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Abstract 

The United Nations’ 17 Sustainable Development Goals stress the importance of global 
and local efforts to address inequalities and implement sustainability. Addressing com-
plex, interconnected sustainability challenges requires a systematic, interdisciplinary 
approach, where technology, AI, and data-driven methods offer potential solutions 
for optimizing resources, integrating different aspects of sustainability, and informed 
decision-making. Sustainability research surrounds various local, regional, and global 
challenges, emphasizing the need to identify emerging areas and gaps where AI 
and data-driven models play a crucial role. The study performs a comprehensive litera-
ture survey and scientometric and semantic analyses, categorizes data-driven methods 
for sustainability problems, and discusses the sustainable use of AI and big data. The 
outcomes of the analyses highlight the importance of collaborative and inclusive 
research that bridges regional differences, the interconnection of AI, technology, 
and sustainability topics, and the major research themes related to sustainability. It 
further emphasizes the significance of developing hybrid approaches combining 
AI, data-driven techniques, and expert knowledge for multi-level, multi-dimensional 
decision-making. Furthermore, the study recognizes the necessity of addressing ethical 
concerns and ensuring the sustainable use of AI and big data in sustainability research.

Keywords: Sustainability, Artificial intelligence, Data-driven method, Topic modeling, 
BERTopic

Introduction
Sustainability is becoming increasingly important, particularly following the establish-
ment of the 17  Sustainable Development Goals (SDGs) by the United Nations (UN). 
The call for sustainability is now more resounding and pressing than ever. The 17 SDGs 
emphasize the necessity for global and local efforts to confront disparities, inequalities, 
and their far-reaching consequences on individuals and society [37, 42, 118]. They call for 
action to implement measures toward a fair and equitable world, focusing on addressing 
social, environmental, and economic dimensions. Technological advancements, such as 
the Internet of Things (IoT), Information and Communication Technology (ICT), block-
chain, Big Data (BD), sensors, Artificial Intelligence (AI), and data-driven methods, are 
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increasingly regarded as promising solutions for addressing sustainability-related prob-
lems. They can integrate various aspects of sustainability, enhance collaboration among 
stakeholders, improve resource management, expedite innovation, foster cross-industry 
applications, and enable long-term sustainable planning [62, 111, 154, 336]. A systematic 
and collaborative approach to integrating data, technology, and AI can mitigate social 
and economic inequalities and reduce ecological damage. This is achieved through the 
development of data-driven solutions, the creation of quantitative models to optimize 
energy and resource usage, the implementation of policies and regulations driven by 
informed decision-making, online monitoring of social, environmental, and economic 
indicators, and the optimization of economic activities to minimize carbon emissions 
[30, 336, 341].

A systematic approach founded on a thorough understanding of various sustainability-
related topics is lacking to the best of our knowledge. Such an approach is important 
for creating a comprehensive and robust framework to integrate sustainable practices, 
policies, guidelines, regulations, and monitoring to help achieve sustainability objec-
tives, such as embracing carbon–neutral technology and establishing a Circular Econ-
omy (CE). There are three primary research gaps: First, at the local level, there is a lack 
of understanding regarding the practical implementation of new technologies and the 
use of AI within institutions, local businesses, healthcare, and education. It encom-
passes addressing local challenges, resource management, and contributing to govern-
ance, all while reducing adverse impacts on communities. Second, at the global level, 
it is unknown how technology and AI can effectively integrate to address global-scale 
problems, such as establishing a resilient and sustainable Supply Chain (SC), adopting 
a CE, preserving biodiversity, and mitigating climate change [142, 147, 269, 294]. Third, 
integrating local and global sustainability concerns within an integrated strategy remains 
unclear. This strategy aims for global equity, inclusive growth across all sectors, and the 
contribution to a healthier and more collaborative world. In addition to these existing 
research gaps, another critical concern pertains to the integration of AI. These concerns 
encompass AI regulations, ethics, the digital divide, security, AI’s societal impact [97], 
and whether AI aligns with sustainability principles [73]. This alignment raises questions 
about whether AI contributes positively to sustainability or inadvertently accelerates 
resource depletion and reinforces biases.

To address these issues, this paper delves into the current state of AI and sustaina-
bility research, specifically focusing on the application of AI to address sustainability-
related challenges at both local and global levels [276]. This exploration is carried out by 
answering the following research questions:

1) What is the state of research regarding AI and sustainability-related questions, 
trends, and collaboration between countries? A scientometric analysis of the litera-
ture sample addresses this question (see Ch. “Bibliometric Insights”).

2) What are the major implementation areas of technology and AI applications for sus-
tainability? Topic modeling is performed to answer this question (see Ch.  “Biblio-
metric Insights”).

3) How can different data-driven and AI-based methods utilized to address sustaina-
bility-related challenges be categorized? An analysis of the literature findings from 
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Ch. “Bibliometric Insights” is conducted to tackle this question (see Ch. “AI, ML, and 
Data-Driven Methods”).

4) What are the dimensions of sustainable AI, considering its potential impact and 
implications? This question is answered by analyzing the literature results from 
Ch. “Semantic Analysis of Key Topics” through topic modeling (see Ch. “Sustainable 
Big Data and Analytics,” “Sustainable AI Characteristics and Challenges,” and “Sus-
tainable Human AI Ecosystems”).

Addressing these questions improves understanding of AI’s status, potential, and chal-
lenges in promoting sustainable practices and solving multi-dimensional sustainability 
problems. This study offers a comprehensive overview of AI and sustainability literature 
(see Ch. “Publication Landscape Analysis”), the research collaboration among countries 
(see Ch. “Country-Wise Analysis”), and the current and emerging AI and data-driven 
approaches in sustainability research. It systematically explores AI methodologies 
applied across various sustainability applications (see Ch.  “AI, ML, and Data-Driven 
Methods”), emphasizing the need for method integration to make decisions effectively 
and highlighting challenges with AI and its sustainable use (see Ch.  “Sustainable Big 
Data and Analytics,” “Sustainable AI Characteristics and Challenges,” and “Sustainable 
Human AI Ecosystems”).

Background: artificial intelligence for sustainability
Over the past decade, advancements in AI have made significant strides toward effec-
tively contributing to all facets of sustainability and addressing complex sustainability-
related challenges. AI encompasses a broad spectrum of capabilities, with machines 
programmed to think and learn human-like cognitive abilities. These capabilities include 
environmental perception, information processing, decision-making, and taking action 
to achieve specific goals [277]. According to the European Union’s (EU) definition, AI 
entails “intelligent behavior that involves the analysis of the environment and the execu-
tion of actions, often with some degree of autonomy, to attain specific objectives” [334].

Realizing the potential of AI in achieving sustainable growth and meeting sustaina-
bility goals presents a challenge due to the multidimensionality of social, environmen-
tal, and economic sustainability issues. These challenges necessitate a comprehensive 
understanding of the interconnected nature of various problems [177, 280] and the col-
laboration of communities, nations, and diverse stakeholders. Governments, political 
and business leaders, innovators, scientists, and representatives from various industries 
worldwide are called upon to develop systematic efforts with a holistic and interdis-
ciplinary approach to effectively address these challenges [300, 303, 342]. A collective 
endeavor holds the potential to foster sustainable practices in social and economic deci-
sion-making, energy consumption, resource utilization, manufacturing processes, and 
other sustainability-related objectives, all of which have long-term implications for over-
all societal well-being.

Furthermore, harnessing the potential of AI for sustainable growth and achieving 
sustainability goals requires several prerequisites: (1)  Establishing a sustainable digi-
tal infrastructure; (2) implementing and developing robust and ethical AI solutions for 
both local and global contexts; (3) addressing the regulatory and sustainability concerns 
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associated with AI; and (4) ensuring the development of environmentally friendly AI and 
preventing monopolization of AI resources and technology. It is essential to facilitate 
responsible AI practices, promote transparency, and consider AI implementation’s long-
term social and environmental implications to maximize its positive impact.

Implementing AI methods poses various challenges, including their applicability, 
efficiency, performance, explainability, contextual understanding, associated risks, sys-
tematic frameworks for their application in sustainability tasks, the adaptability of their 
models in response to changing external factors, and user acceptability. Furthermore, 
the role of AI sparks essential discussions concerning its utilization in decision-making 
processes and the appropriate way AI should be employed. This leads to deliberations on 
whether AI should function as an assistant in decision-making or act autonomously as 
part of a multi-agent system. These concerns extend to AI-based decision-making within 
integrated systems, where multiple decisions across different integrated system com-
ponents are exclusively determined by AI models, potentially leading to error and bias 
propagation. In such instances, the interrelated decision-making system could gener-
ate ripple effects that impact overall outcomes. Errors or biases originating at one stage 
may propagate throughout the system, influencing subsequent decisions and potentially 
resulting in incorrect or suboptimal results. Another essential aspect of utilizing AI is 
to address the trade-offs [112] associated with the three dimensions of sustainability 
(social, environmental, economic) at both global and local levels. This involves striving 
for an optimal balance between these trade-offs by leveraging AI to enhance decision-
making. AI methods play a crucial role in the analysis of complex datasets, the predic-
tion of outcomes, and the recommendation of solutions that maximize the benefits 
across all dimensions of sustainability [187].

Several studies focus on sustainability and AI-related research, particularly on efficient 
applications and challenges, including the fulfillment of SDGs [30, 70, 92, 341]. Kar et al. 
[152] present a systematic literature review on AI’s impact on the sustainability of tech-
nical challenges, social issues, and environmental causes. Falk and van Wynsberghe [90] 
propose three criteria for ensuring the appropriate application of AI for sustainability: 
“Monitoring and information provision, sustainability analysis of the application, and an 
action component contributing to a sustainability goal.” Nishant et al. [232] discuss the 
challenges and limitations of AI for sustainability, emphasizing environmental govern-
ance, industrial environmental performance, and risk reduction. Galaz et al. [97] exam-
ine the implications of AI interacting with society as a socio-technical system and using 
responsible AI. Khakurel et al. [159] conducted a study on the long-term impact of AI 
on sustainability in various dimensions in a previous literature search along with a focus 
group study. S. R. Wu et  al. [353] discuss the impact of AI and other technologies in 
smart cities, SCs, and energy systems. Kopka and Grashof [172] conducted an empirical 
study to investigate the impact of AI on energy consumption and found that AI has the 
potential to both conserve and consume energy.

Various concerns related to the effective use of AI must be considered and addressed. 
These include AI integration, regulations, governance, the digital divide, potential 
threats, security, and the overall value derived from AI [97, 155]. It is imperative to assess 
whether AI effectively contributes to sustainability goals or if AI-based decisions unin-
tentionally undermine these objectives. For instance, a critical evaluation of AI-based 
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decisions should consider whether they result in the depletion of resources, favor pow-
erful entities due to inherent design biases, or introduce contradictions in sustainability 
tasks. It is paramount to ensure that AI does not facilitate monopolies through biased 
decisions or intentional design aimed at monopolistic advantages. These pivotal issues 
must be addressed to guarantee that AI outcomes align with sustainable principles 
and benefit society [73]. Several literature reviews are available on the topic of AI and 
sustainability, but they are mostly focused on specific aspects such as sustainability in 
manufacturing [131, 134], urbanization and city planning [175], and smart and sustain-
able farming [11]. However, no research on the overall landscape of AI and sustainability 
research is currently available. A topic modeling and text analysis approach is used to 
study a broader range of sustainability research to address this gap.

Methods
The workflow to comprehend the current landscape of AI and sustainability research 
is divided into three steps and visualized in Fig.  1. First, a literature search was con-
ducted using specific search strings that match the titles or keywords of the literature. 
In the second step, data and text analysis, we conducted four types of analysis: (1)  A 
publication landscape and trend analysis was completed. (2) A country-wise analysis of 
countries emphasizing sustainability and AI research, as well as collaborations among 
countries, was performed. (3) A keyword analysis of the searched literature examined 
different sustainability aspects in co-occurrence network modules. The focus was iden-
tifying significant keywords and a network-based approach for analyzing the intercon-
nection between sustainability, AI, and technology terms (co-occurrence networks). 
Module identification in co-occurrence networks of keywords and enrichment analysis 
was involved. (4)  A semantic analysis of key topics involved topic modeling using the 
BERTopic model to distinguish key topics within the searched literature and clustering 

Fig. 1 A Schematic View of the Literature Analysis
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identified topics and representative papers. The results obtained in steps (3) and (4) were 
utilized to explore various AI and data-driven methods and models applied in diverse 
social, environmental, and economic sustainability applications. Additionally, they were 
used to examine the topics that underscore fundamental AI-related concerns relevant to 
sustainability. Third, we summarized the results and discussed key methods and sustain-
able AI challenges.

Literature search

A comprehensive search in the Scopus database, which offers access to high-quality pub-
lications spanning a wide spectrum of scientific, engineering, humanities, and business 
disciplines, was conducted. This database provided ample literature from key sustaina-
bility journals for the scientometric analysis. Although searching in additional databases 
might have augmented the search, we focused exclusively on Scopus due to the limita-
tions of access and processing speed associated with other databases our university does 
not subscribe to. The following search string was used to search the title or keywords of 
the documents:

s =  (sustainability OR sustainable) AND (“artificial intelligence” OR ai OR “machine 
learning” OR “data driven” OR data OR analytic OR forecast OR algorithm OR optimi-
zation OR “data mining”)

The search was not restricted by time period, publication type, or scientific discipline. 
The only requirement was that the documents must be in English. In total, a sample 
of 1,982  documents was collected, each containing various types of metadata, includ-
ing title, abstract, affiliations, and keywords. The search was restricted to the document 
titles and keywords aiming to collect documents that primarily focus on issues related to 
sustainability, particularly those that involve the applications of AI and Machine Learn-
ing (ML). The search was intended to ensure the selected documents are closely aligned 
with the intersection of sustainability problems and AI and ML technologies independ-
ent of any specific research area utilized. From the obtained document keywords, those 
conceptually linked with the three aspects of sustainability were extracted. The authors 
selected these keywords manually, which are important for the broader understanding of 
the application of AI and data-driven methods for sustainability. The selected keywords 
are shown in Table 1.

Keywords significance analysis

The keyword significance analysis is conducted to identify the most significant key-
words with higher frequencies, ensuring their appearance is not random among 
the selected documents. Let a document set D with |D| documents and keyword set 
kw = kwd1 ∪ kwd2 · · · ∪ kw|D|.

Let the M =
[

mi,j

]j=1,2,...,|D|

i=1,2,...,|kw|
 be a binary matrix ( mij ∈ {0, 1} ) representing the pres-

ence or absence of keywords, from kw set in document set D . The frequency of a key-
word kwi ∈ kw is fkwi

=
∑|D|

j=1kwi . The following null hypothesis was tested:

H0 : f(kwi) ≤ f random(kwi)
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To test the null hypothesis, matrix entries were randomized, M , and obtaining 
Mb

randomized where b = {1, 2, . . .B = 5, 000} . For Mb
randomized , f randomized

kwi
 was calculated 

for kwi . The p-value to test the significance of fkwi
 was calculated as follows:

Further, 
∣

∣kw
∣

∣ hypotheses were tested. Therefore, multiple testing corrections False Dis-
covery Rate (FDR) were applied to control the false positive results in keyword signifi-
cance analysis.

Network analysis

In this analysis, network-based approaches were applied for analyzing keyword-co-
occurrence analysis and country collaboration analysis by constructing networks, iden-
tifying network modules, and performing module enrichment analysis for the keyword 
co-occurrence network.

Network construction

For constructing the network, the Jaccard index was used to measure the similarity 
between two keywords, quantifying how often these two keywords appear together in a 

H1 : f(kwi) > f random(kwi)

p(kwi) =
#{f kwi

> f randomized
kwi

}
B

b=1

B

Table 1 Key terms extracted from the keywords that reflect the social, environmental, and 
economic aspects of sustainability

Social

Social, city, education, health, information, ethics, policy, healthcare, society, community, justice, poverty, popula-
tion, gender, culture, diversity, leadership, skills, sociology, migration, livelihood, judiciary, socialization, diseases, 
citizen, employee, medical, law, rural, communities, heritage, equity, societies, participation, legal, housing, gen-
erations, disaster, cancer, csr, corporate social responsibility, school, sanitation, urbanization, societal, educational, 
ethical, municipal, personalized, humans, saving, rules, revitalization, regulations, pharmaceutical, illegal, govern-
ance, regulation, inequality, epidemic, human, life, nutrition, wealth, living, cultural, disease.

Environmental

Energy, environmental, design, urban, water, waste, food, environment, building, concrete, mining, carbon, 
natural, renewable, eco, urbanism, resource, power, materials, forest, transportation, land, ecological, global, 
transport, emission, biomass, genetic, gas, soil, emissions, co2, vehicle, grid, electric, air, tree, regional, pollution, 
heat, corporate, green, climate, electricity, greenhouse, conservation, recycling, groundwater, architecture, solid, 
crop, buildings, bio, solar, earth, chemical, biodiversity, transition, irrigation, basin, traffic, plastic, plant, ecology, 
river, bioeconomy, flood, environments, coastal, geographical, contaminated, yield, thermal, street, reuse, reser-
voir, renovation, recycled, park, oxygen, hydrogen, geographic, rehabilitation, region, pollutions, organic, lighting, 
hydro, harvesting, fishery, fields, congestion, combustion, chemicals, biowaste, biorefinery, biofuels, biofuel, 
bioethanol, bioenergy, wind, ventilation, toxicity, sterilization, sea, poultry, plastics, nitrogen, nature, nanoparticle, 
mountain, methane, hydrothermal, heating, habitat, geomaterials, freshwater, erosion, trees, desalination, clean, 
cell, biodiesel, adaptation, weather, wastes, structures, sludge, species, greenwashing, geography, geospatial, geo, 
fertilizer, biological, vegetation, thermoelectric, garbage, environmentally, wetland.

Economic

Industry, manufacturing, economic, business, circular, industrial, product, production, financial, finance, market, 
entrepreneurship, economy, industries, enterprise, economics, trade, financing, commercial, investment, profit, 
sales, firms, stock, income, revenues, pricing, employment, markets, capital, economies, company, firm, producer, 
supplier, companies, european, price, particle, logistic, trading, commerce, businesses, profits, internet, block-
chain, value, products, productions, freight, retention, money, leagility, inventories, fine, digitalisation, boosted, 
monetisation, gdp, gross domestic product, marketing, supply chain, technology, digital, logistics, digitalization, 
machines, labor, infrastructure, nanotechnology, manufacture, inventory, fault, retrieval, valuation, tariff, sme, 
small and medium sized companies, digitisation, maintenance.
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set of documents. The Jaccard index was utilized to establish both keyword co-occur-
rence and collaboration networks. The method follows network modules and performs 
module enrichment analysis for the keyword co-occurrence network. Let a document 
set D with |D| documents and keyword set kw = kwd1 ∪ kwd2 · · · ∪ kw|D| . A keyword-
document matrix [mij]

j=1,2,...,|D|

i=1,2,...|kw|
 was created, and mij ∈ {0, 1} . The value of mij = 1 if the 

keyword ki is mentioned in the document dj in their keywords. The Jaccard index meas-
ures the similarity between the two keywords.

Similarly, a country-based analysis was created for computing similarity based on their 
common co-occurrence by constructing matrix [mij]

j=1,2,...,|D|
i=1,2,...|c| , and mij ∈ {0, 1} , where D 

is a document set with |D| documents and c = {c1, c2, . . . , c|c|} are |c| countries.

The keyword co-occurrence and country collaboration network are created as follows: 
Let G be an undirected weighted graph G = (V ,E,w),w : E → R where the V  are the 
vertices and E are the edges. The number of vertices is equal to the keywords 

∣

∣kw
∣

∣ (or 
country |c| ), and

w
(

i, j
)

= ji(kwa, kwb)( ji(ca, cb)for country collaboration network).

Module detection

We utilized the multi-level modularity optimization algorithm developed by Blondel 
et  al. [44] to partition the constructed weighted keyword co-occurrence and country 
collaboration networks. This algorithm groups nodes that exhibit greater proximity and 
similarity compared to other nodes. The multi-level algorithm outperforms alternative 
module detection algorithms, offering faster processing times and superior results.

An adjusted modularity optimization approach was employed for the coun-
try collaboration network using multi-level module detection to optimize the 
modules. In this approach, a small fraction (v = 0.0001) from edge weights, i.e., 
w
(

i, j
)

= max
(

w
(

i, j
)

−v, 0
)

 was iteratively subtracted. The multi-level module detection 
algorithm for weighted graphs was run until the modularity reached its maximum value 
or until 2% of the total edge weights became zero. This approach prioritizes countries 
into the same modules, which shows stronger collaboration and emphasizes stronger 
collaboration based on the Jaccard index value.

Module enrichment analysis

Module enrichment analysis is used to identify modules in the keyword co-occurrence 
network that are enriched for a specific set of keywords or annotations (in this case, dif-
ferent aspects of sustainability). This can be useful for understanding the characteristics of 
different modules in the co-occurrence network and identifying important modules for a 

ji(kwa, kwb) =
||mkwa,. ∩mkwb ,.||/||0,0||

||mkwa,. ∪mkwb ,.||/||0,0||

ji(ca, cb) =
||mca,. ∩mcb ,.||/||0,0||
∣

∣|mca,. ∪mcb ,.

∣

∣|/||0,0||

E
(

i, j
)

= 1, if ji(kwa, kwb) > α
(

ji(ca, cb) > α for country collaboration
)
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particular phenomenon. Module enrichment analysis was applied to identify whether vari-
ous sustainability keywords were significantly represented in a module obtained from the 
keyword co-occurrence network (G) . The following hypotheses were tested:

H0: The presence of observed keyword pattern expressing sustainability aspect sa in mod-
ule mi is by chance.

H1: The observed number of keywords expressing sustainability aspect sa in module mi is 
significantly higher than the expected number by chance.

The Fisher exact test was applied to test the hypotheses, comparing the significance of the 
association between two sets. In this case, we evaluated the association between sustain-
ability aspects and modules identified in the keyword co-occurrence network by assessing 
the presence or absence of keywords expressing a particular sustainability aspect in a mod-
ule of the keyword co-occurrence network. The contingency table illustrating the presence 
and absence of the keyword pattern (as shown in Table 1) of each sustainability aspect in a 
module is presented in Table 2, described as follows:

Let N = |V (G) ∪ s| be the total keywords representing the union of verti-
ces of the co-occurrence network and all terms from the sustainability aspects 
(see Table  1), where {ssocial, senvironmental, seconomic} are sustainability aspects and 
s = ssocial ∪ senvironmental ∪ seconomic , and a module mi ⊂ V (G) . The values of the contin-
gency table are defined as:

The test calculates the probability of obtaining the observed outcome, assuming the null 
hypothesis is true. The probability of N11 sustainability aspect keyword pattern matches 
with keywords in a module:

The probability p follows a hypergeometric distribution, representing the likelihood of 
observing an overlap of sustainability aspect-related keyword patterns within the mod-
ule when randomly drawing keywords from the data.

N11 : are the number of pattern matches of keywords from sain mi

N12 : are the number of keywords in sa do not match with keywords in mi

N21 : are the number of keywords in mi do not match with keywords in sa

N22 : are the remaining keywords not present in mi and not with keywords in sa

p =

(

N1.
N11

)(

N2.
N21

)

(

N
N.1

)

Table 2 Contingency table

In sustainability aspect sa Not in sustainability aspect sa Sum

In module mi N11 N12 N1.

Not in module mi N21 N13 N2.

N.1 N.2 N
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Semantic analysis

Topic modeling is employed for the semantic analysis of publication texts, combining 
the title, keywords, and abstract. For the topic modeling of the obtained literature, the 
BERTopic [107] approach was applied to identify key research themes related to sus-
tainability. For the topic modeling, our objective is to explore topics that can be com-
prehended best through semantic analysis while maintaining diversity and coherence. 
We have opted for BERTopic as our method of choice to achieve this goal due to its 
effectiveness with large corpora. Several studies have demonstrated that BERTopic out-
performs other methods in capturing contextual information and generating coherent 
topics. Furthermore, BERTopic has proven effective in various assessments compared to 
different topic modeling techniques [84, 98, 332].

The BERTopic approach follows four main steps: (1) Generating embeddings, (2) 
dimensionality reduction, (3) clustering, and (4) c-TF-IDF-based topic extraction from 
the clusters. The “sentence-transformers” library transforms the input text into numeri-
cal representations (embeddings) optimized for semantic similarity. The “all-minilm-
l6-v2” sentence transformer model, which maps the input text of each document into a 
384-dimensional numerical vector, was used. The model then applies Uniform Manifold 
Approximation and Projection (UMAP) for dimensionality reduction (n = 20) and uses 
hdbscan for clustering, selecting the number of clusters. The “BERTopic” python pack-
age automatically generates the topic representation through c-TF-IDF-based extraction 
of the most important keywords from the clustering solution. Additionally, the coher-
ence was enhanced, and stopwords were reduced in the extracted topics by using the 
“KeyBERTInspired” representation model in BERTopic. From the topics identified by 
BERTopic, hierarchical Ward clustering was applied to the topic-term c-TF-IDF matrix 
to find clusters of common topics resulting from the topic modeling process.

Topic optimization

We utilize the topic coherence measure Coherence  (CV) to optimize and fine-tune top-
ics. The measure involves varying the parameters of the number of neighbors [3, 5, 8, 
10, 15, 20, 25, 30] for the “UMAP” function and the minimum cluster size parameter for 
“hdbscan” clustering (from 3 to 30). We perform topic modeling for each combination, 
where the BERTopic hdbscan automatically selects the number of clusters and computes 
the  CV coherence [268]. The results are evaluated based on the  CV score and the num-
ber of topics obtained from the topic modeling. Additionally, we manually evaluate the 
topic keywords to assess if the topics identified by the selected model uniquely represent 
themes in sustainability and AI research.

Significance analysis of projection of the clustered embeddings

For comparing differences between clusters obtained by the hdbscan algorithm in “BER-
Topic.” We analyze the UMAP-reduced 2D projection of document embeddings to assess 
the statistical significance of clusters. We applied the non-parametric N-statistic method 
[35] to test the null hypothesis regarding the equality of distributions of data points in 
two clusters. The method is described as follows: Let X and Y  be the p-dimensional 
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UMAP reduced embeddings of documents in clusters i and j with samples m and n , 
respectively, and FCLi and GCLj are these clusters’ distribution functions. The null and 
alternative hypotheses are expressed as follows: H0 : FCLi = GCLj,H1 : FCLi �= GCLj

The N-statistic for the comparison is defined as follows:

Bibliometric insights
Publication landscape analysis

The literature search obtained 1982 papers, including research articles, review papers, 
books and book chapters, conference papers, and editorials. Table 3 shows the different 
journals that publish papers on sustainability and AI-based applications.

The largest fraction belongs to other categories, including a mix of conference papers, 
journal papers, and others, but no category exceeds the top 30 journals. Tables 4 and 5 
display the categories of top review papers, research articles, and collaborations based 
on their citations. The top articles belong to various subject areas or topics of sustain-
ability and are sourced from different journals.
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Table 3 Number of papers of top 30 journals

Journals #Publications Journals #Publications

Sustainability (Switzerland) 227 IFIP Advances in Information and 
Communication Technology

11

Journal of Cleaner Production 70 Environmental Science and Pollution 
Research

11

Sustainable Cities and Society 40 Energies 11

Lecture Notes in Computer Science 27 ACM International Conference Pro-
ceeding Series

11

Geopolitics, History, and International 
Relations

22 International Conference on Artificial 
Intelligence, Management Science 
and Electronic Commerce (2021)

11

Science of the Total Environment 19 Technology in Society 10

Journal of Self-Governance and Man-
agement Economics

19 CEUR Workshop Proceedings 10

Sustainable Energy Technologies and 
Assessments

14 Advances in Intelligent Systems and 
Computing

10

Advances in Science, Technology and 
Innovation

14 Studies in Computational Intelligence 9

Technological Forecasting and Social 
Change

13 Lecture Notes in Networks and 
Systems

9

Economics, Management, and Finan-
cial Markets

13 IOP Conference Series: Earth and 
Environmental Science

9

Renewable and Sustainable Energy 
Reviews

12 Frontiers in Environmental Science 9

Resources, Conservation and Recycling 11 Sustainable Computing: Informatics 
and Systems

8

Philosophical Studies Series 11 Resources Policy 8

International Journal of Production 
Research

11 IEEE Access 8

Other 1217
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Table 4 Top papers based on citations (A and B) and number of collaborations (C)

Title # References

A. Articles

 Green, circular, bio economy: a comparative analysis of sustainability 
avenues

517 D’Amato et al. [66]

 Evaluating sustainability transitions pathways: bridging analytical 
approaches to address governance challenges

296 Turnheim et al. [331]

 Sustainable supplier management—a review of models supporting 
sustainable supplier selection, monitoring and development

279 Zimmer et al. [369]

 A hybrid decision support system for sustainable office building reno-
vation and energy performance improvement

277 Juan et al. [144]

 A systematic literature review on machine learning applications for 
sustainable agriculture supply chain performance

235 R. Sharma et al. [291]

 Artificial intelligence and business models in the sustainable develop-
ment goals perspective: a systematic literature review

229 Di Vaio et al. [74]

 Convergence of blockchain and artificial intelligence in IoT network for 
the sustainable smart city

227 Singh et al. [298]

 Role of institutional pressures and resources in the adoption of big data 
analytics powered artificial intelligence, sustainable manufacturing 
practices and circular economy capabilities

220 Bag et al. [32]

 Role of multiple stakeholders and the critical success factor theory for 
the sustainable supplier selection process

210 Kannan [151]

 Bridging sustainable business model innovation and user-driven inno-
vation: a process for sustainable value proposition design

208 Baldassarre et al. [34]

 Big data and predictive analytics for supply chain sustainability: a 
theory-driven research agenda

188 Hazen et al. [116]

 Machine learning in predictive maintenance towards sustainable smart 
manufacturing in industry 4.0

174 Çınar et al. [58]

 Comparing systems approaches to innovation and technological 
change for sustainable and competitive economies: an explorative 
study into conceptual commonalities, differences and complementari-
ties

172 Coenen and Díaz López [60]

 Investigating a serious challenge in the sustainable development 
process: analysis of confirmed cases of COVID-19 (new type of Coro-
navirus) through a binary classification using artificial intelligence and 
regression analysis

169 Pirouz et al. [255]

B. Review papers

 The role of artificial intelligence in achieving the Sustainable Develop-
ment Goals

589 Vinuesa et al. [341]

 Achieving sustainable performance in a data-driven agriculture supply 
chain: a review for research and applications

376 Kamble et al. [150]

 Statistical machine learning methods and remote sensing for sustain-
able development goals: a review

141 Holloway and Mengersen [120]

 The narrative of sustainability and circular economy—A longitudinal 
review of two decades of research

141 Schöggl et al. [284]

 Artificial intelligence in sustainable energy industry: status Quo, chal-
lenges and opportunities

137 Ahmad et al. [5]

 Unleashing the convergence amid digitalization and sustainability 
towards pursuing the Sustainable Development Goals (SDGs): a holistic 
review

135 Del Río Castro et al. [70]

 Digitalization to achieve sustainable development goals: steps towards 
a Smart Green Planet

134 Mondejar et al. [221]

 Sustainable cyber-physical production systems in big data-driven 
smart urban economy: a systematic literature review

97 Andronie et al. [23]

 Industry 4.0 technologies for manufacturing sustainability: a systematic 
review and future research directions

93 Jamwal et al. [132]

 Using satellite imagery to understand and promote sustainable devel-
opment

92 Burke et al. [47]
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Figure 2 shows the number of publications per year. The earliest paper is from 1995 
and discusses the “community option model” to provide the outcome of policies and 
actions for community development and management. The subsequent years show a 
slow growth in the number of publications until 2017; afterward, the rise in the num-
ber of publications is higher. Just after the year 2018, the frequency of publication is 
in triple digits, showing the maturation and application of data-driven technology. AI 
has reached a level where it can be utilized systematically with expertise and neces-
sary resources for various applications and multiple disciplines with sustainability-
related topics at the center.

Table 4 (continued)

Title # References

 Sustainable supply chain management towards disruption and organi-
zational ambidexterity: a data driven analysis

86 Bui et al. [45]

 Urban energy planning procedure for sustainable development in the 
built environment: a review of available spatial approaches

75 Torabi Moghadam et al. [322]

 Decision support systems for sustainable manufacturing surrounding 
the product and production life cycle—A literature review

73 Zarte et al. [362]

 COVID-19 and healthcare system in China: challenges and progression 
for a sustainable future

69 Sun et al. [309]

 Nanotechnology and artificial intelligence to enable sustainable and 
precision agriculture

68 Zhang et al. [365]

 Trends in predictive biodegradation for sustainable mitigation of envi-
ronmental pollutants: recent progress and future outlook

61 Singh et al. [296]

Table 5 Papers ordered based on collaborations

A. Top collaborations #collaboration 
countries

References

Digitalization to achieve sustainable development goals: Steps 
towards a Smart Green Planet

12 Mondejar et al. [221]

Intelligent approaches for sustainable management and valorisa-
tion of food waste

10 Said et al. [275]

A computational view on nanomaterial intrinsic and extrinsic 
features for nanosafety and sustainability

10 Mancardi et al. [208]

A machine learning driven multiple criteria decision analysis using 
LS-SVM feature elimination: Sustainability performance assess-
ment with incomplete data

10 Ijadi Maghsoodi et al. [126]

Foodomics: A Data-Driven Approach to Revolutionize Nutrition 
and Sustainable Diets

9 Ahmed et al. [6]

Predicting sustainable arsenic mitigation using machine learning 
techniques

8 Singh et al. [299]

Deploying digitalisation and artificial intelligence in sustainable 
development research

7 Leal Filho et al. [188]

Guest Editorial Artificial Intelligence and Deep Learning for Intel-
ligent and Sustainable Traffic and Vehicle Management (VANETs)

7 Gupta et al. [110]

A strategic review on sustainable approaches in municipal solid 
waste management and energy recovery: Role of artificial intel-
ligence, economic stability and life cycle assessment

7 Naveenkumar et al. [229]

Economic analysis of sustainable exports value addition through 
natural resource management and artificial intelligence

7 Wang et al. [344]
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The next result is the representation of social, environmental, and economic aspects 
in the current literature’s keywords. For this analysis, all keywords from the literature 
were extracted, duplicates eliminated, and keywords (including open compound words) 
and subparts of compound words relevant to the general concept of sustainability were 
manually selected. These selected keywords are categorized into one of three aspects, 
as presented in Table  1. Thus, the social, environmental, and economic aspects were 
defined. These three categories of words are used to search for patterns in the titles and 
keywords.

The proportion of different aspects of sustainability using keywords in Table  1 is as 
follows: Let us consider a set of documents D = {d1, d2, . . . } with |D| documents. There 
is also a set ka = {kw1, kw2, . . . } with 

∣

∣ka
∣

∣ words related to aspect a . Let P
(

kwi, dj
)

 be a 
pattern search function that returns 1 if it finds a match for kwi in dj(keywords) , and 0 
otherwise. The proportion for aspect a is calculated as follows:

It was searched for patterns related to each aspect in the titles and keywords of docu-
ments for different years. The year-wise counts for each aspect of sustainability are pre-
sented in Fig.  3. There has been a consistent upward trend in publications related to 
sustainability, AI, and data-driven approaches. The keywords in these publications have 
been categorized into social, environmental, and economic groups, and there has been a 
proportional increase in the count of keywords in all three categories. The results reveal 
a consistently higher count of environmental-related keywords since 2004.

In contrast, social-related and economic-related keywords have been less prominent 
than environmental-related ones, indicating a lower representation in the papers. Until 
2015, they were closely matched in the count. However, from 2016 onward, there has 
been a significant and consistent increase in the count of economic-related keywords 
compared to social-related keywords. The social dimension is complex, and imple-
menting AI in this area presents a substantial challenge, necessitating greater expertise, 
domain knowledge, investments, systematic data collection, and implementation trials 
that benefit society. The increasing number of publications underscores the subject’s 
importance, emerging trends, and diversity within the field.

Total count for aspect a in D: a =

|ka|
∑

i=1

|D|
∑

j=1

P
(

kwi, dj
)

Fig. 2 Number of publications over the years related to sustainability and AI
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Country‑wise analysis

The initial step in analyzing global research on AI-based applications for sustainability 
involves examining the country affiliations of the authors who have contributed to the 
research papers. This examination provides insight into the scope and prevalence of sus-
tainability research. In cases where multiple authors are listed on a paper and share the 
same country affiliations, they were treated as a single instance for that specific coun-
try. This approach streamlines the analysis by ensuring each paper is associated with a 
unique country affiliation, thereby preventing potential bias. Table 6 displays the leading 
countries with a minimum of 20 publications among the 102 countries with at least one 
publication.

In these results, institutions or universities in the United States are affiliated with the 
most publications by authors, followed by China, India, the United Kingdom, Germany, 
and other countries. One interesting observation is that these are larger economies and 
higher-income countries investing in sustainability-related research. Next, the number 
of publications per million population was compared to the Gross Domestic Product 
(GDP) based on Purchasing Power Parity (PPP). Population and GDP (PPP) data for 
2022 were gathered from the World Bank website (databank.worldbank.org). This data 
could only be obtained for 91 countries. The visualization of GDP (PPP) on the x-axis 
and the logarithmic value of publications per million population on the y-axis is pre-
sented in Fig.  4. This visualization highlights the focus on sustainability-related appli-
cations and research. Countries such as Norway, Ireland, Finland, Denmark, Sweden, 
Cyprus, and Macao, which fall within the high to middle range of GDP (PPP), exhibit 
higher publication rates per million population. In contrast, lower-income or densely 
populated countries tend to have significantly lower publication rates per million. This 
consideration is particularly important for implementing locally relevant sustainability 
initiatives.

The finding pertains to country-wise publication trends, revealing that countries 
with more advanced industrial economies or higher per capita incomes tend to exhibit 
more publications. This could be attributed to the rise of Industry  4.0 (I4.0), research 
investment, adopting and addressing sustainability, especially for economic and envi-
ronmental dimensions, alternative energy sources with less carbon footprint, and the 
UN’s SDGs. However, comparing publications per million population versus GDP per 
capita reveals that many larger economies lag significantly behind, which is also the case 

Fig. 3 Frequency of the terms related to the triple bottom line of sustainability (social, economic, and 
environmental)
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for underdeveloped countries. This analysis does not reflect the actual status but only 
reflects AI and sustainability research papers from the Scopus database. AI and sustaina-
bility research must be emphasized to understand various local sustainability challenges, 

Table 6 Country-wise publication distribution

Country #Publications Country #Publications

United States 333 Japan 37

China 276 Poland 34

India 268 Hong Kong 34

United Kingdom 193 South Africa 32

Germany 123 Portugal 32

Italy 111 Ireland 31

Saudi Arabia 105 Finland 30

Spain 98 Brazil 30

Australia 88 Denmark 29

Canada 76 Greece 28

Malaysia 74 Belgium 27

South Korea 69 Switzerland 26

Taiwan 65 Romania 26

France 65 Mexico 26

Pakistan 58 Slovakia 24

Norway 57 Austria 24

Iran 57 Vietnam 22

Netherlands 48 Hungary 21

Sweden 47 Czech Republic 21

Egypt 41 Singapore 20

Turkey 40 Indonesia 20

United Arab Emirates 39 Colombia 20

Russian Federation 37

Fig. 4 GDP per capita vs number of publications per million
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particularly aligning with the demography. Otherwise, the full potential of AI-based 
approaches for sustainability may remain underutilized. Demography and popula-
tion growth are important factors when investing in sustainability-related research and 
applications. Bhargava [39] discusses the implications of rapid population growth and 
emphasizes its inclusion in sustainability research.

Next, the collaboration network from the country-document binary matrix using the 
Jaccard index for collaborative analysis was constructed. As discussed in the method 
section, countries with at least three collaborations and a Jaccard index value greater 
than α > 0.01 were selected. Next, module detection algorithms were applied. Seven 
cooperation modules were obtained from the module detection analysis. The module 
of countries’ collaborations is shown in Fig. 5. Countries collaborate with their specific 
module and with other countries. The relative weight measured as the Jaccard index is 
higher for countries within the same module.

Sustainability is interdisciplinary and necessitates collaboration on various issues, par-
ticularly regional and global ones. The modules identified from collaboration networks 
of countries based on the Jaccard index reveal three main findings: the collaboration 
among large economies, the collaboration among European countries, and the col-
laboration among neighboring or closely situated countries. The collaboration network 

Fig. 5 Collaboration among 70 countries related to sustainability and AI research
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consists of only 70 countries, as a minimum of three collaborative publications had to 
occur for inclusion. The major emphasis is understanding how the AI applications of 
sustainability-related research are distributed worldwide. As several studies have high-
lighted, overcoming the digital divide and lack of infrastructure and human resource 
expertise in underdeveloped countries requires investment in research, education, and 
collaboration to enhance research in these regions. Achieving social, environmental, and 
economic sustainability is equally important and a priority for underdeveloped nations. 
With sufficient research on the social, environmental, and economic dimensions and a 
comprehensive understanding of the system, the advantages of sustainability tasks will 
be achievable only through collaborative efforts [96].

Keyword analysis

The keyword analysis highlights the significance of various technologies in conjunction 
with sustainability concepts, their application areas, and their interrelationships. The 
keyword analysis began with a pool of 5723 unique keywords. When the significance 
analysis was applied to identify the most meaningful keywords, it narrowed them to 67 
(see Table  7). These keywords encompass sustainability-related concepts and technol-
ogy/data-driven methods.

Table 13 (see Appendix) displays the keywords in each of the 14 modules detected in 
the co-occurrence network. Enrichment analysis was conducted to identify sustaina-
bility-related aspects within these modules. This analysis revealed that 11 out of the 14 
modules were enriched with at least one aspect related to sustainability. Figure 6 illus-
trates the co-occurrence network and labeled nodes with a degree greater than 20.

Table  8 shows the outcomes of the enrichment analysis, highlighting the significant 
modules that contained enrichment for at least one aspect. Notably, the findings indicate 
that not all modules were uniformly enriched with all three aspects (social, environmen-
tal, and economic). Seven modules significantly represent the environmental and eco-
nomic aspects. The key terms in Table 8 (column 4) represent key sustainability terms. 
The results reveal variations in the distribution of sustainability-related aspects through-
out the network of keywords.

The keywords and co-occurrence analysis focus on two important aspects: First, iden-
tifying common key terms, which highlight a central subject’s association with other 
key terms, and second, identifying current and emerging trends. The results shown in 
Table 7 highlight keywords that emphasize sustainability-related themes and keywords 
that emphasize technology and data-driven methods. The top two keywords can be 
understood in terms of sustainability or sustainable topics with AI applications. “Sus-
tainable development” is a major abstract keyword that emphasizes that significant pub-
lications related to the search criteria actively consider or try to align with the principles 
of sustainable development and demonstrate the widespread recognition of the impor-
tance of sustainability in that field of research. However, the global sustainability objec-
tives can conflict with the various objectives of these studies.

Further research is warranted where each work addressing sustainability is criti-
cally evaluated for global sustainability questions. Keywords such as smart and sus-
tainable cities, I4.0, renewable and sustainable energy, and agriculture have gained 
considerable attention by being discussed by different research groups. However, 
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this trend could lead to emerging issues if trade-offs exist with global sustainability 
goals. The keywords covering data-driven technologies show that “decision support 
system” is the key term followed by BD, IoT, Deep Learning (DL), neural network, 
sustainable AI, optimization, blockchain, and cloud computing. Other keywords show 

Table 7 Top significant keywords

Sustainability keywords Frequency q value Technology, AI, & data 
analysis terms

Frequency q value

Sustainable development 152 5E-05 Decision support system 99 5E-05

Sustainable development 
goals

75 5E-05 Big data 90 5E-05

Smart city 62 5E-05 Internet of things 84 5E-05

Industry 40 48 5E-05 Deep learning 62 5E-05

Environmental sustainability 33 5E-05 Neural network 31 5E-05

Circular economy 30 5E-05 Support vector machine 38 5E-05

Renewable energy 26 5E-05 Optimization 36 5E-05

Sustainable cities 23 5E-05 Blockchain 30 5E-05

Covid 19 23 5E-05 Big data analytics 24 5E-05

Decision making 23 5E-05 Data mining 22 5E-05

Climate change 21 5E-05 Random forest 21 5E-05

Agriculture 20 5E-05 Digitalization 19 5E-05

Sustainable manufacturing 20 5E-05 Multi objective optimization 15 5E-05

Energy 19 5E-05 Sustainable ai 14 5E-05

Resilience 19 5E-05 Digital technologies 13 5E-05

Energy efficiency 17 5E-05 Prediction 13 5E-05

Sustainable agriculture 17 5E-05 Multi criteria decision 
making

13 5E-05

Life cycle assessment 17 5E-05 Cloud computing 13 9.9995E-05

Smart manufacturing 16 5E-05 Data analytics 12 0.0002

Energy consumption 16 5E-05 Classification 12 1E-04

Decision support 16 5E-05 Data driven approach 12 5E-05

Social sustainability 15 5E-05 Data science 11 0.0003

Sustainable design 14 5E-05 Gis 11 0.0003

Innovation 14 5E-05 Simulation 10 0.00035

Governance 13 5E-05

Sdgs 13 5E-05

Security 13 5E-05

Sustainable supply chain 13 5E-05

Supply chain 13 5E-05

Ethics 12 5E-05

Systematic literature review 12 5E-05

Supply chain management 12 9.9995E-05

Urban sustainability 12 9.9995E-05

Environment 11 0.00014999

Digital transformation 11 0.00014999

Urban planning 11 0.00019999

Sustainable SCM 11 0.00019999

Sustainable concrete 11 0.00014999

Smart sustainable cities 11 0.00024999

Smart grid 11 0.00024999
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the importance of using technologies and data-driven methods for sustainability for 
effective and complex decision-making, real-time data-driven solutions, and higher 
prediction accuracy. They address trade-offs, transparent and traceable communica-
tion and transactions, and scalable, on-demand computing resources and services. 
These technologies and methods can be useful instruments for systems integration 
[197].

Analyzing the keywords’ co-occurrence network indicates the relationships between 
various keywords. The module detection algorithm applied for the co-occurrence net-
work shows a high modularity score of 0.58, indicating that the keywords form distinct 
groups closely connected within themselves and loosely connected to other groups. 
These groups represent different research topics and are composed of technology-
related, sustainability-related, and other keywords. These keywords highlight the rela-
tion between various topics, research themes, and subjects discussed in each group’s 
topic. For instance, Module 1 (see Table  13, Appendix) includes, amongst others, the 
keywords BD, IoT, I4.0, SDGs, CE, business model, and strategies. Economic sustainabil-
ity, business model development, manufacturing, and the SDGs are not independent but 
intertwined. The modules highlight the major interconnected themes of research topics 
related to sustainability, AI, and data-driven methods.

The enrichment analysis using the Fisher exact test determines which of the 14 
modules were significantly enriched toward social, environmental, or economic 
dimensions of sustainability. Eight modules were significantly enriched to at least one 

Fig. 6 Keyword Co-occurrence and Strong Connections 
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Table 8 Identification of significant representation of sustainability-related terms in various 
modules using the Fisher test

Module 
(with total 
nodes)

Sustainability aspects q value Key terms reflecting sustainability aspects

1
61 nodes

Social 0.49 Smart sustainable city, ethical ai, population, gender equal-
ity, biodiversity, urban development, urban, governance

Economic  < 0.0001 Industry 40, fourth industrial revolution, industry, industrial 
ecology, manufacturing, smart manufacturing, sustainable 
manufacturing, sustainable smart manufacturing, circular 
economy, business model, business strategy, cyber physical 
production system, sustainable finance, internet of things, 
digitalisation, digital technologies, technology, digitalization, 
digital twin

Environmental 0.02 Environmental sustainability, urban development, urban, 
water quality, e waste, environment, industrial ecology, 
resource recovery, emission, green ai, climate change, con-
servation, biodiversity, earth observation

2
38 nodes

Social 0.01 Social sustainability, sustainable smart city, healthcare, 
internet of health things, ai ethics, ethics, smart agriculture, 
ai governance

Economic 0.02 Firm performance, supplier selection, logistics, internet of 
health things, internet of thing, blockchain, supply chain 
management, supply chain, digital transformation

Environmental 1 Environmental indicators

3
5 nodes

Social 1

Economic  < 0.0001 Digital economy

Environmental 1

4
28 nodes

Social 0.44 Social media, engineering education, educational data min-
ing, education, higher education, sustainable education

Economic 0.19 Production

Environmental 0.026 Energy efficient, environmental pollution, waste, wastewater 
treatment, fuel cell

5
40 nodes

Social 0.49 Agricultural sector, generative design, life cycle assessment

Economic  < 0.0001 Manufacturing industry, bioeconomy, economic develop-
ment, cleaner production, predictive maintenance

Environmental  < 0.0001 Sustainable energy, renewable energy, energy demand, 
environmental decision support system, environmental 
performance, generative design, sustainable environment, 
sustainable transport, global warming, co2 emissions, 
greenhouse gas emissions, biomass, corporate sustainability, 
biofuel, bioeconomy, cleaner production

6
26 nodes

Social 0.18 AI for social good, future generations, urban governance

Economic 0.33 Additive manufacturing, digital twins, infrastructure plan-
ning

Environmental  < 0.0001 Building energy, performance-based design, natural 
resources, land use, electric vehicles

7
44 nodes

Social 1 Smart city, sustainable cities

Economic 1 Big data technology, data driven technologies, infrastructure

Environmental 1 Energy planning, design, smart sustainable urbanism

8
32 nodes

Social 1

Economic 1 Emerging technologies, technological innovation

Environmental 0.01 Environmental management, environmental factors, data 
driven design, sustainable design, green building, air pol-
lution
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aspect of sustainability. Modules 1, 5, and 11 showed topics interconnected with eco-
nomic and environmental aspects. Module 2 showed the interconnection of social 
and economic dimensions. The remaining modules were enriched with economic 
(three modules) and environmental (three modules) dimensions. Only Module 2 was 
enriched with the social dimension, specifically regarding sustainable AI implementa-
tion, regulation, governance, and protecting privacy. When gaining economic benefits 
from AI and data-driven models, these are important social aspects. The enrichment 
of the environmental dimension may be due to the selection of more environmen-
tal keywords, which could be different if more keywords related to sustainability for 
different aspects had been obtained. However, the current analysis overviews topics 
enriched with specific aspects within each module. This analysis can be useful for 
understanding different research topics and the extent of involvement in the three 

Bold represents terms significantly enriched (values less than 0.05) within their respective categories, indicating a significant 
presence of these terms in the module related to “social,” “economic,” or “environmental” aspects

Table 8 (continued)

Module 
(with total 
nodes)

Sustainability aspects q value Key terms reflecting sustainability aspects

9
28 nodes

Social 0.21 Global health, policy, agricultural supply chains, sustainable 
food systems

Economic 0.38 Agricultural supply chains, food supply chain, sustainable 
supply chain management

Environmental 1 Design for sustainability

10
26 nodes

Social 0.38 Social network analysis, education for sustainable develop-
ment

Economic 1 Sustainable technology

Environmental 1 Materials science, engineered nanomaterials

11
50 nodes

Social 0.56 Urbanization, municipal solid waste

Economic  < 0.0001 circular bioeconomy, blockchain technology, digital divide

Environmental 0.0012 Urbanization, municipal solid waste, solid waste manage-
ment, waste management, lignocellulosic biomass, circular 
bioeconomy

12
50 nodes

Social 0.49 Corporate social responsibility, health

Economic 0.02 Economic sustainability, business sustainability, productivity, 
digital agriculture

Environmental 0.10 Green energy, environmental impact, environmental 
monitoring, water, water resource management, water 
sustainability, food security, smart environments, sustainable 
building, corporate social responsibility, groundwater

13
34 nodes

Social 1 Social networks

Economic 0.0008 Industry 50, economic growth, sustainable production, 
closed loop supply chain, sustainable supply chain

Environmental 0.99 Energy efficiency, energy management, energy consump-
tion, water demand, water supply, built environment, 
carbon footprint, smart grid

14
2 nodes

Social 1

Economic 1

Environmental 0.02 Wastewater treatment plant
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dimensions of sustainability within the specific sustainable theme, identifying all 
three sustainability-related concerns, and addressing all aspects equally.

Semantic analysis of key topics

To determine the optimal number of topics, we evaluated 64 models using different 
combinations of UMAP’s number of neighbors parameter and hdbscan’s minimum clus-
ter size parameter, calculating the corresponding  CV scores. The results of these evalu-
ations are presented in Fig. 7. The figure shows that the  CV coherence increases as the 
number of topics decreases, while the score decreases for higher numbers of topics. The 
selected input parameters for BERTopic influence the variation in  CV scores. The top 
three  CV scores exceeding 0.47 correspond to models with topics ranging from 1 to 3. 
However, these models are deemed suboptimal, as they do not exhibit sufficient varia-
tion in topics related to sustainability and AI.

In contrast, the fourth and fifth largest  CV scores, 0.476 and 0.448, are associated with 
models having 12 and 13 topics, respectively, displaying less variation in topic distribu-
tion. The sixth-largest  CV score, 0.446, is the selected model with 34 topics (highlighted 
in blue). We chose this model because its coherence is relatively close to the fourth and 
fifth models, capturing a larger variation in AI and sustainability topics. The selected 
model has 34 topics and is characterized by UMAP’s number of neighbors set to 8 and 
hdbscan’s minimum cluster size set to 10. The topic modeling with BERTopic generated 
34 clusters of keywords, which are shown in Table 11 (see Appendix). The description of 
these clusters is shown in Table 9. Through topic modeling, key research themes emerg-
ing from multiple studies are identified. While many papers do not align with any spe-
cific theme, these papers do mention AI and sustainability.

Cluster -1 contains 643 documents that do not belong to any specific cluster. This 
occurrence can be attributed to two primary reasons. First, it might be due to a higher 
noise level in the data, causing these documents to not fit neatly into any theme or 
category. Second, the clusters formed may be smaller than the minimum cluster size 
parameter, set at ten during the implementation. Comprehensive parameter tuning 
may be required to address this issue and assign these unclustered documents to 
appropriate clusters. However, it is important to note that fine-tuning these param-
eters may provide more granular topics, but results remain unaffected. Figure 9 (see 

Fig. 7 Number of topics vs.  CV score obtained by varying parametes of different BERTopic models
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Appendix) presents a two-dimensional projection of document embeddings obtained 
through the UMAP approach. This visualization highlights the distribution of all the 
documents across different clusters resulting from the BERTopic modeling. Notably, 
the grey-colored points represent the documents in the -1 labeled group scattered 
throughout the visualization, indicating their lack of clear association with any spe-
cific cluster. Using a multivariate hypothesis test using N-statistic, we compared the 

Table 9 Different topic labels identified using BERTopic (details of topic keywords are shown in 
Table 11 in the Appendix)

Topic Docu‑ments Description Topic Docu‑ments Description

− 1 643 Mixed topics that are not part 
of any clusters but broadly dis-
cuss the application of AI, and 
sustainability-related research 
and applications

16 23 Decision support systems for sus-
tainable land use management

0 187 AI and sustainable develop-
ment

17 22 Sustainable supply chain man-
agement

1 150 ML and sustainable agriculture 18 22 Sustainable Finance and ESG 
(Environmental, Social, Govern-
ance)

2 83 Sustainable and renewable 
energy

19 22 Sustainability in manufacturing

3 63 Big data, data analytics, and 
data driven methods for 
sustainable industrial manu-
facturing

20 20 Smart sustainable city develop-
ment

4 61 Data-driven smart sustainable 
cities

21 19 AI and the IoT

5 59 Application of AI in healthcare 22 19 Sustainability of the palm oil 
industry

6 50 ML approaches in sustainable 
urban planning

23 17 Waste and waste management

7 47 Product sustainability assess-
ment

24 17 Data driven smart cities and 
governance

8 47 Sustainable supply chains 25 17 Big data, business model, innova-
tion for sustainable competitive 
advantage

9 44 Predicting properties of con-
crete using ML techniques

26 15 Cybersecurity and Intrusion 
Detection for sustainable use of 
AI and technology

10 41 Decision support systems for 
sustainable building design

27 14 Water and wastewater treatment 
using AI

11 37 The role of ML and AI in mak-
ing a digital classroom and its 
sustainable impact on educa-
tion during Covid-19

28 13 Pavement management for 
sustainable transport

12 35 Water resources management 29 12 Sustainability energy usages 
and AI

13 30 Sustainable development, 
nanomaterials, and nanotech-
nology

30 12 Sustainable transportation 
systems

14 27 Predictive modeling of water 
resources using ML techniques

31 11 AI for smart and sustainable cities

15 25 Biofuels, biowaste remediation, 
and sludge

32 10 Digital Technologies and 
sustainability in data journalism, 
communication, and information 
sharing
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clusters (topics) obtained from “hdbscan” in BERTopic using 2D UMAP projection 
(Figure 9, see Appendix) of document embeddings. The aim was to determine if sig-
nificant differences existed between the topic distributions shown by the two main 
UMAP components. The results of the N-statistic are shown in Figure 10 (see Appen-
dix). The distribution of different clusters is shown to be significantly different, show-
ing that the identified clusters, as represented by topics, are distinct. The p-values 
between all pairs of clusters are < 0.00001. In the final step of the analysis, hierarchi-
cal clustering (ward) was performed on the topic-text c-TF-IDF matrix. First, cosine 
similarity between topics was calculated, cosine dissimilarity as a distance measure 
was obtained, and ward clustering was applied.

The C-index was used to optimize the number of clusters [124]. Six clusters from 
33 topics were obtained (see Fig. 8). Cluster 1 (from left) contains only one member, 
Topic  32. The second cluster has three members: data-driven business model inno-
vation (BMI), sustainable SC, and sustainable supply chain management (SCM). The 
third cluster is the biggest one, with 13 members, and the main topic is related to AI 
applications in different areas, highlighting the closer connection in terms of seman-
tic similarity of the text. The remaining clusters have eight, four, and four members, 
respectively.

To gain insight into the details of the research themes, the topic modeling approach 
using BERTopic identified 33  different sustainability-related topics (see Table  9 and 
Table  11, Appendix). These categories include sustainable development, renewable 
energy, manufacturing, health care, urban planning, product sustainability, sustain-
able SC, education, and other topics. The identified topic outlines the research and 
efforts and major emerging research themes of sustainability.

One of the results is related to the sustainable development of nanomaterials and 
nanotechnology. Nanomaterials and nanotechnology have widespread applications 

Fig. 8 Topic clustering based on topic-terms c-TF-IDF matrix with cosine dissimilarity (C-Index optimized 
clusters)
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and are promising technologies offering disruptive transitions in the use of resources, 
environmental sustainability, transportation, energy usage, health, and other areas 
[257]. AI and nanotechnology can offer promising results [103, 270], highlighting the 
increasing importance of sustainable practices and innovations in nanoscience and 
nanotechnology, emphasizing sustainability’s growing intersection and cutting-edge 
technological advancements.

Additionally, by conducting further clustering of the topic-term matrix (c-TF-IDF 
matrix) to find the clusters of topics, five distinct groups from the initial 33 topics could 
be distinguished. These clusters of topics share interconnected themes within a broader 
context. For instance, the second cluster from the left (colored green) comprises three 
topics: Topic 25 (focused on BD and BMI), Topic 8 (centered around sustainable SC), 
and Topic 17 (on sustainable SCM). These topics are closely related, particularly regard-
ing their underlying theme of adopting data-driven approaches for sustainable BMI.

Discussion
The data analysis provides insights into current trends in AI and sustainability, cover-
ing three aspects: sustainability trends, the emphasis on AI and sustainability research 
by country, and keyword analysis highlighting key research themes using AI and data-
driven methods. Additionally, topic modeling is utilized to identify key topics within 
sustainability research. The following sections will discuss the various methods applied 
to sustainability and AI. The analysis of topics, keywords, key application areas of AI, 
and the intersection of technology and AI in the context of sustainability emphasizes 
four key aspects that impact the role of AI in achieving sustainable outcomes and shap-
ing the future of sustainable AI practices. The first aspect is various data-driven and AI 
methodologies applied for different levels of sustainability-related problems. It is impor-
tant to understand the scope and application of these methods, as well as the integra-
tion of these methods, which is essential for informed and effective decision-making for 
multi-dimensional and multi-level sustainability problems. The second aspect revolves 
around the scope and challenges associated with data-related characteristics, BD, and 
BD technologies, particularly its sustainable utilization. The third aspect centers on 
adopting sustainable AI practices, highlighting the importance of integrating sustain-
ability principles into AI development and deployment. Lastly, the fourth aspect empha-
sizes facilitating sustainable human-AI ecosystems, where the widespread use of AI and 
the active interactions of humans and AI systems lead to the emergence of different 
unknown social, environmental, and economic phenomena. These four aspects collec-
tively define the trajectory of AI’s contributions to sustainability and illustrate the path 
towards the future of sustainable AI practices. These aspects will be briefly discussed in 
the next sub-chapters.

AI, ML, and data‑driven methods

The AI and data-driven methods for sustainability applications are divided into nine 
categories: DL and neural network models; Other supervised and unsupervised ML 
models; forecasting methods; optimization methods; fuzzy methods; multi-criteria deci-
sion-making; complex network-based analysis, ontology-based models; statistical, sto-
chastic, Bayesian methods. These method classes are based on the surveyed literature 
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and keyword analysis. The different categories of the methods and relevant publications 
are shown in Table 10 (additional details in Table 12, Appendix), and the corresponding 
plausible sustainability dimensions they address.

The recent publications published within the last eight years were selected. The dif-
ferent categories of sustainability dimensions are based on their relevance, as men-
tioned in the abstract and keywords. Some publications can belong to more than one 
category regarding methods and sustainability criteria. However, it was assigned to only 
one category based on the importance of the subject given in the article. These models 
are applied across a wide range of sustainability domains. However, the studies might 
not directly relate to the 17 SDGs but rather focus on the general idea of sustainabil-
ity within their problem space and practical implementation, although it relates to sus-
tainability’s social, environmental, and economic dimensions. This can help understand 
sustainability issues internally or for a more expansive understanding and application of 
methods for sustainability-related problems.

DL and neural network models are major methods for addressing sustainability-
related problems among these categories. This is evident from the keyword analysis, 
where DL is shown among the top keywords. DL models are specifically for prediction, 
forecasting, optimization, and classification. The data for these methods are IoT data, 
BD, production and manufacturing data, text data, structured data, temporal data, image 
data, and geological and satellite data. The methods are beneficial for where data is in 
large amounts and well managed. The social dimension of DL applications includes chal-
lenges related to sustainable urbanization, education, health, and healthcare automation. 
The other major application is the environmental dimension for smart and sustainable 
agriculture, soil management, waste management, sustainable energy usage, wetland and 
ecosystem management, crop yield, and plant disease prediction. The economic dimen-
sion applies to resource optimization, smart and sustainable manufacturing, inventory 
control, financial crisis prediction, efficient scheduling, resource allocation, predictive 
maintenance, condition monitoring, and energy-efficient production. The DL and neural 
network models include ensemble models, convolutional neural networks, deep trans-
fer learning models, Gaussian and Bayesian neural networks, recursive neural networks, 
recursive support vector neural networks, deep reinforcement learning models for clas-
sification, regression, forecasting, and unsupervised learning models with deep encoder-
decoder architectures.

It is important to distinguish DL models from ML models because they are data- and 
resource-intensive; other than that, the lack of explainability of models cannot fit them 
into certain applications, particularly those related to critical health decision-making or 
policy formulation where transparency is crucial. TinyML is an emerging trend as edge 
computing provides ML-as-a-Service (MLaaS) to IoT devices. The resources are lim-
ited for edge computing, and using deep models cannot be useful for response time and 
accuracy. However, the other ML models can be useful for tinyML [361]—other than 
that, the other methods are more useful where the data is sparse and requires fewer 
resources.

The other supervised ML methods are widely used for various sustainability-related 
questions. It is shown that they cover a wide range of sustainability applications for 
pattern recognition, prediction, and classification. The most applied approaches for 
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Table 10 Different ML and data-driven methods applied to different sustainability problems

DL, artificial neural network models

 Social Li et al. [190], Alqahtani et al. [18], Dolawattha et al. [77], Nosra-
tabadi et al. [235], Shafiq et al. [288], Ali and Shirazi [15]

 Environmental Wongchai et al. [351], Dairi et al. [65], Rangel-Martinez et al. [263], 
Sohani et al. [301], Nañez Alonso et al. [227], Park and Yang [245], 
Himeur et al. [119], Yang et al. [355], Jendoubi and Bouffard [137], 
Pham et al. [252], Selukar et al. [287], Padmapriya and Sasilatha 
[242], Rastogi et al. [265], Tariq et al. [315], Jin et al. [140], Ashwitha 
and Latha [28], Ferdous et al. [93], Karka et al. [153], Zhang et al. 
[366], Abbas et al. [2], Papagiannis et al. [244]

 Economic Sachithra and Subhashini [271], Grant [106], Latif [184], Jamwal 
et al. [131], Lazaroiu et al. [186], Jan [133], Cavus et al. [50], Wang 
et al. [348], Verma et al. [338], Elhoseny et al. [87], Danishvar et al. 
[67], Demir [71], Walk et al. [343], Corceiro et al. [61], Fisher et al. 
[94], Latif and Ahmed [185], Gómez et al. [104], Liu et al. [201]

ML/Supervised ML

 Social Mrówczyńska et al. [223], Pham et al. [250], Mishra et al. 
[215], Novak et al. [236], Mashaba-Munghemezulu et al. [211], 
Naseer et al. [228], Kim and Kim [162], Rathore et al. [266], Almalki 
et al. [17], Dash et al. [68], Molina-Gómez et al. [218], Piscitelli and 
D’Uggento [256], Abbas et al. [1], Wang et al. [347], Arango-Uribe 
et al. [26], Ijadi Maghsoodi et al. [126], Yigitcanlar and Cugurullo 
[357], Garg et al. [100]

 Environmental Taghizadeh-Mehrjardi et al. [312], Niu and Feng [233], Pal et al. 
[243], Sugiawan et al. [307], Elavarasan and Vincent [86], Iddia-
nozie and Palmes [125], Shahbeik et al. [289], Badreldin et al. [31], 
Xiaonuo Li et al. [192], Javed et al. [135], Singh et al. [299], Liu et al. 
[199], Gültepe [108], Carrera et al. [49], Li et al. [190], Al Duhayyim 
[12], Mao et al. [210], Agrawal et al. [4], Shrimali et al. [292]

 Economic Kumar Mohapatra et al. [180], Akbari et al. [8], Ullah et al. [333], Wu 
et al. [352], Onyelowe et al. [238], Thanh et al. [319], Sankarana-
rayanan et al. [278], Ghanizadeh et al. [101], Dai and Zhang [64], 
Khoh et al. [161], Erçen et al. [89], Pham et al. [251], Momenitabar 
et al. [220], Jamil et al. [130], Wang et al. [344]

Unsupervised learning

 Social Nilashi et al. [231], Kumar et al. [179], Mukherjee [224], Zhang et al. 
[365, 367], Tsaples et al. [326], Mumtaz and Whiteford [225], Suha 
and Sanam [308], Qi and Li [260]

 Economical Tayal et al. [317], Schöggl et al. [284], Zhou et al. [368], Tirth et al. 
[321]

 Environmental Kosir et al. [173], Aqel et al. [25], Viet and Jang [340]; Priyanka et al. 
[259], Heo et al. [117]

Time series and forecasting

 Social Kumari and Tanwar [181], Lee and Jung [189], Molina-Gómez et al. 
[217], Kahwash et al. [149], Suchetana et al. [306]

 Environmental Kazancoglu et al. [158], Sugiawan et al. [307], Rani Hemamalini 
et al. [264], Alsaidan et al. [19], Li et al. [191]

 Economic Abidi et al. [3], Choi et al. [55], Amin et al. [22], Ilie et al. [128], 
Uppal et al. [335], Mohammed et al. [216], Cadenas et al. [48], Sax-
ena et al. [283], Couto and Rangel [63]; Dutta et al. [81], Kayakus 
et al. [156], Sapitang et al. [281].

Bayesian/statistical/probabilistic methods

 Social Holloway and Mengersen [120], Akhtar et al. [10], Kontokosta and 
Jain [170], Tao et al. [314], Kong [169], Aly et al. [20]

 Environmental Chakraborty et al. [51], Zeynoddin et al. [363], Akbarian et al. [9], 
Ijlil et al. [127], Li et al. [191]

 Economic Yunpeng Li et al. [195], Jun [146], González-Cancelas et al. [105], 
Jong et al. [143], Hao Wang [345], Jun [145]
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sustainability tasks are tree-based models, including decision trees, random forest, and 
gradient boosting. The other methods are Support Vector Machine (SVM), regression 
models (linear, polynomial, beta, Bayesian, and support vector regression), and ensemble 
models. Other than predicting various social, environmental, and economic questions 
and feature selection shown in Table 10, various studies utilize these methods to evalu-
ate different sustainability tasks, socio-economic factors, and environmental challenges. 
For example, Molina-Gómez et al. [218] use different sustainability indicators to collect 
data to predict different levels of sustainable development of the urban ecosystem. This 
approach can be useful for identifying the quality of life in urban ecosystems and pol-
icy-making decisions for disadvantaged societies. The other application is sustainability 

Table 10 (continued)

Optimization

 Social Kolak et al. [168], Huang et al. [123], Oyebode et al. [240], Shifa Ma 
et al. [206], Mousavi et al. [222],Yue Li et al. [194], García-Esparza 
et al. [99], Arslan et al. [27], Bliek [43]

 Environmental Santos et al. [279], Manos et al. [209], Nowakowski et al. [237], 
Lytras and Chui [205], Liu et al. [198],Chen et al. [53], Tavakoli and 
Barkdoll [316]

 Economic Quariguasi Frota Neto et al. [261], Shuaiyin Ma et al. [207], Jiao 
et al. [139], Xu et al. [354], Anvari and Turkay [24], Lotfi et al. [204], 
Hombach et al. [121], Simeoni et al. [295], Honghui Wang et al. 
[346], Peng et al. [247], Doliente and Samsatli [78], Sharma et al. 
[290], Nayeri et al. [230], Momenitabar et al. [220], Choi [56], Jayar-
athna et al. [136], Yue Li et al. [194]

Simulation models

 Social Bibri [41], Saeid Atabaki et al. [273], Verma et al. [339], Hart et al. 
[114], Torres et al. [323], Islam and Tareque [129]

 Environmental Singh et al. [296], del Caño et al. [69], Medvedev et al. [212], Dlu-
gosch et al. [75], La Torre et al. [183], Strand et al. [304], Ghasemi 
and Yazdani [102], Eckhoff et al. [83], Mirshafiee et al. [214]

 Economic Rackes et al. [262], Jung in Kim et al. [165], Ekici et al. [85], Elnour 
et al. [88], Hatim et al. [115], Relich [267], Pirola et al. [254]

Fuzzy methods

 Social Alimohammadlou and Khoshsepehr [16], Sarkar et al. [282]

 Environmental Krishankumar et al. [176], Song et al. [302], Bui and Tseng [46], 
Tayebi et al. [318], Kadham et al. [148], Alzain et al. [21]

 Economic Kannan [151],Tseng, Tran, et al. [329]; Orji and Wei [239], A. Kumar 
et al. [178], Bui et al. [45], Kokkinos et al. [167], Tsai et al. [325], 
Balaman et al. [33], Khalili-Damghani and Sadi-Nezhad [160], 
Tirkolaee and Aydin [320], Tseng et al. [327], Fallahpour et al. [91], 
Pereira et al. [249], Jeong and Ramírez-Gómez [138], Tseng, Bui, 
et al. [328], Choy et al. [57], Kazancoglu et al. [157], Su et al. [305], 
Alassery and Alhazmi [13]

MCDM

 Social Zhang et al. [364]

 Environmental Dogra and Adil [76], Alghassab [14]

 Economic Lo [202], Bhatia et al. [40], Ozkan-Ozen et al. [241], Singh et al. 
[297], Li et al. [196], Tseng et al. [330]

Complex networks/Knowledge graphs/ontology

 Social Juhwan Kim et al. [164], Lorimer et al. [203], Konys [171], Silva et al. 
[293], Draschner et al. [79], Zovko et al. [370], Bellantuono et al. 
[36], Jing and Wang [141]

 Environmental Ahmed et al. [7], Tran and Draeger [324], Sebestyén et al. [286]

 Economic Muñoz et al. [226], Aydin et al. [29], Yang and Yu [356], Kim [163], 
Perdana et al. [248], Zhou et al. [368]
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performance assessment with SVM for large-scale decision-making for inclusive deci-
sions with incomplete data [126]. Yigitcanlar and Cugurullo [357] discuss key aspects 
of the sustainable adoption of AI that require significant improvement for sustainable 
urbanism. Similar aspects are needed to design for sustainable adoption.

The unsupervised models are applied for data exploration, formulation of hypoth-
eses, dimensionality reduction, latent variable modeling, anomaly detection, and cluster-
ing. The unsupervised methods are independently applied or in conjunction with other 
data-driven and machine-learning approaches. Some examples where it is integrated 
with other methods: Nilashi et  al. [231] use clustering and supervised learning meth-
ods to predict the overall sustainability performance of different countries. Tayal et al. 
[317] discuss a staged approach, including data envelopment analysis, meta-heuristic 
approach, and k-means clustering to optimize sustainable facility layout design (shop 
floor, manufacturing unit), maximizing performance and minimizing operating costs.

The other methods are forecasting and time series-based models, which require 
estimating predictions based on historical temporal data and are useful for anticipating 
future events to reduce uncertainty, analyzing trends, optimizing resources, and taking 
proactive actions. The various applications are forecasting energy and other resources 
usage, load management, and forecasting values or patterns of various social, climate-
related, and economic variables. These forecasting models can be applied for short and 
long-range forecasting. Clark et al. [59] discuss the need for iterative near-term ecologi-
cal forecasting that maximizes ecological relevance to society,similar situations can be 
realized in various other social and economic cases, where the availability of BD can 
make iterative forecasting approaches possible for effective and adaptive decision mak-
ing which can critically evaluate and update models based on new understanding. BD 
for forecasting is categorized into three categories: user-generated, device, and log data. 
Successful utilization of BD in forecasting demands a systematic approach: expertise in 
method development/selection (including statistical, ML, and hybrid methods), data 
processing, and domain knowledge [313].

ML model applications include transportation, food security, urbanization, agricul-
ture, governance and public services, poverty, education, water, sustainable goal evalu-
ation and SC applications, energy optimization, manufacturing, sustainable material 
properties, sustainable power supply, and green technology adoption. The designing 
of efficient AI algorithms is a challenge due to the open-ended complexity of problems 
related to sustainability. As more and more data are available in different domains, a 
wide range of applications of AI-based methods for sustainability problems become vis-
ible. From the implementation point of view, data quality, dimensionality, online effect, 
interpretability, accuracy, generalization, hyperparameter tuning, model updating, cost, 
and resources involved in developing models are key factors for appropriate ML model 
selection for ML methods. To ensure the robustness and sustainability of AI, it is imper-
ative to examine how AI can adapt to external changes for long-term sustainability and 
identify the model development requirements that consider temporal effects, data char-
acteristics, hyperparameter selection, continuous model updating, interpretation, and 
explainability.

One of the important cases is the multi-dimensional consideration of the problems 
in all three directions of sustainability. For instance, if an organization solely targets 
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reducing expenditure and maximizing profit by minimizing energy usage and carbon 
footprint within its operations, it may inadvertently overlook other conflicting objectives 
across different dimensions of sustainability. This limited approach might yield imme-
diate results by promoting the adoption of alternative energy sources. However, such 
alternatives could introduce challenges. Transitioning to these sources might neces-
sitate utilizing resources with a substantial carbon footprint and additional mainte-
nance requirements, potentially compromising long-term sustainability. Moreover, the 
cumulative effects could trigger broader ecological repercussions if multiple organiza-
tions embrace similar energy solutions. A widespread shift towards specific energy stor-
age or generation methods could escalate the demand for particular materials, resulting 
in unforeseen environmental consequences. Therefore, the long-term effect must be 
understood by data-driven methods in maintaining sustainability.

Several multi-objective optimization methods can be applied to various social, envi-
ronmental, and economic factors. The optimization methods are largely applied to 
complex problems to search for the best feasible solution, maximizing sustainability 
objectives considering problem constraints [272]. Metaheuristic, Pareto, scalarization, 
dominated, non-dominated, stochastic, and simulation methods can be applied to sus-
tainability problems [82, 109, 136].

Multi-criteria decision-making is another area of methods applied as a decision 
support system for complex technological, social, and economic systems. Policymak-
ers, managers, investors, and academicians can use these decision-making methods 
to identify and prioritize key indicators. Multi-criteria decision-making methods with 
fuzzy approach and simulations are applied to address various aspects of sustainability 
in multiple sectors. These include building and urban design, SCM, production, trans-
portation, air pollution and waste management, and sustainable project selection. These 
methodologies assist in addressing complex decision-making strategies encompassing 
multiple conflicting criteria underneath uncertainty. This highlights the key role of these 
methods for optimization and decision-support tools for identifying sustainable solu-
tions in diverse fields. The data sources for these studies include surveys, expert groups, 
observational studies, databases, or experimental design, depending on the specific con-
text and requirements of the decision problem by identifying influential, dependent, and 
conflicting variables.

Sustainable big data and analytics

With the recent advancement in ICT and its widespread application, data can easily be 
gathered from various sources, including governmental, industrial, transactional, and 
urban data. “Datafication” has become an important factor in many sectors. It describes 
the current trend of defining phenomena, processes, and operations by turning them 
into digitized data to analyze and extract information [41]. The extracted information 
offers a huge potential to reinforce social, environmental, and economic sustainability. 
The prospect of leveraging BD resources to improve sustainability is a topic of research 
in many domains, including but not limited to sustainable agricultural SCs, sustainable 
health care, sustainable organization performance, innovation, sustainable urban plan-
ning, and smart cities.
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Multiple studies discuss using BD approaches for sustainability applications and their 
potential to improve sustainability. Kamble et  al. [150] highlight the potential of data 
analytics to augment the sustainability of the agri-food SC. For instance, the author dis-
cussed how descriptive analytics, namely the life cycle assessment tool, is widely used to 
address environmental concerns, analyze the misuse of resources leading to food waste, 
and design short SCs that increase the involvement of farmers and contribute to sustain-
able community development. Suvarna et al. [311] examine how “industrial data” can be 
leveraged by manufacturing companies for multiple purposes, including real-time pro-
cess monitoring, data-driven process control and optimization, and decentralized manu-
facturing. This falls in line with the improvement of sustainability. From an economic 
perspective, improving the efficiency of manufacturing processes through control and 
optimization improves the company’s financial profitability and ensures its economic 
sustainability. The improved process efficiency also significantly impacts energy con-
sumption and resulting emissions, strongly contributing to environmental sustainability. 
Moreover, by allowing decentralized manufacturing, the exploitation of industrial data 
can contribute to a more even geographical distribution of job opportunities and hence 
empower social sustainability.

Similarly, BD plays a key role in health care. The literature suggests several BD tools 
that could be implemented in a digital healthcare system and allow for the exploration of 
hidden patterns, early detection of diseases, and reduction of the required time and cost 
of analysis [360]. “Open Data” platforms are another tool that strongly contributes to 
sustainability goals. “Open data” platforms, where data can be shared between multiple 
parties, can lead to highly granular information content and allow all involved parties to 
benefit from it. For instance, the development of open-data healthcare platforms where 
citizens can share their medical data can contribute to better knowledge, diagnosis, and 
treatment of diseases. Moreover, locally or globally, sharing information from different 
population sections can help researchers better understand inequities, highlight them, 
and address them with dedicated healthcare interventions [174]. However, even though 
BD can offer lucrative opportunities in many fields and help reinforce sustainability, 
implementation comes with critical challenges. The challenges range from data collec-
tion to storage, processing, governance, privacy, and accessibility and pose questions 
about how sustainable BD approaches are from all social, environmental, and economic 
aspects [337].

H. Zhang et al. [364] highlight the difficulties service design teams face in fully under-
standing and exploiting BD due to a lack of big data analytic capabilities (BDAC). In 
line with that, excessive investment in BD resources alone without parallel investment 
in BDAC can hinder sales growth and negatively affect companies’ sustainable growth 
[113]. Apart from the negative implications of the financial sustainability of companies, 
the perspective of the knowledge gap hypothesis, which posits that significant invest-
ments in BD resources and analytics are required, can also be detrimental to social 
sustainability. In line with the knowledge gap hypothesis, when there is a rise in the 
introduction of mass media information into social systems, communities or countries 
with a higher socio-economic status typically acquire this information more quickly than 
their counterparts with lower socio-economic status. This results in an amplification of 
the gap between them rather than a reduction [234]. Applying this hypothesis to BD, 
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economically advanced regions will likely have the capacity to swiftly make substantial 
investments in harnessing BD and developing essential skills, outpacing the progress of 
underdeveloped regions. Such a scenario could reinforce a monopoly on BD technolo-
gies, ultimately affecting social or economic aspects of sustainability.

In addition, the potential offered by open data platforms is opposed by serious privacy 
concerns, which in turn raise questions about the lack of “Data Governance” standards 
to regulate the way data is collected and processed, as well as define who is accountable 
for the decision making resulting from data usage [258]. This lack of governance can 
lead to data usage that contradicts social and environmental sustainability goals, namely 
climate protection and reducing inequalities. Within the social context, some research-
ers discussed the thriving data broker industry in which data is used for purposes it was 
never intended for, including “to predictively profile, socially sort, behaviorally nudge, 
and regulate, control and govern individuals and the various systems and infrastruc-
tures with which they interact” [166]. This trend is alarming in terms of its implications 
for individual privacy. Regarding the environmental aspect, the amount of data gener-
ated from various sources requires energy-intensive computational resources to collect, 
store, and conduct analytics. This could potentially negate the positive effect of BD and 
its analytics on sustainability. These powerful computational resources require min-
ing rare materials for their manufacturing, consuming high energy levels for process-
ing and cooling, and generating waste when discarded, raising questions about their 
sustainability.

Moreover, the ease and low cost of data collection and its potential financial ben-
efits have encouraged organizations to focus on accumulating vast amounts of data in 
their databases to commercialize it. In the absence of governance to regulate how data 
is collected, this can lead to “data obesity,” in which case redundant data might be col-
lected from multiple sources, thus increasing the size of datasets without contributing 
to their information content [213]. To counteract the effect of data redundancy, allow-
ing for more energy-sustainable data sharing and computing, the scientific community 
is reverting to “data aggregation and fusion” techniques, which aim to reduce data size 
without affecting its information. Data aggregation and fusion encompass a variety of 
methods, including redundant data elimination, data compression, in-network process-
ing, and data sampling and prediction [52]. The challenge remains, however, in minimiz-
ing the data quality loss when reducing its size, which is a prominent area of research. 
For instance, Pielli et al. [253] propose an RL technique to choose the compression rate 
that maximizes data quality and adheres to the energy constraint.

Even though research seeks to optimize techniques that reduce data size without 
affecting its quality, a correlation between data size and quality still exists in certain 
cases. This conflict arises between the financial rewards of data approaches and their 
environmental impact. Commercial institutions face the challenge of deciding between 
financial gain and environmental sustainability due to the absence of proper data gov-
ernance or a framework defining responsibilities. The literature shows that exploiting BD 
to enhance sustainability and analytics still faces significant challenges. While the poten-
tials presented are promising, the different social, environmental, and economic aspects 
are interconnected and, at times, can be inversely proportional. Therefore, implementing 
such approaches can have differing impacts on each aspect of sustainability. The field 
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of BD is an active research topic with ongoing efforts by scholars to refine the analytic 
methods and develop frameworks that can mitigate the potential negative implications 
of BD approaches.

Sustainable AI characteristics and challenges

The IoT and AI have the potential to support prevailing sustainability measures like the 
circular or sharing economy. Fraga-Lamas et al. [95] explicitly mentioned that IoT could 
pave the way for more sustainability in various sectors in operations, maintenance, and 
processes and areas addressed in the UN’s SDGs, like water distribution. Bachmann et al. 
[30] delivered a comprehensive work about the contribution of data-driven technologies 
(including IoT) to achieving the SDGs. Sætra [274] emphasizes the different levels AI 
might influence in the context of the SDGs. As an example, it is pointed out that posi-
tive effects for a country (meso level) might create negative effects on other countries 
(macro level) and raise tensions within the country (micro level). Therefore, Sætra [274] 
describes AI not as a single technology but as something connected to various other 
technologies that may simultaneously trigger positive and negative effects.

On the one hand, IoT and AI can serve as facilitators for sustainability, but paradoxi-
cally, the IoT sector itself has a high carbon footprint [95]. Also, Schwartz et al. [285] 
claim that ML-based text and image generators have improved in quality over the last 
few years. However, this AI research has become increasingly “Red AI,” meaning it seeks 
to improve accuracy by using massive computational power, which is costly, environ-
mentally unfriendly, and exclusive. Furthermore, Schwartz et  al. [285] propose that a 
“Green AI” should treat efficiency as a primary evaluation criterion alongside accuracy, 
and they suggest reporting the number of Floating-Point Operations (FPO) required to 
generate a result as an indicator of how green an AI-based result is. An approach to opti-
mize the energy consumption of Deep Neural Networks (DNN) is presented by Liu et al. 
[198–200] through a combination of deep and spiking neural networks, which lead to 
a six times lower energy consumption. Another approach, the optimization framework 
called “Zeus,” is presented by You et al. [359]. This framework proposes to decouple the 
optimization of batch size and Graphics Processing Unit (GPU) power limit. It uses an 
online exploration–exploitation approach based on multi-armed bandit and just-in-
time energy profiling to navigate the trade-off between energy consumption and per-
formance optimization. The work by S. Choi et al. [54] focuses on energy saving when 
using multi-GPUs for DNN training with their proposed framework “EnvPipe.” This 
framework should save energy by using multiple GPUs with pipeline parallelism while 
providing high accuracy and performance. However, this highlights that the challenges 
are multifaceted, encompassing identifying appropriate application fields for AI and IoT 
to enhance a business’s sustainability and determining the optimal level of AI and IoT 
utilization.

Besides the intensity of IoT use, Dunn et al. [80] are especially addressing the vulner-
ability of IoT systems. They claim that ML technology, often the basis for IoT systems, 
could suffer from data poisoning or cyber-attacks, which create false assumptions, 
results, or outcomes and may harm the application field. In smart cities, for example, 
AI can support efficiencies in decision-making, infrastructure assessment, post-dis-
aster reconnaissance, connected urban mobility, or service agent chatbots, to name a 
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few [358]. However, its use is reluctant due to the technocratic use of AI and its not 
being implemented sustainably. The main focus has been on increasing efficiency, but 
a sustainable implementation also needs a social and environmental equitable point of 
view [358]. The challenge of sustainability in the product service system is addressed by 
Xinyu Li et al. [193]. Their article emphasizes integrating sustainability considerations 
into Product-Service Systems (PSS) design and development, particularly in a cyber-
physical environment. It underscores the lack of existing studies that see cyber-physi-
cal resources as a whole regarding sustainability rather than just physical materials and 
components. As cyber-physical systems often use AI or IoT technology, Xinyu Li et al. 
[193] propose a data-driven reversible framework that extends the traditional scope of 
resource management to create Sustainable Smart PSS. This framework incorporates a 
four-step context-aware process that involves requirement elicitation, solution recom-
mendation, solution evaluation, and knowledge evolution to support decision-making 
and optimization throughout the product lifecycle.

Apart from the technological point of view, a challenge of AI is presented by How et al. 
[122]. The authors emphasize the critical role that AI can play in understanding and pro-
moting sustainable development. It specifically focuses on how AI can be made more 
accessible and user-friendly to people who do not have a computer science background. 
How et  al. [122] introduce a novel, human-centric probabilistic reasoning approach 
that democratizes AI by allowing non-computer scientists to use AI to analyze socio-
environmental data. Wilson and van der Velden [349] focus on the public sector and 
claim that ethics, explainability, responsibility, and accountability are important aspects 
of analyzing the societal impacts of AI. These concepts alone do not support regulating 
and implementing AI in the public sector. Wilson and van der Velden [349] explored the 
concept of “sustainable AI” in their work to address this gap by aligning the research on 
sustainable development with that on public sector AI. A conceptual model identifying 
five boundary conditions, diversity, learning capacity, self-organization, common mean-
ing, and trust, can assist in public sector decision-making about AI governance [349]. 
There are still challenges when using AI in smart cities, production, or the public sector. 
Scholars work to make AI more sustainable,they review current approaches, derive new 
possible pathways, and propose frameworks, models, and concepts to make AI more 
sustainable.

Sustainable human AI ecosystems

The different data-driven and AI methods for sustainable applications are applied at dif-
ferent levels of decision-making where the outcome of these methods is involved for 
subsequent levels considering several factors, including social, environmental, and eco-
nomic aspects and the local, regional, and global constraints. Different methods can be 
useful for problems at different levels, from large data-intensive AI models to tiny or 
small data-related decision-making models, ML, and analytics. It is, therefore, useful to 
know the effectiveness and power of different methods at different levels of decision-
making given the various method-related, data-related, and other application-related 
constraints, explainability, and impact on decisions.

A systematic framework and a hybrid approach to decision-making are critical and 
show better performance, context awareness, and improved accuracy [282]. The hybrid 



Page 36 of 68Tripathi et al. Journal of Big Data           (2024) 11:65 

approach involves humans and different AI and data-driven methods, and its aim should 
be to maximize the impact of decision-making towards sustainability goals. The frame-
work must ensure who will make the final decisions, and the allocation of responsibil-
ity for decision-making is an important consideration. While AI can significantly assist 
decision-making, there should always be a mechanism to ensure that human judgment 
and values can supersede AI-generated decisions when necessary.

The other challenge is the implications that can originate from large-scale interactions 
between “AI” and “humans.” The future of AI will be about AI not working in isolation 
but evolving as multi-agent systems, and AI (or multi-agent)-human ecosystem where 
humans and AI systems continually interact and learn from each other lead to an exten-
sive shift in decision-making processes. This effect would generate a social impact and 
affect the decision-making compass of companies, policy-making bodies, and other 
decision-making entities, subsequently influencing sustainability-related aspects. Key 
considerations include the consequences of bias in these decisions [310] or error propa-
gation initiated either by humans or AI [72]. These errors have the potential to propagate 
through the system and compound due to repeated interactions. The other interesting 
part is that AI and human interactions as a Social and Technological System (STS) lead 
to unknown emergent behavior from the aggregated outcomes that can lead to conform-
ism and potential unanticipated and undesirable consequences [246]. Pedreschi et  al. 
[246] emphasize the design of next-generation AIs with the “complexity-informed per-
spective” abided by the sustainability goals where individual and collective concerns are 
addressed effectively.

Conclusion and future research
The study has conducted four main analyses, which include an overview of publica-
tions, an analysis of research articles across multiple countries that showcase collabo-
rative research actions in the context of sustainability tasks and data-driven methods, 
keywords and co-occurrence analyses, and topic modeling. Collaborative research 
highlights the substantial lack of collaboration in underdeveloped regions and is to be 
emphasized further for global sustainability goals. The frequency of emerging concepts, 
application areas, and key technologies has been highlighted by analyzing keywords, 
particularly concerning AI and data-driven approaches that are gaining prominence. The 
modules with keywords in the co-occurrence network reveal common interconnected 
concepts and their social, environmental, and economic dimensions, highlighting the 
relevance of the complexity of different data-driven applications. The topic analysis has 
also highlighted the major research area related to sustainability and data-driven appli-
cations. These findings from the literature have further driven us to explore the different 
AI and data-driven methods applied to different types of applications. We have found 
that nine categories of methods are applied for different cases and applications for dif-
ferent levels of decision-making and their importance. It is important to understand that 
a single method cannot show its importance in decision-making. However, different 
methods have their utility and shortcomings for various sustainability-related problems, 
covering different aspects of sustainability and the scope of applications in engineer-
ing, basic research, health and medicine, business and policy-making, and governance. 
Therefore, their scope and power in multi-level and multi-dimensional decision-making 



Page 37 of 68Tripathi et al. Journal of Big Data           (2024) 11:65  

must be understood before using different methods for decision-making, given the data 
and methods-related constraints and their ability to provide meaningful and reasonable 
explanations.

It is important to remember that different decision-making processes are not sin-
gle, isolated decisions but multi-level and multi-dimensional processes requiring 
different methodologies. Therefore, it is crucial to systematically integrate these 
methods to maximize their ability to provide accurate and long-term insights into 
sustainability. Additionally, BD and AI will play a significant role in decision-mak-
ing. With the expansion of IoT and other technologies, BD and AI will be wide-
spread, posing several sustainability-related challenges. AI continues to evolve as a 
multi-agent system and a human-AI ecosystem where new challenges will arise. We 
must be aware of them to apply AI to address sustainability challenges effectively 
and adopt sustainable AI characteristics in both development and decision-making 
processes. Additionally, it is imperative to remain informed about the personal and 
collective responsibilities associated with its use, its future implications, and poten-
tial challenges.

Limitations and future research

Our analysis may have limitations, such as relying on a single database for select-
ing research papers, which may overlook certain published papers and lead to 
incomplete results and understanding of some topics. Additionally, selecting key-
words that define social, environmental, and economic dimensions may lack in-
depth understanding as the research area is multidisciplinary and can only be 
based on limited keywords. Additionally, including a more detailed list of AI and 
technology-related keywords in the search criteria can enhance the results’ qual-
ity and relevance. Furthermore, topic analysis based on only the abstract, title text, 
and keywords may limit understanding of the subject matter. In contrast, a more 
comprehensive approach would involve an in-depth analysis of the entire text. Fine-
tuning approaches, including different embeddings, dimension reduction methods, 
and clustering methods, and aggregating different types of analysis could further 
improve results. Employing multiple semantic analysis methods and incorporating 
domain understanding for topic selection, interpretation, and identifying key repre-
sentative documents is advisable to enhance result stability.

Future research could focus on data-driven methods for sustainable BMI, sustainable 
SC analysis, and developing a framework that systematically integrates different meth-
ods for different levels of decision-making in BMI for robust outcomes and comple-
menting all aspects of sustainability.

Appendix
See Tables 11, 12 13 and Figs. 9, 10.
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Table 11 Representative keywords from c-TF-IDF matrix for different topic segments from BERTopic 
modelling

Topic Count Key representation Description

− 1 643 Sustainability, sustainable development, 
sustainable, AI, artificial intelligence, machine 
learning, environmental, economic, industry, 
development, intelligence, technologies, 
datadriven, analysis, technology, energy, man-
agement, models, artificial, manufacturing, 
learning, machine, data, research, smart, urban, 
proposed, model, approach, framework, 
performance, process, systems, design, social, 
city, method, network, supply, chain, study, it, 
information, decision, results

Mixed topics that are not part of any clusters 
but broadly discuss the application of AI, and 
sustainability related research and application

0 187 Sustainable AI, AI, sustainability, intelligence ai, 
sustainable development, artificial intelligence, 
sustainable, artificial intelligence ai, sustainable 
development goals, artificial intelligence, intel-
ligence, environmental, technologies, innova-
tion, technology, economic, ethical, artificial, 
ethics, economy, development, future, policy, 
management, business, systems, research, 
global, goals, data, social, framework, develop-
ment of, challenges, analysis, potential, human, 
digital, change, paper, impact, legal

AI and sustainable development

1 150 sustainable agriculture, agricultural, farming, 
crops, sustainable food, ai, deep learning, 
farmers, irrigation, crop, artificial intelligence, 
machine learning, iot, food, soil, technologies, 
classification, sustainability, technology, sus-
tainable, data, monitoring, machine, learning, 
models, smart, artificial, algorithms, environ-
mental, model, development, productivity, 
production, deep, digital, water, management, 
systems, system, precision, analysis, research, 
results

ML for sustainable agriculture

2 83 Renewable energy, sustainable energy, smart 
grid, of renewable energy, energy consump-
tion, energy systems, renewable, machine 
learning, energy, ai, artificial intelligence, 
forecasting, energy and, solar, electricity, of 
energy, the energy, prediction, smart, learning, 
machine, power, sustainable, optimization, 
algorithms, efficiency, grid, intelligence, algo-
rithm, consumption, demand, models, neural, 
generation, artificial, heat, data, building, ml, 
model, cooling, load, have, thermal, control, 
performance, wind

Sustainable energy and renewable energy

3 63 Sustainable smart manufacturing, smart 
manufacturing, sustainable smart, sustainable 
industrial, internet of things, big data, indus-
trial value creation, manufacturing systems, 
industrial, industrial value, big datadriven, 
automation, manufacturing, analytics, industry, 
industries, industry 40, decisionmaking, 
artificial intelligence, cyberphysical, technolo-
gies, data collected, sustainability, sustainable, 
made estimates, made estimates regarding, 
analyses and made, and replicating data, 
datadriven, data collected from, smart, data, 
internet, and made estimates, production, 
intelligence, in sustainable, value creation, data 
from, process, realtime, estimates regarding, 
internet of, estimates, structural equation 
modeling, creation, management, artificial, 
analyses, made

Big data, data analytics and data driven meth-
ods for sustainable industrial manufacturing
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Table 11 (continued)

Topic Count Key representation Description

4 61 Smart sustainable urbanism, smart sustain-
able cities, sustainable urbanism, sustainable 
cities, smart sustainable, smart urbanism, 
smart cities, smart city, big data, sustainable, 
urban, urbanism, datadriven smart, sustain-
ability, urbanism, data technologies, cities, 
of urban, city, cities and, ecocities, analytics, 
cities as, planning, technologies, smart, the 
future, technology, of smart, future, big, sci-
ence, development, of the future, approaches, 
research, futures

Data-driven smart sustainable cities

5 59 Healthcare, healthcare system, ai, health care, 
intelligence ai, global health, health, artificial 
intelligence ai, artificial intelligence, medical, 
ethical, intelligence, sustainability, sustainable, 
in health, artificial, sustainable development, 
sustainable development goals, technology, 
for sustainable, technologies, oral health, 
machine, research, patients, care, disease, 
machine learning, the pandemic, develop-
ment, pandemic, data, digital, future, global, 
immunization, model, learning, human, 
covid19 pandemic, analysis, applications, 
management

Application of AI in health care

6 50 Machine learning methods, of machine learn-
ing, machine learning, urban planning, urban, 
air pollution, classification, urban sprawl, 
learning methods, the urban, prediction, pollu-
tion, cities, data, sustainable development, air 
quality, environmental, models, sustainable, 
remote sensing, learning, planning, housing, 
sustainable development goals, sustainabil-
ity, earth, algorithms, building, land, spatial, 
model, automl, future, development, sensing, 
ml, machine, area, parking, development 
goals, tools, satellite, co2, air, analysis, results, 
this study, methods, economic, food

ML approaches in sustainable urban planning

7 47 Product sustainability, sustainable design, 
of sustainable, sustainable, sustainability, 
machine learning, product reviews, classifica-
tion, environmental impact, environmental, 
products, design, models, product, reviews, 
design space, prediction, software, machine, 
manufacturing, model, learning, of machine, 
performance, industry, customers, using 
machine, proposed, analysis, methods, cus-
tomer, framework, decision, research, process, 
identify, approach, value, requirements, data, 
impact

Sustainable Product design and manufacturing

8 47 Sustainable supply chain, sustainable supply 
chains, supply chain management, supply 
chain, sustainable supplier, sustainable supply, 
supply chains, chain management, supplier 
selection, sustainability, logistics, decision 
support system, sustainable, decision support, 
suppliers, strategic, supplier, criteria, chains, 
chain, management, industry, datadriven, 
supply, knowledge base, closedloop supply, 
indicators, environmental, support system, 
fuzzy, data, economic, transportation, risks, 
analysis, decision, knowledge, resilience, 
design, programming, evaluation, based, 
optimization, risk, approach, systems, based 
on, robust, performance, multiobjective

Sustainable supply chains
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Table 11 (continued)

Topic Count Key representation Description

9 44 Sustainable concrete, concrete, machine learn-
ing, of concrete, neural network, prediction of, 
compressive strength, cement, artificial neural, 
of cement, prediction, predicting, compressive 
strength of, the compressive strength, predict, 
regression, compressive, to predict, predict 
the, support vector, neural, the compressive, 
soil, learning, tensile strength, optimization, 
models, mechanical properties, materials, ml, 
strength, strength of, waste, construction, 
material, machine, recycled, optimized, model, 
programming, tensile, algorithm, artificial, 
accuracy, mechanical, sustainable, ash, vector, 
formula, of sustainable

Predicting properties of concrete using ML 
techniques

10 41 Sustainable building design, sustainable 
construction, building design, sustainable 
building, construction management, construc-
tion projects, building, construction industry, 
project selection, buildings, decision support 
system, decisionmaking, construction, civil 
engineering, of design, engineering, of 
sustainable, sustainability, decision support, 
sustainable, design, criteria, projects, artificial 
intelligence, development, environmental, 
materials, the construction, structural, project, 
decision, ai, project, fuzzy, knowledge, artificial, 
intelligence, support system, model, selection, 
methods, management, analysis, making, 
framework, based, bim

Decision support systems for sustainable build-
ing design

11 37 Sustainable education, of artificial intelligence, 
educational, education, in education, artificial 
intelligence, ai, curriculum, learning, ai and, 
higher education, student, students, the 
students, teaching, intelligence, courseware, 
study, technology, training, machine learn-
ing, sustainable development, sustainable, 
schools, academic, teachers, development, 
sustainability, research, data, software, skills, for 
sustainable, of artificial, software engineering, 
artificial, engineering, prediction, machine, 
algorithms, model, coding, elearning, ability, 
pandemic, systems, performance, online, the 
proposed, techniques

The role of ML and AI for making a digital class-
room and its sustainable impact on education 
during Covid-19

12 35 Water resources management, sustainable 
water, water management, groundwater 
resources, water resources, decision support 
system, water demand, water supply, ground-
water, sustainable development, sustainable 
management, river basin, sustainability, 
decision support, sustainable, for sustainable, 
resources management, water use, wastewa-
ter, support system for, basin, of water, support 
systems, indicators, support system dss, envi-
ronmental, support system, river, the water, 
management of, water, system for, system dss, 
systems, development, climate, assessment, 
decision, management, framework, system, 
integrated, and water, analysis, planning, dss, 
project, supply, management in, based

Water resources management
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Table 11 (continued)

Topic Count Key representation Description

13 30 Sustainable chemistry, sustainable chemistry 
and, nanotechnology, chemical industry, 
engineered nanomaterials, engineered, 
chemical, sustainable, sustainability, materials 
science, chemistry, chemicals, nanomateri-
als, sustainable development, chemistry 
and, nanoparticles, the chemical, synthesis, 
technologies, nanoparticle, carbon, ai, artificial, 
environmental, and sustainable, synthesis of, 
artificial intelligence, compounds, organic, 
energy, machine, solvents, machine learning, 
industrial, science, research and development, 
materials, co2, industry, and materials, devel-
opment, enms, co2 capture, intelligence, and 
development, design, cobalt complex, green, 
retrosynthesis, reaction

Sustainable development, nanomaterials, and 
nanotechnology

14 27 Water quality, support vector machine, 
machine learning, groundwater, groundwater 
potentiality, hydrological, of groundwater, 
vector machine, groundwater level, clas-
sification, svm, water resources, water level, 
pollution, prediction, models, regression, 
support vector, water, of water, basin, predict, 
modeling, reservoir, flood retention, model, 
algorithms, algorithm, ensemble, learning, 
sustainable, accuracy, flood, for sustainable, ml, 
in water, monitoring, data, parameters, intel-
ligence, vector, methods, multilabel, decision, 
based on, urban, processes, machine, based, 
potential

Predictive modeling of water resources using 
ML techniques

15 25 Biofuels, biofuel, biomass, biorefinery, 
bioethanol supply, biorefineries, pyrolysis, 
fuels, machine learning, bioethanol, biowaste, 
biowaste remediation, biowaste remediation 
and, sludge, hydrothermal, fuel, sustainable, 
energy, sustainability, macroalgae, feedstock, 
life cycle assessment, optimization, biooil, gasi-
fication, waste, regression, production, models, 
life cycle, machine, yield, processes, hydrochar, 
learning, model, cycle assessment, process, 
microwave, ml, valorization, methods, syngas, 
applications, analysis, method, lignocellulosic, 
parameters, cycle, nitrile

Biofuels, biowaste remediation, and sludge

16 23 Spatial decision support, geographic informa-
tion, spatial decision, decision support system, 
land use, land resources, gis, sustainable 
development, of sustainability, multicriteria, 
geospatial, sustainability, information system, 
decision support, spatial, ecological, criteria, 
sustainable, environmental, land, support 
system for, agricultural, maps, planning, areas, 
region, integrated, regional, development, 
support system, assessment, and environ-
mental, conservation, area, rural, systems, 
development and, urban, system for, scenarios, 
evaluation, coastal, housings, framework, 
development of, resource, resources, manage-
ment, decision, analysis

Decision support systems for sustainable land 
use management
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Table 11 (continued)

Topic Count Key representation Description

17 22 AI supply chain, sustainable supply chain, 
sustainable supply chains, supply chain man-
agement, supply chain, supply chain finance, 
the supply chain, supply chains, ai supply, 
sustainable supply, chain management, chain 
finance, ecommerce, sustainability, suppliers, 
sustainability and resilience, ai, of supply, out-
sourcing, firms, business, sustainable, compa-
nies, outsourcing relationships, cloud, artificial 
intelligence, supply, chain, the supply, chains, 
finance, their supply, management, efficiency, 
development, environment, intelligence, 
datadriven and adaptive, financial, datadriven, 
framework, global, cultural intelligence, 
resilience, contract governance, and adaptive 
leadership, adaptive leadership, artificial, and 
adaptive, and resilience

Sustainable supply chain management

18 22 Sustainable finance research, sustainable 
finance, of sustainable finance, sustainability, 
sustainable development, finance research, 
sustainable, of sustainable, governance esg, 
finance, financial statement, and governance 
esg, investing, financial, firms, investors, esg 
ratings, corporate, using big data, machine 
learning, big data, credit risk, governance, 
companies, sovereign credit risk, social and 
governance, financing, and governance, bank-
ing, sovereign credit, stock, ratings, macro-
economic, risk, reporting, research, learning, 
esg, development, prediction, credit, artificial 
intelligence, risks, data, intelligence, impact, 
using big, social, sovereign

Sustainable Finance and ESG (Environmental, 
Social, Governance)

19 22 Sustainable manufacturing, production 
scheduling, production planning, sustain-
ability and productivity, process manufac-
turing, scheduling, energy consumption, 
energy consumption and, machining system, 
operation plans, sustainability, sustainable, 
optimization, machining, efficiency, manufac-
turing, of manufacturing, productivity, product 
lifecycle, production, process and operation, 
and operation plans, the manufacturing, 
energy, programming, and productivity, plan-
ning, process, consumption, algorithm, the 
production, decision support, environmental, 
discrete event simulation, models, lifecycle, 
model, plans, multiobjective, event simulation, 
performance, tool, operation, equipment, cost, 
design, service, shop, products, simulation

Sustainability in manufacturing

20 20 Intelligence blockchain, ai and blockchain, 
blockchain, blockchain technology, of 
blockchain technology, blockchainbased, 
blockchain and, of blockchain, and block-
chain, smart city, iot, smart cities, sustainable 
smart, things iot, iot applications, of things 
iot, internet of things, cloud, energy trading, 
ai, smart, ai and, artificial intelligence, privacy, 
computing, secure, farming environment, 
security, network, farming, data, internet, 
energy, intelligence, technology, identity, pro-
posed, the internet, technologies, sustainable, 
artificial, city, internet of, the proposed, cities, 
for sustainable, consensus, trading, agricul-
tural, devices

Smart sustainable city development
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Table 11 (continued)

Topic Count Key representation Description

21 19 Iot, things iot, internet of things, in iot, iot 
devices, of things iot, sensor networks, sensor 
network, wireless sensor networks, wireless 
sensor network, wireless sensor, cloud, energy 
consumption, energyefficient, sensor, protocol, 
wireless, energy efficiency, energy, network, 
sensors, networks, machine learning, internet 
of, internet, iwsn, computing, sustainable com-
munication, smart, cluster, the internet, nodes, 
data, edge, devices, routing, transmission, 
intelligence, wsn, wsns, ioht, aieawcswcs, edge 
fog, machine, learning, green, communica-
tion,, architecture, the aieawcswcs

AI and the IoT

22 19 Sustainability performance, sustainability 
index, oil mill sustainability, sustainability, sus-
tainable, the sustainability, mill sustainability, 
sustainable solid waste, waste management, 
solid waste management, decision support 
system, criteria, sustainable solid, decisionmak-
ing, environmental, fuzzy cognitive, hierarchy 
process, decision support, analytic hierarchy, 
palm oil mill, oil mill, fuzzy, management, 
bioenergy, assessment, hierarchy, oil, chinese 
cement industry, cement industry, solid waste, 
prioritization, palm oil, evaluation, economic, 
the palm oil, process, technologies, support 
system, development, analysis, decision, indus-
try, support system dss, method, approach, 
based, energy, policy, of chinese cement, 
lowcarbon

Sustainability of the palm oil industry

23 17 Sustainable waste management, solid waste 
management, waste management, municipal 
solid waste, sustainable waste, waste genera-
tion, waste recycling, solid waste, electronic 
waste, solid waste msw, waste, of waste, 
waste collection, recycling, in waste, disposal, 
the waste, landfill, waste msw, sustainable, 
sustainability, municipal solid, ai, municipal, 
management, economic, economy, leachate, 
technologies, ewaste management, policy, 
energy, industry, equipment, model, unit pric-
ing, materials, system, metals, digitalization, 
digitalization in, solid, analysis, city, analysis of, 
per, weee, msw, generation, swm

Waste and waste management

24 17 Datadriven smart cities, smart cities, smart 
sustainable, smart city, sustainable urban, 
urban governance, structural equation mod-
eling, sustainable, citizendriven internet of, the 
citizendriven internet, citizendriven internet, 
datadriven smart, urban, using structural equa-
tion, internet of things, structural equation, 
governance, governance and, governance net-
works, cities, on data, the citizendriven, data, 
using structural, and replicating data, of things 
smart, things smart, citizendriven, research 
model, city, datadriven, smart, analyses and 
made, on data collected, made estimates 
regarding, internet, data collected, made 
estimates, analyses, and the citizendriven, 
analyses and, equation modeling, structural, 
estimates regarding, data from, data collected 
from, modeling, replicating data, internet of, 
and made estimates

Data driven smart cities and governance
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Table 11 (continued)

Topic Count Key representation Description

25 17 Innovation capability, sustainable innovation 
capability, dynamic capabilities, technol-
ogy capability, business model innovation, 
capabilities, dynamic capability, of big data, 
sustainable innovation, business model, 
model innovation, big data, innovation, 
capability, information technology, strategic, 
competitive advantage, customer relationship 
management, organizational, firms, customer 
relationship, business, industry, businesses, 
relationship management, strategic intent, 
technology, sustainability, data analytics, 
manufacturing, family businesses, manage-
ment, firm, sustainable, smes, research, b2b, 
advantage, datadriven culture, datadriven, 
resourcebased, economy, performance, rela-
tionship, theory, data, flexibility, competitive, 
significant, big

Big data, business model, innovation for sus-
tainable competitive advantage

26 15 Attack detection, intrusion detection, internet 
of things, deep learning, iot, intrusion detec-
tion systems, ddos attacks, intrusion detec-
tion system, iot devices, machine learning, 
classification, data poisoning attacks, ddos, 
security, attacks, random forest, intrusion, 
data traffic, denial of service, attack, detec-
tion, cloud, distributed denial of, detection 
systems, distributed denial, malware, detection 
system, the cloud, scada, traffic analysis, 
data poisoning, learning, cloud computing, 
network, malicious, trained, poisoning attacks, 
internet of, the internet of, ids, internet, service, 
algorithms, deep, traffic, devices, data, smart, 
the internet, machine

Cybersecurity and Intrusion Detection for 
sustainable use of AI and technology

27 14 Wastewater treatment, wastewater treatment 
plants, wastewater, municipal wastewater, of 
wastewater, sludge, water quality, membrane 
processes, membranes, membrane, fertilizer, 
treatment plants, ai, microbial, sustainable, 
processes, artificial, water, artificial intelligence, 
environmental, process, pollutants, river, 
electrodeionization, nanocomposite, chemical, 
egypt, oxygen, intelligence, struvite, technolo-
gies, in egypt, of river, isopropanol, effluent, 
applications, plants, management, fuzzy, 
fouling, models, operation, the effluent, mosc 
strategy, wwtps, hardness, recovery, strategy, 
treatment, mgl

Water and wastewater treatment using AI

28 13 Sustainable pavement, pavement life cycle, 
pavement management, sustainable road, 
pavement life, sustainability, of pavement, 
pavement, road infrastructure, the sustainabil-
ity of, sustainable, the sustainability, multicrite-
ria decision, multicriteria decision analysis, life 
cycle costs, decision support system, decision 
support, decision analysis, multicriteria, deci-
sion makers, environmental, cycle costs, road, 
criteria, maintenance and rehabilitation, envi-
ronmental and, cycle assessment, emissions, 
assessment, maintenance, maintenance and, 
infrastructure, indicators, appraisal, life cycle, 
highway, impacts, the appraisal, costs, trans-
port, decision, costbenefit, support system, 
economic, comprehensive and, the decision, 
reducing, comprehensive, reducing devices, 
multiobjective

Pavement management for sustainable 
transport
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Table 11 (continued)

Topic Count Key representation Description

29 12 Workload prediction, energy consumption, 
energy efficiency, the energy consumption, 
cloud, power consumption, cloud data center, 
cloud data, building energy, deep learning, 
carbon footprint, of machine learning, the 
cloud, workload, energy, edge comput-
ing, machine learning models, data center, 
efficiency, computing, ml algorithms, machine 
learning, efficient, the energy, ai, data science, 
common data science, cloudfog, machine, 
prediction, learning models, carbon emission, 
algorithms, prediction is, carbon, power, hard-
ware, of machine, consumption, resources, 
sustainable, models, footprint, learning, imple-
mentations, data, tasks, sustainability, neural, 
distributed

Sustainability energy usages and AI

30 12 Sustainable transportation, transportation 
utility method, sustainable urban mobility, 
transportation utility, the transportation utility, 
urban mobility, winter traffic models, public 
transport, transportation systems, traffic 
models, transportation, sustainable urban, 
road tolling, winter traffic, the transportation, 
traffic, mobility, transport, utility methods, tra-
ditional utility methods, road segments, utility 
method, bus, transit, road, sustainable, travel 
time, utility, motorway, vehicles, travel, vehicle, 
commuter, emissions, tolling, traditional utility, 
spatial transferability, urban, planning, route, 
evaluation methods, transferability, planning 
and, by car, car, technologies, application, 
models, hub, evaluation

Sustainable transportation systems

31 11 Smart cities, artificial intelligence, urban artifi-
cial intelligences, smart citiesartificial, citiesar-
tificial intelligence, intelligence in sustainable, 
smart cities, sustainable urban, sustainable 
urban development, urban artificial, in sustain-
able urban, smart and sustainable, urban 
planning, sustainable cities, urban develop-
ment, urban planning in, intelligence ai, ai 
implementation, ai, ai applications, ai is, ai and, 
of artificial intelligence, for urban planning, 
and sustainable cities, artificial intelligence, 
citiesartificial, artificial intelligences, artificial 
intelligence in, of ai, urban, sustainable devel-
opment, sustainable, intelligence, intelligence 
in, sustainability, for urban, in sustainable, 
in smart, cities, planning, city, technologies, 
smart, of artificial, artificial, of smart, and sus-
tainable, smart and, data, development

AI for smart and sustainable cities
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Table 11 (continued)

Topic Count Key representation Description

32 10 Data journalism, ict, sustainable growth of, 
sustainability, of ict, sustainable growth, of 
digital technologies, data journalism will, the 
sustainable growth, sustainable development, 
digital technologies, digitalisation, information 
cultures, sustainable, information systems, 
datadriven narratives, technologies, of digital, 
of information and, growth of economies, 
growth, of information, digital, data, quality 
management, information and, case studies, of 
economies, economies, journalism, develop-
ment, information, research, media, narratives, 
economies across the, business, and commu-
nication technologies, journalism will, panel 
data, economies across, growth of, narrative, 
lowincome economies, analysis, panel data 
from, studies, communications, corporate, 
communication

Digital Technologies and sustainability in data 
journalism, communication, and information 
sharing

Table 12 Different ML and data-driven methods applied to different sustainability problems

Deep learning, neural network models

 Social Li [190, 191]; Alqahtani [18]; Dolawattha [77]; Nosratabadi [235]; Shafiq 
[288]; Ali [15] (e-waste policy evaluation, BERT, NLP)

 Environmental Wongchai et al. [348]; Dairi [65]; Rangel-Martinez [263]; Sohani [301]; 
Nañez Alonso [227]; Park [245]; Himeur [119]; Yang [355]; Jendoubi 
[137]; Pham, [250, 251]; Selukar [287]; Padmapriya [242]; Rastogi [265]; 
Tariq [315]; Jin [140]; Ashwitha [28]; Ferdous [93] (sustainable removal 
of crop residues, deep ensemble learning); Karka [153] (LCA analysis of 
bio-based process); Zhang [366] (waste water management); Abbas [2] 
(deep extreme learning machines, sustainable energy); Papagiannis [244]

 Economic Sachithra and Subhashini [271]; Grant [106]; Latif [184]; Jamwal [131]; 
Lazaroiu [186]; Jan [133]; Cavus [50]; Wang [344, 348]; Verma [339]; 
Elhoseny [87]; Danishvar [67]; Demir [71]; Walk [343]; Corceiro [61]; Fisher 
[94]; Latif [185] (sustainable water supply); Gómez [104] (anomaly detec-
tion in resource consumption, deep learning framework); Liu [201] (crop 
harvesting prediction model, lstm)

ML/Supervised ML

 Social Mrówczyńska [223] (svm); Pham [250, 251]; Mishra [215] (random forest); 
Novak [236] (predictive models for transportation review); Mashaba 
[211] (svm, gradient boosting for food security); Naseer [228] (boosting, 
ensemble for technical education) Kim [162] (text analysis for patent 
data for sustainable cities); Rathore [266] (multiple ML models for sus-
tainable medical services for low income countries); Almalki [17] (impact 
of food access on health issues); Dash [68] (socio-economic factor analy-
sis for sustainable agriculture with ensemble learning); Molina-Gómez 
[218] (classifying sustainability levels of urban ecosystem); Piscitelli [256] 
(sustainable behavior, random forest); Abbas et al. [1] (governance and 
public services random forest); Wang [347] (poverty monitoring and 
analysis using geographical data, regression model); Arango-Uribe [26] 
(impact of online education for sustainable education, beta regres-
sion structural equation modelling); Maghsoodi [126] (sustainability 
performance assessment with svm); Shrimali [292] (performance of 
desalination based atmospheric water extraction system under various 
climate situations using Gaussian regression and BoA); Yigitcanlar [357] 
(sustainable adoption of AI for smart cities); Garg [100] (sustainability 
goals; ML comparisons); Wong et al. [350] (cloud-based blockchain and 
ML integration, sustainable supply chain)
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Table 12 (continued)

 Environmental Taghizadeh-Mehrjardi [312] (random forest, svm); Niu [233] (regression, 
neural network); Pal [243] (ensemble); Sugiawan [307] (decision tree); Ela-
varasan [86] (extreme gradient boosting); Iddianozie [125] (classification); 
Shahbeik [289] (random forest); Badreldin [31] (random forest); Li [192, 
194, 201] (decision tree); Javed et al. [135] (ground water management, 
ensemble model); Singh [299] (arsenic mitigation techniques from water 
analysis, ensemble learning); Liu [198–200] (green synthesis of nanopar-
ticles, svm); Gültepe [108] (sustainable fisheries, svm); Carrera [49] (plastic 
classification using near-infrared spectroscopy data and ML); Li [190, 191] 
(optimizing energy w.r.t. seasonal factors, extreme learning machine, 
and partial swarm optimization); Al Duhayyim [12] (recognize different 
categories of solid wastes and enable smart waste management with 
particle swarm optimization and ML); Mao [210] (ML based evaluation of 
green innovation); Agrawal [4] (AI for sustainable manufacturing)

 Economic Sapitang [281] (Bayesian regression, regression decision tree, nn), Kumar 
Mohapatra et al. [180] (random forest), Akbari [8] (classification); Ullah 
[333] (ensemble learning); Wu [352] (fuzzy ensemble); Jun [145] (Bayes-
ian regression), Onyelowe [238] (polynomial regression, soil and agri-
culture); Thanh et al. [319] (natural gas storage); Sankaranarayanan et al. 
[278] (random forest for green machining); Ghanizadeh [101] (evaluating 
sustainable material properties, regression and CART); Dai [64] (green 
technology adoption analysis, gbm), Khoh [161] (churn prediction, busi-
ness sustainability using ensemble learning); Erçen [89] (macroeconomic 
sustainability using fuzzy logic and svr); Pham [250, 251] (sustainable 
concrete, svr); Momenitabar [220] (sustainable supply-chain, ML); Jamil 
[130] (peer to peer trading for sustainable electrical power supply grid, 
ML and predictive models, blockchain)

Unsupervised learning

 Social Nilashi [231] (Evaluating sustainability performance of different coun-
tries, clustering); Kumar [179] (privacy-preserving secured framework 
for sustainable smart cities, PCA, XGBOOST); Ahmed [6, 7] (intelligent 
transportation, knowledge graph similarity); Mukherjee [224]; (sustaina-
bility indicators selection, k-means); Zhang [365, 367] (sustainable urban 
transport development, autoencoder, clustering); Tsaples [326] (sustain-
ability composite indices, DEA); Mumtaz [225] (household identification 
that need urgent welfare, k-means clustering); Suha [308] (key indicators 
for sustainable AI-based healthcare decision-making system, clustering); 
Qi [260] (tourism sustainable development path, latent variable analysis)

 Economical Tayal [317] (optimizing energy efficient facility layout, DEA, k-means); 
Schöggl [284] (insights into the CE research, multiple correspondence 
analysis); Zhou et al. [368] (predicting topics on sustainability in ultra pre-
cision machining, clustering and network analysis); Tirth [321] (sustain-
able energy management, clustering)

 Environmental Kosir [173] (sustainable fuel, PCA, nn); Aqel [25] (plant disease classifica-
tion, k-means); Viet [340] (waste water treatment, PCA); Priyanka [259] 
(energy efficient IoT network for sustainable agriculture); Heo [117] 
(sustainable waste water treatment, c-means clustering)

Time series and forecasting

 Social Kumari [181] (load forecasting, sustainable city); Lee [189] (analyze the 
concept and scope of social sustainability; time series data, change 
detection, network analysis); Kazancoglu [158] (forecasting e-waste, grey 
model); Molina-Gómez [217] (analyzing studies focusing on forecasting 
sustainable development and air quality); Kahwash [149] (sustainable 
electric supply in health care, forecasting, multi-objective optimization); 
Suchetana [306] (sustainable water usage and monitoring using time 
series data, policy decisions)

 Environmental Sugiawan [307] (analysis of impact of  CO2 emission reduction on sustain-
able well-being and forecasting future growth); Rani Hemamalini et al. 
[264] (air quality monitoring and forecasting, deep learning); Alsaidan 
[19] (solar energy forecasting for smart energy management)
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 Economic Abidi [3] (predictive maintenance forecasting, Jaya-based sea lion 
optimization); Choi [55] (EMAP-an ML-based engineering integrated 
analysis system, change order forecast, predictive maintenance); Amin 
[22] (agriculture waste based sustainable concrete strength forecast, 
multigene expression programming-based forecasting); Ilie [128] (fore-
casting European economic sentiment); Uppal [335] (load forecasting 
for sustainable use of energy); Mohammed [216] (time series prediction 
for optimal water and energy use for sustainable farming); Cadenas 
[48] (utilizing time series data from IoT ecosystem for DSS for smart and 
sustainable agriculture); Saxena [283] (grey ML for forecasting energy 
consumption); Couto [63] (predicting sustainability class form temporal 
data of sustainability indicators, multi criteria decision making); Dutta 
[81] (load forecasting for sustainable energy usage, multi criteria decision 
making); Kayakus [156] (ROA, ROE forecasting for sustainable profit)

Bayesian/statistical/probabilistic methods

 Social Holloway [120] (statistical ML for sustainable goals); Akhtar [10] 
(structural equation modelling for sustainable, data-driven adaptive 
leadership); Kontokosta [170] (determinant analysis for water use, urban 
sustainability); Tao [314] (sustainable transport system, pedestrian safety, 
Bayesian network); Kong [169] (structural equation modelling, online tri-
age model, sustainable health and city); Aly [20] (modelling relationship 
between SDGs, resilience and sustainability at national, regional, and 
global levels, Bayesian network)

 Environmental Chakraborty [51] (probability estimation predicting long term future 
weather variables, sustainable buildings); Zeynoddin, [363] (linear 
Stochastic model, soil temperature, sustainable agriculture); Akbarian [9] 
(soil bioremediation, statistical optimization); Ijlil [127] (water security, 
bivariate statistic test, SDGs)

 Economic Li [195] (sustainability assessment, manufacturing, life cycle analysis, 
Bayesian network); Jun [146] (sustainable technology analysis and 
management, Bayesian structural time series and regression); González-
Cancelas [105] (sustainable ports, Bayesian network of transport, trade, 
economy, finance, population, energy, social condition and political); 
Jong [143] (Bayesian inference, sustainable construction); Wang [345] 
(evaluation of ai embedded supply chain efficiency on the social sustain-
able development, descriptive statistic)

Optimization

 Social Kolak [168] (traffic network design, Bi-level optimization); Huang [123] 
(sustainable development in rural areas, mixed integer linear pro-
gramming); Oyebode [240] (water demand modelling, evolutionary 
computation); Ma [206] (land-use assignment model, spatial optimiza-
tion); Mousavi, [222] (interactive Nautilus-based algorithm for three 
stage multi-objective optimization problems for complex sustainability 
problems); García-Esparza [99] (ML potential for enhancing text analysis 
in the context of sustainable indicators, optimization of sustainability 
indicators); Arslan [27] (food sustainability); Bliek [43] (surrogate-based 
optimization, ML)

 Environmental Santos [229] (sustainable pavement management, multi-objective 
optimization); Manos [209] (DSS for optimizing the production plan of 
an agricultural region); Nowakowski [237] (root optimization, harmony 
search algorithm); Lytras [205] (smart and sustainable energy systems, 
multi-objective optimization); Liu [198–200] (recycled concrete, multi-
objective optimization); Chen [53] (network pavement maintenance and 
rehabilitation management, multi-objective optimization); Tavakoli and 
Barkdoll [316] (sustainability-based optimization algorithm, life-cycle 
assessment)
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 Economic Quariguasi Frota Neto et al. [261] (sustainable supply chain, DEA); Ma 
[207] (CE for energy intensive industry, particle swarm optimization); Jiao 
[139] (closed loop sustainable supply chain, distributed robust optimiza-
tion model (DRO) and an adaptive robust model (ARO)); Xu [354] (joint 
model for energy consumption and production efficiency, enhanced 
Pareto-based bees algorithm); Anvari [24] (DSS for facility location, multi 
objective optimization); Lotfi [204] (sustainable health care supply chain, 
fuzzy, and data-driven optimization); Hombach [121] (sustainable sup-
ply chain performance, multi-objective optimization, pareto); Simeoni 
[295] (smart multi energy system, multi-objective optimization); Wang 
[346] (energy-efficient machining, ant colony optimization); Doliente, 
[78] (spatio-temporal multi-objective MILP optimization); Peng et al. 
[247] (job-shop scheduling problem in green sustainable manufactur-
ing, optimizations); Sharma, [290] (cost optimization, preventive and 
predictive maintenances in mining equipment); Nayeri [230] (sustainable 
and resilient supplier selection, supply chain resilience, fuzzy robust sto-
chastic optimization); Momenitabar et al. [219] (sustainable supply chain, 
bioethanol, metaheuristic); Choi [56] (application of blockchain technol-
ogy for risk analysis and optimization, in operation research); Jayarathna 
[136] (multi-objective optimization, sustainable supply chain)

Simulation models

 Social Bibri [41] (sustainable cities, simulation and optimization); Saeid Atabaki 
et al. [273] (sustainability assessment model for electricity generation 
system, simulation and optimization, MCDM); Verma [339] (future energy 
consumption, decision making, building simulation); Kurkovsky [182] 
(sustainable education, simulation); Hart [114] (sustainable energy sys-
tems in developing countries, DSS, simulation); Torres [323] (sustainable 
nutritional security and agriculture, simulation framework, DSS); Islam 
[129] (sustainable policy making, dynamic autoregressive distributed lag 
simulation)

 Environmental Singh [296] (molecular docking, molecular dynamics simulation for 
predictive biodegradation); del Caño [69] (uncertainty analysis for sus-
tainable concrete structures, Monte Carlo simulation, MCDM); Medvedev 
[212] (sustainable agriculture, dynamic crop simulation); Dlugosch 
[75] (sustainable transportation, traffic simulation); de la Torre [183] 
(sustainable transportation, simulation); Strand [304] (sustainable waste 
management, simulation and optimization); Beyer et al. [38] (sustainable 
energy usage, dynamic multi-agent-system simulation); Ghasemi [102] 
(sustainable built environment, polymer design, molecular simulation); 
Eckhoff [83] (DSS, open-access energy system simulation, renewable 
energy); Mirshafiee [214] (green energy generation, flow-3D simulation)

 Economic Rackes [262] (energy and airflow simulations for smart and energy 
efficient buildings); Kim [165] (building information modelling for 
large scale development); Ekici [85] (sustainable design for high-rise 
metropolis, simulation); Elnour [88] (sustainable buildings, dynamic 
simulation); Hatim et al. [115] (sustainable and productivity of machine 
cell, simulation, DSS); Relich [267] (sustainable product development, 
simulation-based on constraint programming); Pirola [254] (sustainable 
production, DES)

Fuzzy methods

 Social Alimohammadlou [16] (studying indicators of social, environmental, and 
economic relevance using spherical fuzzy AHP, DEMATEL, and TISM); 
Sarkar [282] (sustainable transportation, q-rung orthopair fuzzy set, 
MCDM (group))

 Environmental Krishankumar [176] (sustainable urban mobility, prioritizing measures 
for zero emission, double hierarchy hesitant fuzzy linguistic); Song [302] 
(sustainable road infrastructure performance indicators, fuzzy spatial 
MCDM); Bui [46] (sustainable solid waste management barriers, fuzzy 
DEMATEL); Tayebi [318] (fuzzy MCDM analysis for prioritizing sustain-
able air pollution control technologies); Kadham [148] (fuzzy integral 
N-transform for sustainable groundwater management); Alzain et al. [21] 
(sustainable solar energy, multi-layer perceptron, adaptive network fuzzy 
inference system)
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 Economic Kannan [151] (sustainable supplier selection, fuzzy Delphi, MCDM); Tseng 
[328, 329] (sustainable industrial and operation engineering indicators, 
fuzzy Delphi); Orji [239] (sustainable supplier selection, fuzzy logic, top-
ics); Kumar [178] (big data-driven framework for condition monitoring 
in manufacturing; fuzzy reasoning for prediction); Bui [45] (indicators for 
sustainable supply chain, fuzzy Delphi, DEMATEL); Kokkinos [167] (circu-
lar-bio economy, energy transition, fuzzy cognitive modelling for DSS); 
Tsai [325] (sustainable supply chain key indicators, fuzzy Delphi, DEMA-
TEL); Balaman [33] (decision support system for multi-objective optimi-
zation integrating multi-technology bio-product supply chains and co 
modal transportation networks, fuzzy ε-constraint); Khalili-Damghani 
[160] (DSS for sustainable project selection, fuzzy relations and inference 
system, MCDM); Tirkolaee [320] (fuzzy bi-level decision support system 
for sustainable supply chain and transportation network); Tseng [327] 
(sustainable supply chain management indicators analysis, fuzzy Delphi 
method); Fallahpour [91] (selection of sustainable construction projects, 
fuzzy DSS); Pereira [249] (energy change impact on sustainability, DSS, 
Fuzzy cognitive mapping and cause-effect relationship); Jeong [138] 
(sustainable planning in construction, fuzzy DEMATEL); Tseng [328, 329] 
(sustainable supply chain finance indicators, fuzzy Delphi, DEMATEL); 
Choy [57] (sustainable product development in chemical production, 
fuzzy recursive operation strategy); Kazancoglu [157] (application of 
emerging technologies for improving the sustainability and resilience 
of supply chain, fuzzy DEMATEL); Su [305] (challenges in blockchain 
technology for sustainable manufacturing, fuzzy-entropy-rank sum-
combined compromise solution); Alassery [13] (fuzzy attention deep 
learning, sustainable manufacturing, fault diagnosis)

MCDM

 Social Zhang [364] (sustainable drinking water source evaluation, MCGDM)

 Environmental Dogra and Adil [76] (indicators for sustainable agriculture, ISM); Alghas-
sab [14] (sustainable renewable energy source assessment. FAHP, 
FTOPSIS)

 Economic Dogra and Adil [76] (sustainable supplier evaluation, MCDM); Bhatia et al. 
[40] (sustainable machining, MCDM); Ozkan-Ozen [241] (risk of data-
driven technologies in sustainable supply chain, MCDM); Singh et al. 
[297] (sustainable quality management in manufacturing, ISM); Li [196] 
(sustainable production capability evaluation, AHP); Tseng [330] (identify 
the driving and dependence factors of data-driven sustainable supply 
chain management performance, factor analysis, DEMATEL)

Complex networks/knowledge graphs/ontology

 Social Kim [164] (sustainable technology analysis, social network analysis); 
Lorimer [203] (collaborative verification of smart user, mobile social 
network); Konys [171] (digital sustainability, ontology), Silva [293] (sus-
tainability recommendation system based on social network approach); 
Draschner [79] (KG for ML applications for ethics and sustainability); 
Zovko [269] (IoT ontologies for sustainable healthcare); Bellantuono [36] 
(complex network framework for SDGs); Jing [141] (sustainable develop-
ment evaluation, network-based approach)

 Environmental Ahmed [6, 7] (graph-based trajectory outlier detection for sustainable 
transportation, network similarity); Tran [324] (sustainable transporta-
tion, complex network model); Sebestyén [286] (network model for key 
targets, goals, and strategic environmental assessment)

 Economic Muñoz [226] (ontological framework for enterprise sustainability); Aydin 
[29] (DSS, network visualization, sustainable water distribution); Yang 
[356] (patent risk prevention, multi-level network, SD); Kim [163] (prod-
uct knowledge graph, semantic relationships), Perdana et al. [248] (sus-
tainable enterprise ontology-based on information technology-based 
concepts); Zhou [368] (topic discovery, network model, text analysis, 
sustainable ultra-precision machining)
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Table 13 Keywords in different modules in co-occurrence network

Module Keywords ordered based on degree in the network (total 428 keywords, modularity: 0.58)

1 Big data, sustainable development goals, internet of things, industry 4.0, digitalization, sensor, data, iot, 
manufacturing, sdg 11, deep learning, environment, remote sensing, governance, circular economy, 
climate change, sustainable manufacturing, smart manufacturing, urban development, data analytics, 
urban, technology, lca, digital technologies, environmental sustainability, business model, earth obser-
vation, green ai, ethical ai, biodiversity, automation, resource recovery, sustainable finance, gender 
equality, smart sustainable city, digital twin, algorithm, water quality, population, cognitive automation, 
cyber physical system, cyber physical production system, ecosystem services, e waste, responsible ai, 
industrial ecology, conservation, agenda 2030, fourth industrial revolution, emission, business strategy

2 Blockchain, resilience, security, explainable ai, smart agriculture, sustainable ai, privacy, digital transfor-
mation, internet of health things, cloud computing, wireless sensor network, supply chain, safety, social 
sustainability, artificial intelligence techniques, supply chain management, sustainable computing, ai 
governance, supplier selection, fuzzy logic, ethics, logistics, ai ethics, data privacy, fog computing, edge 
computing, healthcare, sustainable competitive advantage, sustainable smart city, internet of thing, 
cybersecurity, prediction model, predictive analytics, firm performance, environmental indicators

3 Iot device, hanumayamma, edge, cow necklace, digital economy

4 E-learning, software engineering, waste, sustainable education, environmental pollutions, educational 
data mining, machine learning techniques, reinforcement learning, covid 19, wastewater treatment, 
software sustainability, pandemic, social media, production, text mining, construction, concrete, pre-
dictive model, software development, triple bottom line, crowdsourcing, higher education, engineer-
ing education, energy efficient, fuel cell

5 Life cycle assessment, renewable energy, sustainable energy, energy, sustainable environment, sup-
port vector regression, multi objective optimization, multi objective optimisation, genetic algorithms, 
manufacturing industry, co2 emission, bioeconomy, environmental decision support system, multi 
criteria decision analysis, biomass, biofuel, greenhouse gas emissions, forecasting, cleaner production, 
energy demand, principal component analysis, data driven decision making, genetic algorithm, global 
warming, corporate sustainability, biofuels, stakeholder, environmental performance, agricultural sec-
tor, sustainable transport, swarm intelligence, generative design, predictive maintenance, economic 
development

6 Data driven model, optimization, infrastructure planning, building simulation, cyber physical systems, 
data driven modelling, decisions makings, intelligent systems, performance based design, electric 
vehicles, data driven modeling, land use, building energy, additive manufacturing, bayesian networks, 
natural resources, network analysis, neural networks, ai for social good, future generations, fuzzy sets, 
urban governance, data driven models, classification and regression trees

7 Data driven smart sustainable cities, smart city, sustainable cities, big data analytics, compact cities, 
sustainable urbanism, eco cities, urban science, futures studies, big data technology, smart sustain-
able cities, data driven smart city, planning, data science, backcasting, urban sustainability, data driven 
smart sustainable urbanism, smart urbanism, simulation models, big data technologies, strategic plan-
ning, big data computing, data driven technologies, wicked problems, urban planning, data intensive 
science, data driven cities, infrastructure, urbanism, smart sustainable urbanism, datafication, sustain-
able smart city, urban intelligence functions, methodology, sustainable urban development, energy 
planning, design, urban analytics, data visualization, indicators, gis, machine learning methods

8 Sdgs, united nations, standard, machine learning approaches, machine learning model, innovation, 
sustainable design, patents, development, emerging technologies, sentiment analysis, standardization, 
pattern recognition, interoperability, framework, data driven design, green building, online reviews, 
environmental factors, bim, expert system, covid 19 pandemic, environmental management, open 
data, air pollution, technological innovation, visualization, strategy, long short term memory, agent 
based model, big data analysis

9 Sustainable supply chain management, fuzzy delphi method, design for sustainability, entropy weight 
method, fuzzy decision making trial and evaluation laboratory, sustainability indicators, data driven 
approach, sustainability reporting, developing countries, systems thinking, traceability, ai technology, 
food supply chain, agricultural supply chains, artificial intelligence technologies, sustainable mobil-
ity, sustainable food systems, global health, facility location, policy, information and communication 
technologies, supervised machine learning

10 Data mining, sustainable performance, decision making process, risk management, literature review, 
sustainable tourism, social network analysis, sensing, seizing, active learning, key performance indica-
tor, sustainable technology, transfer learning, supervised learning, intelligent tutoring system, construc-
tion projects, analytic hierarchy process, education for sustainable development, deep neural network, 
sustainable operations, uncertainty, patent analysis, engineered nanomaterials, materials science

11 Municipal solid waste, waste management, urbanization, risk assessment, solid waste management, 
circular bioeconomy, convolutional neural network, smart home, artificial intelligent, ict, digital divide, 
lignocellulosic biomass, ann, blockchain technology
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Table 13 (continued)

Module Keywords ordered based on degree in the network (total 428 keywords, modularity: 0.58)

12 Neural network, agriculture, support vector machine, precision agriculture, sustainable agriculture, 
classification, sustainable concrete, random forest, extreme learning machine, food security, computer 
vision, feature extraction, water sustainability, smart farming, environmental impact, data driven meth-
ods, compressive strength, prediction, water, gene expression programming, groundwater, clustering, 
feature selection, multivariate analysis, data analysis, digital agriculture, robotics, smart environments, 
water resource management, simulation, sensitivity analysis, ensemble learning, green energy, gauss-
ian process regression, productivity, soft computing, anomaly detection, decision tree, economic 
sustainability, africa, analytics, sustainable building, lstm, design science research, health, corporate 
social responsibility, sustainability index, business sustainability, data driven decision, environmental 
monitoring

13 Decision support system, energy efficiency, sustainability assessment, energy consumption, multi 
criteria decision making, decision support, sustainable development, sustainable supply chain, system 
dynamics, built environment, mcdm, smart grid, modelling, computational intelligence, sustainable 
production, closed loop supply chain, process optimization, carbon footprint, energy management, 
water supply, spatial decision support system, social networks, economic growth, sensor network, 
recommender systems, optimisation, gamification, case based reasoning, decision makers, robust 
optimization, data envelopment analysis, industry 50, machine learning algorithms, water demand

14 Waste water treatment plant, management

Fig. 9 UMAP-based 2-dimensional projection of document embeddings and BERTopic-identified topics 
(color-coded)
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