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Introduction
With advancements in deep learning technologies, big data, and artificial intelligence 
(AI) technologies are now widespread in various domains, such as smart grids  [1], 
telecommunications  [2], and so on. Educational big data also profoundly influences 
and reshapes academic research and industrial applications in education [3, 4]. Mas-
sive Open Online Courses (MOOCs)  [5], generating a large amount of diversified 
learning behavior data, has been a research hotspot in educational big data and AI + 
Education  [6, 7]. Student academic performance prediction, as a fundamental tech-
nique in realizing intelligent educational applications [8], has received more and more 
attention in MOOCs  [9]. Predicting student performance is a process that involves 
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estimating how students will fare in future evaluations or exams. This process is cru-
cial in identifying students at risk of failing or dropping out, enabling timely inter-
vention and support. Such a process holds significant importance in the context of 
massive open online courses [10].

Many research efforts have been devoted to predicting students’ academic perfor-
mance with machine learning techniques. For instance, traditional machine learn-
ing techniques successfully applied to academic performance prediction, e.g., logistic 
regression, random forest, artificial neural network, support vector machine [11, 12]. 
Deep neural network-based methods also make significant progress, e.g., recurrent 
neural networks [13, 14], convolutional neural networks [15], attention networks [8, 
16]. However, most existing academic performance prediction methods exploit learn-
ing behavior data with simple feature engineering, e.g., using a statistic figure (num-
ber of occurrences) to denote the feature of a specific learning activity. These settings 
may result in severe value information loss due to inappropriate data structures. To 
encode the learning behavior data with graph structures [17], the most expressive 
data structure, which can retain valuable clues for performance predictions [18]. Fur-
thermore, many kinds of research show that sequential patterns of learning behav-
iors or interaction activities can exhibit the academic states of students [14, 19, 20]. 
Thus, encoding the online learning behavior data in graph structures with a temporal 
property may better retain the value learning cues for their academic performance 
predictions. This work will demonstrate that this temporal graph structure is vital for 
academic performance prediction. Nevertheless, finding a suitable graph structure 
to encode students’ learning cues and corresponding processing techniques remains 
challenging in the domain.

To bridge this gap, a novel model, APP-TGN, utilizing temporal graph neural net-
works, is introduced to predict academic performance for problem-solving. Specifically, 
within APP-TGN, a dynamic graph is constructed from the online learning activity logs. 
The generated graph is forwarded to a temporal graph network with low-high filters to 
learn potential academic performance variations encoded in dynamic graphs. Further-
more, a global sampling module is developed to mitigate the problem of false correla-
tions in deep learning-based models. Finally, the learned representations from global 
sampling and local processing (with TGN) are passed through a multi-head attention 
module, predicting academic performances. The proposed approach’s utility is assessed 
through comprehensive experimentation using the widely recognized public dataset, 
OULA [21], derived from a practical educational application. Specifically, the empirical 
study seeks to address three research questions: (i) How does the proposed APP-TGN 
perform when predicting student academic performance in terms of accuracy, F1-score, 
and recall? (ii) What is the improvement in early predicting at-risk students when using 
APP-TGN against other state-of-the-art methods?  (iii) What contribution does each 
proposed component of APP-TCN make to the final prediction performance in terms of 
accuracy? The experimental results indicate that the proposed APP-TGN significantly 
surpasses existing methods and holds great potential for automated feedback and per-
sonalized learning in practical educational applications. Ablation studies also highlight 
the superiority and value of the proposed techniques within APP-TGN.

The main technical contributions of the paper are summarized as follows:
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• A novel framework for predicting academic performance is introduced, utilizing 
temporal graph networks and local and global sampling techniques. This framework 
leverages temporal information and interaction behaviors to achieve high prediction 
accuracy in the model.

• An efficient temporal graph neural network with low-high filters is designed to deal 
with temporal-evolving dynamic graphs formed by complex learning interaction 
activities.

• To the best of our knowledge, this paper is the first work to formulate the academic 
performance prediction tasks as the problem of classifying temporal dynamic graphs. 
Furthermore, a data bias deduction module is also developed in APP-TGN to miti-
gate the issue of false correlations in deep learning-based models.

Literature review
Academic performance predictions

As an important research task in intelligent education, academic performance predic-
tion has attracted the attention of many researchers. The initial discussion is dedicated 
to exploring research works that utilize traditional machine learning techniques.

Methods with traditional machine learning Academic performance prediction with 
traditional machine learning has been investigated for decades  [22]. Three logistic 
regression models were developed by Marbouti et al. to pinpoint students who were at 
risk in the first grade engineering curriculum. These models were applied at three cru-
cial junctures throughout the semester, and the findings underscored the significance 
of devising a prediction model tailored to a specific curriculum [11]. Ren et al. formu-
lated a linear multiple regression approach tailored to individual students to forecast 
their academic performance in the curriculum. This was achieved by monitoring stu-
dent participation in MOOCs. The approach effectively highlighted critical aspects of 
the student’s learning behaviors and studied habits [23]. Chui and his team introduced 
a model known as the Reduced Training Vector-based Support Vector Machine (RTV-
SVM) for identifying students who are marginal or at risk. By minimizing the number 
of training vectors, this model effectively cuts down the duration of training while main-
taining accuracy [24]. To find at-risk students at an early stage and promote the realiza-
tion of pedagogical and economic goal outcomes, Coussement et al. proposed a logit leaf 
model (LLM). They visualized it to balance predictive performance and comprehensibil-
ity, effectively improving the prediction of student dropout  [25]. Riestra et  al. utilized 
five algorithms, decision tree, naive Bayes, logical regression, multi-layer perceptron, 
and support vector machine, to anticipate student performance in the early stages of a 
course, based on an analysis of LMS log information available at the time of prediction. 
In addition, they employed a clustering algorithm to examine various patterns of cluster 
interaction [26]. Turabieh et al. introduced a method that enhances the Harris Hawkes 
optimization (HHO) approach. This method addresses the issue of premature conver-
gence by managing population diversity. They also employed the k-nearest neighbor 
(kNN) method as a strategy for clustering, which allowed them to monitor the perfor-
mance of HHO in adjusting population diversity [27]. In their work, Mubarak et al. put 
forward Sequential Logistic Regression along with Input Output Hidden Markov Model 
(IOHMM) for scrutinizing student learning behavior. This approach proves effective in 
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pinpointing students who are at risk of discontinuing their studies [28]. A model based 
on genetic programming was developed by Jiao et al. for forecasting student academic 
performance. This model demonstrated robust performance compared to conventional 
AI methods such as ANN and SVM [29]. In summary, traditional machine learning algo-
rithms have a limited capacity for feature learning [30], which can hinder their ability to 
model students’ complex learning processes accurately.

Methods with deep neural networks Research on applying deep neural networks has 
become increasingly popular in recent years [31, 32]. Yang et al. proposed the 1-chan-
nel & 3-channel learning image recognition based on convolutional neural networks for 
transforming students’ curriculum participation into images for predictive analysis [15]. 
Giannakas et al. introduced a Deep Neural Network framework with two hidden layers 
in software engineering. This framework was designed to predict teams’ performance 
early and demonstrated superior performance compared to traditional methods  [33]. 
It was specifically tailored to handle two-category classification tasks. Wang and col-
leagues presented AS-SAN, Adaptive Sparse Self-Attention Network, which predicts 
the fine-grained performance of students in online courses [8]. Karimi et al. constructed 
a knowledge map using the DOPE, the Deep Online Performance Evaluation method. 
They employed recurrent neural networks for encoding sequence learning, which aids 
in predicting student performance in curriculum [34]. Waheed et al. utilized deep artifi-
cial neural networks in virtual learning environments for early intervention with at-risk 
students. This approach, which extracted features from clickstream data, outperformed 
baseline models such as logistic regression or support vector machines  [35]. Du et  al. 
introduced a comprehensive model that leverages Latent Variation Auto Encoder (LVAE) 
and Deep Neural Network (DNN) to address imbalances in education datasets. This 
approach enhances the model’s capacity for early identification of students at risk [36]. 
Leveraging the growing popularity of graph neural networks [31], a novel pipeline, 
MTGNN [18], has been developed for predicting student performance. This innovative 
approach utilizes multi-topology graph neural networks, capitalizing on graph struc-
tures to mirror student relationships. Sun et  al.  [37] propose an adversarial reinforce-
ment learning method for time-relevant scoring systems. They aim to optimize student 
scores within a limited time while minimizing detection risk. The attacking problem is 
formulated as a Markov decision process, and a deep Q-network is used for policy learn-
ing. Li et al. introduced a unique method, MVHGNN, for predicting students’ academic 
performance [38]. This approach utilizes hypergraphs, meta-paths, and a CAT module 
to establish high-order relations between students and determine the weight of various 
behaviors. Despite their effectiveness, these models do not incorporate temporal learn-
ing process information in simulating learning performance, indicating potential areas 
for enhancement.

Graph neural networks in educational applications

Graph Neural Networks (GNNs) have garnered significant interest recently due to 
their exceptional ability to extract information from non-Euclidean spaces [39]. As 
a versatile tool compatible with various learning paradigms, such as graph prompt 
learning [40, 41], GNNs have been widely applied in a range of domains, including nat-
ural language processing, recommendation systems, and materials science [42–44]. In 
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line with the advancements in intelligent education, GNNs have also made their mark 
in the educational sector.

Cognitive diagnosis For instance, cognitive diagnosis, a fundamental aspect of intel-
ligent education, assesses a student’s grasp of specific knowledge areas [45]. Gao and 
colleagues introduced a unique framework for Cognitive Diagnosis driven by Rela-
tion maps (RCD), based on the interplay among students, exercises, and concepts. 
This framework successfully integrates both structural and interactive relationships 
[46]. Zhang et al. introduced a graph-based approach to knowledge tracing for cogni-
tive diagnosis, known as GKT-CD [47]. They utilized Gated-GNN within GKT-CD to 
monitor students’ knowledge records and dynamically ascertain their knowledge mas-
tery abilities. Mao et al. proposed an approach for cognitive diagnosis that is aware of 
learning behavior (LCD). This method employs GCN to distill features from exercises 
and videos, thereby enhancing the depiction of students’ knowledge proficiency [48]. 
The graph-based Cognitive Diagnosis model (GCDM), proposed by Su et al. facilitates 
the extraction of interactions between students, skills, and questions from heteroge-
neous cognitive graphs [49]. It also uncovers potential higher-order relations between 
these entities. The ICD, a cognitive diagnostic model proposed by Qi et al. uses three 
layers of neural networks to model the influence of exercises on concepts, the interac-
tion between concepts, and the influence of concepts on exercises, aiming to address 
the interaction among knowledge concepts and the quantitative relation between 
exercises and concepts  [50]. These models have shown the comparable capacity of 
graph neural networks in modeling the complex learning interaction among students.

Knowledge tracing Knowledge tracing is another important task in intelligent edu-
cation, which aims to judge students’ knowledge states by tracing their historical 
learning  [51, 52]. In the work of Nakagawa et al., a Graph Neural Network was uti-
lized for the first time to transform knowledge structures and apply graph networks 
for interactive feature extraction, leading to the creation of a unique approach to 
knowledge tracing known as GKT [53]. In the study by Yang et al., a unique approach 
was introduced, known as Graph-based Interaction Knowledge Tracing (GIKT). This 
approach leveraged a graph convolution network, allowing it to discern the correla-
tion between questions and skills  [54]. Tong et  al. introduced a hierarchical graph 
knowledge tracing approach, HGKT, was introduced. This approach involved the con-
struction of a hierarchical exercise graph, effectively capturing the dependencies in 
exercise learning  [55]. Song et  al. introduced a Joint graph convolutional network-
based deep Knowledge Tracing (JKT) system that connects exercises across different 
concepts, grasps high-level semantic details, and enhances the model’s interpretabil-
ity  [56]. Wu et al. introduced a session graph-based knowledge tracing (SGKT) that 
captures dynamic graphs through student interactions during a session and mimics 
the student response process. Additionally, they utilized a gated graph neural network 
to discern the knowledge states of students  [57]. A Bi-Graph Contrastive Learning-
based Knowledge Tracing (Bi-CLKT) model was proposed to obtain better concept 
representation through contrastive learning  [58]. Some models with self-supervised 
methods and graph neural networks are also investigated [59, 60]. These studies high-
light the importance of simulating complex interactions during learning to improve 
model prediction performance.
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Other educational applications Graph neural networks are also widely used in other 
intelligent education fields [61]. Ying et al. introduced an efficient Graph Convolutional 
Network that produces node embeddings using random walks and graph convolu-
tion techniques[62], and this approach has demonstrated outstanding performance in 
large-scale network recommendation systems. To counter cold start plus data sparsity 
issues in recommender systems based on collaborative filtering, Wang et al. introduced 
a Knowledge Graph Convolutional Network  [63]. This network adeptly identifies item 
correlations by exploring attributes linked in knowledge graphs. In addressing costliness 
plus rigidity in conventional Automatic Short Answer Grading (ASAG) tasks, Tan et al. 
employed a two-layer graph convolutional network, transforming a heterogeneous graph 
representing student responses, effectively resolving these issues [64]. Agarwal et al. pro-
posed a Multi-Relational Graph Transformer (MitiGaTe) to mine the structural context 
of the sentence and achieved remarkable performance on the ASAG task [65]. Li et al. 
used interactive information to model the relationship between students and questions. 
They proposed a GNN model named R2GCN, which can be applied to heterogeneous 
networks to predict students’ performance in interactive online question banks [66]. Li 
et al. leveraged interactive data for mapping relationships between students and ques-
tions, proposing an R2GCN GNN variant. This variant, applicable on heterogeneous 
networks, forecasts student performance for interactive online question banks  [66]. A 
GNN model named R2GCN was proposed to model the relationship between students 
and questions using interactive information, this model can be applied to heterogene-
ous networks to predict student performance in interactive online question banks  [67]. 
Asadi et  al. suggest using graph neural networks to model irregular multivariate time 
series, which can achieve accuracy comparable or superior to hand-crafted features 
when applied to raw time series click streams [20]. These models demonstrate the prom-
ising performance of graph neural networks in these applications.

Methodology
An academic performance prediction model (APP-TGN) based on a revised low-high 
filtering temporal graph network is proposed in this section. The proposed APP-TGN 
considers temporal information and interaction behaviors to enhance the performance 
of model predictions. Furthermore, a data bias deduction module with global sampling 
techniques is developed to mitigate the problem of false correlations in deep learning-
based models. The section introduces the details of the proposed APP-TGN. Firstly, a 
brief introduction of the framework of APP-TGN is presented, followed by an explana-
tion of the different components of APP-TGN.

The framework of APP‑TGN

Figure 1 illustrates the architecture of our solution with APP-TGN. It mainly consists of 
five main components: Data Collection & Pre-processing, Dynamic Graph Construction, 
Global Sampling Module, Low-High Filtering Temporal Graph Networks(LHFTGN), Aca-
demic Performance Representation & Prediction.

Procedures of APP-TGN Data Collection & Pre-processing includes attribution selec-
tion, data cleaning, and data transformation. With the pre-processed data from online 
learning systems, a dynamic graph construction method is presented to provide 
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temporal graphs as the input for LHFTGN in Dynamic Graph Construction. After that, 
a revised temporal graph neural network with low-high filtering operators is applied to 
the generated dynamic graphs, from which a local representation of the academic per-
formance is learned for the candid student. Meanwhile, a global representation of the 
group cognition is also obtained from Global Sampling Module. The local and global 
representations are concatenated and forwarded to a multi-head attention module to 
learn an unbiased academic performance representation. With an MLP-based classifier, 
the academic performances are predicted from the learned representations of these can-
didate students.

Data cleaning and pre‑processing

To perform a training or prediction task for APP-TGN, we need to prepare well-for-
mat data from the interaction logs of learning management systems (LMS) to fulfill 
the requirement of APP-TGN through data cleaning and pre-processing. Usually, the 
data collection and pre-processing have several essential steps to obtain the desir-
able formatted data, such as attribute selection, data cleaning, data transformation, 
etc. Attribute selection refers to choosing a suitable subset of data to achieve better 
performance on a specific task, as there are many attribute features from the logs 
of LMS, not all of them can contribute to the model’s performance. Data cleaning is 

Fig. 1 The framework of the proposed APP-TGN for academic performance prediction
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to fix or remove incomplete or unreasonable data to produce a qualified dataset for 
model training or testing. More importantly, the data format or type may not fulfill 
the requirement of the model inputs. Some data transformation techniques are often 
employed to get the exact data types or structures for specific tasks. From Fig.  1, 
we can see that the input for APP-TGN can be divided into parts: Ones are used 
for generating dynamic graphs, and the others are forwarded to the global sampling 
module.

Data preparation for dynamic graph construction This paper mainly uses temporal 
dynamic graphs to encode the temporal information and learning behaviors to facili-
tate academic performance prediction. Thus, we need to prepare the candidate data 
to generate dynamic graphs. To generate a graph from the raw log data, the key is to 
determine the types of nodes and edges. As the target graph has a temporal prop-
erty, we choose online activities as the nodes V = {v1, v2, ..., vNv } , where vi denotes 
the ith type of learning activities. The type of edges E = {e1, e2, ...} are usually the 
possible interactions between these nodes. We use the notation ac(i, 1) to denote the 
required data to generate a dynamic graph. ac(i, 1) represents a data unit from the 
sequence of learning activity logs of learner li . A sequence of learning activities for 
the learner li can be formulated by Eq. (1).

where L = {l1, l2, ..., lm} , Fg(L) represents a collection activity log data for a collection of 
learners L (with M learners), Naci denotes the length of an activity log for the learner 
li . The following subsection will detail how these interaction activity logs are converted 
into dynamic graphs.

Data preparation for global sampling module A global sampling technique is 
applied in APP-TGN to mitigate the problem of false correlations in deep learning-
based models. To achieve this goal, we must select the proper attributes to partici-
pate in the global sampling process. We use the notation at(i,  1) to denote the ith 
chosen attribute (e.g., Gender, Region, Disability, Highest_education, etc.) from 
learning management systems. at(i, 1) can be real-valued scalar or integer numbers 
obtained by a one-hot or multi-hot encoding method. Thus a record for the learner li 
can be formulated as follows:

where Fa(L) represents selected attribute feature records for a collection of learners L 
(with M learners), Nat denotes that we choose Nat attribute features for the global sam-
pling. Specifically, Fa(L) is generated only from the training dataset, not all the raw data 
from LMS, through which the problem of predicting the current states with possible 
future information can be avoided.

(1)Ac(li) = {ac(i, 1), ac(i, 2), ..., ac(i,Naci)},

(2)Fg(L) = {Ac(l1),Ac(l2), ...,Ac(lM)},

(3)At(li) = {at(i, 1), at(i, 2), ..., at(i,Nati)},

(4)Fa(L) = {At(l1),At(l2), ...,At(lM)},
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Dynamic graph construction

The subsection details how to use the data from Eq.  (2) to construct the dynamic 
temporal graphs as the input for low-high filtering temporal graph networks in APP-
TGN. Temporal graphs are a kind of dynamic graphs that are temporally changing 
with node or edge events. In our setting, as mentioned in Eq.  (1) and (2), we use a 
sequence of online learning activities to generate a temporal graph G , the temporal 
graph can be formulated as follows:

where x(ti) denotes a node-wise or interaction event in the sequence of online learning 
activities ϒ . A node-wise event vi(t) is an online learning activity from a collection of 
candidate online learning activities V. An interaction event is a directed temporal edge 
ei,j(t) between node vi (source) and node vj (target), usually denoting the transition from 
the learning activity vi to the learning activity vj . Ni(T ) = {j : (i, j) ∈ �(T )} refers to the 
neighborhood of node vi(t) in time interval T.

To be specific, the number of the node types in a temporal graph G(T ) is deter-
mined by the types of online learning activities, i.e., Nv , which means that we can see 
a temporal graph G as a static graph with Nv nodes at a specific duration, denoted as 
G(t) = (V[0, t], E[0, t]) . Therefore, we can apply spectral-based or spatial-based tech-
niques to obtain the temporal embedding vi(t) of vi(t) in temporal graph convolu-
tional operators. The features of node vi are denoted as a tuple (vi,1, ..., vi,j , ...) , where 
vi,j denotes the jth feature of vi , e.g., the type of learning activity, or the duration of 
the learning activity, and so on. The features of temporal edge ei,j(t) are denoted as 
a tuple (ei,j,1, ..., ei,j,k , ...) , where ei,j,k denotes the kth feature of ei,j(t) , e.g. the times-
tamp of transition. Furthermore, we can define the node or edge features with dif-
ferent time intervals for efficient computation with dynamic graphs. Together with 
temporal graphs and their node or edge features, an effective temporal graph network 
is proposed to obtain the representation of a sequence of online learning activities in 
the following subsection.

Low‑high filtering temporal graph networks

From Fig. 1, we can see that there are two crucial temporary representations of academic 
performance to reach the final representation, one is generated from temporal graph 
networks (locally), which is detailed in this subsection, the other is from the global sam-
pling module (globally), detailed in the following subsection.

Following the conventions, we also adapt an encoder-decoder architecture to real-
ize the temporal graph networks for a local representation of online learning activities. 
There may exist an over-smooth problem [67] in temporal graph learning after several 

(5)G(T ) = {V(T ), E(T )},

(6)V(T ) = {i : ∃vi(t) ∈ �, t ∈ T },

(7)E(T ) = {(i, j) : ∃ei,j(t) ∈ �, t ∈ T },

(8)� = {x(t1), x(t2), ...}, 0 ≤ t1 ≤ t2 ≤ ...,
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propagation operations with different online learning transitions. Thus, we propose an 
adaptive low-high filtering temporal graph neural network for problem-solving.

Propagation function From the process of dynamic graph construction, we know that 
dynamic graphs are temporal event-driven in online learning activities. Therefore, the 
transition between online learning activities is simulated as propagation functions in 
TGN and can be expressed as:

where vsi (t
−) denotes the memory representation of node vi before time t, vi(t) is the raw 

feature, as a source node in the transition between online learning activities, vdj (t
−) for 

the destination one, σ is a learnable gate function. If the transition of activities is self-
loop, the propagation is expressed as:

where pgf is the similar learnable propagation function as Eqn. (9) and (10).
Low-high filtering aggregator We will perform information aggregation several times 

after information propagation as Eqn  (9), (10) and  (11). Inspired by the work  [68], we 
propose an adaptive low-high filtering aggregator for temporal graph networks for 
online learning interaction activities, which can be formulated as follows:

where N  denotes the neighboring operator, αL
i,j and αH

i,j are coefficient to feature repre-
sentation node vi with the relation αL

i,j + αH
i,j = 1 , FL

l  and FH
l  are low-high filters similar 

in [68], FL
r  and FH

r  are operators of element-wise attention mechanisms between pi and 
pj.

Memory updater and local representation As previously mentioned, one part of the 
final representation of student academic performances is generated locally from a tem-
poral graph network. Thus, we first need to obtain the node-wise features of the online 
activities, which can be formulated as follows:

where upd can be implemented by a learnable neural network, e.g., GRU or LSTM, and 
si(t) is the temporal state of node vi at time step t. The local representation of student 
academic performance can be learned with Eqn. (13). It can be defined as:

where CPooling denotes a column-wise average or max pooling technique to obtain the 
local representation of student academic performance, i.e., ẑL(T ).

(9)pi(t) = pgf
(

vsi (t
−), vi(t), v

d
j (t

−), vj(t),�t, ei,j(t)
)

∗ σ
(

vsi (t
−), vdj (t

−)
)

,

(10)pj(t) = pgf
(

vsj (t
−), vj(t), v

d
i (t

−), vi(t),�t, ej,i(t)
)

∗ σ
(

vsj (t
−), vdi (t

−)
)

,

(11)pi(t) = pgf
(

vsdi (t−), vi(t),�t
)

∗ σ
(

vsdj (t−)
)

,

(12)p̂i = �j∈{N (vi(t))∪i}α
L
i,j

(

FL
l pjF

L
r

)

+ αH
i,j

(

FH
l pjF

H
r

)

,

(13)si(t) = upd
(

si(t
−), p̂i)

)

,

(14)ẑ
L
(T ) = CPooling

(

{s1(T ), s2(T ), ..., sNv (T )}
)

,
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Global sampling module

With the collection of interaction features FI(S) , we can apply a K-means clustering algo-
rithm to construct the target global interaction feature dictionary.

Global sampling Specifically, some datasets’ whole interaction features may be too 
large to perform a clustering algorithm. We may choose a subset of them for construct-
ing the dictionary, and we will note this in the experimental settings. The process to 
obtain the global interaction feature dictionary Gdict for FI(S) can be formulated as 
follows:

where Gdict(FI(S)) is a matrix with the size of N × dk , and dk is the dimension of inter-
action features. The optimization object to get N cluster-shaped dictionary is formulated 
by

where f (j) denotes in(i, j) ∈ In(si) , µ(n) denotes the nth candidate vector of the global 
interaction feature dictionary, || ∗ ||δ represents a distance function. A cosine similarity 
or Euclid distance function is often employed in the algorithm. This setting ensures that 
global and local sampling estimates are based on the same distribution.

Linear transformation layer The feature vectors zG from Global Sampling may not be 
in a well-aligned space to the features from TGN. Thus, we introduce a simple linear 
transformation layer to obtain a feature representation from a global perspective. The 
process can be formulated as follows:

where Dk , head are parameters for the attention mechanism, Li is a feature vector for 
student li , ⊗̃ is multiplication with broadcasting property.

Academic performance representation and prediction

As Fig. 1 shown, the final representation of academic performance is generated from a 
local branch of TGN and a global branch of the global sampling module. We apply a sim-
plified multi-head attention mechanism to fuse these local–global features to obtain the 
academic performance representation. It can be defined as:

(15)zG = Gdict(FI(S)) = K-Means(FI(S)),

(16)arg min
FI(S)

K-Means(FI(S)) = �N
n=1�si∈S�f (j)∈In(si)||f

(j) − µ(n)||δ ,

(17)

QG = FFN(zG , {Dk , head}),
KG = FFN(Li, {Dk , head}),

ẑ
G = QG⊗̃KG

√
Dk

⊗̃zG ,

(18)

Qi = FFN(ẑ
G
i ),

K = FFN(zL),

V i =
Qi⊗̃K
√

dk
⊗̃ẑ

L
,

V = CPooling({V 1,V 2, ...,VN }),
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where z is the output of CPooling as in Eqn.  (14). With the final representation z , an 
MLP-based classifier is applied to z to obtain the academic performance prediction of 
online candidate learners, i.e., y = MLP(V ) , y is the predicted result on a given repre-
sentation V  . Following the convention of classification tasks with neural networks, a 
cross-entropy loss is utilized to train our APP-TGN model.

Case study
Research questions

A case study on the widely recognized OULA dataset  [21] validates the superior per-
formance of APP-TGN in forecasting student academic outcomes. The study aims to 
answer the following research questions:

• Question One (Q1): How does the proposed APP-TGN perform when predicting stu-
dent academic performance in terms of classification accuracy, F1-score, and recall?

• Question Two (Q2): What is the improvement in early prediction of at-risk students 
when using APP-TGN against other state-of-the-art methods? 

• Question Three (Q3): What contribution does each proposed component of APP-TCN 
make to the final prediction performance in terms of classification accuracy?

Dataset and baselines

Dataset A subset of the Open University Learning Analytics dataset (OULA) [21], spe-
cifically code-Module FFF (2013B, 2013J), is chosen for evaluation. The refined data 
encompasses academic records of 3897 students, encapsulating student details, online 
learning interaction logs, and academic performance. Figure  2 visually represents the 
spread of students’ grades. For the sake of simplicity in our study, students were catego-
rized into three groups: Pass (encompassing Pass and Distinction), Withdrawn, and Fail, 
as depicted in (b). Besides the basic information ( e.g. gender, region, highest_education) 
of students, Table 1 summarizes online learning activities to construct dynamic graphs.

Baselines The case study employs a variety of machine learning models as baselines 
to evaluate our proposed APP-TGN. They are - optimized multiple layer perception 
(OMLP) [69], ProbSAP [70], CNN-LSTM [71], graph neural networks MTGNN [18] and 
a modified multi-view graph transformer from [31] (noted as AP-GT), hybrid recurrent 
networks (HRNs) [72] and a variant of our model, denoted APP-TGN1, where APP-TGN 

Fig. 2 Statistics of code-Module FFF in OULA
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substitutes the TGN module for TGN as per  [73]. This variant serves the role of baseline 
models, and we contrast it against our newly introduced APP-TGN. Both the reference 
models and our APP-TGN are built using PyTorch and Python.

Experimental settings

Training and testing setup We partition the dataset, allocating 80% of the samples for 
training purposes and reserving the remaining 20% for testing. The training set under-
goes further partitioning. Here, 90% of the samples form the training set, while the 
remaining portion aids in the process of identifying optimal hyper-parameters and model 
configurations. As for the sequential models like GRU, APP-TGN1, and APP-TGN, we 
will tune the hyper-parameter of the window size to achieve their best performance. To 
be specific, as we detail in Sect. "Data Cleaning and Pre-processing" and "Dynamic graph 
construction", the dynamic graph construction involves feature selection for the process, 
we choose the learning materials (denoted as id_site in the dataset) as the nodes. Not 
all the learning materials or learning activities are employed in the graph construction, 
the ones used in the process are summarized in Table  1. We cannot build a directed 
edge between nodes because each learning activity has no fine-grained timestamps. We 
suppose the materials or nodes used within a day have a non-directional edge between 
them. The raw features for a node are a tuple (site_id, sum_click, date).

Hyperparameter tuning and optimization In the APP-TGN framework, a thor-
ough process of hyperparameter tuning and optimization was carried out. Different 
propagation and gate functions were experimented with for the low-high filtering 
temporal graph network module. The challenge lay in striking a balance between 
complexity and performance. The Identity function for propagation and a three-
layer MLP for the gate function yielded the best results. Various configurations were 
tested for the low-high filter aggregator for the low and high filters. The primary 
challenge was to ensure the filters effectively captured the relationships among the 
neighboring vectors. The best performance was achieved when the low filter was 
set as the addition of neighboring vectors and the high filter as the subtraction of 
neighboring vectors. The linear transformation layer and the FNN function in the 
global sampling module were optimized. A three-layer MLP for the FNN function, 
with three heads and a Dk of 100, yielded the best results. For the academic per-
formance representation and prediction module, a three-layer MLP was also used 
for the FNN function. The challenge was to ensure that the output vector had the 

Table 1 Online learning activities to construct dynamic graphs

Activities Descriptions

Homepage Interaction with course homepage

Subpage Interaction with the other sites embedded in the course

Url Interaction with the links to audio/video contents

Forumng Interaction with the discussion forum

Oucontent Interaction with the contents of the assignment

Resource Interaction with the search tool

Quiz Interaction with the course quiz
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right dimensionality. An output vector with a dimensionality of 100 proved to be 
the best. ReLU activation functions were used throughout the entire process, and 
the APP-TGN was initialized with random parameters following a normal distribu-
tion with a standard deviation of 0.1. The main challenge was to prevent overfit-
ting while achieving high performance. This setup provided a good balance between 
model complexity and performance. Overall, hyperparameter tuning and optimiza-
tion was a complex task requiring careful experimentation and considering trade-
offs between different factors. However, the effort was worthwhile as it significantly 
improved the performance of the APP-TGN framework.

Evaluation metrics The task of predicting student performance is approached as 
a binary classification problem. The metrics listed below serve as the basis for com-
paring performance:

• Classification Accuracy(ACC): 

where TP, FP, FN, and TN denote the count of True Positive, False Positive, False 
Negative, and True Negative instances in the confusion matrix.

• Recall(REL): 

where REL is the proportion that the model is accurately classifying the true 
positives;

• F1-score(F1): 

where F1 is the harmonic mean of REL (REL = TP / (TP + FN)) and PRE (Precision, 
defined as the proportion of true positives among predicted positives).

Results and discussions
This subsection details the empirical study results of APP-TGN and other baselines 
from two perspectives. The first experimental study is to answer the research ques-
tion one, i.e., How does the proposed APP-TGN perform when predicting student aca-
demic performance in terms of classification accuracy, F1-score, and recall? The task 
in the experiments for the evaluated models is to exploit students’ learning logs of 
the whole semester to predict their academic performances in the course, e.g., Pass/
Fail, or Pass/Withdrawn. The second experimental study aims to answer the second 
research question, i.e., What is the improvement in early prediction of at-risk stu-
dents when using APP-TGN against other state-of-the-art methods? The merits of 
APP-TGN in comparison to other baselines for the early identification of students at 
risk of not excelling in the initial weeks of the term are examined.

ACC = TP + TN

TP + FP + FN + TN
,

REL = TP

TP + FN
,

F1 = 2 ∗ REL× PRE

REL+ PRE
,
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Academic performance prediction with whole online learning logs (Q1)

The experiment involves two distinct tasks: identifying students who might fail and 
those who might withdraw. To identify students who might fail, students are classified as 
either Pass or Fail. Similarly, to identify students who might withdraw, students are clas-
sified as either Pass or Withdrawn.

Table 2 reports the experimental results of the tasks, and we use bold font to denote 
the best performance. We find several observations in the following. Firstly, superior 
performance of APP-TGN: Our APP-TGN model outperforms the baseline models 
in both sub-tasks, achieving an accuracy of 83.22% in the Pass/Fail task and 77.06% in 
the Pass/Withdrawn task. Secondly, advantage of graph-Based models: Graph-based 
models (MTGNN, AP-GT, APP-TGN1, and APP-TGN) consistently surpass non-graph-
based models (ProbSAP, CNN-LSTM, OMLP, HRNs) in all metrics, demonstrating their 
effectiveness in predicting academic performance. Thirdly, comparison of AP-GT and 
MTGNN: AP-GT and MTGNN, utilizing multiple graphs, show similar prediction per-
formance. However, AP-GT performs slightly better due to its deep feature transforma-
tion after GNN representation, a technique also used in our model. Fourthly, benefit 
of temporal graph structure: Models incorporating the TGN module (APP-TGN and 
APP-TGN1) outperform static graph neural networks (AP-GT, MTGNN), indicating 
that a temporal graph structure can more effectively encode learning behavior data for 
academic performance prediction. In particular, effectiveness of low-high filtering 
mechanism: Our APP-TGN model, which includes a low-high filtering mechanism, 
surpasses the APP-TGN with a standard TGN module in three metrics, demonstrating 
the practical effectiveness of this mechanism. Our APP-TGN introduces a suitable graph 
structure with temporal property to encode the learning behavior data, which can cap-
ture academic states in their complex learning processes, so its predictive performance 
improves. Furthermore, consistent performance across various training sizes: As 
depicted in Fig.  3, our APP-TGN model maintains superior performance across vari-
ous sizes of training sets, demonstrating its robust ability to discern students’ academic 
states from learning behavior data. In summary, our APP-TGN model introduces a suit-
able graph structure with temporal property to encode the learning behavior data, which 
can capture academic states in their complex learning processes, thereby improving its 
predictive performance. Further experimental studies will scrutinize the effectiveness of 
the components of our APP-TGN model.

Table 2 Comparative analysis of baseline models and APP-TGN in identifying students who are at 
risk in terms of ACC, F1, and REL

 An asterisk ( ∗ ) denotes improvements that are statistically significant when compared to the best performing baseline. 
These improvements are validated by a two-sided t-test with a p-value less than 10−3 , confirming their statistical 
significance

Tasks Metrics ProbSAP CNN‑LSTM OMLP HRNs MTGNN AP‑GT APP‑TGN1 APP‑TGN

Pass/Fail ACC 77.80 80.10 76.60 79.29 80.21 80.38 82.66 83.22*
F1 65.41 67.92 64.98 65.74 69.89 70.18 71.23 73.11*
REL 63.11 73.15 60.47 64.38 73.53 79.55 87.85 90.21*

Pass/Withdrawn  ACC 70.50 72.26 69.36 71.71 72.63 73.21 75.13 77.06*
F1 72.02 75.94 71.81 72.65 76.03 76.48 77.21 79.70*
REL 67.53 70.12 50.62 68.34 71.40 74.03 78.25 82.43*
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Early prediction for at‑risk students with partial online learning logs(Q2)

The task of this experiment is to answer the second research question, i.e., What is the 
improvement in early prediction of at-risk students when using APP-TGN against other 
state-of-the-art methods? Early prediction of students’ performance is an important 
application in online learning management systems, as we can identify students at risk 
of failing or dropping out early. Some active invention policies or actions can be applied 
promptly, giving them enough time to improve their abilities and understanding. We 
have split the task into two sub-tasks: predicting early on whether students are at risk 
of failure, categorized as Pass or Fail, and identifying students who may drop out pre-
maturely, categorized as Pass or Withdrawn. Following a similar experimental setting 
except for the duration (weeks 5, 10, 15, and 20) of learning logs for training and testing.

The comparison between the baseline models and APP-TGN in predicting at-risk stu-
dents early is presented in Table 3. It is evident that APP-TGN consistently surpasses 
the other baseline models in accuracy across all learning periods. Among the baseline 
models, graph-based models, including AP-GT and MTGNN, exhibit competitive per-
formance compared to non-graph-based models. This suggests that the graph-based 
approach, which captures complex interactions among learning activities, is beneficial 
for this prediction task. Interestingly, APP-TGN and its variant, APP-TGN1, outperform 

Fig. 3 ACC(%) of APP-TGN against other baselines for predicting at-risk students

Table 3 Comparisons between the baseline models and APP-TGN in early predicting at-risk 
students in terms of ACC(%)

An asterisk ( ∗ ) denotes improvements that are statistically significant when compared to the best performing baseline. 
These improvements are validated by a two-sided t-test with a p-value less than 10−3 , confirming their statistical 
significance

Tasks Duration ProbSAP CNN‑LSTM OMLP HRNs MTGNN AP‑GT APP‑TGN1 APP‑TGN

Pass/Fail Week5 69.89 71.42 69.13 72.31 72.88 72.81 75.10 77.12*
Week10 70.81 73.31 70.26 73.22 73.25 73.52 75.89 78.76*
Week15 72.09 74.31 71.66 74.23 74.64 75.06 77.58 80.05*
Week20 72.89 76.10 72.11 75.83 76.33 76.91 79.11 81.65*

Pass/Withdrawn Week5 62.88 63.48 61.92 65.72 64.98 65.06 68.88 72.11*
Week10 63.37 64.82 62.11 66.30 65.75 66.13 69.86 73.35*
Week15 65.53 68.09 63.28 67.86 67.04 67.58 70.89 74.43*
Week20 66.18 69.17 64.26 68.84 69.56 70.01 72.08 75.13*
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AP-GT and MTGNN and perform better in different periods. This indicates that the 
techniques proposed in APP-TGN, such as temporal graph networks, are effective for 
early prediction tasks. Moreover, it is worth noting that the performance of all models 
improves over time, as more academic information becomes available. However, APP-
TGN shows the most significant improvement, further highlighting its effectiveness in 
utilizing temporal information for prediction. Specifically, Fig. 4a illustrates how APP-
TGN achieves an accuracy rate of 81.65% in predicting students who might fail, and 
Fig. 4b shows an accuracy rate of 71.13% in predicting students who might withdraw. 
These figures highlight the potential for early identification of students who are at risk. 
Moreover, Fig. 4 illustrates that APP-TGN surpasses other compared methods in early 
prediction, showcasing its high capacity for early intervention. This is important for 
addressing student issues promptly and encouraging their learning journey.

Effectiveness of APP‑TGN (Q3)

This part aims to answer the second research question, i.e., What contribution does each 
proposed component of APP-TCN make to the final prediction performance regarding 
classification accuracy? As our APP-TGN consists of several significant components and 
hyper-parameters, we investigate their contribution to the performance of model pre-
dictions with ablation study and parameter sensitivities.

Effectiveness of different components of APP-TGN To evaluate the impact of different 
components of APP-TGN on the prediction performance, we introduce some nota-
tions to denote different ablation settings of APP-TGN: APP-GS denotes the APP-
TGN without global sampling module, and takes Li as zG directly; APP-LTL denotes 
the global sampling module without a linear transformation layer; APP-GRU  denotes 
the APP-TGN with a GRU network [13] as TGN module; APP-TGN1 denotes the APP-
TGN with a normal temporal graph network  [73] as the TGN module. Table 4 shows 
the accuracy of different components of APP-TGN, and the numbers in the parenthe-
ses are deviations from the best prediction performance. We can make the following 
observations from the table. First, we can see that all main components of APP-TGN 
are important for the prediction performance for both Pass/Fail and Pass/Withdrawn 
classification, indicating that the proposed techniques can effectively capture the tempo-
ral and relational features of online learning behavior data. It shows that the APP-TGN 
model can provide a comprehensive and dynamic representation of students’ academic 

Fig. 4 APP-TGN against MTGNN, APP-TGN1 for early predicting at-risk students in terms of ACC(%)
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performance, which can help educators and students monitor and improve their learn-
ing outcomes. Second, we can see that the GS module can help reduce data bias due 
to the training dataset. Without the GS module, there is a 1.07% and 1.32% decrease 
in Pass/Fail and Pass/Withdrawn, respectively. This suggests that the GS module can 
enhance the APP-TGN model’s generalization ability, making it more robust to different 
learning scenarios and student groups. Third, the APP-GRU model does not include a 
TGN module and, therefore, ignores interaction information between learning behavior 
data. This can result in a significant decrease in prediction performance. APP-GRU has 
the lowest prediction performance for both Pass/Fail and Pass/Withdrawn sub-tasks, 
at 81.11% and 74.21%, respectively. That is, the interaction information between learn-
ing behavior data is crucial for understanding students’ academic performance, and the 
TGN module can effectively model such information. Fourth, APP-TGN1 and APP-
TGN both have a TGN module in their models, but we can see that APP-TGN shows a 
better prediction performance over APP-TGN1 for two sub-tasks. The difference is that 
the TGN module in our APP-TGN adapts a low-high filtering information aggregation 
design. In contrast, the TGN module in APP-TGN1 adapts a conventional implementa-
tion [73], implying that the low-high filtering design is a better solution to capture more 
academic information during their learning processes. It demonstrates that the low-high 
filtering design can help the APP-TGN model distinguish between different learning 
behavior data levels, focusing on the most relevant and informative ones for academic 
performance prediction.

Parameter sensitivity in APP-TGN A parameter sensitivity analysis is performed on 
the main hyper-parameters in APP-TGN. Dynamic graph construction is crucial in APP-
TGN, with the window size for updating a temporal graph being a critical hyperparam-
eter that impacts prediction performance. Experimental results from various window 
size settings are presented in Table  5. The prediction performances of these two sub-
tasks are pretty sensitive to these hyper-parameter settings. APP-TGN achieves the best 
performance at a window size of 6 days. For the two sub-tasks, the performance of APP-
TGN decreases when the window size exceeds 6 days. This suggests that using a large 
window size to update a dynamic graph may result in information loss and poor graph 

Table 4 Effectiveness different components of APP-TGN in terms of ACC(%)

Methods GS LTL TGN TGN1 GRU Pass/Fail Pass/Withdrawn

APP-GS × × � × × 82.15(-1.07) 75.74(-1.32)

APP-LTL � × � × × 82.68(-0.54) 76.08(-0.98)

APP-GRU � � × × � 81.11(-2.11) 74.21(-2.85)

APP-TGN1 � � × � × 82.76(-0.46) 75.63(-1.43)

APP-TGN � � � × × 83.22(-0.00) 77.06(-0.00)

Table 5 ACC(%) of APP-TGN with different settings of time units to construct dynamic graphs

Tasks 2‑days 4‑days 6‑days 8‑days 10‑days 12‑days

Pass/Fail 82.16 82.75 83.22 82.18 81.70 81.22

Pass/Withdrawn 75.53 76.77 77.06 76.25 75.50 74.83
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construction. It implies that the online learning logs of students are more informative 
and relevant when they are closer in time, and that older logs may not reflect students’ 
current state and behavior. As the window size increases beyond 6 days, the perfor-
mance worsens. Furthermore, from Table 4, we can see that the global sampling module 
plays a vital role in APP-TGN, which is an effective technique for reducing data bias. 
This means that the model can learn from a more representative and diverse set of stu-
dents rather than focusing on a few dominant or frequent ones. The experimental results 
for APP-TGN and APP-LTL, concerning different hyper-parameter settings for the fea-
ture vectors N, are visualized in Fig. 5. As shown in Fig. 5a, APP-TGN delivers optimal 
performance with N as 300, while APP-LTL requires a larger amount of feature vectors, 
precisely 500, for optimal performance. Figure  5b also shows a similar result, demon-
strating the effectiveness of the linear transformation layer in the global sampling mod-
ule. The layer can help reduce the dimensionality and complexity of the feature vectors, 
making them more suitable for temporal graph networks.

Feature Importance and Contribution In the experiment conducted by us, the goal 
was to comprehend how different types of interactions influence student outcomes. 
Seven interaction features were utilized (as listed in Table 1), and an ablation study 
was carried out. This study involved the omission of one feature at a time from our 
APP-TGN model. The changes in prediction accuracy (%) for each performance cat-
egory, resulting from this process, were documented and are displayed in Table 6. The 
analysis brought to light that the Quiz and Forumng features have a significant bear-
ing on the performance prediction of the model. The accuracy experienced a con-
siderable drop when these features were removed, suggesting their critical role in 
capturing students’ learning behaviors and progress. It implies that future strategies 
for data collection could prioritize obtaining more detailed data concerning quizzes 
and forum interactions. Conversely, features such as Homepage, Subpage, Resource, 

Fig. 5 ACC(%) of APP-TGN and APP-LTL with different settings of the number of feature vector N in a global 
sampling module

Table 6 ACC (%) of APP-TGN with different omissions of data fields in the dataset

Tasks Homepage Subpage Url Forumng Oucontent Resource Quiz

Pass/Fail 82.90 82.56 82.39 81.54 82.33 82.70 81.67

Pass/Withdrawn 76.82 76.64 76.26 75.84 76.12 76.36 75.64
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among others, had a less noticeable impact on the prediction accuracy. This could be 
attributed to the redundancy or lower relevance of these features for the task at hand. 
Hence, future enhancements to the model could consider exploring techniques for 
feature selection or transformation to minimize redundancy and boost the predic-
tive power of the input features. Interestingly, it was also observed that the influence 
of each feature differs across various performance categories, indicating that differ-
ent features might be capturing distinct aspects of student performance. For exam-
ple, a feature that is highly predictive for one category (e.g., Pass) might not be as 
informative for another category (e.g., Fail). This insight could steer the development 
of models specific to each category or the application of multi-task learning tech-
niques to harness the differential predictive power of the features. In conclusion, the 
comprehensive analysis of the importance and contribution of features offers valu-
able insights that can enhance the model’s performance and guide future strategies 
for data collection.

Model Complexity and Computation Cost of APP-TGN The APP-TGN model is 
designed with computational efficiency in mind, making it suitable for handling large-
scale MOOC data. The computational complexity of APP-TGN can be estimated by 
considering its components. A 1-layer GCN has a complexity of O(|E|dido) where |E| 
is the number of edges, di is the input feature dimension, and do is the output feature 
dimension. A GAT-like layer [74] has a complexity of O(Nvdido + |E|do) , where Nv is 
the number of activity types. The linear transformation attention in APP-TGN has a 
linear complexity of O(Nv) , similar to Linformer [75]. The k-Means feature clustering 
in the global sampling module is pre-processed and remains constant during train-
ing and testing. Therefore, the overall complexity of APP-TGN can be estimated as 
O(S|E|dido + Sdmdo) , where S the step size for prediction, dm denotes the number of 
neurons in MLP for realizing learnable functions. Since the graph in each step is usu-
ally sparse, the computational cost of APP-TGN is similar when S is small. We report 
the FLOPs of several baselines and our APP-TGN (with a window size of 6 days). 
The FLOPs are as follows: OMLP - 0.151M, HRNs - 0.263M, CNN-LSTM - 0.924M, 
MTGNN - 1.705M, and APP-TGN - 0.6621M. Our computational cost is less than 
that of MTGNN. Compared to computer vision models like ResNet (1.8G FLOPs), the 
computational cost of these models is relatively small for this task and is not yet a sig-
nificant concern. This further underscores the efficiency and scalability of APP-TGN 
for large-scale MOOC data.

Visualization of academic performance representations We visualize the academic 
representation of the category of Pass/Withdrawn in Fig. 6. Figure 6a shows the repre-
sentations from the original feature spaces, where the features of Withdrawn and Pass 
overlap together in a feature space, making it difficult to classify a specific feature. 
Figure  6b displays the representations learned from our APP-TGN of the category 
of Withdrawn and Pass. It can be seen that most features learned by APP-TGN are 
separable in the feature space. Compared to those not learned by APP-TGN, Feature 
representations learned by it have a more structured form and clear category bounda-
ries. Thus, our APP-TGN can effectively cluster students’ academic performances 
within the same category, which can help educators identify students’ learning pat-
terns, strengths, and weaknesses and provide personalized feedback and intervention.
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Model Interpretability in Educational Context In this section, we discuss how the pre-
dictions of APP-TGN can be interpreted in an educational context based on the analysis 
of the model components and the experimental results. First, the dynamic graph con-
struction module captures students’ temporal information and interaction behaviors 
during their online learning activities, which reflect their learning processes and states. 
The temporal graphs can be visualized to show the patterns and transitions of different 
learning activities, such as watching videos, reading texts, or taking quizzes. Second, the 
low-high filtering temporal graph network module learns the potential academic perfor-
mance variations encoded in the dynamic graphs, representing student knowledge and 
skills changes over time. The low-high filters can identify the nodes’ and edges’ impor-
tant and relevant features in the temporal graphs, such as the frequency, duration, order, 
or correlation of the learning activities. Third, the global sampling module mitigates the 
problem of false correlations in deep learning-based models by incorporating students’ 
demographic and contextual features, such as gender, region, disability, or highest edu-
cation. The global sampling module can also provide a way to compare and contrast 
the performance of different groups of students based on these features. Finally, the 
academic performance representation and prediction module combines students’ local 
and global representations and uses a multi-head attention mechanism to generate the 
final predictions of academic outcomes. The attention weights can be interpreted as the 
importance or relevance of different features or components for the prediction task. For 
example, the attention weights can indicate which types of learning activities or which 
demographic or contextual factors are more influential in predicting a specific student’s 
performance or group of students. By providing these interpretations, APP-TGN can 
help educators and learners understand the factors and processes that affect students’ 
academic performance in online courses and provide feedback and guidance for improv-
ing their learning outcomes.

Implications
This paper introduces APP-TGN, a new method that uses online learning logs to predict 
academic performance. APP-TGN does not rely on any existing framework but instead 
constructs a dynamic graph from the raw data and applies temporal graph networks to 
learn the academic performance representation and prediction. Our framework lev-
erages temporal graph networks to capture the dynamic and complex relationships 

Fig. 6 Visualization of academic performance representations
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between learning behaviors and academic outcomes. We also introduced a global sam-
pling module to improve the representation learning for temporal graphs and a low-
high filtering technique that eliminates the noise in online learning data. Our APP-TGN 
model achieved high accuracy rates in two prediction tasks, outperforming several base-
line models by a significant margin. Specifically, in the experimental study of the first 
research question, our APP-TGN model achieved accuracy rates of 83.22% and 77.06% 
for two different tasks. These results represent statistically significant improvements 
over other models, with increases ranging from 1.23% to 8.29%. In the experimental 
study of the second research question, our APP-TGN model showed better statistically 
significant improvements over other models in early predicting at-risk students, with 
increases ranging from 2.99% to 12.97%. Our APP-TGN model is particularly effective 
in mining the dynamic relationship between learning behavior data and accurately pre-
dicting at-risk students. The third research question also demonstrates the effectiveness 
and superiority of our proposed techniques in APP-TGN. Overall, our model has great 
potential for use in automated feedback and personalized learning in real-world educa-
tional applications.

Limitations The APP-TGN prediction model has some limitations regarding data, 
algorithm, ethics, and generalizability. Firstly, there are few course interactions that form 
the model’s basis and could benefit from more data. Secondly, the APP-TGN algorithm 
cannot learn incrementally, or interactively like other supervised AI methods. However, 
an APP-TGN with a more extensive database could be used for quasi-real-time analysis. 
Thirdly, ethical considerations such as the potential influence of AI-enabled models on 
student learning outcomes should be considered. Future work could deliver real-time 
predictions, timely alerts, and suggestions to ensure positive outcomes from AI predic-
tion methods. Lastly, the prediction method must enhance its generalizability through 
empirical research in various educational contexts and by considering external factors 
like offline classroom activities or social interactions.

Conclusions
Student academic performance prediction is fundamental in implementing intelligent ser-
vices for massive open online courses. The paper explores exploiting temporal information 
and interaction behaviors during learning activities to promote the performance of model 
predictions. We represent the learning processes of e-learning students as dynamic tem-
poral graphs that capture the temporal information and interaction behaviors during their 
studying. We also introduce APP-TGN, a new method for academic performance predic-
tion that utilizes temporal graph neural networks. Specifically, in APP-TGN, a dynamic 
graph is constructed from the online learning activity logs. Generated graphs are forwarded 
to a revised temporal graph network with low-high filters to learn potential academic per-
formance variations encoded in dynamic graphs. Furthermore, a global sampling module 
is developed to mitigate the problem of false correlations in deep learning-based models. 
Finally, the learned representations from the global sampling and local processing (with 
TGN) are forwarded to a multi-head attention module to get the predicted academic per-
formances. We perform a case study with a popular dataset from a real-world educational 
application that is publicly available. Empirical study results indicate that APP-TGN, which 
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we introduce, surpasses other methods by a large margin. The ablation study also reveals 
the effectiveness and superiority of our APP-TGN techniques.

Future work and extensions We intend to explore the following directions: (i)(i) Hetero-
geneous Data Sources: The primary focus of our existing model is structured data derived 
from learning management systems. However, the nature of educational data is often heter-
ogeneous, incorporating text from student essays, audio from spoken responses, and video 
from recorded presentations. Our goal is to broaden the scope of our model to accommo-
date these varied data types. For example, we could employ natural language processing 
techniques for text data analysis, while audio and video data might be processed using deep 
learning models tailored for these specific data types. (ii) Incorporation of Additional Edu-
cational Data: Beyond the data currently in use, there are other forms of educational data 
that could offer valuable insights. These include demographic information, data on student 
learning styles, and affective states. The integration of these supplementary data sources 
could enhance the precision of our predictions and provide a more comprehensive under-
standing of student performance. (iii) Forecasting of Additional Educational Outcomes: 
Although our present focus is on predicting academic performance, the model has the 
potential to be modified to forecast other vital educational outcomes. These might encom-
pass student retention rates, degrees of student engagement, or even student satisfac-
tion. Each of these outcomes holds significant importance in the educational context, and 
their accurate prediction could have substantial implications for educational institutions. 
(iv) Pretraining-fine-tuning Schema: We are also keen on investigating a pretraining-fine-
tuning schema in APP-TGN for a range of educational analytical tasks. This would involve 
retraining the model on a large dataset to discern general patterns, followed by fine-tun-
ing it on a specific task with a smaller dataset. This method has proven effective in various 
domains and could enhance the performance of our model.
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