 
extracted features is computed for real and synthetic dataset each. This is across the 
sample dimension. Now, for fixed (i,  j), the matrices for real and synthetic data are 
compared with mean absolute error (MAE), MSE, Kendall’s τ , Spearman’s rank cor-
relation, as well as Frobenius norm. The final score is the quintuple of these statistics 
averaged across all channel pairs (i, j), where lower is better.

FID was proposed in [66] as evaluation measure for synthetic images. It utilizes an 
inception model for extracting features from the samples. The model learns a Gauss-
ian distribution with mean m and covariance matrix C for the real data (mP ,CP) and 
synthetic (mQ,CQ) . To these “inceptions”, the Fréchet distance df  is applied:

The resulting score measures the similarity between the two Gaussians and therefore, 
by approximation, between the real and synthetic data distribution. Generally, it is FID 
∈ R

+
0  , where lower is better [67].

Hedging effectiveness. In the financial world, hedging refers to the effort to reduce 
potential losses at the expense of gains achieved in transactions or speculation. In 
order to evaluate different time series generators with respect to their ability to pro-
duce useful synthetic option prices, Boursin et al. [51] propose hedging effectiveness. 
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The measure is based on the accuracy of a neural network that was taught hedging 
strategies using the synthesized option prices, compared to the potential losses with-
out hedging and the help of synthetic data. The score falls in the range [0, 1], where 
greater is better.

Improved precision (pi) builds on the notion of precision measures for two distribu-
tions introduced in [68]. This alternative definition, however, is more straightforward and 
based on the binary question: “Does a given synthetic sample lie in the support of P?”. This 
idea is illustrated on the left in Fig. 12. In this regard, the support is estimated using the 
union of regions around all samples of the respective dataset. Practically, the authors utilize 
k-dimensional balls B around real samples. Furthermore, the question gives rise to the indi-
cator function 1(·) seen in the definition of coverage and density before. The same is true for 
the distance to the Kth nearest neighbor, which serves as B’s radius. Although Sajjadi et al. 
[68] have chosen another syntax, we stick to the ball notation for consistency. For real data-
set Dr and synthetic equivalent Dg , we define (pi) as

The measure is calculated in the k-dimensional metric space, requiring a prior embed-
ding f : X → R

k . A neighborhood size of K = 3 and dataset sizes |Dr |, |Dg | ≥ 50 000 
are recommended for reliable scores, as indicated by tests on image data performed in 
[69].

(13)pi(Dr ,Dg ) :=
1

∣

∣Dg

∣

∣

∑

X̂∈Dg

1{∃x ∈ Dr : x̂ ∈ B(x, dNNK (x,Dr))}.

Fig. 11 Flow chart for measure duality gap. The inputs are the real dataset Dr and a GAN to be optimized. To 
this end, we take the generator and discriminator parameters θg and θd from the trained model, respectively. 
Then, we seek the worst-case (i.e., best performing) D for fixed θg in the left branch and worst-case G for 
fixed θd in the right branch. This is done iteratively via gradient descent and the objective M. The latter is also 
applied to the resulting Gworst and Dworst to obtain the final score
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Improved recall  (ri) . As the name suggests, this is the compliment measure to improved 
precision. In order to approximate the fraction of the real data distribution captured by the 
generator, Kynkäänniemi et al. [69] reduce the problem to an aggregate of binary decisions 
on the sample level, as seen before. Hence, the question proposed in this case is “Does a 
given real sample lie in the support of Q?”. This idea is illustrated in Fig. 12 on the right. We 
get a definition of improved recall exactly mirroring Eq. 13:

Analogously, the measure is calculated in the k-dimensional, real-valued feature 
space, requiring a prior embedding f : X → R

k [69]. The recommendations K = 3 , 
|Dr |, |Dg | ≥ 50 000 hold.

Intra-class distance (ICD). Given an additional sample-level distance d, this measure 
represents the average similarity of the samples within a dataset, in this case applied to a 
subset G of the generated time series Dg , |G| = 10.

The higher the distance the better, that is, more diverse the synthesis. Leznik et al. [9] 
use the ED for d.

JS divergence on marginals. Generally speaking, JS divergence measures the dis-
similarity between two (empirical) distributions. Naturally, one can employ it on data 
distribution P and synthetic distribution Q. However, for joint distributions P, Q over a 
high dimensional space, this is computationally infeasible. Therefore, most approaches 
use an embedding step beforehand to map the data points into a lower dimensional 
space. Another way is to work with the marginal distributions of P, Q instead, at least in 
cases where they can be properly identified. An example where this works well is given 

(14)ri(Dr ,Dg ) :=
1

|Dr |

∑

x∈Dr

1{∃x̂ ∈ Dg : x ∈ B(x̂, dNNK (x̂,Dg ))} = pi(Dg ,Dr).

(15)ICD(D) :=

∑

x∈D

∑

x′∈D d(x, x′)

|D|2

Fig. 12 Visualization of measures improved precision and recall. Visualization of the concepts of improved 
precision and recall as proposed by Kynkäänniemi et al. [69]. Improved precision measures the fraction of 
synthetic samples ( Dg ) located within the support of P. Vice versa, improved recall approximates the fraction 
of real samples ( Dr ) located within the support of Q 
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in a paper on synthesizing human mobility trajectories by Ouyang et al. [57]. Therein, 
marginals are inferred from a semantic point of view. They define four distributions less 
complex than P, among them the visiting probability over all locations in the geographic 
area of interest. Each of the four distributions can be estimated using Dr for the real data 
and Dg for the synthetic. Moreover, the authors split Dr into two and compute the JS 
divergence on a held-out test set, which the generator has not seen during training, and 
the synthetic dataset. As a result, we get a divergence value for each marginal defined 
and thereby compare different generators on a statistical, yet informative level.

Length histogram. With this term, we title a measure for time series datasets and 
generators respectively containing and producing sequences of variable length. The 
intention is that the distribution of the lengths in both real and synthetic datasets should 
match. As the underlying space of realizations is finite and rather dense in practice, the 
approach chosen here is simply to compute the histogram of time series lengths in both 
datasets. By superimposing them in one figure, one can visually compare the histograms 
and find differences [34].

Manifold topology divergence (MTop-Div). Similar to JS divergence or WD, this 
measure represents the discrepancy between two distributions, P and Q. Here, these 
are data and model distribution, respectively. MTop-Div is different in that it is topol-
ogy-based and views the real data and synthesis as manifolds, on which their respective 
datasets are point clouds. These manifolds are estimated using a simplicial complex, a 
concept of topology. To estimate the similarity between the two manifolds, Barannikov 
et al. [70] propose a mathematical tool called Cross-Barcode, which quantifies the evo-
lution of topological features over multiple scales. The details require quite extensive 
mathematical explanations. Hence, we omit them here and refer to [70] instead. For the 
same reason, we provide a high-level depiction of the measure in Fig. 13. We know that 
MTop− Div ∈ R≥0 , where smaller is better. Since the measure operates on the k-dimen-
sional real space, a data type-dependent embedding f : X → R

k is required.
Marginal metrics. This is a combination of three classical statistics used to roughly 

compare the marginal distribution of each time step in the real dataset to its coun-
terpart in the synthetic dataset [50]. Namely, these are the average, 95th percentile, 
and 5th percentile, which we refer to as s1, s2, s3 , respectively, below. With that, define 
marginal metrics as the triple

where

Above, Xc
t  denotes the value in channel c at step t from dataset Dδ.

Maximum mean discrepancy (MMD). For a class F  of functions f : X → R , 
MMD is defined as

(16)MM(Dr ,Dg ) :=

(

1

T

T−1
∑

t=0

(si(Vr)− si(Vg ))
2

)

i=1,2,3

,

(17)Vδ :=
{

Xc
t | 0 ≤ c < d ∧ X ∈ Dδ

}

.

(18)MMD(F ,P,Q) = sup
f ∈F

(Ex∼P[f (x)] − Ey∼Q[f (y)]).
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This statistic computes the difference between the mean function values of the real dis-
tribution on the one hand, and the model distribution on the other and returns it as a 
measure for dissimilarity [71]. Later, Esteban et al. [56] proposed a new approximation 
for P and Q denoted MMD≈ using a kernel function K : X × X → R applied to Dr ,Dg . 
This essentially boils down to learning an embedding and a dissimilarity function for 
time series in one. A lower score is better.

Maximum real to synthetic similarity (Max-RTS). This is meant to be an 
extreme-case similarity measure, determining the cosine similarity between the real 
and synthetic sample closest to each other [46]. A visual aid is provided in Fig. 14. The 
intuition is that individual synthetic samples must not get too close to real ones, in 
order to prevent data leakage into the synthesis and ensure generalization. Let Dr ,Dg 
be the real and synthetic datasets, respectively. Then, Max-RTS is given by

Since the cosine similarity is defined on vectors, an embedding f : X → R
k is required. 

We have Max-RTS ∈ [−1, 1] and theoretically, the lower the better.
Membership inference attack (MIA). In general, this term refers to the process of 

determining whether a specific sample from the data distribution is present in the train-
ing set used for learning a given ML black-box model [72]. One way to approach this 
is by training an adversarial model to differentiate the behavior of the target model on 
inputs from the train set versus other samples. In other words, this can be used to meas-
ure the information leakage on sample membership by looking at the target model’s out-
puts. In this case, the goal is to infer (parts of ) DR given the synthesized data Dg , as 
depicted in Fig. 15. [73] uses this attack as a means to detect presence disclosure. The 
work mentions a range of real samples, a threshold for the mean ED between “all” sam-
ples, and the number of generated samples being utilized. However, the work fails to 
provide more details on how the attack is conducted. If we were to guess, the author pro-
poses to calculate the mean ED on Dr and filter those real samples that are closer to any 

(19)Max-RTS := max
x∈Dr ,x̂∈Dg

{

x · x̂

||x||2 · ||x̂||2

}

.

Fig. 13 Schematic depiction of measure MTop-Div. First, batches are sampled from each dataset and 
distance matrices m calculated. Afterward, one utilizes both matrices to calculate the Cross-Barcode between 
the real and synthetic batch using auxiliary functions computing the Vietoris-Rips complex (VR) of some 
matrix M and the persistence intervals of a complex C in dimension i. The result is a set of intervals marking 
the beginning and ending of topological features in the simplicial complex. The sum of all interval lengths is 
taken as an indicator of similarity. After repeating this process n times, the final score is given by the average 
over all “mtds”
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x̂ ∈ Dg than the threshold allows. One may calculate a score in [0, 1] from this fraction 
of real samples. However, one needs access to Dr for this, which does not conform with 
the strict black-box assumption. Kulkarni et al. [45] are more specific and reference the 
location-privacy and mobility meter in [74]. This approach implements both a location-
sequence attack and a membership inference attack. The former determines the accu-
racy with which an attacker can reconstruct trajectories, that is, time series capturing 
locations of an entity over time, in the real dataset. The latter tries to infer the identity of 
the entity contributing to a trajectory. However, these are domain-specific tests.

Memorization-informed Fréchet inception distance (MiFID). As the name sug-
gests, this measure is an extension to the “classical” FID, addressing the issue of mem-
orizing and regurgitating parts of the real dataset instead of producing novel samples. 
Hence, for real dataset Dr and synthesis Dg , MiFID is given by the following combina-
tion of a memorization penalty mτ and the FID itself:

To construct mτ , Bai et al. [75] proposed a memorization distance s between the real and 
synthetic dataset. First, they fall back to the similarity between individual samples as per 
the cosine similarity, followed by a minimum over the real data and averaging across all 
synthetic samples. Formally, this is described by

(20)MiFID(Dg ,Dr) := mτ (Dg ,Dr) · FID(Dg ,Dr).

Fig. 14 Conceptual visualization of measure Max-RTS. This figure contains a small example on how to 
compare real dataset Dr (orange) and synthetic dataset Dg (cyan) using Max-RTS. Points denote data objects 
located in Rd , the dashed arrows their respective position vectors. Among all pairs of orange and cyan points, 
x and y are the closest in cosine similarity

Fig. 15 Procedure and artifacts for a MIA. This diagram sketches the procedure and artifacts for a MIA. In 
three boxes, we list the input to the attack, the method used to conduct it, and its output, respectively. 
Depending on whether the attack was successful, one needs to adjust synthetic data and generator or can 
release them in good conscience
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Using this function, define mτ for an ǫ > 0 as

τ serves as a threshold above which similarity is considered overfitting and thus penal-
ized inversely with respect to the memorization distance. Below this threshold, the FID 
is not modified. Choosing suitable values for parameters τ and ǫ is up to the user. For 
MiFID, a lower value is better. Analogous to FID, this extension operates on the real-
valued vector space and therefore needs an embedding f : X → R

k for all other data 
spaces.

Minimax loss is a derivative of the duality gap measure but with the motivation to 
assess synthesis quality and generalize to all kinds of generation methods. Based on the 
same idea of an equilibrium of two entities in a min-max game, the implementation 
rather comes across as merely evaluating the generated dataset through another, dis-
criminative model very much like discriminative score does. More precisely, Grnarova 
et al. [62] suggest a split of real and synthetic data into three subsets each, one for train-
ing G, one for finding the “worst case discriminator” Dworst , and one for determining 
the utility M for G. In this regard, Dworst is the best classifier network obtainable with a 
predefined architecture, that is, an optimized model. The abstract function M is given by 
the classification loss of Dworst on the third pair of real and synthetic subsets. The higher 
the loss, or inversely, the lower the classification accuracy, the better G performs. We 
assume that the classification model implicitly computes an embedding. The application 
to labeled datasets is impractical. CAS is more suited to this task, according to [62].

Multi-sequence aggregate similarity (MSAS) is a similarity measure for normal-
ized time series built around an additional statistic f : Rl → R , which maps a column 
onto a scalar value [76]. Examples include length, mean, and standard deviation. Fur-
thermore, it is restricted in its application by the assumption of a generator of the form 
gθ : Rl×d → R

m×d , where the input is a seed sequence of length l and d channels and the 
output one with length m and the same dimensionality. Hence, the algorithm can iterate 
the pairs (X , X̂) of real time series and one of its syntheses, each channel separately. In each 
iteration, one computes f (X), f (X̂) . In order to compare feature distributions, one applies 
the 2-sample Kolmogorov-Smirnov test on the set of features computed on the real samples 
and the one computed on the synthetic samples. This statistical test returns the probability 
that the two sets are taken from the same distribution. The scores for the columns are aver-
aged to finally arrive at MSAS ( MSAS ∈ [0, 1] , where higher is better).

Neural network divergence (NND) is a measure originating from the evaluation 
of image synthesis, but is at its core data type-agnostic [77]. Like WD or FID, it tries to 
estimate the discrepancy D(P,  Q) of real and synthetic distributions using finite sets of 
samples Dr and Dg , respectively. The idea is to use the loss of a neural network trained 
on discriminating Dr and Dg as empirical proxies for P and Q, respectively. The model 
architecture must be standardized across the generators for evaluation. In order to 

(21)s(Dg ,Dr) :=
1

|Dg |

∑

x̂∈Dg

min
x∈Dr

{

1−
x̂ · x

∣

∣

∣

∣x̂
∣

∣

∣

∣

2
· ||x||2

}

.

(22)mτ (Dg ,Dr) :=

{ 1
s(Dg ,Dr )+ǫ

if s(Dg ,Dr) < τ ,

1 otherwise.
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apply this measure, both real and synthetic data need to be split into train and test sets, 
Dr = (Dtrain

r ,Dtest
r ),Dg = (Dtrain

g ,Dtest
g ) . The generator may only use Dtrain

r  . Now, the 
neural network is trained on a supervised classification task, differentiating the two train 
sets. The classification loss during inference on the test sets is then used as an empirical 
discrepancy measure estimating D(P, Q). To foster generalization of the synthesis even for 
a rather small Dtest

r  , Gulrajani et  al. [77] propose to use proportionally bigger generated 
datasets, Dtrain

g ≫ Dtrain
r  , Dtest

g ≫ Dtest
r  in order to detect an overfitting generator. This 

generalization aspect sets NND apart from prior statistical discrepancy measures like FID 
( NND ∈ R≥0 , and the smaller the better).

Number of statistically different bins (NDB) measures the degree to which a generator 
over-emphasizes particular modes of the data distribution within its synthesis, neglecting 
other, less prevalent regions [78]. This is commonly referred to as “mode collapse” and a 
major concern among GANs. The idea is to employ a two-sample hypothesis test assum-
ing that in every region of the data space, real distributions P and Q should be equal with 
respect to a significance level of s = 0.05 . In preparation for this, the k-means cluster-
ing algorithm is applied to the real Dr in order to create a partition � , creating k subsets 
referred to as “bins”. The synthetic Dg is split into k bins in a similar fashion using the cluster 
centers of � . Alternatively, one can think of this binning as a discrete probability distribu-
tion. Given a sufficient number of samples falling into each bin, the distribution of real sam-
ples in bin π , Pπ , can be compared to that of synthetic samples, Qπ , using said hypothesis 
test. We get a score Zπ and can compute the number of bins, for which the score indicates a 
significant deviation of Q from P as

where 1{·} is the indicator function. For variable k, it is NDB/k ∈ [0, 1] , where lower is 
better. Figure 16 depicts a high-level summary. Besides, one can also compare the rel-
ative sizes of corresponding bins Pπ and Qπ . The binning requires a distance function 
which may directly be applied in the data space (e.g., DTW for time series), or the fea-
ture space after an embedding.

NDB over-representation and under-representation (NDB-over/under). This 
measure is an adaption of the NDB measure in [78], intended as a complement to data-
copying test [53]. The latter is unable to measure over- and under-representation of indi-
vidual regions in the data space caused by an ill-fit generator, which can be countered 
with the help of NDB. To this end, the data space – or feature space after an embedding – 
is partitioned into regions. This time, the null hypothesis is the assumption that data dis-
tribution P and model distribution Q are equal in every region π , H0 : P(π)− Q(π) = 0 . 
By applying a statistical test on H0 , a region-specific score Zπ is calculated. By comparing 
each Zπ with a significance level s, one can determine the number NDB-under (resp. 
NDB-over) of regions under-represented (resp. over-represented) by the generator as 
follows

For short, we call this pair NDB− over/under ∈ N
2 with (0, 0) being optimal.

(23)NDB =
∑

π∈�

1{Zπ > s},

(24)NDB-under =
∑

π

1{Zπ < −s}, NDB-over =
∑

π

1{Zπ > s}.
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Outgoing nearest neighbor distance (ONND). Let G ⊆ Dg be a random subset of the 
synthetic dataset and d ∈ {ED,DTW} be a distance measure. For each real time series X, 
the ONND is given by

Both Arnout et al. [79] and Leznik et al. [9] use PCA as an embedding before employ-
ing the function, but this is optional. The smaller the distance, the better. To get a scalar 
score for Dr , one can take the mean over all X, whereas in reviewed works, it is used dur-
ing training.

Pairwise Pearson correlation (PPC). This measure aims to facilitate the visual compari-
son of real and synthetic time series datasets via heat maps of their internal pairwise cor-
relation [5, 39]. Let D be a time series dataset with time series X ∈ R

l×d of length l and 
dimension d. Further, let X ′ ∈ R

l·d denote the concatenation of all channels of X. Now, they 
construct l · d ordered sets of points across D, such that set Si contains the value of X ′ at 
position i for the entire dataset, that is, Si := [X ′

i | X ∈ D] . At this point, one can compute 
the set C of pairwise correlations between these sets with

In this case, these are not the correlations between time series, but across sets of points, 
one from each times series in the dataset. They do the above for both real data Dr and 
synthetic Dg and get Cr and Cg , respectively. Finally, they can arrange each one in an 
ld × ld grid, visualize both using heat maps and compare the two. An examples is pro-
vided in Fig. 17.

Precision and recall for distributions (PRD). This measure does not compute a single 
score but rather a set PRD(P, Q) of precision-recall pairs between data distribution P and 
model distribution Q [68]. PRD is interpreted as a precision-recall curve using the points of 
the set farthest from the origin. Some examples are provided in Fig. 18. Although its com-
putation is different from the formal definition and only an approximation of this curve 
is needed in practice, we try to convey the intuition here and thus stick to the definition. 

(25)ONND(X) = min
X̂∈G

d(X , X̂).

(26)C := {PCC(Si, Sj) | 1 ≤ i, j ≤ l · d}.

Fig. 16 Visualization of measure NDB. We use two small 2-dimensional datasets (crosses and circles) as an 
example. The first step is to cluster the data, in this case into two bins A and B. Afterwards, one can apply a 
hypothesis test on each bin to determine if the number of circles is statistically different from that of crosses 
and count such bins to arrive at the final score. Alternatively, we can compare the proportions of individual 
bins of both datasets, for instance, graphically as depicted here
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Intuitively, the precision component measures the probability that a random synthetic sam-
ple falls within the support of P and vice versa for recall. We say Q has precision p and recall 
r ∈ (0, 1] , with respect to P if there exist distributions µ, νP , νQ such that

Therein, µ is the shared probability mass, νP denotes the remaining mass of P, and sym-
metrically, νQ is the remaining mass of Q, all scaled accordingly. Now, PRD(P, Q) con-
sists exactly of the pairs (p, r) satisfying Eq. 27. Both measure components fall into (0, 1] 
where higher is better. However, the approximation algorithm proposed by Sajjadi et al. 
[68] only works on discrete, finite feature spaces � . Hence, they use a histogram-based 
embedding f : X → � . Later, Simon et al. [80] simplified the definition and conceived 
a new algorithm exploiting type I and II error rates of a binary classifier trained on the 
merged real and synthetic datasets. As a result, the distributions can be compared in a 
real-valued, potentially infinite feature space. One can either use an embedding of the 
form f : X → R

k or adapt the classifier to accommodate the input space instead.
Predictive score. Specifically proposed for time series data, predictive score meas-

ures the usefulness of the synthetic dataset for training one-step predictions. This 
task was chosen to stress the requirement of generative models to capture temporal 
correlations. Yoon et al. [26] suggest a simple LSTM-based model to perform the pre-
dictions. Training is conducted independently from the generator on the synthetic 
dataset, while the evaluation takes place on the real dataset by simply calculating the 
average prediction error across all time series. This averaged error – they use MAE – 
serves as a relative score for comparing the usefulness of different models. However, 

(27)P = rµ+ (1− r)νP and Q = pµ+ (1− p)νQ.

Fig. 17 Heat map for measure PCC. Depicted is a heat map showing pairwise Pearson correlations between 
positions within time series for measure PCC. Each set S used in the computation consists of the values of one 
position. A saturated orange indicates 1, and a white cell 0. Grey cells are redundant. Here, the correlations are 
random

Fig. 18 Three qualitative examples for measure PRD. Each example shows a pair P, Q of distributions (both 
orange) with their PRD set (cyan) and curve. a, b depict simple cases of discrete distributions, where the 
p-r-curve in a reflects the high precision and low recall of Q and the curve in b shows deficits in precision. 
c depicts distributions in a continuous space with three modes each. Significant parts of their probability 
density do not match, hence the relatively bad p-r-curve
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it is no absolute measure of quality. The predictive score lies in R≥0 , where lower is 
better.

Relative MMD test. Bounliphone et al. [81] proposed this general measure for data 
synthesis evaluation, meaning it is not specific to any data type. Relative MMD is a 
test of pairwise relative similarity between two synthetic datasets, Dg and D′

g , on one 
side and a real dataset, Dr , on the other. A hypothesis test based on MMD, which acts 
as the distance between embeddings of each distribution in a reproducing kernel Hil-
bert space, asserts whether Dg is significantly closer to Dr . Hence, the resulting score 
is binary, stating which of the synthetic datasets is closer to the real one but without 
any absolute or more fine-grained information. Furthermore, it requires some embed-
ding f : X → R

k , which may simply be the concatenation of channels in the case of 
time series. Lastly, it assumes some real data to be held back from generator training.

Spatial Correlation. Let R ⊆ Dr , G ⊆ Dg for a real and generated dataset [9]. Using 
these subsets, spatial correlation estimates the correlation between the channels of 
multivariate time series in the generated data compared to its original. For all X in 
both sets, they calculate all pairwise Pearson correlations PCC(Xi,Xj) between chan-
nels i, j of X, i  = j . This gives us k = d(d − 1)/2 coefficients for dimensionality d, that 
is, the number of channels, which they average across each dataset. These k averages 
for real and synthetic datasets are now separately aggregated using the squared differ-
ence. Smaller is better. Xu et al. [61] also compare the correlation coefficient between 
channels. Specifically, they claim to take the “sum of the absolute difference of the 
correlation coefficients between channels averaged over time”. It remains unclear, 
however, how averaging over time can be conducted when the time dimension is 
needed for the correlation between channels. Additionally, the absolute difference 
can be applied between a coefficient from a real sample versus one from a synthetic 
sample, two samples from within one dataset, or the d · d coefficients of one sample. 
In any case, their formulation is unclear as the explanation is limited to this one sen-
tence. Besides, a smaller score is still better. Jarret et  al. [10] propose this measure 
later as x-Corr score.

Synthetic to synthetic similarity (STS) measures the intra-class similarity between 
the samples synthesized by a conditional generator, that is, one that produces for each 
data point an accompanying label [46]. Let Dg = {(xi, li)}i be a labeled synthetic data-
set. The similarity score is independently calculated for each class and finally combined 
into a vector, one position for each class. Hence, for class c with size 1 < nc < |Dg | , they 
choose a complexity factor γ ∈ (0, 1] , and uniformly randomly sample γ · nc data points 
from c. Denote this set by Sc . Now, they calculate the ACS between each (x, c) ∈ Sc and 
five other random points (x1, c), . . . , (x5, c) ∈ Dg in that class as follows

Since one needs vectors for the cosine similarity, we can either apply the measure directly 
in case of univariate time series, for instance, or require an embedding f : X → R

k . The 
choice of γ depends on the computational resources and time available, and the desired 
accuracy of the score. During training, a low value seems appropriate, whereas final 

(28)STSc =
1

5|Sc|

∑

(x,c)∈Sc

5
∑

i=1

x · xi

||x||2 · ||xi||2
.
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evaluation should warrant a larger proportion of samples. Since the goal is to ensure 
intra-class diversity and prevent mode collapse, values close to 1 should be avoided. 
However, Norgaard et al. [46] do not comment on which values of the codomain [0, 1] 
are desirable or acceptable. This is problematic since datasets are often scaled to [0, 1], 
heavily limiting the angle between data vectors.

Temporal correlation. Let R ⊆ Dr , G ⊆ Dg for a real and generated dataset, respec-
tively [9]. Using these subsets, temporal correlation estimates the correlation between 
time steps in the generated data compared to the original. Per channel, sample, and 
dataset, the discrete Fourier transform (DFT) between the time steps is calculated and 
scaled. Then, the authors extract the k largest values (peaks), where k is tuned manu-
ally on a per-dataset basis, and determine their distance. The aggregation method is 
the same as for ApEn. Smaller is better.

topN locations. Intended for use on mobility trajectories, that is, time series describ-
ing the location of some entity over time, this measure can be easily generalized to other 
use cases [45, 57]. The only condition is that we can identify a property or set of prop-
erties we are particularly interested in, and on that, each time series can be practically 
tested. Staying in the context of trajectories, this can be the time spent at or the number 
of visits to each location from a discrete, finite set of possible locations. We can view this 
as an embedding f : Rl×d → � , where � is the set of possible values for the property. 
Now, one can compute ωX = f (X),ωX̂ = f (X̂) ∀X ∈ Dr , X̂ ∈ Dg , where Dr and Dg are 
real and synthetic datasets, respectively. This opens up another distribution over the real 
and synthetic data, which the authors exploit by determining their discrepancy statisti-
cally or visually through plots. Assuming each ω stands for a vector holding the number 
of visits of the time series to location l at position l, they take the sum over all vectors 
and select the N counts for the most frequently visited locations via

Finally, one can apply a discrepancy measure or plot the N values for both and judge 
their similarity.

Train on real, test on synthetic (TRTS) was proposed a few years ago by Esteban 
et al. [56]. Given a supervised task T applicable to the real data Dr , the parameterized 
TRTS(T) determines the generator’s ability to mimic essential features of Dr , such that 
a solution for the real data is also a solution for the synthetic one under T. Common 
choices for T include classification and prediction. In preparation for the measure, 
they split the real dataset into a train and test pair, Dr = (Dtrain

r ,Dtest
r ) . The generator is 

trained on Dtrain
r  following standard practice, as is the model M used to solve the task. 

Then, M is evaluated on both Dg and Dtest
r  , which gives them two scores sg , sr for M, 

computed using an evaluation measure appropriate for T and M. Without loss of gen-
erality, we assume higher is better for the sake of simplicity. If sg ≈ sr or – even better 
– sg > sr , then one can safely assume that the samples in the generated test set encode 
features distinctive and similar enough to those in the real test set. If, however, sg ≪ sr , 
the generated samples deviate too much from those M has seen before in Dtrain

r  . A typi-
cal constellation is to use classification as T, a deep neural network as M, and a score like 
area under precision-recall curve (AUPRC) or AUROC. Strictly speaking, the need for 

(29)
topNr := topN

∑

X∈Dr

f (X) and topNg := topN
∑

X̂∈Dg

f (X̂).
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an embedding depends on the choice of T, whereas typically, M provides its own inte-
grated embedding. The applicability to classes in the datasets depends on T, for instance, 
classification requires labeled Dr and Dg.

Train on synthetic, test on real (TSTR). With the above TRTS in mind, we can now 
consider the reverse case [56]. Similarly, given a supervised task T, the parameterized 
measure TSTR(T) determines the usefulness of a synthetic dataset Dg for T. Common 
choices for T include classification and prediction. In preparation for the measure, 
they split the real dataset into a train and test pair, Dr = (Dtrain

r ,Dtest
r ) . The generator is 

trained on Dtrain
r  following standard practice, whereas the ML algorithm M used to solve 

the task is independently trained on Dtrain
r  and Dg , yielding models M1 and M2 , respec-

tively. Then, both are evaluated on Dtest
r  , which gives us two performance indicators s1 

for M1 and s2 for M2 to compare. We assume higher is better for the underlying meas-
ure. If s1 ≈ s2 or s1 < s2 , then the synthesized data demonstrates high practical value 
with respect to T and can presumably replace Dr without a compromising model quality. 
Otherwise, a user knows that Dg lacks essential properties required for M to learn as 
well as possible with real data. To give one example tailored towards time series, T might 
be the prediction of the last steps in a time series, M an LSTM-based neural network, 
and s the average root mean squared error [38]. An embedding is usually not necessary, 
as most M provide their own integrated embedding. The applicability to classes depends 
on T, for instance, time series prediction requires no dedicated labels.

WD is defined as

where �(P,Q) is the set of all joint distributions γ (x, y) whose marginals are P and Q, 
respectively. P is the marginal on x, that is, 

∫

X
γ (x, y)dy = P(x) , and similarly Q the 

marginal for y. We implicitly assume a metric space, for instance, X = R
n . Figuratively 

speaking, γ is a function that says “how much” of one distribution needs to be moved 
from point x to point y in the metric space to transform it locally into the other. Then, 
the WD specifies the “cost” associated with the aggregated shortest distance to travel in 
order to transform p into q, point by point [82]. For more details and background, see 
the work of Villani [83]. In the context of time series synthesis, this measure was applied 
in [54, 84] to determine the discrepancy between real distribution p and synthetic q.

WD on cumulative distribution function (CDF). Lin et al. [34] applied this meas-
ure on time series data with values from a range of integers, while it can also be applied 
to those from the real-valued data domain that allow binning over the time steps. Let 
X ∈ N

l×d and X̂ ∈ N
l×d be real and synthetic uni- or multivariate time series from 

datasets Dr and Dg , respectively. For each channel independently, one computes the 
Wasserstein-1 distance between the overall value distributions in both datasets. More 
specifically, the authors compute the empirical CDF for function f : N → N counting 
the number of occurrences of some value x ∈ N in all the time series of a set D. Doing 
this for both Dr and Dg gives us two CDFs, for which one can now determine the WD 
by taking the integrated absolute error between them. Doing this for each channel, this 
would amount to a vector v ∈ R

d
≥0 of distances. Of course, a visual comparison of their 

graphs is also possible.

(30)W (P||Q) = inf
γ∈�(P,Q)

E(x,y)∼γ [
∣

∣

∣

∣x − y
∣

∣

∣

∣ ],
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Wavelet coherence score (WCS). Wavelet coherence is one of many ways to measure 
the correlation between two univariate time series [85]. It is especially useful to analyze 
non-stationary time series, that is, such with major changes in statistical characteristics 
over time like a moving mean caused by a trend. Like many other measures, it requires 
the transformation into a different feature space. Similar to DFT, this is also a frequency 
domain, with the continuous wavelet transform as mapping. The definition of wavelet 
coherence is quite complex and its explanation lengthy. We refer to the work of Grinsted 
et al. [86] for more details. Here, it is applied to a pair of channels at a time, one from a 
real, one from a synthetic time series. The immediate output of the wavelet coherence 
computation is a matrix wcoh with shape frequencies × time steps. Hence, an intermedi-
ate aggregation step is required to obtain a scalar value wcohs ∈ R for each pair of chan-
nels. To this end, one simply sums over the time steps and then takes the mean over the 
frequency axis. For entire datasets Dr (real) and Dg (synthetic), WCS is simply the aver-
age of all wcohs computed between real-synthetic pairs.

with higher scores are better.
β-recall is a parameterized measure denoted by Rβ , where β ∈ [0, 1] is the fraction of 

synthetic samples assumed to be “typical” for the generator [87]. It represents the fraction 
of real samples covered by those generator-typical data. More formally, Rβ is the probability 
of a real sample falling within a region S . Therein, S is the minimum volume subset of the 
support of the synthetic distribution that supports a probability mass of β . We illustrate this 
concept on the left of Fig. 19. Single real samples are assigned a value of 1 if they fall within 
S , and otherwise 0. Implementation-wise, this is done by checking if there is at least one 
synthetic sample near the real sample. Although computed for individual real samples, Rβ 
counts as distribution-level, as an entire synthetic dataset must be given to check this. Ordi-
nary recall is a special case of this measure, which is instead computed for all β . The indi-
vidual scores are arranged as a recall curve and can be interpreted directly or aggregated to 
a single score called integrated Rβ via

Also, see Fig. 19 right for an example curve. It holds that IRβ ∈ [0, 1] , where higher is 
better. β-recall is data type-agnostic, operates on a fixed-size vector space, and therefore 
requires an embedding. By default, this is an LSTM-based autoencoder (AE) model.

Sample‑level measures

Below, we provide an introduction to each sample-level measure found. This list is sorted 
in alphabetical order to foster faster look-up for non-sequential reading. A summary can be 
found in Table 5.

Authenticity measures the rate at which a generator produces samples that appear novel 
[87]. The underlying assumption is that the model creates samples randomly through one 
of two ways: With probability pA , a new sample is innovated, and with 1− pA , a memorized 

(31)WCS :=
1

|Dr | ·
∣

∣Dg

∣

∣ · d

∑

X∈Dr

∑

X̂∈Dg

d
∑

c=1

wcohs(Xc, X̂c),

(32)IRβ = 1− 2

∫ 1

0

∣

∣Rβ − β
∣

∣dβ .
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real sample with some added noise is presented. For a good model, pA is close to one. The 
measure tries to determine which decision was made through a hypothesis test on the dis-
tances between two real samples, and the synthetic and a real sample. We denote authentic-
ity by A, with A ∈ [0, 1] on a distribution-level and A ∈ {0, 1} for samples, where A(x̂) = 1 
classifies a sample as authentic. The generalization to a generated dataset Dg is given by

and thus, the higher the score for the dataset, the more authentic it is. The measure is 
data type-agnostic, operates on a fixed-size vector space and therefore requires an 
embedding.

Cointegration tests. Cointegration is a statistical property that might be observed 
in a multivariate time series or a collection of univariate ones. It is present when all 
channels involved correlate in the long term, most likely following the same overall 
trend. These tests are quite popular in the financial world, for instance, for verify-
ing a lasting correlation between the market values of two securities. Popular exam-
ples include the Engle-Granger test, which applies only to pairs of channels, and the 
Johansen test, which can handle arbitrarily many relationships and, therefore, chan-
nels. In the context of synthetic time series, Leznik et  al. [38] employed it to check 
if a real time series and its synthesis follow the same trend. This implies that each 
synthesis has a unique original in the real dataset, which limits the applicability of 
these tests to generators of the form gθ : X → X  . Although they do not mention their 
aggregation method, it can be assumed that a simple arithmetic mean is adequate.

Elementary statistics. We use the term to collectively refer to an open group of rather 
simple statistical properties that are defined on arbitrary real-valued data samples or 
time series in particular. Concretely, we identified the use of moments of different ordi-
nal [59], covariance matrix [5, 61], and ACF [34, 38, 60, 93]. Comparison can be done via 
manual inspection of a plot or taking the difference between the score on the real and 
synthetic samples [59, 93]. In principle, these statistics can be easily adapted to the data-
set level, that is, by averaging [34].

(33)A(Dg ) =

∑

x̂∈Dg
A(x̂)

∣

∣Dg

∣

∣

Fig. 19 Illustrations for measures α-precision and β-recall. On the left, the objects of some dataset D 
following an unknown distribution p are plotted. We depict the supposed support of p, including three 
potential minimum volume sets S1,S2,S3 , formalizing “typical samples”. In the middle, we provide the graph 
of an exemplary result of an α-precision calculation. Analogously, on the right for β-recall
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Table 2 Distribution-level evaluation measures found during literature study

Measure Applicability Embedding L C Uses

Agreement rate Unrestricted Case-dependent × × [33]

Algorithm comparison Unrestricted Case-dependent ♦ × [34]

AIS Decoder-based models f : X → R
k × � [35]

ApEn (TS) – × � [9, 38]

Augmentation test Known downstream task Case-dependent × × [39, 40]

ACS TS f : Rl×d → R
7·d � × [41]

Average JS distance TS f : Rl×d → R
7·d � × [41]

AED TS ( d = 2) – × � [42]

AWD seasonal TS – × � [42]

CAS Unrestricted – � � [43, 58]

C2ST Unrestricted – × � [44]

Computational complex-
ity

Access to generator Case-dependent ♦ × [33, 45, 88]

Confusion matrix Unrestricted – � × [46, 85]

Context-FID TS f : X → R
k × × [40]

Correlation structure Multivariate TS – × × [50, 51]

Coverage Unrestricted f : X → R
k × � [52, 87]

Data-copying test Distance required Case-dependent × � [53]

Density Unrestricted f : X → R
k × � [52, 87]

Dependence scores Single real TS – × × [54, 55]

Discriminative score Unrestricted Case-dependent × � [26, 27, 58, 70, 88–90]

DRE Unrestricted – × � [56]

Distribution visualization Case-dependent – ♦ � [26, 27, 39, 41, 42, 45, 
57–61, 70, 85, 89–92]

Distributional metric TS – × � [55, 93]

Distributional scores Single real TS – × � [55]

Duality gap GANs – × � [62, 63]

Feature-based correla-
tion analysis

Multivariate TS – × � [42]

FID images f : X → R
k×k × � [67]

Measure Applicability Embedding L C Uses

Hedging effectiveness Financial hedging – × × [51]

Improved precision Unrestricted f : X → R
k × � [69, 87]

Improved recall Unrestricted f : X → R
k × � [69, 87]

ICD Unrestricted – × � [9]

JS divergence on mar-
ginals

Suitable marginals – × × [57]

Length histogram Variable-length TS – × × [34]

Marginal metrics TS – × × [50, 51]

MTop-Div Unrestricted f : X → R
k × � [70]

MMD Unrestricted f : X → R × � [45, 56, 67, 73]

Max-RTS Unrestricted f : X → R
k × × [46]

MIA Unrestricted Case-dependent × � [34, 45, 73]

MiFID Unrestricted f : X → R
k × � [75]

Minimax loss Unrestricted – × � [62]

MSAS gθ : Rl×d → R
m×d any statistic f : Rl → R × × [76]

NND Unrestricted – × � [77]

NDB Distance required Case-dependent × � [78]

NDB-over/under Distance required Case-dependent × � [53]
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Feature-based distance. This is an aggregate measure of seven sub-scores, which 
are all calculated following the same procedure but use a different feature f : Rl → R 
of the time series as embedding [95]. These are three deterministic components of time 
series (mean, trend, seasonality) and four stochastic features (standard deviation, skew-
ness, kurtosis, lag-1 autocorrelation), all calculated on a per-sample basis. Furthermore, 
the measure assumes a generator of the form gθ : Rl → R

l , where each synthetic sample 
is deduced from an old one. Based on a scaled version f s of some feature and with a pair 
(X , X̂ = gθ (X)) of real and synthetic time series, the authors define its sub-score as

where the aggregate is the set of all seven df  . The feature-based distance is targeted at 
and tested on univariate time series.

Fréchet distance was originally introduced in [49] to calculate the similarity of two 
curves from the ordering and location of their points in Rd . Much later, Hazra and Byun 
[94] used it for the evaluation of synthetic time series by interpreting them as point 
sequences on such curves. This is done directly to a real time series on one, and its syn-
thesis on the other side, implying that this version is applicable to generators of the form 
gθ : X → X  only. The score is always in R+ , where lower is better. In the following, we use 
this version when referring to Fréchet distance, although applications on the distribution 
level similar to FID and Context-FID are possible as well.

(34)df (X , X̂) =
∣

∣

∣
f s(X)− f s(X̂)

∣

∣

∣
,

Table 2 (continued)

Measure Applicability Embedding L C Uses

ONND Unrestricted PCA (opt.) × � [9, 79]

PPC Real-valued data – × × [5, 39, 90]

PRD Unrestricted f : X → � / f : X → R
k × � [68, 69, 80, 87, 91, 92]

Predictive score TS – × � [10, 26, 27, 88–92]

Relative MMD test multiple Dgs f : X → R
k × � [81]

Spatial correlation TS – × � [9, 10, 38, 61]

STS Unrestricted f : X → R
k � × [46]

Temporal correlation TS – × � [9]

topN locations Discrete, decidable 
property

f : Rl×d → T × × [45, 57]

TRTS Known downstream task case-dependent ♦ � [42, 56]

TSTR Known downstream task case-dependent ♦ � [5, 10, 34, 38–40, 42, 56, 
85, 90, 93, 94]

WD Unrestricted f : X → R
k × × [54, 84]

WD on CDF TS f : Rl×d → N
l×d × × [34]

WCS TS – × × [85]

β-recall Unrestricted LSTM-AE × � [87]

Next to each measure, we provide potential restrictions in terms of applicability to a specific generation method or type 
of data, as well as the embedding needed and the works it has been used in so far. Column “L” indicates if the measure is 
designed for labeled data ( � ), unlabeled data ( × ), or both ( ♦ ). “C” says if code is publicly available ( � ) or not ( × ). “Uses” refers 
to the applications of the measure to general or time series synthesis evaluation found, where the first reference is also the 
first application (and authorship, if applicable)
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Incoming nearest neighbor distance (INND). Let d ∈ {ED,DTW} be a distance meas-
ure, and R ⊆ Dr be a random subset of the real dataset [79]. For each generated time series 
X̂ , the INND is given by

The authors use PCA as an embedding before employing the function, but this is 
optional. The smaller the distance, the better. To get a scalar score for Dg , one can take 
the mean over all X̂.

Multivariate, dependent DTW (DTWD ) is a rather simple modification to the algo-
rithm computing the standard DTW in order to accommodate multivariate time series. 
Dynamic time warping requires to calculate the distance d between the values at two time 
steps x ∈ X , y ∈ Y  , where X, Y are time series and x, y ∈ R

k . d is commonly the squared 
Euclidean distance. In the univariate case, this comes down to d(x, y) = (x1 − y1)

2 . DTWD 
allows to “warp” across the channels of X and Y by simply using the generalization to the 
k-dimensional space d(x, y) =

∣

∣

∣

∣x − y
∣

∣

∣

∣

2

2
=

∑

i(xi − yi)
2 [96]. Brophy [73] used the meas-

ure for evaluating a GAN producing multivariate time series. However, he failed to explain 
the extension of this sample-based measure to real and synthetic datasets Dr ,Dg . In cases 
where each synthesis X̂ ∈ Dg can be assigned an original X ∈ Dr due to the (probabilistic) 
relationship gθ (X , z) = X̂ for conditional input z, they find a straight-forward implementa-
tion as

For general gθ , however, taking the average DTWD for many randomly selected pairs 
X ∈ Dr , X̂ ∈ Dg , if not all such pairs, is a reasonable and probable approach.

Nearest neighbor in training (NNT) is similar to INND in its formulation, but 
opposing in its purpose [34]. Where the INND tries to ensure that each generated sam-
ple stays true to the real data Dr via proximity to a real sample, this measure determines 
the degree to which the generator is memorizing the data Dtrain

r ⊆ Dr it was trained on. 
For a random synthetic sample x̂ ∈ Dg , they select its K nearest neighbors in Dtrain

r  with 
respect to the Euclidean distance via

Lin et al. [34] chose K = 3 and repeated the procedure multiple times, if not for all x̂ . 
One example is given in Fig. 20. A quantitative measure can be defined on the mean of 
the neighbor distances, while a qualitative one is given by visually comparing the plot 
of x̂ with those of the neighborhood. The Euclidean distance may require an additional 
embedding f : X → R

k for the data. Finally, the higher the score and visually different 
the plots, the better.

Pairwise measures. With this term, we refer to a group of measures m character-
ized by their common form m : X × X → R . They are only applicable to a pair of data 
objects, typically a real sample x ∈ Dr and its synthesis x̂ ∈ Dg . In other words, we imply 
that each synthesis can be backtracked to a real sample from which it was deduced 

(35)INND(X̂) := min
X∈R

d(X̂ ,X).

(36)DTWD(Dr ,Dg ) :=
1

|Dg |

∑

X̂∈Dg

DTWD(X , X̂) with X̂ = gθ (X),X ∈ Dr .

(37)neighborhood := topK
x∈Dtrain

r

ED(x̂, x).
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somehow. Such measures typically only consider direct divergences between the sam-
ples. A possible application scenario includes the generation of very few or even a single 
particularly long time series, where it is clear which original the synthesis is expected to 
mimic. Specifically, we found the five measures: PCC, root mean square error (RMSE), 
MAE, percent root mean square error (PRE) [94], and cross-correlation score [55]. An 
extension to a measure for entire datasets may be given by averaging over each pair to 
obtain a score or using visualizations such as plots and histograms.

Plausible deniability. Targeting data privacy, this measure is an independent 
extension to probabilistic generative models of the form gθ : X → X  that allow the 
efficient calculation or estimation of Pr{x̂ = gθ (x)} for real sample x and its synthesis 
x̂ [33]. In Fig. 21, we provide a diagram depicting the steps of applying the measure. 
The idea is to take a high-utility generative model providing the synthetic samples 
and append a sample-level privacy test, which decides whether to release the sample 
or draw a new one from the generator. This way, high-quality data can be produced 
while making sure every synthesis adheres to a privacy policy. The test’s underlying 
concept is to allow a synthetic sample x̂ if and only if there exists an entire set of real 
data points Dx that could have caused x̂ with similar probability. As a consequence, an 
adversary can no longer infer with confidence which of these x ∈ Dx is actually part of 
the real dataset. Therefore, the creator of the synthetic set could always plausibly deny 
the membership of a particular data point.

Quadratic variation. This measure targets the time series generator’s ability to 
reproduce the temporal structure of each channel [50]. Quadratic variation originally 
comes from the analysis of stochastic processes and can be simplified for time series 
to

It is initially only applicable to individual univariate time series and needs further aggre-
gation to be useful for the dataset-level. According to Boursin et al. [51], this is realized 
by computing the MSE between real samples on one side and synthetic samples on the 
other side. However, neither there nor in the original work is the order of the samples 
defined needed for the MSE or the aggregation method across channels.

Real to synthetic similarity (RTS). Proposed in [46], this measure compares the 
(approximate) similarity between real and synthetic samples to that among real sam-
ples. Similarity is determined by applying the cosine similarity to selected pairs of 
each dataset. To approximate the real-to-synthetic similarity for a synthetic sample x̂ , 

(38)QVar(X) =

T
∑

i=1

(Xi − Xi−1)
2.

Fig. 20 Example for measure NNT. On the far left is the generated time series with a length of 25 and five 
channels, which is to be compared with its three nearest neighbors to its right. As we can see, the basic 
structures are similar, but the generated one contains much more noise and has a stronger drift at the 
beginning
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Fig. 21 Flow chart illustrating measure plausible deniability. In the upper part, real data space X  and data 
set are indicated. Below, a real data object a is sampled and used as input to synthesize â . If we can find at 
least τ ∈ N other real objects x as likely to cause â as a itself, we are done. Otherwise, the procedure must be 
repeated until a suitable a is found

Table 3 Sample-level evaluation measures found during literature study

Next to each measure, we provide potential restrictions in terms of applicability to a specific generation method or type of 
data, as well as the embedding needed and works it has been used in so far. Column “L” indicates if the measure is designed 
for labeled data ( � ), unlabeled data ( × ), or both ( ♦ ). “C” says if code is publicly available ( � ) or not ( × ). “Uses” refers to the 
applications of the measure to general or time series synthesis evaluation found, where the first reference is also the first 
application (and authorship, if applicable)

Measure Applicability Embedding L C Uses

Authenticity Unrestricted LSTM-AE × � [87]

ACF Time series – × � [34, 38, 60, 93]

Cointegration tests gθ : Rl×d → R
m×d – × × [38]

Covariance matrix unrestricted – × × [5, 61]

Feature-based distance gθ : Rl → R
l , univariate f : Rk → R × × [95]

Fréchet distance gθ : X → X Case-dependent × × [50, 94]

INND Unrestricted PCA (opt.) × � [9, 79]

Moments Unrestricted – × × [59]

DTWD Time series – × � [73]

NNT Low-dim time series – × × [34]

Pairwise measures gθ : X → X case-dependent × × [55, 94]

Plausible deniability gθ : X → X f : X → R
k × × [33]

Quadratic variation gθ : X → X – × × [50, 51]

RTS Unrestricted f : X → R
k × � [46]

Realism score Unrestricted f : X → R
k × � [69]

Securities order marginals gθ : X → X – × × [97]

Visual assessment Unrestricted Case-dependent × � [5, 9, 38, 39, 41, 56, 
60, 61, 67, 73, 79, 85, 
88, 94]

α-precision Unrestricted LSTM-AE × � [87]
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they calculate its average cosine similarity to 10 random real samples x1, . . . , x10 ∈ Dr , 
resulting in the score

This can be used on individual samples to guide training or on a dataset-level for evalu-
ation purposes at the end. As a baseline, they also calculate the average real to real simi-
larity (RTR) for real dataset Dr using

The RTR needs to be computed only once per real dataset. The goal are similar RTR and 
RTR scores, meaning RTS− RTR ≈ 0 , where RTS,RTR ∈ [0, 1] . In case the time series 
happen to be univariate, one can apply the measure directly. Otherwise, an embedding 
f : X → R

k is required.
Realism score is intended as an adaption of the improved precision measure to the 

sample-level, in order to rank individual samples by their quality [69]. In practice, 
it approximates the distance of a synthetic sample to the real data manifold using a 
continuous extension of the binary indicator function 1{·} used in improved precision 
and improved recall. For a synthetic x̂ ∈ Dg and real dataset Dr , realism score (R) is 
given by

where

D′
r is the half of Dr for which the distance to the K th-nearest neighbor is smaller than the 

median dNNk . This pruning of Dr strives to shrink the data manifold down to the dens-
est region to increase robustness to outliers. Note that dNNk also uses the Euclidean dis-
tance. The higher R the more realistic the sample, which effectively means that realism 
is determined by how close a synthetic is to a real sample after embedding f : X → R

k .
Securities order marginals is a specialized measure tailored towards order streams 

observed in security transaction systems of stock exchanges [97]. It measures the qual-
ity of a generated sequence by computing five specialized statistics, targeting different 
channels like price and volume. Each statistic covers a marginal relevant to the finan-
cial domain, namely the distributions of security price, quantity bid/asked, inter-arrival 
time of orders, the evolution of the number of orders over time, and the ratio of bid-
to-ask orders over time. For each statistic, real and synthetic samples are compared by 
calculating the Kolmogorov-Smirnov distance between the real marginal and synthetic 
marginal distribution. It is always in the interval [0, 1], where 0 is best. Consequently, 

(39)RTSx̂ :=
1

10

10
∑

i=1

x̂ · xi

||x̂||2 · ||xi||2
.

(40)RTR :=

(

|Dr |
2

)

∑

i �=j

xi · xj

||xi||2 ·
∣

∣

∣

∣xj
∣

∣

∣

∣

2

.

(41)R(x̂,Dr) := max
x∈D′

r

{

dNNK (x,Dr)
∣

∣

∣

∣x̂ − x
∣

∣

∣

∣

2

}

,

(42)D′
r :=

{

x ∈ Dr | dNNK (x,Dr) < median
x∈Dr

{

dNNK (x,Dr)
}

}

.
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the overall score for a pair (X , X̂) is a quintuple of the similarities as expressed by the 
distances above.

Visual assessment. Using human judges as decision-makers on synthesis quality is 
a very simplistic and popular approach [4]. Indeed, entire works are built around the 
idea of making the assessment as clear and fast as possible using visualization tools. In 
the most basic form, evaluators may just look at a plot of each channel of the sequence. 
More complex approaches may account for their frequency domain using DFT, Wave-
let transform [98], and z-transform [99] or specialized embeddings, extrapolating cer-
tain features of interest. Arnout et al. [79] propose a visualization framework that allows 
tracking of the appearance of individual samples during the training of the generation 
model and assessing the final result. In addition to ordinary plots, they also employ 
TimeHistograms [100] and Colorfields [101] to create more appealing embeddings. In 
two works, judgments are passed by domain experts and aggregated using mean opinion 
score [5, 39].
α-precision. Mirroring β-recall, this is a parameterized measure denoted by Pα , where 

α ∈ [0, 1] is the fraction of real samples assumed to be “typical”, that is, no outliers [87]. 
It represents the fraction of synthetic samples resembling that fraction of real data. In 
other words, a high score ensures that the typical generator output is similar to typical 
real data, where typical can be interpreted very loosely on the one end or strictly on the 
other. Its formal definition and aggregation via mean absolute deviation is symmetrical 
to that of β-recall, that is, based on a minimum volume subset of the support of the syn-
thetic distribution. Single real samples are assigned a value of 1 if they fall within the 
subset, and otherwise 0. Based on the mean absolute deviation between precision curve 
and fraction α , a summarizing score called integrated Pα is given by

An example for the precision curve can be found in Fig.  19 center. IPα ∈ [0, 1] where 
higher is better. Similar to β-recall, an embedding is required. By default, this is an 
LSTM-based autoencoder model.

Analyzing evaluation measures
In this section, we conduct a three-fold analysis of the measures above as per Subsec-
tion “Acquisition and systematization of knowledge”. First, we introduce structure to the 
collection of measures via a taxonomy of criteria and evaluation measures. Afterwards, 
we investigate their impact in Subsection “Theory and practice of evaluation measures”. 
Finally, in Subsection “Requirements on the input data format”, we outline the relevance 
of time series length, dimensionality, and dataset sizes.

Taxonomy of evaluation measures and criteria

In the following, we suggest grouping the 83 reviewed measures by evaluation criteria. 
Simply put, each criterion refers to a specific data property that each measure is designed 
to test. For instance, spatial correlation and MIA check different data characteristics to 

(43)IPα = 1− 2

∫ 1

0
|Pα − α|dα.



Page 41 of 56Stenger et al. Journal of Big Data           (2024) 11:66  

evaluate quality. This is why, commonly, a set of measures is used for evaluation, cover-
ing a variety of properties and, in turn, aspects of quality of synthetic time series. Cur-
rently, all these measures coexist in literature without structure or order, which prohibits 
researchers and practitioners from quickly and clearly identifying measures suitable to 
the properties they wish to test. Notably, Borji [11] previously addressed the problem for 
the evaluation of synthetic images through the structure of their article itself. Instead, we 
propose a taxonomy of evaluation criteria and measures, which provides an explicit and 
search-friendly solution to this hindrance. The result is depicted in Fig. 22 as a horizontal 
tree structure with the root on the left and the measures as leaves on the right. From the 
root outward, we arranged different criteria in boxed nodes, which themselves fan out 
to measures and sometimes other, subordinate criteria. Note that measures can also be 
subordinated under other measures if they test a more specific property than the general 
one, for instance, predictive score under TSTR. Additionally, we follow previous works 
[14, 39, 85] and incorporate another differentiation between measures into the figure 
based on color coding: Qualitative measures (orange) are characterized by their need for 
human interpretation of an intelligible but ambiguous result such as t-SNE. Quantitative 
measures (cyan), on the other hand, produce a numerical or categorical value, allowing 
a clear interpretation. In gray, we mark notable secondary purposes (i.e., criteria) that a 
measure may fulfill.

We constructed this taxonomy in three steps: First, we clustered the measures based 
on the properties they tested. In case a measure has secondary purposes, it may belong 
to multiple clusters. Then, we assigned each cluster a suitable criterion, which was 
already mentioned in the literature in most cases. Finally, we arranged the clusters in a 
hierarchy such that more general clusters (e.g., fidelity) subsume more specific ones (e.g., 
temporal dynamics). In the following, we explain the chosen criteria and the assignment 
of measures in top-down order.

We start with fidelity, which refers to an individual synthesized time series to pre-
serve characteristics, patterns, and noise levels present in the underlying real time 
series, often associated with notions of resemblance or typicality. While we found most 
measures in this cluster to be moved into four sub-criteria, we assign AIS, which pro-
duces likelihoods for each time series, and TRTS, which is based on the performance of 
a real-trained model on synthetic data, to that criterion directly. Both represent broad 
indicators able to catch many facets of fidelity. Coherence is one sub-criterion by which 
we denote the consistency of the time series’ internal structure, especially along chan-
nel and time axes. Its only sub-criterion, temporal dynamics, contains AED, which is 
concerned with the preservation of periodicities within the synthetic time series. The 
second one is perceptual quality, meaning the aspects of quality perceptible by human 
judges during the inspection of synthetic data. We place visual assessment here.

With instance similarity, we opened a third cluster with eleven measures comparing a 
real time series to a synthetic one, determining the similarity on a sample-level. Directly 
assigned are ACS, correlation structure, feature-based distance, pairwise measures, 
RTS, and elementary statistics. ACS extracts and compares seven features from each 
time series individually. Similarly, feature-based distance extracts its own set of features, 
while correlation structure calculates the covariance matrix for each data instance, com-
paring real and synthetic time series pair-by-pair. Pairwise measures and RTS compare 
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individual real and synthetic time series using different similarity functions. Elementary 
statistics typically compare the calculated statistical score on the dataset-level and some-
times between instances. As the remaining five measures all target temporal aspects of 
instance similarity, we introduced a separate sub-category called temporal dynamics 
once again. These measures are cointegration test, DTWD , Fréchet distance, quadratic 

Fig. 22 Taxonomy of the evaluation of time series syntheses. This includes quality as the overarching goal, 
criteria representing aspects of quality, and finally, measures quantifying them. The measures are color-coded, 
where orange stands for qualitative, cyan for quantitative, and gray for secondary purposes
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variation, and WCS, addressing trend comparison, time warping, curve alignment, step-
wise changes, and wavelet coherence, respectively.

Lastly, we place measures that interpret the fidelity of a synthetic sample as the prox-
imity to its nearest real neighbors in an embedding space under criterion embedding 
proximity. We identified six measures following this description. To handle the two sides 
of PRD, we divided the measure into its two components and deemed precision suit-
able for evaluating fidelity. Its conceptual successors, improved precision, realism score, 
density, and α-precision have the same purpose and thus belong here as well. INND is a 
special case in that it only takes the minimum distance to one real sample.

Efficiency highlights the ratio of synthetic data quality achieved to the effort required. 
The only such measure found is computational complexity, which tracks the computing 
time required to train a generator and create the synthetic data. Then, it puts it into rela-
tion to the other aspects of quality.

While fidelity focuses on sample quality, matching distributions requires real and syn-
thetic data distributions P and Q to match in some aspects, if not overall. For instance, a 
generator may produce time series of exceptional quality but in the wrong proportions, 
such that P and Q still do not match. In this case, we differentiate three sub-criteria based 
on these aspects. First, there is a group dataset-level statistics of eight measures that 
compare P and Q with regard to some statistical characteristics, a weak demand given 
the complexity of typical time series datasets. For PCC, this characteristic is the Pearson 
correlation, provided qualitatively as a heat map for each dataset. MSAS does not extract 
one but multiple statistical characteristics like channel-wise mean or sequence length 
and subsequently compares real and synthetic datasets on these. As their name indi-
cates, ApEn, temporal correlation, and spatial correlation all deliver a statistical value for 
the entire dataset. Along with dependence scores, we split off temporal correlation into 
a sub-criterion temporal dynamics. Dependence scores compare the ACF between real 
time series and their syntheses. Two measures remain, one of which being distributional 
scores, computing and comparing skewness and kurtosis for the single real and the set of 
synthetic time series. At last, we have the group of elementary statistics, such as statisti-
cal moments or ACF.

The next sub-criterion is called joint distribution, subsuming measures that view real 
P and synthetic Q as joint distributions of multiple marginals and compare the two with 
respect to one or more of these. In this cluster, we aggregated 11 measures. First, there 
is topN locations, which compares the distributions over bins of coordinates extracted 
from the real dataset on one, and the synthetic dataset on the other. The coordinates 
represent locations that can be visited in each step of the time series. The second one is 
length histogram, which is intended for the evaluation of synthetic time series of varying 
lengths. Here, the marginal distribution is length. AWD focuses on the various perio-
dicities within the time series in each dataset, considers them as marginal distributions, 
and compares them using the WD. In the original work, they state to use it for diversity, 
but we find joint distribution to be the better-fitting cluster. WD on CDF first computes 
an empirical CDF over a discrete data space or binning of a real-valued data space. In the 
second step, the Wasserstein-1 distance is computed between the CDF of real and syn-
thetic data, respectively. Since binning is typically required, the CDF only reflects a part 
of the actual distribution. Average JS distance extracts a set of features from each time 
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series and interprets the values of each feature as a marginal distribution. After applying 
these steps to real and synthetic datasets, the JS divergences are determined and aver-
aged. As one can imagine, JS divergences on marginals is a generalization of this con-
cept, conceived by different authors and apparently without influence from one to the 
other. Distributional metric, similar to others before, is based on an empirical distribu-
tion over bins of data objects. As opposed to WD on CDF, for instance, it uses the PDF 
on the binnings for both real and synthetic data and computes the bin-wise absolute 
difference between the two. Nevertheless, it operates on marginal distributions and not 
the real ones. In the case of marginal metrics, the marginals of interest are the distri-
butions of each time step. The last two, NDB and NDB-over/under, also use binnings 
to approximate the actual distributions, concentrate on the regional distributions and 
thereby define marginals. Securities order marginals compares the statistics of marginal 
distributions of financial time series such as price and volume.

By representativeness, we denote a criterion that requires the overall distributions to 
be similar, simply put, P ≈ Q . We reviewed a variety of measures that pursue this funda-
mental aspect of quality, among them the established, more general MMD, WD, or the 
qualitative distribution visualization approaches like t-SNE. We also found derivations 
like the relative MMD test. We also have C2ST, which uses a binary classifier model and 
a hypothesis test on its predictions, whereas the former methods use kernel functions 
and distances. Furthermore, five measures (NND, MTop-Div, duality gap, minimax loss, 
and discriminative score) use the loss or accuracy of a binary classifier model trained to 
distinguish real from synthetic samples. Their results depend solely on the capabilities 
of the classifier, and only what it considers relevant goes into the differentiation task. 
Finally, FID and its two variants are in this cluster. All three use feature extraction layers 
from neural models to map the data into a feature space before applying the Fréchet dis-
tance to compare the distributions. In the case of MiFID, FID is one of its components, 
and testing the distributions for a match its secondary purpose.

Coverage refers to the idea that the synthetic data as a whole should “cover” the entire 
region assumed by the real data distribution. It is occupied by four measures developed 
in sequence with the intention of improving on their respective predecessor, and a fifth 
one developed independently. The first in line is recall, which is one part of the compos-
ite measure PRD. Then, there are its successors, improved recall, coverage, and β-recall 
proposed in this order. They are all similar in that they use the proximity of real to syn-
thetic objects in a feature space as an indicator of the generator’s ability to cover the 
entire support of the real data distribution. The fifth, ONND, is based on the distance of 
each real sample to its closest neighbors in the synthetic dataset. With our assessment 
of measures coverage and ONND, we disagree with their respective authors, who con-
sider them to evaluate diversity primarily. Still, we acknowledge diversity as an aspect of 
quality but assign two what we believe to be more suitable measures: STS and ICD. STS 
measures and compares the average cosine similarity within real and synthetic datasets, 
respectively, and interprets the result as an indicator of diversity (or the lack thereof ). 
ICD follows the same procedure but with a different similarity measure.

In the literature, the terms novelty and generalization are both used to describe a gen-
erator that produces samples beyond noisy versions of the training data. We differentiate 
the terms here and use generalization if reproducing some training samples is acceptable 
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and novelty if each generated time series must be noticeably different from all training 
samples. We identified one measure suitable to test novelty directly, namely authenticity. 
It can be applied to each synthetic sample individually and even provide a binary deci-
sion on whether it is novel using a hypothesis test. The selection of measures for gener-
alization is more extensive. MiFID employs a so-called memorization distance based on 
the cosine similarity between samples and penalizes the generator for producing sam-
ples too close to training samples. NNT computes the neighborhood of each synthetic 
sample to determine if its neighbors in the real dataset are too close. Intuitively, MMD 
just compares two distributions with respect to their overlap in density. However, Este-
ban et al. [56] consider an additional setting in which the discrepancy between the real 
train and a real hold-out set is compared to that between the synthetic set and the same 
hold-out set. We call this variant train-test MMD. What is more, they developed this 
idea further and conceived DRE for the same purpose. The data-copying test uses DTW 
to calculate the average distance between the train and synthetic set as well as between 
the train and the hold-out set. Afterwards, a hypothesis test determines if the average 
distance between the first pair of sets is significantly shorter than between the second. 
Max-RTS computes the most similar pair of real and synthetic samples and uses it as an 
indicator for generalization. Lastly, AIS tests generalization in a secondary role by com-
paring the average log-likelihood on training and test sets.

Privacy is an often-cited criterion for evaluation and a main reason for synthesizing 
data in the first place. Upholding privacy means reducing - if not eliminating - the risk of 
disclosure of sensitive information within the original dataset. MIA and plausible deni-
ability set out to control and uncover the degree to which information on individual real 
data objects passes through into the generated set. As Max-RTS computes the closest 
pair of real and synthetic objects in terms of cosine similarity, it can be used as an indi-
cator for the worst-case information leakage on a single data object.

Utility interprets the quality of synthetic data as its usefulness in a downstream 
(machine learning) task. The eight measures in its cluster are not directly assigned, but 
only TSTR, hedging effectiveness, and algorithm comparison. The remaining five are 
specializations of TSTR, a generic measure of utility. Downstream task T and the ML 
model for T are free of choice by default. By fixing T, we get a variant TSTR(T). In the 
case of time series, this is usually prediction and sometimes classification. Depending 
on T, another aspect of utility is evaluated each time. Except for minor implementation 
differences, predictive score is a variant of TSTR with prediction as T. Agreement rate, 
confusion matrix, and CAS use classification as task. Agreement rate includes a strategy 
for handling unlabeled time series data, which makes it slightly more general. The last 
variant is the augmentation test, where the task is augmentation of the real data using 
the synthesis in a predefined proportion. Algorithm comparison, however, not only uti-
lizes one kind of ML model but several and bases its score on the similarity of the two 
performance rankings of these models, one on the real dataset and one on the synthetic 
set. Hedging effectiveness is different in that it does not train the same model on the real 
data as on the synthetic but uses a simple baseline for comparison.
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Theory and practice of evaluation measures

Next, we analyze the usage statistics of these evaluation measures in the academic lit-
erature. We refrain from investigating the statistics of real-world adoption, as this would 
necessitate surveys conducted among practitioners. Instead, we discuss the impact a 
measure has on subsequent works depending on what kind of work it was proposed. To 
this end, we partition the collection of measures above into two sets based on whether 
they originate from work focused on the evaluation of synthetic data [69, 70] or on their 
generation [26, 92]. In the latter case, proposed measures are side contributions and 
directly employed in evaluating the presented generators. We call the first class of works 
Theory and the second Practice. Transitively, we apply the same distinction for the meas-
ures presented therein.

By reuse, we mean the number of works in Practice in which a measure was used 
minus the initial use. In other words, how often it was adopted. We find this statistic 
to be a more meaningful indicator for impact than citations, for instance, as these can 
instead reflect reuses of other measures in the work, references of the generator pre-
sented, or a citation for a survey article like ours. Following our approach, we list the 
number of reuses as well as the year of inception or first use, respectively, for each meas-
ure in Table  6. The latter allows us to take the age of the measure into account. The 
28 measures assigned to Theory are listed first, and the 55 in Practice second and are 
additionally marked with *. Furthermore, note that we consider the measures of groups 
distribution visualization (QQ-plot, scatter plot, latent space visualization, PDF visuali-
zation, dimension-wise probability, PCA, t-SNE) and elementary statistics (ACF, covari-
ance, moments) individually.

Based on these data, we immediately observe that most measures are never reused, 
some are used again once, and only a few have reached some level of popularity in the 
community. To support this further and differentiate Theory and Practice, we calculate 
four intuitive indicators of impact. To this end, let G be a set of measures, namely one of 
Total, Practice, and Theory. Further, we define r(m) as the number of reuses of measure 
m.

As the first indicator, we take the maximum number of reuses within each group,

which serves as an indicator for the extremal case of impact. This value is only 2 for The-
ory, compared to 11 for Practice. The picture repeats for the next highest reuse values, 
showing that the most impactful measures belong to Practice.

Next, we compute the relative and normalized impacts Ir and In , which consider the 
aggregate number of reuses in Theory and Practice, expressed as a fraction of total reuses 
in the first case, and a normalization by the group size in the second case.

As a result, Ir attributes only 6.3% of the aggregated impact to Theory, the remain-
ing 93.7% to Practice. Similarly, the average impact of a measure in Theory is only 
In(T ) ≈ 0.179 , but In(P) ≈ 1.345 for Practice. While this is considerably better, it still 
means that combined, measures are not even once reused on average.

(44)Imax := maxm∈G(r(m)),

(45)Ir(G) :=

∑

m∈G r(m)
∑

m∈P∪T r(m)
and In(G) :=

∑

m∈G r(m)

|G|
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Table 4 Measures with reuse statistics and first appearance

List of all measures with the number of reuses in the works reviewed and year of first appearance as an evaluation measure 
for time series synthesis. The reuse count reflects the impact on generator developers. * indicates that the measure belongs 
to Practice. The list is sorted by group affiliation (Theory first) and the number of reuses within each group (starting at 0 and 
increasing)

Measure Uses Year Measure Uses Year

Agreement rate 0 2017 FID 0* 2019

AIS 0 2017 Hedging effectiveness 0* 2022

Authenticity 0 2022 JS divergence on marginals 0* 2018

C2ST 0 2017 Latent space visualisation 0* 2021

Coverage 0 2020 Length histogram 0* 2019

Data-copying test 0 2020 Max-RTS 0* 2018

Density 0 2020 Moments 0* 2017

Duality gap 0 2019 MSAS 0* 2022

Improved precision 0 2019 DTWD 0* 2020

Improved recall 0 2019 NNT 0* 2019

ICD 0 2022 QQ-plot 0* 2018

INND 0 2019 RTS 0* 2018

MTOP 0 2021 Scatter plot 0* 2018

MiFID 0 2021 Securities order marginals 0* 2020

Minimax loss 0 2019 STS 0* 2018

NND 0 2019 WCS 0* 2022

NDB 0 2018 Augmentation test 1* 2019

NDB-over/under 0 2020 Confusion matrix 1* 2018

ONND 0 2019 Correlation structure 1* 2022

Plausible deniability 0 2017 Covariance matrix 1* 2019

Realism score 0 2019 Dependence scores 1* 2019

Relative MMD test 0 2016 Dimension-wise probability 1* 2017

Temporal correlation 0 2022 Distributional metric 1* 2019

α-precision 0 2022 WD 1* 2020

β-recall 0 2022 Fréchet distance 1* 2020

CAS 1 2019 Marginal metrics 1* 2022

Computational complexity 2 2017 Pairwise measures 1* 2019

PRD 2 2018 PDF visualisation 1* 2019

Algorithm comparison 0* 2019 Quadratic variation 1* 2022

ApEN 0* 2021 topN locations 1* 2018

ACS 0* 2022 TRTS 1* 2017

AED 0* 2022 MIA 2* 2018

Average JS distance 0* 2022 PPC 2* 2019

AWD 0* 2022 Spatial correlation 2* 2020

Cointegration test 0* 2021 ACF 3* 2019

Context-FID 0* 2022 MMD 3* 2017

DRE 0* 2017 Discriminative score 5* 2019

Distributional scores 0* 2019 PCA 5* 2019

WD on CDF 0* 2019 Predictive score 7* 2019

Feature-based distance 0* 2018 t-SNE 8* 2019

Feature-based correlation Visual assessment 11* 2017

analysis 0* 2022 TSTR 11* 2017

Average 0.952 - Median 0 -
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As the final indicator, we consider the number of measures without any reuse and 
therefore impact on subsequent evaluations. Additionally, we adjust this number 
through division by the group size. The higher such a score is, the smaller its past rel-
evance for the evaluation task. Formally, we define it as

Overall, we find that over half of the reviewed measures made no impact in this regard, 
resulting in a normalized number of measures without impact of Ino ≈ 0.643 . Moreo-
ver, this indicator is especially bad for the 28 measures from Theory, of which only three 
found reuse. Hence, its score is even worse with Ino ≈ 0.893 . For Practice, the indicator 
is significantly better at just over half, Ino ≈ 0.527.

We summarize the results in Fig. 23. From these indicators and the high number and 
variety of measures itself, we draw two main insights: 

1. Many of the works reviewed use their own custom measures. In contrast, significant 
usage of existing ones is limited to a select few, such as TSTR and the elementary 
visual assessment. There is no consistent, commonly accepted combination of evalu-
ation measures that researchers of time series synthesis have agreed on yet.

2. Against intuition, measures proposed in dedicated works on evaluation (group The-
ory) have hardly impacted the reality of how generative models are actually being 
evaluated. Hence, we come to the conclusion that there is currently a significant dis-
crepancy between what dedicated works on synthesis evaluation propose and what 
practitioners actually use.

The reason for this situation is unclear to us and most likely requires a survey among the 
authors as to why they made the choices as we see them. Instead, we can only make fair 
guesses with the information at hand. First, a number of measures have only recently 
been presented, such that reuse in early works is impossible. Furthermore, the publi-
cations in Theory might not have reached the level of attention required to have a sig-
nificant influence on interdisciplinary work such as medical informatics. Third, some of 
the proposed measures might be too complex for the audience of works from Practice, 
mainly reviewers who do not value such measures. For instance, MTop-Div and duality 
gap come to mind. Another reasonable explanation would be that generator developers 
do indeed consider them but regard these measures as unsuited and hence use their own 
or those used in works they compete with. An example of such an influential work from 
Practice is [26], which, proposed in 2019, introduced distribution visualization via t-SNE 
and PCA, discriminative score, and predictive score, all with high reuse rates.

Requirements on the input data format

Not all measures are equally suited to evaluate all kinds of time series data. Among other 
aspects, they differ in how length and dimensionality of the sequences and the sizes of 
the datasets involved are being handled. Here, we look at how the measures reviewed in 
this survey come off in terms of applicability, that is, if there are any limitations or recom-
mendations for length, dimensionality, or size. Our findings are summarized in Table 7. 

(46)Ino :=
|{m ∈ G | r(m) = 0}|

|G|
.
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For each measure, we provide information on time series length in the second column, 
on its dimensionality in the third, on the size of the real dataset in the fourth, and on 
the size of the synthetic set in the last column. The measures with identical entries are 
grouped and sorted alphabetically. If a measure can be applied arbitrarily with respect to 
one of these four aspects, we mark the respective cell as “no restrictions” (n.r.). In case 
the measure requires an embedding function upon which length and dimensionality of 
the possible input format depend, we indicate this by the abbreviation e.i.d. for “embed-
der input dimension”. Occasionally, the sequence length must remain constant or, to the 
contrary, vary across the input. If measures are more specific, we put the limitations in 
the respective columns. Furthermore, if the value is marked with an asterisk (*), it is our 
recommendation based on the above analysis; otherwise, it was taken from the original 
work. Note that these are just estimates, meaning a dataset size of 900 most likely causes 
no problem when the recommendation says ≥1k*. For MIA and correlation structure, 
unfortunately, appropriate values are unknown. While lengths can vary, we implicitly 
assume dim(Dr) = dim(Dg ) = constant.

Our estimates (*) mostly follow the rationale that a certain amount of data must be 
available to reliably evaluate the synthetic data with the respective measure, especially 
since a portion of the dataset is to be held out from training the generative function. 
For measures that require a learned embedding or train a model for a downstream task 
with the data, we propose a minimum of 1000 samples per dataset. The same goes for 
measures that apply binning to estimate P and Q, such that some degree of statistical 
representativeness is maintained. For the same reason, we suggest a minimum length 
for distributional metric. For measures learning a model to distinguish real from syn-
thetic data, the proposed minimum size is 10 000 . Securities order marginals, AED, and 
feature-based correlation analysis require multivariate time series with different restric-
tions on the number of channels. Visual assessment is an outlier in this regard, as we 
argue for upper bounds in length, dimensionality, and size of Dg . This is based on the 
assumption that only time series of limited complexity and number can be visually 
judged reasonably.

To close out, we summarize our takeaways regarding the requirements for input data 
formats below. In terms of length, almost half the measures depend on the capabilities 

Fig. 23 Summary of impact indicators for all measures (total), group Theory, and group Practice. In the left 
plot, we show the number of works, number of measures, and maximum reuse value. In the right plot, we 
have relative impact score, normalized impact score, and the fraction of measures not reused (all bottom-up). 
Note the difference in scale on both x-axes
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of the embedding model, and they themselves operate on fixed-size output vectors. 25 
measures have no restrictions, while 10 require the time series to have constant length, 
and a few others have special requirements. The situation for dimensionality is very sim-
ilar. Most measures either depend on the capabilities of the embedding model or impose 
no restrictions at all. A few may only be applied to either uni- or multivariate time series. 
The partition between sample-level and distribution-level measures continues over to 
the size of input datasets. More precisely, if restrictions apply, datasets may contain only 
one sample in the former and typically thousands of time elements in the latter case to 
have a dependable estimation of the underlying distribution. Furthermore, the size of 
Dr and Dg is usually expected to be similar in magnitude, with notable exceptions like 
MTop-Div and NND.

Table 5 Measure requirements on TS length, dimensionality, and dataset sizes

List of length, dimensionality (column Dim), and the sizes of both real and synthetic datasets required or recommended for 
a successful application of each measure. The meaning of the abbreviations used are e.i.d. → embedder input dimension, i.e. 
the input format permitted by the embedding model, n.r. → no restrictions and const. → constant. “?” means that this value 
is unknown. (*) indicates a recommendation

Measures Length Dim Size(Dr) Size(Dg)

Agreement rate, algorithm comparison, AIS, augmenta-
tion test, average JS distance, CAS, C2ST, confusion matrix, 
context-FID, CT  , DRE, WD, WD on CDF, JS divergence on 
marginals, MMD, MiFID, PRD, predictive score, relative 
MMD test, topN locations, TRTS, TSTR, β-recall

e.i.d. e.i.d. ≥1k* ≥1k*

Max-RTS, RTS, STS const. n.r. >500 ≥10

ApEn, hedging effectiveness, marginal metrics, WCS const. n.r. n.r. n.r.

Discriminative score, duality gap, minimax loss e.i.d. e.i.d. ≥10k* ≥10k*

Authenticity, α-precision e.i.d. e.i.d. ≥1k* n.r.

ACS, AWD, cointegration test, computational complexity, 
elementary statistics, Fréchet distance, INND, ICD, MSAS, 
DTWD , NNT, PPC, plausible deniability, ONND, quadratic 
variation, spatial correlation, temporal correlation

n.r. n.r. n.r. n.r.

Coverage, density e.i.d. e.i.d. ≈10k ≈10k

Dependence scores const. 1 1 n.r.

Distribution visualization n.r. n.r. ≥100* ≥100*

Distributional metric ≥200* n.r. n.r. n.r.

Distributional scores n.r. n.r. 1 n.r.

Feature-based distance n.r. 1 1 1

Improved precision, improved recall e.i.d. e.i.d. ≈50k ≈50k

Length histogram varying n.r. n.r. n.r.

MTop-Div e.i.d. e.i.d. ≥1k 10|Dr |

MIA ? ? ? ?

Correlation structure const. ? ? ?

NND e.i.d. e.i.d. ≥10k* ≫|Dr |

NDB, NDB-over/under n.r. n.r. ≥1k* ≥1k*

Pairwise measures const. 1 n.r. n.r.

Realism score e.i.d. e.i.d. ≈50k n.r.

Visual assessment ≤1k* ≤5* n.r. ≤1k*

AED n.r. 2 n.r. = |Dr |

Feature-based correlation analysis n.r. ≥ 2 n.r. = |Dr |

Securities order marginals n.r. ≥ 5 1 1

FID e.i.d. = l n.r. n.r.
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Conclusion
Sharing and publishing data is a crucial part of data science research. It enables the veri-
fication of results claimed in past work and drives the participation of other researchers 
in the future. Synthetic data, including synthetic time series, are a vital enabler of shar-
ing in  situations where privacy concerns prohibit the use of the original directly. Due 
to use cases like this, data generation is a heavily researched field. However, evaluating 
synthetic time series is a complex task and still considered an open problem [4, 9, 10].

To address this problem, we reviewed and analyzed existing literature on evaluation 
measures for synthetic time series data. In 56 papers, we found 83 measures, described 
each, and provided many points of differentiation, such as applicability, dependence 
on embeddings, conditional generation, and code availability. Among other things, we 
observed that there is currently no universal, generally accepted approach to evaluating 
synthetic time series. Furthermore, many measures are insufficiently defined and lack 
public implementations, making reuse and reproduction troublesome and error-prone. 
Afterwards, we analyzed the reuse behavior of researchers observed in these works and 
found that dedicated evaluation measures (group Theory) have little to no resonance 
with practical works, proposing new generative models. Additionally, we introduced 
structure to the large and diverse set of measures via a taxonomy of quality. Here, we 
observed, for instance, that most measures are quantitative and test a wide range of cri-
teria, with a majority focused on fidelity and matching distributions. Lastly, we looked at 
limitations to applicability regarding length, dimensionality, and dataset sizes. Findings 
include the frequent dependence on embedding models, restrictions on dataset sizes, 
and the number of channels.

Our study uncovered several directions for future research and improvements. In 
our opinion, the logical next step is to conduct extensive yet controlled experiments on 
the collection of proposed measures to test and compare their efficacy. For instance, a 
promising approach may be ablation studies in which only one experimental parameter, 
such as time series length or dimensionality, changes to isolate effects on the measure, 
or use custom-created time series with known characteristics. Besides, we have seen 
that many measures depend on preceding embeddings into a latent space. However, we 
do not know of any study analyzing the impact of architecture and training of the cho-
sen embedding model. Furthermore, many measures reviewed cannot handle variable 
length time series. Those who can do so in principle, including embedding-dependent 
measures, have yet to be tested in this setting. As we expect to see more works experi-
menting with such data in the future, having measures and embeddings that can handle 
variable length well will likely become its own concern. Finally, we view the vast diversity 
of measures and their variants as a significant hindrance to practical evaluation, pres-
entation of results, and capturing of generator progress as a whole. This is a challenge 
unique to the generation task compared to areas like time series forecasting or classifica-
tion. Hence, future research would immensely profit from a widely accepted, reasonably 
sized set of qualified measures for the central evaluation criteria.

Abbreviations
ACF  Autocorrelation function
ACS  Average cosine similarity
AE  Autoencoder
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AIS  Annealed importance sampling
ApEn  Approximate entropy
AUPRC  Area under precision-recall curve
AUROC  Area under ROC curve
AED  Average euclidean distance
AWD  Average Wasserstein distance
BOSS  Bag-of-SFA-Symbols
CAS  Classification accuracy score
CID  Complexity invariance distance
CDF  Cumulative distribution function
C2ST  Classifier two-sample test
CT   Data-copying test
DL  Deep learning
DFT  Discrete Fourier transform
dNNK   Distance to the Kth-nearest neighbor
DRE  Distribution of reconstruction errors
DTW  Dynamic time warping
DTWD  Multivariate, dependent DTW
ED  Euclidean distance
FFT  Fast Fourier transform
FID  Fréchet inception distance
GAN  Generative adversarial network
ICD  Intra-class distance
pi  Improved precision
ri  Improved recall
IS  Inception score
IoT  Internet of things
INND  Incoming nearest neighbor distance
JS divergence  Jensen-Shannon divergence
JS distance  Jensen-Shannon distance
LSTM  Long short-term memory
MAE  Mean absolute error
Max-RTS  Maximum real to synthetic similarity
MIA  Membership inference attack
MiFID  Memorization-informed Fréchet inception distance
ML  Machine learning
MMD  Maximum mean discrepancy
MSCD  Maximum shifting correlation distance
MSAS  Multi-sequence aggregate similarity
MTop-Div  Manifold topology divergence
MSE  Mean squared error
NDB  Number of statistically different bins
NDB-over/under  NDB over-representation and under-representation
NND  Neural network divergence
NNT  Nearest neighbor in training
ONND  Outgoing nearest neighbor distance
PCA  Principal component analysis
PCC  Pearson correlation coefficient
PDF  Probability density function
PPC  Pairwise Pearson correlation
PRD  Precision and recall for distributions
PRE  Percent root mean square error
R  Realism score
RMSE  Root mean square error
RTR   Real to real similarity
RTS  Real to synthetic similarity
STS  Synthetic to synthetic similarity
TRTS  Train on real, test on synthetic
TS  Time series
TSTR  Train on synthetic, test on real
t-SNE  T-distributed stochastic neighbor embedding
WD  Wasserstein-1 distance
WCS  Wavelet coherence score

Acknowledgements
This publication was supported by the Open Access Publication Fund of the University of Wuerzburg and the Deutsche 
Forschungsgemeinschaft (DFG, German Research Foundation) – 510552229.



Page 53 of 56Stenger et al. Journal of Big Data           (2024) 11:66  

Author contributions
All authors contributed to the study conception and design. MS conducted data acquisition and the evaluation of 
results. MS created the first draft of the manuscript, while RL, IF, SK, and AB revised it critically. AB supervised the work. All 
authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. Funded by the Deutsche Forschungsgemeinschaft (DFG, 
German Research Foundation) – 510552229.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare no competing interests.

Received: 1 November 2023   Accepted: 16 April 2024

References
 1. Lim B, Zohren S. Time-series forecasting with deep learning: a survey. Philos Trans Royal Soc A. 2021. https:// doi. 

org/ 10. 1098/ rsta. 2020. 0209.
 2. Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA. Deep learning for time series classification: a review. 

Data Mining Knowl Discov. 2019;33(4):917–63. https:// doi. org/ 10. 1007/ s10618- 019- 00619-1.
 3. Blázquez-García A, Conde A, Mori U, Lozano JA. A review on outlier/anomaly detection in time series data. ACM 

Comput Surv. 2021. https:// doi. org/ 10. 1145/ 34446 90.
 4. Brophy E, Wang Z, She Q, Ward T. Generative adversarial networks in time series: a systematic literature review. 

ACM Comput Surv. 2023. https:// doi. org/ 10. 1145/ 35595 40.
 5. Beaulieu-Jones BK, Wu ZS, Williams C, Lee R, Bhavnani SP, Byrd JB, et al. Privacy-preserving generative deep neural 

networks support clinical data sharing. Circ: Cardiovasc Q Outcomes. 2019. https:// doi. org/ 10. 1161/ CIRCO UTCOM 
ES. 118. 005122.

 6. Petitjean F, Forestier G, Webb GI, Nicholson AE, Chen Y, Keogh E. Dynamic Time Warping Averaging of Time 
Series Allows Faster and More Accurate Classification. In: 2014 IEEE International Conference on Data Mining; 
2014;470–479.

 7. Dau HA, Silva DF, Petitjean F, Forestier G, Bagnall A, Mueen A, et al. Optimizing dynamic time warping’s window 
width for time series data mining applications. Data Mining Knowl Discov. 2018;32:1074–120. https:// doi. org/ 10. 
1007/ s10618- 018- 0565-y.

 8. Bauer A, Trapp S, Stenger M, Leppich R, Kounev S, Leznik M, et al. Comprehensive exploration of synthetic data 
generation: a survey. arXiv preprint. 2024. https:// doi. org/ 10. 4855/ ARXIV. 2401. 02524.

 9. Leznik M, Lochner A, Wesner S, Domaschka J. [SoK] The great GAN bake Off, an extensive systematic evaluation 
of generative adversarial network architectures for time series synthesis. J Syst Res. 2022. https:// doi. org/ 10. 5070/ 
SR321 59045.

 10. Jarrett D, Bica I, van der Schaar M. Time-series generation by contrastive imitation. In: Ranzato M, Beygelzimer A, 
Dauphin Y, Liang PS, Vaughan JW, editors. Advances in neural information processing systems. New York: Curran 
Associates, Inc.; 2021. p. 28968–82.

 11. Borji A. Pros and cons of GAN evaluation measures: new developments. Comput Vis Image Underst. 2022;215: 
103329. https:// doi. org/ 10. 1016/j. cviu. 2021. 103329.

 12. Iqbal T, Qureshi S. The survey: text generation models in deep learning. J King Saud Univ - Comput Inform Sci. 
2022;34(6):2515–28. https:// doi. org/ 10. 1016/j. jksuci. 2020. 04. 001.

 13. Figueira A, Vaz B. Survey on synthetic data generation, evaluation methods and GANs. Mathematics. 
2022;10(15):2733.

 14. Xu Q, Huang G, Yuan Y, Guo C, Sun Y, Wu F, et al. An empirical study on evaluation metrics of generative adversarial 
networks. arXiv preprint. 2018. https:// doi. org/ 10. 4855/ ARXIV. 1806. 07755.

 15. Eigenschink P, Reutterer T, Vamosi S, Vamosi R, Sun C, Kalcher K. Deep generative models for synthetic data: a 
survey. IEEE Access. 2023;11:47304–20. https:// doi. org/ 10. 1109/ ACCESS. 2023. 32751 34.

 16. Borji A. Pros and cons of GAN evaluation measures. Comput Vis Image Underst. 2019;179:41–65. https:// doi. org/ 
10. 1016/j. cviu. 2018. 10. 009.

 17. Dankar FK, Ibrahim MK, Ismail L. A multi-dimensional evaluation of synthetic data generators. IEEE Access. 
2022;10:11147–58. https:// doi. org/ 10. 1109/ ACCESS. 2022. 31447 65.

 18. Ji S, Luo J, Yang X. A comprehensive survey on deep music generation: multi-level representations, algorithms, 
evaluations, and future directions. arXiv preprint. 2020. https:// doi. org/ 10. 4855/ ARXIV. 2011. 06801.

https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1145/3444690
https://doi.org/10.1145/3559540
https://doi.org/10.1161/CIRCOUTCOMES.118.005122
https://doi.org/10.1161/CIRCOUTCOMES.118.005122
https://doi.org/10.1007/s10618-018-0565-y
https://doi.org/10.1007/s10618-018-0565-y
https://doi.org/10.4855/ARXIV.2401.02524
https://doi.org/10.5070/SR32159045
https://doi.org/10.5070/SR32159045
https://doi.org/10.1016/j.cviu.2021.103329
https://doi.org/10.1016/j.jksuci.2020.04.001
https://doi.org/10.4855/ARXIV.1806.07755
https://doi.org/10.1109/ACCESS.2023.3275134
https://doi.org/10.1016/j.cviu.2018.10.009
https://doi.org/10.1016/j.cviu.2018.10.009
https://doi.org/10.1109/ACCESS.2022.3144765
https://doi.org/10.4855/ARXIV.2011.06801


Page 54 of 56Stenger et al. Journal of Big Data           (2024) 11:66 

 19. Fatima N, Imran AS, Kastrati Z, Daudpota SM, Soomro A. A systematic literature review on text generation using 
deep neural network models. IEEE Access. 2022;10:53490–503. https:// doi. org/ 10. 1109/ ACCESS. 2022. 31741 08.

 20. Assefa SA, Dervovic D, Mahfouz M, Tillman RE, Reddy P, Veloso M. Generating synthetic data in finance: opportuni-
ties, challenges and pitfalls. In: Proceedings of the First ACM International Conference on AI in Finance; 2020. p. 
1–8.

 21. Theis L, van den Oord A, Bethge M. A note on the evaluation of generative models. In: International Conference 
on Learning Representations (ICLR 2016); 2016. .

 22. Raghunathan TE. Synthetic data. Ann Rev Statist Appl. 2021;8(1):129–40. https:// doi. org/ 10. 1146/ annur ev- stati 
stics- 040720- 031848.

 23. Nikolenko SI. Synthetic data for deep learning. In: Gaw N, Pardalos PM, Gahrooei MR, editors. Springer optimization 
and its applications. Cham: Springer; 2021.

 24. Shumway RH, Stoffer DS. Time series analysis and its applications. Berlin: Springer; 2017.
 25. Berglund M, Raiko T, Honkala M, Karkkainen L, Vetek A, Karhunen JT. Bidirectional recurrent neural networks as 

generative models. In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R, editors. Advances in neural informa-
tion processing systems. New York: Curran Associates, Inc.; 2015.

 26. Yoon J, Jarrett D, van der Schaar M. Time-series generative adversarial networks. In: Wallach H, Larochelle H, Beyg-
elzimer A, d’Alch’e-Buc F, Fox E, Garnett R, editors. Advances in neural information processing systems. New York: 
Curran Associates Inc.; 2019.

 27. Desai A, Freeman C, Wang Z, Beaver I. TimeVAE: a variational auto-encoder for multivariate time series generation. 
arXiv preprint. 2021. https:// doi. org/ 10. 4855/ ARXIV. 2111. 08095.

 28. Schäfer P. The BOSS is concerned with time series classification in the presence of noise. Data Mining Knowl 
Discov. 2015;29:1505–30.

 29. Ye L, Keogh E. Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD 
international conference on Knowledge discovery and data mining; 2009. p. 947–956.

 30. Batista GEAPA, Wang X, Keogh EJ. A complexity-invariant distance measure for time series. New Delhi: SIAM; 2011. 
p. 699–710.

 31. Jiang G, Wang W, Zhang W. A novel distance measure for time series: Maximum shifting correlation distance. Pat-
tern Recognit Lett. 2019;117:58–65. https:// doi. org/ 10. 1016/j. patrec. 2018. 11. 013.

 32. Webster J, Watson RT. Analyzing the past to prepare for the future: Writing a literature review. MIS quarterly. 2002; 
p. xiii–xxiii.

 33. Bindschaedler V, Shokri R, Gunter CA. Plausible Deniability for Privacy-Preserving Data Synthesis. Proceedings of 
the VLDB Endowment. 2017;10(5).

 34. Lin Z, Jain A, Wang C, Fanti GC, Sekar V. Generating high-fidelity, synthetic time series datasets with Doppel-
GANger. arXiv preprint. 2019. https:// doi. org/ 10. 4855/ ARXIV. 1909. 13403.

 35. Wu Y, Burda Y, Salakhutdinov R, Grosse R. On the Quantitative Analysis of Decoder-Based Generative Models. In: 
International Conference on Learning Representations; 2017. Available from: https:// openr eview. net/ forum? id= 
B1M8J F9xx.

 36. Neal RM. Annealed importance sampling. Stat Comput. 2001;11:125–39.
 37. Pincus S. Approximate entropy (ApEn) as a complexity measure. Chaos: Interdiscip J Nonlinear Sci. 1995;5(1):110–

7. https:// doi. org/ 10. 1063/1. 166092.
 38. Leznik M, Michalsky P, Willis P, Schanzel B, Östberg PO, Domaschka J. Multivariate Time Series Synthesis Using 

Generative Adversarial Networks. In: Proceedings of the ACM/SPEC International Conference on Performance 
Engineering. ICPE ’21. New York, NY, USA: Association for Computing Machinery; 2021. p. 43-50.

 39. Wang L, Zhang W, He X. Continuous patient-centric sequence generation via sequentially coupled adversarial 
learning. In: Li G, Yang J, Gama J, Natwichai J, Tong Y, editors. Database systems for advanced applications. Cham: 
Springer International Publishing; 2019. p. 36–52.

 40. Jeha P, Bohlke-Schneider M, Mercado P, Kapoor S, Nirwan RS, Flunkert V, et al. PSA-GAN: Progressive Self Attention 
GANs for Synthetic Time Series. In: International Conference on Learning Representations; 2022. Available from: 
https:// openr eview. net/ forum? id= Ix_ mh42x q5w.

 41. Li X, Metsis V, Wang H, Ngu AHH. TTS-GAN: a transformer-based time-series generative adversarial network. In: 
Michalowski M, Abidi SSR, Abidi S, editors. Artificial intelligence in medicine. Cham: Springer International Publish-
ing; 2022. p. 133–43.

 42. Seyfi A, Rajotte JF, Ng R. Generating multivariate time series with COmmon source CoordInated GAN (COSCI-GAN). 
Advances in neural information processing systems. 2022;35:32777–88.

 43. Ravuri S, Vinyals O. Classification accuracy score for conditional generative models. In: Wallach H, Larochelle H, 
Beygelzimer A, d’Alch’e-Buc F, Fox E, Garnett R, editors. Advances in neural information processing systems. New 
York: Curran Associates Inc.; 2019.

 44. Lopez-Paz D, Oquab M. Revisiting classifier two-sample tests. In: International Conference on Learning Represen-
tations. Toulon, France; 2017. Available from: https:// hal. inria. fr/ hal- 01862 834.

 45. Kulkarni V, Tagasovska N, Vatter T, Garbinato B. Generative models for simulating mobility trajectories. arXiv pre-
print. 2018. https:// doi. org/ 10. 4855/ ARXIV. 1811. 12801.

 46. Norgaard S, Saeedi R, Sasani K, Gebremedhin AH. Synthetic Sensor Data Generation for Health Applications: A 
Supervised Deep Learning Approach. In: 2018 40th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC); 2018. p. 1164–1167.

 47. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: 
Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 2818–2826.

 48. Franceschi JY, Dieuleveut A, Jaggi M. Unsupervised scalable representation learning for multivariate time series. In: 
Advances in neural information processing systems, vol. 32; 2019. p. 4627–4638.

 49. Fréchet M. Sur la distance de deux lois de probabilité. In: Annales de l’ISUP. vol. 6; 1957. p. 183–198.
 50. Remlinger C, Mikael J, Elie R. Conditional loss and deep euler scheme for time series generation. Proc AAAI Conf 

Artif Intell. 2022;36(7):8098–105. https:// doi. org/ 10. 1609/ aaai. v36i7. 20782.

https://doi.org/10.1109/ACCESS.2022.3174108
https://doi.org/10.1146/annurev-statistics-040720-031848
https://doi.org/10.1146/annurev-statistics-040720-031848
https://doi.org/10.4855/ARXIV.2111.08095
https://doi.org/10.1016/j.patrec.2018.11.013
https://doi.org/10.4855/ARXIV.1909.13403
https://openreview.net/forum?id=B1M8JF9xx
https://openreview.net/forum?id=B1M8JF9xx
https://doi.org/10.1063/1.166092
https://openreview.net/forum?id=Ix_mh42xq5w
https://hal.inria.fr/hal-01862834
https://doi.org/10.4855/ARXIV.1811.12801
https://doi.org/10.1609/aaai.v36i7.20782


Page 55 of 56Stenger et al. Journal of Big Data           (2024) 11:66  

 51. Boursin N, Remlinger C, Mikael J. Deep generators on commodity markets application to deep hedging. Risks. 
2022;11(1):7.

 52. Naeem MF, Oh SJ, Uh Y, Choi Y, Yoo J. Reliable Fidelity and Diversity Metrics for Generative Models. In: III HD, Singh 
A, editors. Proceedings of the 37th International Conference on Machine Learning. vol. 119 of Proceedings of 
Machine Learning Research. PMLR; 2020. p. 7176–7185.

 53. Meehan C, Chaudhuri K, Dasgupta S. A non-parametric test to detect data-copying in generative models. In: 
Chiappa S, Calandra R, editors. Proceedings of the Twenty Third International Conference on Artificial Intelligence 
and Statistics. vol. 108 of Proceedings of Machine Learning Research. PMLR; 2020. p. 3546–3556. Available from: 
https:// proce edings. mlr. press/ v108/ meeha n20a. html.

 54. Wiese M, Knobloch R, Korn R, Kretschmer P. Quant GANs: deep generation of financial time series. Quantit Finance. 
2020;20(9):1419–40. https:// doi. org/ 10. 1080/ 14697 688. 2020. 17304 26.

 55. Wiese M, Bai L, Wood B, Buehler H. Deep hedging: learning to simulate equity option markets. arXiv preprint. 2019. 
https:// doi. org/ 10. 4855/ ARXIV. 1911. 01700.

 56. Esteban C, Hyland SL, Rätsch G. Real-valued (Medical) time series generation with recurrent conditional GANs. 
arXiv preprint. 2017. https:// doi. org/ 10. 4855/ ARXIV. 1706. 02633.

 57. Ouyang K, Shokri R, Rosenblum DS, Yang W. A Non-Parametric Generative Model for Human Trajectories. In: 
Proceedings of the 27th International Joint Conference on Artificial Intelligence. IJCAI’18. AAAI Press; 2018. p. 
3812-3817.

 58. Pastor-Serrano O, Lathouwers D, Perkó Z. A semi-supervised autoencoder framework for joint generation and 
classification of breathing. Comput Methods Programs Biomed. 2021;209: 106312. https:// doi. org/ 10. 1016/j. cmpb. 
2021. 106312.

 59. Camera C, Bruggeman A, Hadjinicolaou P, Michaelides S, Lange MA. Evaluation of a spatial rainfall generator for 
generating high resolution precipitation projections over orographically complex terrain. Stoch Environ Res Risk 
Assess. 2017;31(3):757–73.

 60. Pan Z, Wang J, Liao W, Chen H, Yuan D, Zhu W, et al. Data-driven EV load profiles generation using a variational 
auto-encoder. Energies. 2019. https:// doi. org/ 10. 3390/ en120 50849.

 61. Xu T, Wenliang LK, Munn M, Acciaio B. COT-GAN: generating sequential data via causal optimal transport. In: Laro-
chelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors. Advances in neural information processing systems. New 
York: Curran Associates, Inc.; 2020. p. 8798–809.

 62. Grnarova P, Levy KY, Lucchi A, Perraudin N, Goodfellow I, Hofmann T, et al. A domain agnostic measure for moni-
toring and evaluating GANs. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, editors., 
et al., Advances in neural information processing systems. New York p: Curran Associates, Inc.; 2019.

 63. Sidheekh S, Aimen A, Madan V, Krishnan NC. On Duality Gap as a Measure for Monitoring GAN Training. In: 2021 
International Joint Conference on Neural Networks (IJCNN); 2021. p. 1–8.

 64. Sidheekh S, Aimen A, Krishnan NC. On Characterizing GAN Convergence Through Proximal Duality Gap. In: Meila 
M, Zhang T, editors. Proceedings of the 38th International Conference on Machine Learning. vol. 139 of Proceed-
ings of Machine Learning Research. PMLR; 2021. p. 9660–9670.

 65. Lubba CH, Sethi SS, Knaute P, Schultz SR, Fulcher BD, Jones NS. catch22: CAnonical time-series CHaracteristics: 
selected through highly comparative time-series analysis. Data Mining Knowl Discov. 2019;33(6):1821–52.

 66. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S, et al. GANs trained by a two time-scale update rule 
converge to a local nash equilibrium. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., 
editors. Advances in neural information processing systems. New york: Curran Associates, Inc.; 2017.

 67. Brophy E, Wang Z, Ward TE. Quick and easy time series generation with established image-based GANs. arXiv 
preprint. 2019. https:// doi. org/ 10. 4855/ ARXIV. 1902. 05624.

 68. Sajjadi MSM, Bachem O, Lucic M, Bousquet O, Gelly S. Assessing generative models via precision and recall. In: 
Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, editors. Advances in neural information 
processing systems. New York: Curran Associates, Inc.; 2018.

 69. Kynkäänniemi T, Karras T, Laine S, Lehtinen J, Aila T. Improved precision and recall metric for assessing generative 
models. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, editors. Advances in neural 
information processing systems. New York: Curran Associates, Inc.; 2019.

 70. Barannikov S, Trofimov I, Sotnikov G, Trimbach E, Korotin A, Filippov A, et al. Manifold topology divergence: a 
framework for comparing data manifolds. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW, editors., 
et al., Advances in neural information processing systems. New York p: Curran Associates, Inc.; 2021. p. 7294–305.

 71. Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola A. A kernel method for the two-sample-problem. In: 
Schölkopf B, Platt J, Hoffman T, editors. Advances in neural information processing systems. Cambridge: MIT Press; 
2006.

 72. Shokri R, Stronati M, Song C, Shmatikov V. Membership inference attacks against machine learning models. In: 
Chattopadhyay Ankur, Schulz Michael J, Rettler Clinton, Turkiewicz Katie, Fernandez Laleah, editors. 2017 IEEE 
symposium on security and privacy (SP). Piscataway: IEEE; 2017. p. 3–18.

 73. Brophy E. Synthesis of Dependent Multichannel ECG Using Generative Adversarial Networks. In: Proceedings of 
the 29th ACM International Conference on Information & Knowledge Management. CIKM ’20. New York, NY, USA: 
Association for Computing Machinery; 2020. p. 3229-3232.

 74. Shokri R, Theodorakopoulos G, Le Boudec JY, Hubaux JP. Quantifying Location Privacy. In: 2011 IEEE Symposium on 
Security and Privacy; 2011. p. 247–262.

 75. Bai CY, Lin HT, Raffel C, Kan WCw. On Training Sample Memorization: Lessons from Benchmarking Generative 
Modeling with a Large-Scale Competition. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge 
Discovery & Data Mining. KDD ’21. New York, NY, USA: Association for Computing Machinery; 2021. p. 2534-2542.

 76. Zhang K, Patki N, Veeramachaneni K. Sequential models in the synthetic data vault. arXiv preprint. 2022. https:// 
doi. org/ 10. 4855/ ARXIV. 2207. 14406.

 77. Gulrajani I, Raffel C, Metz L. Towards GAN Benchmarks Which Require Generalization. In: International Conference 
on Learning Representations; 2019. Available from: https:// openr eview. net/ forum? id= HkxKH 2AcFm.

https://proceedings.mlr.press/v108/meehan20a.html
https://doi.org/10.1080/14697688.2020.1730426
https://doi.org/10.4855/ARXIV.1911.01700
https://doi.org/10.4855/ARXIV.1706.02633
https://doi.org/10.1016/j.cmpb.2021.106312
https://doi.org/10.1016/j.cmpb.2021.106312
https://doi.org/10.3390/en12050849
https://doi.org/10.4855/ARXIV.1902.05624
https://doi.org/10.4855/ARXIV.2207.14406
https://doi.org/10.4855/ARXIV.2207.14406
https://openreview.net/forum?id=HkxKH2AcFm


Page 56 of 56Stenger et al. Journal of Big Data           (2024) 11:66 

 78. Richardson E, Weiss Y. On GANs and GMMs. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, 
Garnett R, editors. Advances in neural information processing systems. New York: Curran Associates, Inc.; 2018.

 79. Arnout H, Kehrer J, Bronner J, Runkler T. Visual evaluation of generative adversarial networks for time series data. 
arXiv preprint. 2019. https:// doi. org/ 10. 4855/ ARXIV. 2001. 00062.

 80. Simon L, Webster R, Rabin J. Revisiting precision recall definition for generative modeling. In: Chaudhuri K, 
Salakhutdinov R, editors. Proceedings of the 36th International Conference on Machine Learning. vol. 97 of Pro-
ceedings of Machine Learning Research. PMLR; 2019. p. 5799–5808. Available from: https:// proce edings. mlr. press/ 
v97/ simon 19a. html.

 81. Bounliphone W, Belilovsky E, Blaschko MB, Antonoglou I, Gretton A. A Test of Relative Similarity For Model Selec-
tion in Generative Models. In: International Conference on Learning Representations; 2016. Available from: https:// 
arxiv. org/ pdf/ 1511. 04581. pdf.

 82. Arjovsky M, Chintala S, Bottou L. Wasserstein Generative Adversarial Networks. In: Precup D, Teh YW, editors. Pro-
ceedings of the 34th International Conference on Machine Learning. vol. 70 of Proceedings of Machine Learning 
Research. PMLR; 2017. p. 214–223. Available from: https:// proce edings. mlr. press/ v70/ arjov sky17a. html.

 83. Villani C. The wasserstein distances. Berlin: Springer; 2009. p. 93–111.
 84. Sun H, Deng Z, Chen H, Parkes DC. Decision-aware conditional GANs for time series data. arXiv preprint. 2020. 

https:// doi. org/ 10. 4855/ ARXIV. 2009. 12682.
 85. Li X, Ngu AHH, Metsis V. TTS-CGAN: a transformer time-series conditional GAN for biosignal data augmentation. 

arXiv preprint. 2022. https:// doi. org/ 10. 4855/ ARXIV. 2206. 13676.
 86. Grinsted A, Moore JC, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysi-

cal time series. Nonlinear Process Geophys. 2004;11(5/6):561–6. https:// doi. org/ 10. 5194/ npg- 11- 561- 2004.
 87. Alaa A, Van Breugel B, Saveliev ES, van der Schaar M. How Faithful is your Synthetic Data? Sample-level Metrics for 

Evaluating and Auditing Generative Models. In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, Sabato S, edi-
tors. Proceedings of the 39th International Conference on Machine Learning. vol. 162 of Proceedings of Machine 
Learning Research. PMLR; 2022. p. 290–306. Available from: https:// proce edings. mlr. press/ v162/ alaa2 2a. html.

 88. Heidrich B, Turowski M, Phipps K, Schmieder K, Süß W, Mikut R, et al. Controlling non-stationarity and periodicities 
in time series generation using conditional invertible neural networks. Appl Intell. 2022. https:// doi. org/ 10. 1007/ 
s10489- 022- 03742-7.

 89. Srinivasan P, Knottenbelt WJ. Time-series transformer generative adversarial networks. arXiv preprint. 2022. https:// 
doi. org/ 10. 4855/ ARXIV. 2205. 11164.

 90. Pei H, Ren K, Yang Y, Liu C, Qin T, Li D. Towards Generating Real-World Time Series Data. In: 2021 IEEE International 
Conference on Data Mining (ICDM); 2021. p. 469–478.

 91. Fons E, Sztrajman A, El-laham Y, Iosifidis A, Vyetrenko S. HyperTime: implicit neural representation for time series. 
arXiv preprint. 2022. https:// doi. org/ 10. 4855/ ARXIV. 2208. 05836.

 92. Alaa A, Chan AJ, van der Schaar M. Generative Time-series Modeling with Fourier Flows. In: International Confer-
ence on Learning Representations; 2021. Available from: https:// openr eview. net/ forum? id= PpshD 0AXfA.

 93. Ni H, Szpruch L, Wiese M, Liao S, Xiao B. Conditional sig-wasserstein GANs for time series generation. arXiv pre-
print. 2020. https:// doi. org/ 10. 4855/ ARXIV. 2006. 05421.

 94. Hazra D, Byun YC. SynSigGAN: generative adversarial networks for synthetic biomedical signal generation. Biology. 
2020. https:// doi. org/ 10. 3390/ biolo gy912 0441.

 95. Kegel L, Hahmann M, Lehner W. Feature-Based Comparison and Generation of Time Series. In: Proceedings of the 
30th International Conference on Scientific and Statistical Database Management. SSDBM ’18. New York, NY, USA: 
Association for Computing Machinery; 2018. .

 96. Shifaz A, Pelletier C, Petitjean F, Webb GI. Elastic similarity measures for multivariate time series classification. arXiv 
preprint. 2021. https:// doi. org/ 10. 4855/ ARXIV. 2102. 10231.

 97. Li J, Wang X, Lin Y, Sinha A, Wellman M. Generating realistic stock market order streams. In: Proceedings of the 
AAAI Conference on Artificial Intelligence. vol. 34; 2020. p. 727–734.

 98. Ten Daubechies I. Lectures on wavelets. Philadelphia: SIAM; 1992.
 99. Lynn PA, Lynn PA. The Laplace Transform and the z-transform. Electronic Signals and Systems. 1986;p. 225–272.
 100. Kosara R, Bendix F, Hauser H. Time Histograms for Large, Time-Dependent Data. In: Proceedings of the Sixth Joint 

Eurographics - IEEE TCVG Conference on Visualization. VISSYM’04. Goslar, DEU: Eurographics Association; 2004. p. 
45-54.

 101. Gogolou A, Tsandilas T, Palpanas T, Bezerianos A. Comparing similarity perception in time series visualizations. IEEE 
Trans Vis Comput Graphics. 2019;25(1):523–33. https:// doi. org/ 10. 1109/ TVCG. 2018. 28650 77.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.4855/ARXIV.2001.00062
https://proceedings.mlr.press/v97/simon19a.html
https://proceedings.mlr.press/v97/simon19a.html
https://arxiv.org/pdf/1511.04581.pdf
https://arxiv.org/pdf/1511.04581.pdf
https://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.4855/ARXIV.2009.12682
https://doi.org/10.4855/ARXIV.2206.13676
https://doi.org/10.5194/npg-11-561-2004
https://proceedings.mlr.press/v162/alaa22a.html
https://doi.org/10.1007/s10489-022-03742-7
https://doi.org/10.1007/s10489-022-03742-7
https://doi.org/10.4855/ARXIV.2205.11164
https://doi.org/10.4855/ARXIV.2205.11164
https://doi.org/10.4855/ARXIV.2208.05836
https://openreview.net/forum?id=PpshD0AXfA
https://doi.org/10.4855/ARXIV.2006.05421
https://doi.org/10.3390/biology9120441
https://doi.org/10.4855/ARXIV.2102.10231
https://doi.org/10.1109/TVCG.2018.2865077

	Evaluation is key: a survey on evaluation measures for synthetic time series
	Abstract 
	Introduction
	Related work
	Evaluation in related fields of data synthesis
	Summary of delimiters

	Approach
	Terminology
	Acquisition and systematization of knowledge

	Evaluation measures for synthetic time series
	Distribution-level measures
	Sample-level measures

	Analyzing evaluation measures
	Taxonomy of evaluation measures and criteria
	Theory and practice of evaluation measures
	Requirements on the input data format

	Conclusion
	Acknowledgements
	References


