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Abstract 

Federated learning is an emerging machine learning approach that allows the con-
struction of a model between several participants who hold their own private data. 
This method is secure and privacy-preserving, suitable for training a machine learn-
ing model using sensitive data from different sources, such as hospitals. In this paper, 
the authors propose two innovative methodologies for Particle Swarm Optimisation-
based federated learning of Fuzzy Cognitive Maps in a privacy-preserving way. In 
addition, one relevant contribution this research includes is the lack of an initial model 
in the federated learning process, making it effectively blind. This proposal is tested 
with several open datasets, improving both accuracy and precision.

Keywords: Federated learning, Privacy-preserving machine learning, Fuzzy Cognitive 
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Introduction
Federated learning is an emerging approach to enable privacy-preserving machine 
learning by sharing local models instead of the data itself. Therefore, it is a method for 
training machine learning models in a distributed way, and it can be used for both clas-
sification and regression tasks.

The overall basic process is as follows. The federated learning system is initiated by 
one server or participant, which sends an initial model to be trained by each participant 
with their own local data, who in turn delivers the weights or the gradients of the model 
back to the server (or to all the participants) to be aggregated. Then the federated model 
is sent back to the participants in an iterative way [1, 2]. The proceeding goes on until 
the termination conditions are accomplished. After this process, the output is a feder-
ated model that has been trained with the private data of all the participants [3].

This approach becomes critical when dealing with sensitive data, for instance in 
domains such as healthcare or finance. The aim of this paper, not an empirical research, 
is to propose an innovative federated learning approach for Fuzzy Cognitive Maps and 
to prove how appropriate FCMs are for Distributed Artificial Intelligence.

The proposal does not prioritise a particular optimisation method. In fact, this paper’s 
primary emphasis is not on the training of FCMs, nor on the distributed training of FCMs. 
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Instead, the central focus of this paper is on the FCMs distributed training without an initial 
model. The main contributions of this paper are three-fold: 

1. A privacy-preserving machine learning approach for FCMs. The authors design a 
training scheme for collaborative FCM training that includes data privacy. This pro-
posal allows multiple participants to train an FCM model with their own data in 
compliance with strict data privacy regulations.

2. Two approaches to Fuzzy Cognitive Maps distributed learning. The authors propose 
two Particle Swarm Optimization-based FCM learning approach in a distributed 
way.

3. Blind Federated Learning as a new federated learning approach without an initial 
model, since the use of FCMs allows the participants not to define a model. To the 
best of our knowledge, this is the first federated learning proposal in which an initial 
model is not needed at all, defined neither by a server nor by the participants.

The authors test the validity of the proposal with well-known open datasets. The results 
of the experiments show that the proposal achieves a similar performance to the non-
distributed method and improves the performance of the non-collaborative approach.

The rest of this paper is organized along these lines. We discuss the theoretical back-
ground in Section  "Theoretical background". The methodological proposal is outlined 
in Section  "Methodological proposal". Section  "Experimental approach" describes the 
details of the experimental approach and the results. Finally, the authors draw the con-
clusions in Section "Conclusions".

Theoretical background
Fuzzy Cognitive Maps

Fundamentals

Fuzzy Cognitive Maps’ nodes are modelling concepts, variables or features, the 
edges model relationships between them, and the weights represents the influence of 
those relations [4]. The value of a weight ̟ij models how much node ci impacts over 
the node cj . The fuzzy weights between edges are normalised within the ranges 
ξ = {[0,+1]|[−1,+1]} , depending if it includes just positive values or both positive and 
negative. The maximum positive influence is +1.0 and the opposite influence is 0.0 or 
−1.0 . The zero value shows that there is no correlation between the nodes. From a com-
putational point of view, FCMs models are represented by a weight (adjacency) matrix 
which contains all edges’ weights between the nodes.

The state of the nodes is shown as a state vector c = [c1, c2, . . . , cN ] that gives a snap-
shot of the states of the nodes at any iteration in the FCM dynamics [5]. The state of the 
node i in the vector state at time t (denoted as ci(t) ) is computed as shown in Eq. (1):

where cj are the presynaptic nodes and ̟ji is the weight of the edge from cj to ci . In a 
more formal way, a FCM can be denoted as a 4-tuple � = �c,W , f , ξ� , where c = {ci}

n
i=1 

is the nodes’ state with n number of nodes, W = [̟ij]n×n | − 1, 0 ≤ i, j ≤ +1 is the 

(1)ci(t) = f

( n
∑

j=1

̟ji · cj(t − 1)

)
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adjacency matrix representing the weights between the nodes, f (·) is the activation 
function, and ξ is the nodes’ range [6].

The FCM dynamical analysis begins with an initial vector state c(0) = [c1(0), . . . , cn(0)] , 
which models the initial state of each node. The state of the nodes is updated in an iter-
ative process. Thus, it includes a activation (transformation) function [7] for mapping 
monotonically the state of the node into a normalized range between [0,+1] for unipolar 
FCMs or [−1,+1] for bipolar ones. If the range is [0,+1] , the sigmoid is the most used 
transformation function, while hyperbolic tangent is the most used when the nodes’ 
range is [−1,+1] [8].

Fig. 1 FCM binary classifier example

Fig. 2 Proposed methodology
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If the selected activation function f (·) is the unipolar sigmoid, then the component i 
of the vector state ci(t) at the instant t is computed as shown in Eq. (2):

where � represents the slope of the unipolar sigmoid function. On the contrary, if the 
selected activation function f (·) is the hyperbolic tangent, then the node’s state ci(t) at 
the instant t is computed as Eq. (3) shows:

After the dynamics, the FCM reaches one of three possible states after a number of iter-
ations: it settles down to either a fixed pattern of node values (the so-called hidden pat-
tern), to a limited cycle, or to a fixed-point attractor [9, 10].

Augmented FCMs

There are two approaches to build FCMs. The first is through human experts [9]. This 
approach involves having each expert contribute their own FCM model. A group of 
experts should be carefully selected. Each expert individually design a FCM model that 
represents their own knowledge on the system to model. The second approach is auto-
matic construction directly from raw data [5, 6, 11]. Due to the purpose of this research, 
this paper focuses on the distributed automatic construction of FCM.

According to the literature [7], an augmented adjacency matrix could be built by 
aggregating the adjacency matrix of each FCM. The elements’ aggregation depends on 
whether there exist common nodes. If the adjacency matrices have common nodes, the 
states ̟ jk in the augmented matrix are computed by adding the adjacency matrix of each 
FCM model ( Wi).

The addition method when the adjacency matrices have not common nodes is known 
as direct sum of matrices, and the augmented matrix is denoted as ⊙N

i=1Wi . Given a cou-
ple of FCMs with no common nodes and even different number of nodes with adjacency 
matrices ̟A

n×n and ̟B
m×m , the resulting augmented adjacency matrix can be computed 

as in Eq. (4):

(2)ci(t) =
1

1+ e
−�·

∑n
j=1 ̟ji·cj(t−1)

(3)ci(t) =
sinh

(

� ·
∑n

j=1̟ji · cj(t − 1)
)

cosh
(

� ·
∑n

j=1̟ji · cj(t − 1)
)

Table 1 FCM no Federation, Breast Cancer dataset

Agent Size % 1s Accuracy Precision

1 100% 37% 0.9211 0.7742

Table 2 FCM no Federation, Breast Cancer dataset, slope 5, sigmoid

Agent Size % 1s Accuracy Precision

1 100% 37% 0.8246 0.5714
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where N is the number of adjacency matrices to join, zeros are actually zero matrices, 
and the dimension of ⊙N

i=1Wi is [ · ](m+n)×(m+n) . In the case of common nodes, they 
would be computed as the average (or even the weighted average) of the nodes’ states in 
each adjacency matrix W i.

Pattern recognition with FCMs

Because of the structure of an FCM model, it is a neuro-fuzzy technique and many 
concepts and procedures from neural networks can be applied in FCMs. FCMs have 
been applied both in classification and regression tasks. This paper is focused on the 
first task.

The literature has analysed pattern recognition tasks using Fuzzy Cognitive Maps. 
Papakostas et  al. [12] and Papakostas and Koulouriotis [13] propose several FCM 
architectures for pattern recognition. Swzed [14] proposed a FCM based classifier 
with a fully connected architecture. Wu et al. [15] applied broad learning systems for 
time series classification with FCMs. Ramirez-Bautista et  al. [16] applies FCMs for 

(4)
N
⊙

i=1

Wi =

[

0 WA
n×n

WB
m×m 0

]

Table 3 Blind FL results (constant weights)—Breast Cancer dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.7727 0.9091 0.3750 0.6000

2 20% 26% 0.8696 0.9130 0.7143 0.8333

3 20% 35% 0.6957 0.8261 0.5385 0.7000

4 20% 13% 0.9130 0.9565 0.6667 0.5000

5 20% 26% 0.9565 0.9565 0.8571 0.8571

Avg. – – 0.8415 0.9123 0.6303 0.6981
1 19% 24% 0.9091 0.9318 0.8750 0.8889

2 26% 35% 0.8667 0.8833 0.8421 0.8889

3 16% 42% 0.8333 0.8611 1.0000 1.0000

4 15% 20% 0.8824 0.9118 0.6364 0.6364

5 24% 47% 0.8545 0.8727 0.9500 0.9524

Avg. – – 0.8692 0.8922 0.8607 0.8733
1 5% 27% 0.7500 0.7500 0.5000 0.5000

2 4% 43% 0.8000 0.8000 1.000 1.0000

3 42% 35% 0.9167 0.9271 0.9063 0.8824

4 20% 23% 0.9778 0.9778 0.9091 0.9091

5 29% 49% 0.7727 0.7727 0.9500 0.9048

Avg. – – 0.8434 0.8455 0.8531 0.8392

1 3% 20% 1.0000 1.0000 1.0000 0.5000

2 4% 36% 0.8000 0.8000 1.0000 1.0000

3 45% 40% 0.9327 0.9423 0.9268 0.9474

4 21% 17% 0.8542 0.8958 0.5454 0.6364

5 26% 49% 0.8361 0.8689 0.8889 0.9583

Avg. – – 0.8846 0.9014 0.8722 0.8084
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classification of human plantar foot alterations. Baykasoglu and Golcuk [17] proposed 
alpha-cut based FCM methods are tested on several case studies. Papakostas et  al. 
[18] applied unsupervised hebbian learning for pattern recognition problems.

In general terms, the main goal of a conventional classifier is the mapping of an input 
to a specific output according to a pattern. In this proposal, the input concepts represent 
the features of the dataset, while the output are the classes’ labels where the patterns 
belong. Figure 1 shows an example topology of a Fuzzy Cognitive Map classifier, where 
the state of the concepts c1 and c2 defines the class where the input vector state belongs.

In that sense, if c1 > c2 the input vector state belongs to class 1, while if c1 < c2 the input 
vector state belongs to class 2. Note that if c1 = 0.03 and c2 = 0.8 , then the input vector 
state would belong to class 2.

FCM automatic construction with Particle Swarm Optimisation

FCM automatic construction endeavours are commonly focused on building the adja-
cency matrix based either on the available historical raw data or on expert knowledge 
[19–21]. FCM learning approaches could be divided into three categories [11, 22]: Heb-
bian, population-based, and hybrid mixing the main aspects of Hebbian-based and pop-
ulation-based learning algorithm.

Table 4 Blind FL results (constant weights, slope 5, sigmoid)—Breast Cancer dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.6818 0.9091 0.3000 0.6000

2 20% 26% 0.8696 0.8696 0.7143 0.6250

3 20% 35% 0.8696 0.8696 0.7778 0.7778

4 20% 13% 0.9130 0.9565 0.6667 0.5000

5 20% 26% 0.8696 0.9130 0.6667 0.7500

Avg. – – 0.8407 0.9036 0.6251 0.6506
1 19% 24% 0.9063 0.9063 0.6667 0.6667

2 26% 35% 0.9048 0.9365 0.9130 0.8846

3 16% 42% 0.7317 0.7317 1.0000 0.9167

4 15% 20% 0.9231 0.9231 0.7500 0.7500

5 24% 47% 0.8889 0.8889 0.9091 0.9091

Avg. – – 0.8709 0.8773 0.8478 0.8254

1 5% 27% 0.9167 0.9167 0.8333 0.8333

2 4% 43% 0.8667 0.8667 1.0000 1.0000

3 42% 35% 0.9300 0.9300 0.9189 0.8919

4 20% 23% 0.9487 0.9487 0.8571 0.8571

5 29% 49% 0.8571 0.8571 0.9474 0.9474

Avg. – – 0.9038 0.9038 0.9114 0.9059

1 3% 20% 0.8182 0.8182 0.3333 0.2500

2 4% 36% 0.7273 0.8182 0.5714 0.5714

3 45% 40% 0.8660 0.8763 0.8824 0.9032

4 21% 17% 0.9000 0.9250 0.7000 0.7778

5 26% 49% 0.9155 0.9155 1.0000 1.0000

Avg. – – 0.8454 0.8706 0.6974 0.7005
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The aim of the Hebbian-based FCM learning approaches is to modify adjacency matri-
ces leading the FCM model to either achieve a steady state or converge into an accepta-
ble region for the target system. This course has not been successful for FCMs extensions 
such as Fuzzy Grey Cognitive Maps [10].

Population-based methods do not need the human intervention. They compute adja-
cency matrices from historical raw data that best fit the sequence of input state vectors 
(the instances of the dataset). The learning goal of FCM evolutionary learning is to gen-
erate optimal adjacency matrix for modeling systems behaviour.

Particle Swarm Optimization is a bio-inspired, population-based and stochastic opti-
misation algorithm. The PSO algorithm generates a swarm of particles moving in an 
n-dimensional search space which must include all potential candidate solutions. In 
order to train the FCM adjacency matrices, we take into account the kth particle’s posi-
tion (a candidate solution or adjacency matrix), denoted as ̟k = [̟k1 , . . . ,̟kj ] and its 
velocity, vk = [vk1 , . . . , vkj ] . Note that each particle is a potential solution or FCM candi-
date and its position ̟k represents its adjacency matrix of the k-th FCM candidate [6, 
23]. Each particle’s velocity and position are updated at each time step. The position and 
the velocity of each particle are computed as shown in Eqs. (5) and (6):

(5)̟k(t + 1) =̟k(t)+ vk(t)

Table 5 Blended Blind FL results (constant weights) - Breast Cancer dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.6818 0.9091 0.3000 0.6000

2 20% 26% 0.9130 0.9130 0.8333 0.8333

3 20% 35% 0.8696 0.8696 0.7778 0.7778

4 20% 13% 0.9130 0.9565 0.6667 0.5000

5 20% 26% 0.9565 1.0000 0.8571 1.0000

Avg. – – 0.8668 0.9296 0.6870 0.7422
1 19% 24% 0.9091 0.9318 0.8750 0.8889

2 26% 35% 0.8667 0.9000 0.8421 0.8889

3 16% 42% 0.8611 0.8611 1.0000 1.0000

4 15% 20% 0.8824 0.8824 0.6364 0.6364

5 24% 47% 0.8364 0.8728 0.9474 0.9524

Avg. – – 0.8711 0.8896 0.8602 0.8733
1 5% 27% 0.6667 0.7500 0.4000 0.5000

2 4% 43% 0.7000 0.7000 1.0000 1.0000

3 42% 35% 0.9479 0.9479 0.9394 0.8824

4 20% 23% 0.9778 0.9778 0.9091 0.9091

5 29% 49% 0.7576 0.7576 0.9048 0.9048

Avg. – – 0.8100 0.8267 0.8306 0.8392
1 3% 20% 0.8333 0.8333 0.5000 0.5000

2 4% 36% 0.8000 0.8000 1.0000 1.0000

3 45% 40% 0.9519 0.9519 0.9744 0.9500

4 21% 17% 0.8750 0.8958 0.5833 0.6364

5 26% 49% 0.8033 0.8689 0.9130 0.9583

Avg. – – 0.8527 0.8700 0.7941 0.8089
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where U(0,φi) is a vector of random numbers from a uniform distribution within [0,φi], 
generated at each iteration and for each particle. Also, ˙̟ k is the best position of particle 
k in all former iterations, ¨̟ k is the best position of the whole population in all previous 
iterations, and ⊗ is the component-wise multiplication.

The PSO algorithm’s goal is to locate all the particles in the global optima to a mul-
tidimensional hyper-volume. The fitness function used in this research is the comple-
ment of the Jaccard similarity coefficient ( J = (Y × Ŷ ) \ J  ). The Jaccard score computes 
the average of Jaccard similarity coefficients between pairs of the i-th samples, with a 
ground truth label set and a predicted label set. The complement operation is needed in 
terms of minimization of the fitness function. The Jaccard similarity coefficient’s com-
plement is computed as follows in Eq. (7):

The fitness function is sampled after each particle position update and is the objective 
function used to compute how close a given particle is in order to be able to achieve the 
global optimum.

(6)vk(t + 1) =vk(t)+ U(0,φ1)⊗ ( ˙̟ k −̟k(t))+ U(0,φ2)⊗ ( ¨̟ k −̟k(t))

(7)J(yi, ŷi) = 1−
|yi ∩ ŷi|

|yi ∪ ŷi|

Table 6 Blended Blind FL results (constant weights, slope 5, sigmoid)—Breast Cancer dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.6818 0.8636 0.3000 0.5000

2 20% 26% 0.8696 0.8696 0.7143 0.7143

3 20% 35% 0.7826 0.8261 0.6364 0.7000

4 20% 13% 0.8261 0.8261 0.4286 0.4286

5 20% 26% 0.9565 0.9565 0.8571 0.6667

Avg. – – 0.8233 0.8684 0.5873 0.6019
1 19% 24% 0.9063 0.9063 0.6667 0.6667

2 26% 35% 0.9365 0.9365 0.9200 0.8846

3 16% 42% 0.7073 0.7073 0.9231 0.9231

4 15% 20% 0.9487 0.9487 0.8571 0.7500

5 24% 47% 0.8704 0.8889 0.8696 0.9091

Avg. – – 0.8738 0.8775 0.8473 0.8267

1 5% 27% 1.0000 1.0000 1.0000 1.0000

2 4% 43% 0.9231 1.0000 0.7500 1.0000

3 42% 35% 0.9495 0.9495 0.9697 0.9697

4 20% 23% 0.9474 0.9474 0.7778 0.7778

5 29% 49% 0.8788 0.8788 1.0000 1.0000

Avg. – – 0.9397 0.9551 0.8995 0.9495
1 3% 20% 0.7778 0.8889 0.5000 0.5000

2 4% 36% 0.9091 0.9091 1.0000 1.0000

3 45% 40% 0.8785 0.8879 0.9375 0.9394

4 21% 17% 0.9524 0.9762 0.8333 1.0000

5 26% 49% 0.8833 0.9000 0.9310 0.9615

Avg. – – 0.8802 0.9124 0.8404 0.8802
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Federated learning

Distributed Artificial Intelligence is the subfield of artificial intelligence that studies the 
sharing of knowledge between agents in order to solve complex problems, classically via 
the distribution of tasks or data. Such processes may not be of interest in fields where 
the characteristics of the data and the regulations make it impossible to share it, such as 
finance or health.

Conventional machine learning requires all data collected on local devices to be stored 
centrally on a data silo. The goal of federated learning is building a global model that can 
be trained on data distributed while assuring the data privacy [24]. Federated learning 
is one of the most recent efforts in secure distributed artificial intelligence, proposed 
by McMahan et al. [2] and further developed in Konecny et al. [25] and McMahan and 
Ramage [26]. Some advantages of federated learning are privacy protection and the pos-
sibility of solving complex problems with small data samples such as healthcare [27].

In the recent years, there have been several attempts to create a federated version of 
conventional machine learning algorithms, such as federated linear regression [28–30], 
federated logistic regression [31], federated random forest [32], federated XGBoost [33–
35], and federated support vector machines [36, 37]. To the best of our knowledge, this is 
the first work focusing on utilizing FCM in a blind federated setting.

A centralised federated learning system can be described as follows: 

Table 7 Blind FL results (accuracy-based weights)—Breast Cancer dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.7727 0.9091 0.3750 0.6000

2 20% 26% 0.9565 0.9565 0.8571 0.8333

3 20% 35% 0.8696 0.8696 0.7778 0.7000

4 20% 13% 0.8261 0.8696 0.4286 0.5000

5 20% 26% 1.0000 1.0000 1.0000 0.8571

Avg. – – 0.8859 0.9209 0.6877 0.6981
1 19% 24% 0.9318 0.9545 0.8182 0.8889

2 26% 35% 0.8500 0.8667 0.8750 0.8824

3 16% 42% 0.8611 0.8889 0.9444 1.0000

4 15% 20% 0.9118 0.9412 0.7500 0.5833

5 24% 47% 0.8909 0.8909 0.9545 0.9500

Avg. – – 0.8891 0.9084 0.8684 0.8609

1 5% 27% 0.7500 0.7500 0.5000 0.5000

2 4% 43% 0.7000 0.8000 1.0000 1.0000

3 42% 35% 0.9375 0.9375 0.9375 0.8824

4 20% 23% 0.9778 0.9778 0.9091 0.9091

5 29% 49% 0.7273 0.7576 0.8571 0.9048

Avg. – – 0.8185 0.8446 0.8407 0.8392

1 3% 20% 0.8333 0.8333 0.5000 0.5000

2 4% 36% 0.8000 0.9000 1.0000 1.0000

3 45% 40% 0.9423 0.9423 0.9500 0.9487

4 21% 17% 0.9167 0.9167 0.7000 0.6364

5 26% 49% 0.8689 0.8689 1.0000 1.0000

Avg. – – 0.8722 0.8922 0.8300 0.8170
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1. The central server delivers a model to each agent. In the initial iteration of this pro-
cess, the server has built an empty model.

2. The participants train the model with their own private data.
3. Each participant sends the parameters of the model or its gradients to the central 

server in a private way, usually encrypted.
4. The central server builds a federated model by aggregating the parameters of the 

individual models.
5. The central server checks if the termination condition is accomplished in which case 

the federated model is finished, otherwise the process goes back to step 1.

The ultimate goal of the federated model is to minimize the total loss (Eq. 8) of all par-
ticipants computed as follows:

where � are the model parameters, Di is the dataset of the participant i, L∗ is the loss 
function of the federated model, Li(·) is the loss function for each participant in the fed-
eration, and κi represent the importance (weight) of each participant. It is possible to 
determine κi by several criteria such as dataset size, accuracy and so on.

(8)L
∗ =

n
∑

i=1

κi · L(Di,�)

Table 8 Blind FL results (accuracy-based weights, slope 5, sigmoid)—Breast Cancer dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.8636 0.8636 0.5000 0.5000

2 20% 26% 0.9130 0.9139 0.8333 0.7143

3 20% 35% 0.8696 0.8696 0.7778 0.7000

4 20% 13% 0.7826 0.8696 0.2500 0.4286

5 20% 26% 0.8261 0.9130 0.6000 0.7500

Avg. – – 0.8510 0.8858 0.5922 0.6186
1 19% 24% 0.9063 0.9063 0.6667 0.6667

2 26% 35% 0.9048 0.9048 0.8519 0.8519

3 16% 42% 0.7317 0.7317 1.0000 1.0000

4 15% 20% 0.9231 0.9231 0.7500 0.7500

5 24% 47% 0.8519 0.8704 0.8636 0.8696

Avg. – – 0.8635 0.8672 0.8264 0.8276
1 5% 27% 1.0000 1.0000 1.0000 1.0000

2 4% 43% 0.8182 0.8182 1.0000 1.0000

3 42% 35% 0.9293 0.9394 0.9706 0.9375

4 20% 23% 0.8889 0.8889 0.7000 0.7000

5 29% 49% 0.9028 0.9028 0.9600 0.9583

Avg. – – 0.9078 0.9098 0.9261 0.9192

1 3% 20% 1.0000 1.0000 1.0000 1.0000

2 4% 36% 0.9231 0.9231 1.0000 1.0000

3 45% 40% 0.9515 0.9515 0.9737 0.9459

4 21% 17% 0.9512 0.9512 0.8889 0.8889

5 26% 49% 0.9219 0.9375 0.9615 1.0000

Avg. – – 0.9495 0.9527 0.9648 0.9670
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The first application of federated learning was to create collaborative predictive 
models using private data in Android mobile phones [26]. In particular, a model in 
Gboard on Android, the Google Keyboard, in order to predict the following word 
or phrase that the user is going to write based on the former text and other users 
(private) data. In this set-up the central server manages the federated model and the 
communications with the agents, while the participants own their data and train the 
partial models. In this way, a federated learning system ensures that the distributed 
model is built in a private environment, since the private data never leaves the local 
agent.

Nevertheless, there are always risks associated with the data transmission, such as 
the possibility of the reconstruction of the model or the training data from the model 
parameters. Due to these risks, there is an increasing interest in the use of an additional 
layer of privacy to this information, and there are many studies that use privacy-pre-
serving methods in federated learning such as Differential Privacy [38], Secure Multi-
Party Computation [39] or Homomorphic encryption [40]. The comparison with other 
privacy-preserving techniques is outside the scope of this work, focused on the con-
struction of a federation process using FCMs and without an initial model, but in the 
philosophy of federated learning, an extra security layer, such as Differential Privacy, 
could be added at the time of sharing the parameters of the model [41].

Table 9 Blended Blind FL results (accuracy-based weights)—Breast Cancer dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.7273 0.9091 0.3333 0.6000

2 20% 26% 0.9130 0.9130 0.8333 0.8333

3 20% 35% 0.8696 0.8696 0.7778 0.7778

4 20% 13% 0.9130 0.9130 0.6000 0.5000

5 20% 26% 0.8696 1.0000 0.6666 1.0000

Avg – – 0.8585 0.9209 0.6422 0.7422
1 5% 27% 0.9545 0.9773 0.9000 1.0000

2 4% 43% 0.9167 0.9167 0.9000 0.8947

3 42% 35% 0.8611 0.8611 1.0000 1.0000

4 20% 23% 0.9118 0.9118 0.7000 0.5833

5 29% 49% 0.8909 0.8909 0.9545 0.9545

Avg. – – 0.9070 0.9115 0.8909 0.8865

1 19% 24% 0.6667 0.7500 0.4000 0.5000

2 26% 35% 0.8000 0.8000 1.0000 1.0000

3 16% 42% 0.9063 0.9167 0.8571 0.8824

4 15% 20% 0.9778 0.9778 0.9091 0.9091

5 24% 47% 0.7576 0.7576 0.9048 0.9048

Avg. – – 0.8217 0.8404 0.8142 0.8392
1 3% 20% 0.8333 1.0000 0.5000 1.0000

2 4% 36% 0.9000 0.9000 1.0000 1.0000

3 45% 40% 0.9615 0.9615 0.9750 0.9487

4 21% 17% 0.8333 0.8958 0.5000 0.6364

5 26% 49% 0.8525 0.8525 1.0000 1.0000

Avg. – – 0.8761 0.9220 0.7950 0.9170
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Federated learning represents a significant step forward in the privacy-preserving 
machine learning field. Its practical managerial significance lies in its potential to 
address the balance between utilizing valuable data for business insights, respecting 
privacy regulations and customer trust. By allowing model distributed training on 
decentralised data sources while preserving privacy, federated learning offers several 
managerial benefits:

• Collaborative business insights: FL can facilitate collaboration between different 
business units or partners without sharing sensitive data directly. This fosters knowl-
edge sharing and cross-functional collaboration while maintaining data privacy.

• Enhanced data privacy compliance: FL enables organisations to comply with strict 
data protection regulations such as GDPR. This approach avoids reputational 
damage that may result from non-compliance of data leaks .

• Cost-Efficient AI training: Since data remains on local devices or servers, it 
reduces the need for extensive data transfer and centralised storage infrastructure.

• Customer trust and brand loyalty: Companies can build trust with their custom-
ers by demonstrating a strong commitment to data privacy. This trust can lead to 
increased customer loyalty and positive brand perception.

Table 10 Blended Blind FL results (accuracy-based weights, slope 5, sigmoid)—Breast Cancer 
dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.7727 0.9091 0.3750 0.6000

2 20% 26% 0.9130 0.9130 0.8333 0.8333

3 20% 35% 0.7391 0.9130 0.5714 0.7778

4 20% 13% 0.9565 0.9565 0.7500 0.5000

5 20% 26% 0.9565 1.0000 1.0000 1.0000

Avg. – – 0.8676 0.9383 0.7060 0.7422
1 5% 27% 0.9063 0.9063 0.6667 0.6667

2 4% 43% 0.9524 0.9524 0.9583 0.8846

3 42% 35% 0.7317 0.7317 1.0000 1.0000

4 20% 23% 0.9231 0.9231 0.7500 0.7500

5 29% 49% 0.8519 0.8704 0.8636 0.9048

Avg. – – 0.8731 0.8768 0.8477 0.8412

1 19% 24% 0.9167 0.9167 1.0000 0.8000

2 26% 35% 0.9286 0.9286 1.0000 1.0000

3 16% 42% 0.8990 0.9091 0.9643 0.8750

4 15% 20% 0.9268 0.9268 0.8750 0.8750

5 24% 47% 0.8730 0.8889 0.9565 1.0000

Avg. – – 0.9088 0.9140 0.9592 0.9100

1 3% 20% 1.0000 1.0000 1.0000 1.0000

2 4% 36% 0.9231 0.9231 1.0000 1.0000

3 45% 40% 0.8835 0.8932 0.9375 0.9394

4 21% 17% 0.9767 0.9767 0.9167 0.8462

5 26% 49% 0.9167 0.9333 0.9600 1.0000

Avg. – – 0.9400 0.9453 0.9628 0.9571
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In this sense, a practical real-world healthcare FL application would involve a con-
sortium of healthcare institutions or health data owners working together to improve 
patient care and disease prediction while preserving data privacy. In this scenario, 
each institution would retain control of its patient data, ensuring compliance with 
strict privacy regulations like HIPAA and GDPR.

In Section  "Federated learning for FCMs", the authors detail the federated learn-
ing approach and the proposed methodology for FCMs, that enables the creation of a 
machine learning model between several agents while all the participants keep their 
data private.

Methodological proposal
Federated learning for FCMs

The proposed Blind Federated Learning methodology for FCMs is shown in Fig. 2, and 
can be described as follows: 

1. Although the central server has no data, it triggers the Blind Federated Learning pro-
cess by setting in motion the participants, who own the data to train the final model. 
Note that the central server does not send any initial FCM to the participants and 
this is one contribution of this research. As far as we know this is the first federated 

Table 11 Blind FL results (Precision-based weights)—Breast Cancer dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.7273 0.9091 0.3333 0.6000

2 20% 26% 0.8261 0.9130 0.6250 0.8333

3 20% 35% 0.7826 0.8696 0.6364 0.7778

4 20% 13% 0.8696 0.9130 0.5000 0.5000

5 20% 26% 0.9696 0.9565 0.6667 0.8571

Avg. – – 0.8150 0.9123 0.5523 0.7137
1 19% 24% 0.9318 0.9545 1.0000 0.8889

2 26% 35% 0.8667 0.8833 0.8421 0.8889

3 16% 42% 0.8889 0.8889 1.0000 1.0000

4 15% 20% 0.8824 0.8824 0.6364 0.6364

5 24% 47% 0.8727 0.8727 0.9524 0.9524

Avg. – – 0.8885 0.8964 0.8862 0.8733
1 5% 27% 0.6667 0.7500 0.4000 0.5000

2 4% 43% 0.8000 0.8000 1.0000 1.0000

3 42% 35% 0.9583 0.9688 1.0000 0.9091

4 20% 23% 0.9778 0.9778 0.9091 0.9091

5 29% 49% 0.7576 0.7879 0.9474 1.0000

Avg. – – 0.8321 0.8569 0.8513 0.8636
1 3% 20% 0.8333 0.8333 0.5000 0.5000

2 4% 36% 0.7000 0.8000 1.0000 1.0000

3 45% 40% 0.9423 0.9423 0.9500 0.9487

4 21% 17% 0.8958 0.9167 0.6364 0.5833

5 26% 49% 0.8689 0.8689 0.9600 0.9565

Avg. – – 0.8481 0.8722 0.8093 0.7977
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learning proposal that it does not need an initial model, then the central server is not 
even required.

2. Each participant trains its own initial local FCM with their own dataset. The authors 
have used a PSO algorithm to train the FCMs, and that the dynamics have converged 
when the difference between two consecutive vector states is under a tolerance value 
(in these experiments was 1× 10−5 ), but this proposal is agnostic to the learning 
approach and to other considerations.

3. Each participant delivers its model parameters, which in this case are the trained 
adjacency matrices. If needed, the participants could send any other performance 
metric needed to calculate the averaging of the models (see section  "Aggregation 
methods"). Due to the privacy concerns discussed earlier, the parameters may be 
encrypted using a privacy-preserving method. Finally, the local FCM is stored in the 
participant devices.

4. The central server aggregates the parameters of the local models in its device using 
the appropriate weight. The section "Aggregation methods" shows a detailed descrip-
tion of the different aggregation methods considered by the authors. This process 
results in the parameters of a federated model.

5. The participants receive these parameters from the central server. They build the 
next iteration of their local model using the federated model parameters. The authors 

Table 12 Blind FL results (Precision-based weights, slope 5, sigmoid)—Breast Cancer dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.5909 0.9091 0.2500 0.6000

2 20% 26% 0.9130 0.9130 0.8333 0.8333

3 20% 35% 0.8696 0.8696 0.7778 0.7778

4 20% 13% 0.7826 0.8696 0.3750 0.5000

5 20% 26% 0.9565 1.0000 0.8571 1.0000

Avg. – – 0.8225 0.9123 0.6187 0.7422
1 19% 24% 0.8750 0.8750 0.6000 0.6000

2 26% 35% 0.9048 0.9206 0.8800 0.8846

3 16% 42% 0.7317 0.7317 1.0000 1.0000

4 15% 20% 0.9231 0.9231 0.7500 0.7500

5 24% 47% 0.8519 0.8889 0.8636 0.9091

Avg. – – 0.8573 0.8679 0.8187 0.8287
1 5% 27% 0.9000 0.9000 0.7500 0.7500

2 4% 43% 0.9286 0.9286 0.8333 0.8333

3 42% 35% 0.9035 0.9035 0.9024 0.8810

4 20% 23% 0.8974 0.9231 0.7500 0.7500

5 29% 49% 0.9423 0.9423 1.0000 1.0000

Avg. – – 0.9144 0.9195 0.8472 0.8429

1 3% 20% 0.8333 0.8333 0.3333 0.3333

2 4% 36% 0.8571 0.9286 0.8000 0.8333

3 45% 40% 0.9107 0.9107 1.0000 0.9697

4 21% 17% 0.8857 0.8857 0.7143 0.7143

5 26% 49% 0.8621 0.8793 0.9583 0.9600

Avg. – – 0.8698 0.8875 0.7612 0.7621
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propose two different federation methods: (a) in the proposal that is closer to the 
Blind Federated Learning, the local model is just the global model, which in turn was 
created as aggregation of all participant’s models; and (b) an innovative federated 
learning approach, called Blended Blind Federated Learning, where the new local 
model is obtained by combining the new received adjacency matrix with the previ-
ous local adjacency matrix.

6. In either aggregation case, the participant retrains the new FCM in their local data 
and sends the parameters (and the needed performance metrics) back to the central 
server to be aggregated once again. Also, at this point the participants use their local 
data to test the performance of their local model.

7. The central server checks whether the termination condition is met. The authors 
have chosen that the federation process must be run 20 iterations. If the condition is 
not fulfilled, the process goes back to stage 4.

8. If the termination condition is satisfied, then the federated learning process ends 
resulting in a Federated FCM.

The proposed approach deals with the issue of federated learning without the need 
for an initial model. To the best of the authors’ knowledge, this problem remains 
unsolved. For this reason, we view this paper as a valuable undertaking.

Table 13 Blended Blind FL results (Precision-based weights) - Breast Cancer dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.8182 0.9091 0.4286 0.6000

2 20% 26% 0.9130 0.9130 0.8333 0.8333

3 20% 35% 0.8261 0.8696 0.7000 0.7778

4 20% 13% 0.9130 0.9130 0.6000 0.6000

5 20% 26% 0.9130 1.0000 0.7500 1.0000

Avg. – – 0.8767 0.9209 0.6624 0.7622
1 19% 24% 0.9545 0.9773 0.9000 0.8889

2 26% 35% 0.9000 0.9000 0.8947 0.8889

3 16% 42% 0.8333 0.8611 1.0000 1.0000

4 15% 20% 0.8529 0.8529 0.5833 0.5833

5 24% 47% 0.8727 0.8727 0.9524 0.9500

Avg. – – 0.8827 0.8928 0.8661 0.8622

1 5% 27% 0.7500 0.7500 0.5000 0.5000

2 4% 43% 0.8000 0.8000 1.0000 1.0000

3 42% 35% 0.9063 0.9167 0.8788 0.9063

4 20% 23% 0.9778 0.9778 0.9091 0.9091

5 29% 49% 0.7727 0.7727 0.9500 0.8261

Avg. – – 0.8414 0.8434 0.8476 0.8283

1 3% 20% 0.8333 0.8333 0.5000 0.5000

2 4% 36% 0.9000 0.9000 1.0000 1.0000

3 45% 40% 0.9519 0.9519 0.9512 0.9487

4 21% 17% 0.8333 0.8750 0.5000 0.5833

5 26% 49% 0.8361 0.8689 0.9565 1.0000

Avg. – – 0.8709 0.8858 0.7815 0.8064
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Aggregation methods

An important parameter when defining a federated learning approach is the aggrega-
tion method employed by the central server to obtain the federated model.

In this paper, the authors propose three different approaches: 

1. Federated averaging. This method performs the aggregation using the arithme-
tic average [2]. The central server sums the parameters of the different models and 

Table 14 Blended Blind FL results (Precision-based weights, slope 5, sigmoid)—Breast Cancer 
dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 14% 0.7727 0.9091 0.3750 0.6000

2 20% 26% 0.8696 0.9130 0.7143 0.8333

3 20% 35% 0.9565 0.9565 1.0000 0.7778

4 20% 13% 0.9130 0.9130 0.6000 0.5000

5 20% 26% 0.8696 0.9565 0.6667 0.8571

Avg. – – 0.8763 0.9296 0.6712 0.7137
1 19% 24% 0.8750 0.9063 0.6250 0.6667

2 26% 35% 0.9524 0.9524 0.9583 0.8519

3 16% 42% 0.7073 0.7317 0.9231 1.0000

4 15% 20% 0.9231 0.9231 0.7500 0.7500

5 24% 47% 0.8704 0.8889 0.8696 0.9091

Avg. – – 0.8656 0.8805 0.8252 0.8355
1 5% 27% 0.8462 0.8462 0.6667 0.6667

2 4% 43% 1.0000 1.0000 1.0000 1.0000

3 42% 35% 0.8969 0.8969 0.8684 0.8684

4 20% 23% 0.8974 0.9231 0.7500 0.8182

5 29% 49% 0.8986 0.8986 1.0000 1.0000

Avg. – – 0.9078 0.9129 0.8570 0.8707
1 3% 20% 0.8750 0.8750 0.6667 0.4000

2 4% 36% 0.8462 0.8462 1.0000 1.0000

3 45% 40% 0.8889 0.8990 0.8421 0.8421

4 21% 17% 0.9024 0.9024 0.5000 0.3636

5 26% 49% 0.8971 0.9118 1.0000 1.0000

Avg. – – 0.8819 0.8869 0.8018 0.7211

Table 15 FCM no Federation—adult dataset

Agent Size % 1s Accuracy Precision

1 100% 37% 0.8611 0.9487

Table 16 FCM no Federation, Adult dataset, slope 5, sigmoid

Agent Size % 1s Accuracy Precision

1 100% 37% 0.9222 0.9257
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divides by the number of participants (or models). This way, the federated model 
weighs all the participants in a similar fashion. The parameters of the federated 
model ̟ ∗ would be computed as shown in Eq. (9): 

 where n is the number of participants and ̟i are the parameters of the local model 
for participant i.

2. Accuracy-based federated weighted averaging, with the normalized accuracy of each 
model as the weight: The central server receives not only the individual models, but 
the accuracy of each model in a test set for the participant as well. Then, it averages 
the models parameters using a weighted average with the normalized accuracy for 
each participant as its weight. Therefore, the aggregation weighs reinforces the par-
ticipant that contributes the most to the general accuracy. In this case, the param-
eters of the federated model ̟ ∗ would be computed as follows in Eq. (10): 

(9)̟ ∗ =
1

n
·

n
∑

i=1

̟i

(10)̟ ∗ =

n
∑

i=1

ψi ·̟i,

Table 17 Blind FL results (constant weights)—adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 72% 0.9444 0.9444 0.9615 0.9259

2 20% 75% 0.8055 0.8611 0.8846 0.9230

3 20% 75% 0.8611 0.9166 0.8928 0.9600

4 20% 67% 0.8888 0.9166 0.9545 0.9565

5 20% 72% 0.9444 0.9722 0.9615 1.0000

Avg. – – 0.8889 0.9222 0.9310 0.9531
1 13% 63% 0.5000 0.5000 1.0000 1.0000

2 30% 80% 0.3261 0.3478 1.0000 1.0000

3 21% 87% 0.2821 0.3077 1.0000 1.0000

4 11% 61% 0.6047 0.6279 1.0000 1.0000

5 24% 81% 0.3824 0.3922 0.9615 0.9412

Avg. – – 0.4190 0.4351 0.9923 0.9882

1 4% 75% 0.3125 0.3125 1.0000 0.0000

2 5% 68% 0.3684 0.3684 0.6666 0.6666

3 45% 77% 0.3496 0.3619 0.8571 0.8260

4 13% 51% 0.5869 0.5869 1.0000 1.0000

5 32% 85% 0.2649 0.2820 0.8823 0.8125

Avg. – – 0.3765 0.3823 0.8812 0.6610

1 1% 25% 0.3333 0.3333 0.0000 0.0000

2 5% 72% 0.3500 0.3500 1.0000 0.0000

3 45% 78% 0.2546 0.2732 0.8750 0.8750

4 14% 53% 0.4693 0.4693 0.0000 0.0000

5 35% 89% 0.1825 0.1904 1.0000 1.0000

Avg. – – 0.3179 0.3232 0.5750 0.3750
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 where ψi (Eq.  11) is the weight for participant i, computed as the normalized 
accuracy: 

3. Precision-based federated weighted averaging, with the normalized precision of each 
model as the weight. Similarily to the previous case, the central server receives both 
the models and the precision on a test set for each participant, and averages the mod-
els parameters with a weighted average where the weights are the normalized preci-
sion for each participant. This way, the distributed system amplifies the participant’s 
data with larger precision. The parameters of the federated model ̟ ∗ are shown in 
Eq. (12): 

 where φi (Eq.  13) is the weight for participant i, computed as the normalized 
accuracy: 

(11)ψi =
accuracyi

∑n
j=1 accuracyj

.

(12)̟ ∗ =

n
∑

i=1

φi ·̟i

Table 18 Blind FL results (constant weights, slope 5, sigmoid)—adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 72% 0.9444 0.9722 0.9310 0.9310

2 20% 75% 0.8333 0.9722 0.8286 0.9667

3 20% 75% 0.8889 0.9167 0.8667 0.8966

4 20% 67% 0.9444 0.9722 0.9655 0.8788

5 20% 72% 0.9444 0.9722 1.0000 0.9333

Avg. – – 0.9111 0.9611 0.9184 0.9213
1 13% 63% 0.3227 0.3642 0.8571 0.9063

2 30% 80% 0.3008 0.3384 0.7500 1.0000

3 21% 87% 0.3324 0.3526 0.9048 0.9355

4 11% 61% 0.3701 0.4156 0.9091 0.9444

5 24% 81% 0.3479 0.3673 0.9398 0.9091

Avg. – – 0.3348 0.3676 0.8722 0.9391
1 4% 75% 0.2561 0.3049 0.7500 0.8333

2 5% 68% 0.4030 0.4328 1.0000 1.0000

3 45% 77% 0.4079 0.4207 0.9241 0.9200

4 13% 51% 0.4840 0.5479 0.5385 0.7333

5 32% 85% 0.2759 0.2969 0.9143 0.8889

Avg. – – 0.3654 0.4006 0.8254 0.8751
1 1% 25% 0.6563 0.6875 0.5000 1.0000

2 5% 72% 0.2857 0.3000 0.6667 0.7500

3 45% 78% 0.3320 0.3561 0.8319 0.8780

4 14% 53% 0.5539 0.5637 0.9189 0.8750

5 35% 89% 0.2994 0.3307 0.8961 0.9756

Avg. – – 0.4255 0.4476 0.7627 0.8957
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Experimental approach
In all of the following cases we will train two FCM models, using PSO for the optimisa-
tion stage, with 20 iterations and a swarm size of 10. The first FCM will have a slope of 2 
and use a hyperbolic tangent as activation function, while the second model will have a 
slope of 5 and a sigmoid activation function.

The first experiment for each dataset will be a baseline model to discuss the case where 
no distribution is made and all agents build a model as one agent. We will compare these 
results with the post-federated learning ones to see how our methodology can improve 
the results of models trained in their individual data (and therefore, models with, in gen-
eral, worse performance metrics due to the lack of diverse data to be trained with) to 
obtain similar results to this baseline model.

The other experiments analyse the different combinations of federation methods 
(Blind Federated Learning and Blended Blind Federated Learning, described in sec-
tion  "Federated learning for FCMs") with the proposed aggregation methods (feder-
ated averaging, accuracy-based, and precision-based, defined in section  "Aggregation 

(13)φi =
precisioni

∑n
j=1 precisionj

.

Table 19 Blended Blind FL results (constant weights)—Adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 75% 0.9166 0.9444 0.9285 0.9285

2 20% 69% 0.6944 0.9722 0.7333 0.9615

3 20% 69% 0.9444 0.9444 0.9259 0.8620

4 20% 86% 0.9444 0.9722 0.9677 1.0000

5 20% 83% 0.9722 0.9722 0.9677 0.9677

Avg. – – 0.8944 0.9611 0.9046 0.9439
1 13% 63% 0.5000 0.5217 1.0000 1.0000

2 30% 80% 0.3043 0.3478 1.0000 1.0000

3 21% 87% 0.3077 0.3205 1.0000 1.0000

4 11% 61% 0.5581 0.6047 0.6000 1.0000

5 24% 81% 0.3137 0.3529 0.8696 0.9005

Avg. – – 0.3968 0.4295 0.8939 0.9810
1 4% 75% 0.3125 0.3125 1.0000 0.0000

2 5% 68% 0.4210 0.4210 1.0000 0.6666

3 45% 77% 0.3374 0.3680 0.8214 0.9285

4 13% 51% 0.5217 0.5434 1.0000 1.0000

5 32% 85% 0.2991 0.3076 0.8695 0.8000

Avg. – – 0.3783 0.3905 0.9381 0.6790

1 1% 25% 0.3333 0.3333 0.0000 0.0000

2 5% 72% 0.3500 0.3500 1.0000 1.0000

3 45% 78% 0.3105 0.3354 0.8000 0.8461

4 14% 53% 0.5102 0.5102 0.6666 0.2500

5 35% 89% 0.1904 0.1904 1.0000 1.0000

Avg. – – 0.3389 0.3438 0.6933 0.6192
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methods"). The authors compare the average accuracy and precision, computed in a test 
set, for all participants before and after the federation process, and also with the baseline 
model.

For these experiments, the authors have tested four different data partitions among 
the participants. The first one is an evenly splitted dataset for every agent. The remaining 
three are comprised by uneven sets, the first one a random partition and the remaining 
two with sharp differences where several agents have very small datasets. This way, we 
can test a hypothetical case where a group of agents want to share secure information 
and a private model even in the case where one or more of the agents have much less 
information to share than the rest. Moreover, there are no class balancing mechanisms 
in the partitioning of the data, and therefore the experiments also test the cases when 
the percentage of positive samples is noticeable dissimilar.

As it is usual, for each participant’s dataset a split train/test has been performed in 
order to have a validation dataset to compute the performance metrics.

The results will be shown in tables where the rows are the metrics for each participant, 
and the columns are the following: the size or percentage of the original dataset that 
each participant has, the percentage of positives in that participant’s dataset, and the 
accuracy and the precision on a test set before and after the Blind Federated Learning 
process.

Table 20 Blended Blind FL results (constant weights, slope 5, sigmoid)—adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 75% 0.9722 0.9722 1.0000 1.0000

2 20% 69% 0.8889 0.9167 0.8750 0.9032

3 20% 69% 0.9444 1.0000 1.0000 1.0000

4 20% 86% 0.9444 1.0000 0.9231 1.0000

5 20% 83% 0.9722 1.0000 0.9630 0.9630

Avg. – – 0.9444 0.9778 0.9522 0.9732
1 13% 63% 0.3006 0.3196 0.8929 0.9259

2 30% 80% 0.3731 0.4104 0.8261 0.8947

3 21% 87% 0.3384 0.3720 0.9167 0.8947

4 11% 61% 0.3457 0.3765 0.9565 1.0000

5 24% 81% 0.3510 0.3846 0.8391 0.8676

Avg. – – 0.3418 0.3726 0.8862 0.9166
1 4% 75% 0.3165 0.3544 0.7333 0.6923

2 5% 68% 0.2949 0.3077 0.7500 0.6250

3 45% 77% 0.3452 0.3665 0.8837 0.8519

4 13% 51% 0.4378 0.4865 0.4286 0.6154

5 32% 85% 0.2640 0.2775 0.9077 0.9333

Avg. – – 0.3317 0.3585 0.7407 0.7436
1 1% 25% 0.5625 0.5625 0.0000 0.0000

2 5% 72% 0.3500 0.3750 0.7143 1.0000

3 45% 78% 0.3236 0.3250 0.9506 0.8545

4 14% 53% 0.4891 0.5163 0.9231 0.7059

5 35% 89% 0.2609 0.2737 0.9130 0.9459

Avg. – – 0.3972 0.4105 0.7002 0.7013
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Experiment 1. Breast Cancer dataset

In this experiment the authors use the Breast Cancer Wisconsin dataset, made pub-
licly available [42] at the UC Irvine Machine Learning Repository. As a baseline model 
with no distribution, the FCM with slope 2 and hyperbolic tangent activation function 
achieves an accuracy on a test set of 0.9211 and a precision of 0.7742, as seen in Table 1, 
while the FCM with slope 5 and sigmoid function has an accuracy of 0.8246 and a preci-
sion of 0.5714, see Table 2.

Our first Blind Federated Learning experiment will consist in a distributed system 
trained with a methodology that is close to the Blind Federated Learning approach, as 
described in section "Methodological proposal", and using an aggregation method based 
on the arithmetic average of the number of participants (federated averaging). Each 
one of the five participants is provided with a subset of the breast cancer dataset and 
trains its initial FCM using these data. The results of this first experiment can be found 
in Tables 3 and 4, where we see that the Blind Federated Learning process improves the 
values of the accuracy in every case. But for the most uneven data distributions the pre-
cision is not increased.

The next experiment uses the Blended Blind Federated Learning process, also 
described in section  3. As in the previous experiment, the authors will use the arith-
metic average of the number of participants as the aggregation method. The results are 

Table 21 Blind FL results (accuracy-based weights)—adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 69% 0.9444 0.9444 0.9600 0.9600

2 20% 78% 0.8611 0.9444 0.8965 0.9333

3 20% 86% 0.8888 0.9444 0.9354 0.9393

4 20% 78% 0.9166 1.0000 0.9032 1.0000

5 20% 69% 0.9166 0.9444 1.0000 0.9565

Avg. – – 0.9055 0.9555 0.9390 0.9578
1 13% 63% 0.4565 0.4565 1.0000 1.0000

2 30% 80% 0.3043 0.3478 1.0000 1.0000

3 21% 87% 0.2564 0.2692 0.9231 1.0000

4 11% 61% 0.5581 0.5581 1.0000 1.0000

5 24% 81% 0.2353 0.2843 0.8462 0.8667

Avg. – – 0.3621 0.3832 0.9538 0.9733
1 4% 75% 0.3750 0.3750 1.0000 1.0000

2 5% 68% 0.3684 0.4210 1.0000 0.5000

3 45% 77% 0.3619 0.3987 0.8055 0.8750

4 13% 51% 0.5000 0.5000 0.0000 0.0000

5 32% 85% 0.2649 0.2905 0.9333 0.8181

Avg. – – 0.3740 0.3970 0.7478 0.6386

1 1% 25% 0.3333 0.3333 0.0000 0.0000

2 5% 72% 0.3500 0.3500 1.0000 1.0000

3 45% 78% 0.2919 0.3478 0.7727 0.9411

4 14% 53% 0.5714 0.5918 0.8571 0.6000

5 35% 89% 0.2380 0.2380 1.0000 1.0000

Avg. – – 0.3569 0.3722 0.7259 0.7082
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described in Tables  5 and  6. As in the previous case, the accuracy increases after the 
Blind Federated Learning process in all cases, but also the precision is improved for all 
partitions with this methodology.

It is also worth noticing that, with an even partition, the averaged accuracy of the five 
models is similar (or even better) than the case of an only model using the full dataset 
(0.9211 for a unique model vs. 0.9296 for the Federated models in the even case with 
slope 2 and tangent activation function). Moreover, in the case of the uneven splits, the 
precision is much better than the baseline model (0.7742 vs. 0.8733 for the first random 
split).

The next experiment uses the accuracy-based aggregation in order to improve the 
accuracy values of the model, in combination with the Blind Federated Learning meth-
odology. As previously, there will be four different partitions to understand how this 
methodology deals with participants with different sizes. Tables  7 and  8 collects the 
results of this experiment, in which the accuracy improves after the federated learning 
execution as expected, but we find that the precision levels decrease in all uneven data 
distributions.

Similarly to the former experiment, the next one uses the accuracy-based aggregation 
and the four different partitions outlined before, but in this case it will be for a Blended 
Blind Federated Learning system instead of the conventional one. Tables 9 and 10 show 

Table 22 Blind FL results (accuracy-based weights, slope 5, sigmoid)—adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 69% 0.9722 0.9722 0.9630 0.9630

2 20% 78% 0.8889 0.9722 1.0000 1.0000

3 20% 86% 0.9444 0.9722 1.0000 1.0000

4 20% 78% 0.9444 0.9444 0.9355 0.9355

5 20% 69% 0.8889 0.9444 0.8571 0.9231

Avg. – – 0.9278 0.9611 0.9511 0.9643
1 13% 63% 0.3834 0.4233 0.8667 0.8846

2 30% 80% 0.3140 0.3719 0.8182 0.7857

3 21% 87% 0.4182 0.4303 0.9194 0.9020

4 11% 61% 0.3462 0.3718 0.8750 0.9286

5 24% 81% 0.3175 0.3794 0.7700 0.8434

Avg. – – 0.3559 0.3953 0.8498 0.8688
1 4% 75% 0.3023 0.3256 1.0000 1.0000

2 5% 68% 0.2319 0.3188 0.8000 1.0000

3 45% 77% 0.3191 0.3418 0.7479 0.7705

4 13% 51% 0.4681 0.4681 0.5769 0.4500

5 32% 85% 0.2766 0.2901 0.9189 0.9057

Avg. – – 0.3740 0.3970 0.7478 0.6386

1 1% 25% 0.6667 0.6667 0.7143 0.6667

2 5% 72% 0.2949 0.3462 0.8750 1.0000

3 45% 78% 0.2889 0.3306 0.7727 0.8415

4 14% 53% 0.5829 0.6203 0.9091 0.9615

5 35% 89% 0.2893 0.3092 0.9625 0.9710

Avg. – – 0.4245 0.4546 0.8467 0.8881
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how the Blended Blind Federated Learning methodology improves the results of the pre-
vious experiment, in the sense that not only the accuracy is better after the federated 
learning execution, but also the precision in all cases but one.

Our next set of experiments will deal with the precision-based aggregation method in 
order to try to improve the precision of the model, since the accuracy improves in every 
previous test. The results for the Blind Federated Learning methodology, using the four 
different partitions as previously, can be found in Table 11 and 12, and show the usual 
improvement of the accuracy of the model post federated learning, but also an increase 
in the precision of the model in all cases but one.

Finally, the last experiment will be similar to the previous one: the Blended Blind Fed-
erated Learning approach, with the precision-based aggregation method, and with the 
usual four different partitions. The results are described in Tables 13 and 14 and show 
that the accuracy keeps improving even when the weights of the aggregation method 
depend on the precision, but the precision only increases in two out of four cases.

Experiment 2. Adult dataset

The dataset for the second experiment will be the adult dataset, with census data from 
1994 containing demographic features of adults and their income, from the US Cen-
sus Bureau, and publicly available [42] at the UC Irvine ML Repository. The baseline 

Table 23 Blended Blind FL results (accuracy-based weights)—Adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 75% 0.9444 1.0000 1.0000 0.9642

2 20% 94% 0.9722 1.0000 1.0000 1.0000

3 20% 78% 0.9166 0.9722 0.9629 0.9642

4 20% 78% 0.9166 0.9444 0.9310 0.9642

5 20% 78% 0.8611 0.9444 0.8484 0.9333

Avg. – – 0.9222 0.9722 0.9484 0.9652
1 13% 63% 0.4565 0.4782 1.0000 1.0000

2 30% 80% 0.3913 0.3913 1.0000 1.0000

3 21% 87% 0.2820 0.2948 1.0000 1.0000

4 11% 61% 0.5813 0.5813 0.7500 0.7500

5 24% 81% 0.2941 0.3333 1.0000 1.0000

Avg. – – 0.4010 0.4158 0.9500 0.9500

1 4% 75% 0.4375 0.4375 1.0000 1.0000

2 5% 68% 0.3684 0.4210 0.6666 0.6666

3 45% 77% 0.3742 0.4049 0.8157 0.8333

4 13% 51% 0.5217 0.5434 0.6666 0.6666

5 32% 85% 0.2478 0.3076 0.9230 0.8750

Avg. – – 0.3899 0.4229 0.8144 0.8083

1 1% 25% 0.5000 0.5000 0.3333 0.0000

2 5% 72% 0.3000 0.4000 1.0000 1.0000

3 45% 78% 0.3167 0.3540 0.7857 0.8823

4 14% 53% 0.4693 0.4897 0.5000 0.5000

5 35% 89% 0.1587 0.1746 0.8750 1.0000

Avg. – – 0.3490 0.3837 0.6988 0.6765
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FCM model (Table 15) reaches an accuracy of 0.8611 and a precision of 0.9487 in the 
test set for the FCM model with slope 2 and hyperbolic tangent activation function, 
and an accuracy of 0.9222 and a precision of 0.9257 (Table 16).

The Blind Federated Learning approach combined with arithmetic average of the 
number of participants in the second dataset shows a very different behaviour for the 
even and uneven splits (Table  17 and  18): the federated learning process improves 
the performance metrics for the even split compared with the model without fed-
eration, but for all the uneven splits we see that the accuracy is much lower because 
of the amount of data and the target imbalance. Nevertheless, the federation pro-
cess improves the accuracy, but not the precision, which has higher values than the 
accuracy.

Next, the Blended Blind Federated Learning with constant weights shows (Tables 19 
and 20) similar results to those of the Blind Federated Learning, with high accuracy 
and precision for the even split and lower accuracy for the uneven, and improvement 
after the federation in the accuracy but not for the precision.

The results (Tables 21 and 22) for the Blind Federated Learning using an aggrega-
tion based in accuracy shows similar results to the two previous experiments, with 
limited accuracy for uneven splits and no improvements in the precision for the most 
extreme uneven splits.

Table 24 Blended Blind FL results (accuracy-based weights, slope 5, sigmoid)—Adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 75% 0.8889 0.9444 0.9565 0.9231

2 20% 94% 0.9444 1.0000 1.0000 1.0000

3 20% 78% 0.8333 0.8889 0.8800 0.8276

4 20% 78% 1.0000 1.0000 1.0000 0.9600

5 20% 78% 0.7500 1.0000 0.7188 1.0000

Avg. – – 0.8833 0.9667 0.9111 0.9421
1 13% 63% 0.3292 0.3727 0.8485 0.9091

2 30% 80% 0.3857 0.4000 0.9200 0.9091

3 21% 87% 0.3539 0.3896 0.8837 0.8929

4 11% 61% 0.3663 0.3779 0.9231 0.8636

5 24% 81% 0.3205 0.3413 0.9333 0.8594

Avg. – – 0.3511 0.3763 0.9017 0.8868

1 4% 75% 0.3171 0.3780 0.6667 0.7692

2 5% 68% 0.3553 0.3684 0.9231 1.0000

3 45% 77% 0.3980 0.4162 0.9242 0.9259

4 13% 51% 0.5106 0.5426 0.8667 0.6667

5 32% 85% 0.2659 0.2897 0.9206 0.9184

Avg. – – 0.3694 0.3990 0.8603 0.8560

1 1% 25% 0.5926 0.5926 0.5000 0.5000

2 5% 72% 0.2987 0.3377 0.6429 0.6667

3 45% 78% 0.3205 0.3438 0.7900 0.8163

4 14% 53% 0.5213 0.5403 0.9565 0.9167

5 35% 89% 0.2538 0.2885 0.9000 0.9706

Avg. – – 0.3974 0.4206 0.7579 0.7740
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Tables 23 and 24 show the results for the Blended Blind Federated Learning with accu-
racy-based weights, very similar to those with Blind Federated Learning and the same 
aggregation method.

The precision-based aggregation method should drastically improve the precision, a 
metric that, as we have seen in the previous experiments, is more prone to not being 
improved by the federation process. This is the behaviour that we see in the experiments 
with this aggregation method, as shown by Table 25 and 26, where not only the accuracy 
improves for all splits, but also the precision for all but one, the even split.

In the case of the Blended Blind Federated Learning with precision-based aggrega-
tion (Tables 27 and 28), the accuracy is improved in all cases, and the precision is also 
improved but only in the first case of the even split.

Discussion

The different experiments show that, even in the most imbalanced cases, the federated 
learning approach improves the average accuracy of the models. FL increases the perfor-
mance of the models while allowing the private sharing of data among the participants.

Nevertheless, there are differences between the efficiency of the models after the 
distinct federation methodologies. In general terms, the Blind Federated Learning 
method has lower precision than the Blended counterpart with the same aggregation 

Table 25 Blind FL results (Precision-based weights)—Adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 67% 0.9444 0.9444 0.9230 0.9166

2 20% 61% 0.8611 0.8888 0.8400 0.7777

3 20% 72% 0.8055 0.8888 0.7878 0.8666

4 20% 78% 0.9722 0.9722 1.0000 0.9642

5 20% 72% 0.8611 0.9444 0.9200 0.9259

Avg. – – 0.8889 0.9278 0.8941 0.8902

1 13% 63% 0.5217 0.5217 1.0000 1.0000

2 30% 80% 0.3260 0.3478 0.9231 1.0000

3 21% 87% 0.2179 0.2948 1.0000 1.0000

4 11% 61% 0.6046 0.6046 1.0000 1.0000

5 24% 81% 0.3823 0.3921 0.9000 0.8947

Avg. – – 0.4106 0.4322 0.9646 0.9789
1 4% 75% 0.3125 0.3125 1.0000 1.0000

2 5% 68% 0.3157 0.3684 0.5000 1.0000

3 45% 77% 0.4171 0.4355 0.9428 0.8750

4 13% 51% 0.5434 0.6086 1.0000 1.0000

5 32% 85% 0.2905 0.3418 0.8636 0.8500

Avg. -– – 0.3759 0.4134 0.8612 0.9450
1 1% 25% 0.1666 0.3333 0.0000 0.2500

2 5% 72% 0.3500 0.4000 1.0000 1.0000

3 45% 78% 0.3416 0.3726 0.9166 0.8947

4 14% 53% 0.5510 0.5918 0.7000 0.5000

5 35% 89% 0.2222 0.2301 1.0000 1.0000

Avg. – – 0.3263 0.3855 0.7233 0.7289
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approach in two out of three datasets used, while in the third one the results are quite 
similar for all aggregations. For the breast cancer dataset the results show that, in the 
case of the Blind Federated Learning, the averaged precision of the models does not 
improve after the federation process in two out of four examples with different imbal-
anced data (see Tables 3 and 4), while in all cases of the new methodology the aver-
aged precision increases (see Tables 5 and 6).

A similar reasoning can be applied to the accuracy-based aggregation methods. In 
this case, as mentioned before, the accuracy improves in all cases after the federated 
learning process, independently of the methodology used. Nevertheless, as in the pre-
vious example, the Blind Federation process does not increase the model precision in 
three out of four experiments, always in the imbalanced cases (see Table  7). Mean-
while, for the Blended Federated Learning procedure, the precision is increased in all 
cases but one, the second most imbalanced one (see Table 9).

Given the difficulties shown to improve the average precision of the models, the 
authors test if the precision-based aggregation method can improve the precision 
of the models while maintaining the accuracy levels post-Federation. The results 
provides two insights. Firstly, the performance of the model regarding accuracy is 
improved in all cases, just like in the previous experiments. Secondly the precision is 
improved in most of the experiments with this aggregation method.

Table 26 Blind FL results (Precision-based weights, slope 5, sigmoid)—adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 67% 0.9167 0.9722 0.9630 0.9655

2 20% 61% 0.9722 1.0000 1.0000 0.9231

3 20% 72% 0.7500 0.9722 0.7500 0.9643

4 20% 78% 0.8889 0.8889 0.9000 0.9000

5 20% 72% 0.9167 0.9444 0.9231 0.8621

Avg. – – 0.8889 0.9556 0.9072 0.9230
1 13% 63% 0.3201 0.3537 0.8718 0.8333

2 30% 80% 0.3621 0.3793 0.8500 0.7143

3 21% 87% 0.3692 0.3754 0.9623 0.9730

4 11% 61% 0.4740 0.4805 0.9722 0.9259

5 24% 81% 0.3255 0.3458 0.8632 0.9111

Avg. – – 0.3702 0.3869 0.9039 0.8715

1 4% 75% 0.3117 0.3247 0.8182 0.7000

2 5% 68% 0.2821 0.2821 1.0000 0.6667

3 45% 77% 0.3495 0.3774 0.8532 0.8514

4 13% 51% 0.5161 0.5215 0.8421 0.6429

5 32% 85% 0.2851 0.3050 0.8750 0.8980

Avg. – – 0.3489 0.3621 0.8777 0.7518

1 1% 25% 0.5588 0.5882 0.3333 0.0000

2 5% 72% 0.2800 0.2800 1.0000 0.8000

3 45% 78% 0.3645 0.3862 0.8915 0.9506

4 14% 53% 0.4754 0.4809 0.7500 0.4667

5 35% 89% 0.2393 0.2935 0.8025 0.9028

Avg. – – 0.3836 0.4057 0.7555 0.6240
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The Blind Federated Learning process increases the averaged precision of the mod-
els in all cases but one, the most imbalanced test (see Tables 11 and 12). Despite of the 
rest of the experiments using different aggregation methods, the Blind methodology 
performs better than the Blended one, since the averaged precision is only increased 
in two out of four tests (see Tables 13 and 14).

Finally, the authors benchmarked the different methodologies and aggregation 
methods with the initial case where no distribution is made, to understand if the 
accuracy and precision metrics of the distributed problems are similar to a conven-
tional problem.

The performance of an FCM with only one agent and trained using the full dataset 
is shown in Tables 1, 2, 15 and 16. The accuracy and precision are similar to the aver-
aged metrics of the Federated models using the new methodology, with all aggrega-
tion methods, in the case of balanced datasets.

In the case of the Blind Federated Learning approach, we can see that the abso-
lute performance values for the balanced datasets are worse than using the Blended 
Blind Federated Learning procedure: 0.9123 for the averaged accuracy and 0.6981 for 
the averaged precision with the aggregation using constant weights, 0.9209 for the 

Table 27 Blended Blind FL results (Precision-based weights)—adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 72% 0.7777 0.8888 0.8214 0.8928

2 20% 72% 0.9166 0.9444 0.9600 1.0000

3 20% 81% 0.8888 0.9444 0.9629 1.0000

4 20% 69% 0.8611 0.9166 0.9166 0.9200

5 20% 83% 0.9166 0.9166 0.9354 0.9354

Avg. – – 0.8722 0.9222 0.9193 0.9497
1 13% 63% 0.4680 0.5106 0.5710 0.6667

2 30% 80% 0.3296 0.3296 1.0000 1.0000

3 21% 87% 0.2631 0.2894 1.0000 1.0000

4 11% 61% 0.5454 0.6136 0.6667 0.6000

5 24% 81% 0.3619 0.3619 1.0000 0.8000

Avg. – – 0.3936 0.4210 0.8476 0.8133

1 4% 75% 0.3888 0.3888 1.0000 1.0000

2 5% 68% 0.2380 0.2857 0.5000 0.0000

3 45% 77% 0.3293 0.3652 1.0000 0.7222

4 13% 51% 0.4772 0.5454 0.0000 0.5000

5 32% 85% 0.3214 0.3482 0.9333 0.8333

Avg. – – 0.3510 0.3867 0.6867 0.6111

1 1% 25% 0.6250 0.6250 0.0000 0.0000

2 5% 72% 0.4117 0.4705 0.7142 0.8000

3 45% 78% 0.3488 0.3604 0.8437 0.7222

4 14% 53% 0.5531 0.5531 0.6666 0.5000

5 35% 89% 0.1949 0.2372 1.0000 0.8750

Avg. – – 0.4267 0.4493 0.6449 0.5794
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averaged accuracy and 0.6981 for the averaged precision with the accuracy-based 
aggregation, and 0.9123 for the averaged accuracy and 0.7137 for the averaged preci-
sion with the precision-based aggregation, in the case of the FCM with slope 2 and 
hyperbolic tangent activation function.

Clearly, the performance metrics for the imbalanced cases are non-comparable to the 
non-distributed problem, since the difference between the amount of information each 
participant holds has to be leveraged.

Conclusions
In this research, the authors propose two innovative methodologies to apply federated 
learning to FCMs, in order to take advantage of the benefits of this new paradigm for 
Distributed Artificial Intelligence that allows the sharing of private data in a secure way 
to train a sophisticated machine learning model.

Both methods show an improvement of the averaged accuracy post-Federation in all 
experiments performed, both in balanced and imbalanced data. In the balanced case, we 

Table 28 Blended Blind FL results (Precision-based weights, slope 5, sigmoid)—Adult dataset

Bold values indicate the best results

Agent Size % 1s Accuracy Accuracy Precision Precision
Pre-FL Post-FL Pre-FL Post-FL

1 20% 72% 0.8889 0.9444 0.8966 0.9000

2 20% 72% 0.8889 1.0000 0.9630 1.0000

3 20% 81% 0.9722 0.9722 1.0000 1.0000

4 20% 69% 1.0000 1.0000 1.0000 0.9688

5 20% 83% 0.9167 0.9722 0.9000 0.9643

Avg. – – 0.9333 0.9778 0.9519 0.9666
1 13% 63% 0.3007 0.3277 0.7692 0.8205

2 30% 80% 0.3651 0.3730 0.8696 0.8182

3 21% 87% 0.2708 0.3095 0.7045 0.7500

4 11% 61% 0.3618 0.3750 0.9524 1.0000

5 24% 81% 0.3115 0.3496 0.8429 0.9063

Avg. – – 0.3220 0.3470 0.8277 0.8590
1 4% 75% 0.2785 0.3038 0.6667 0.6000

2 5% 68% 0.3200 0.4000 0.7778 1.0000

3 45% 77% 0.3324 0.3709 0.9157 0.9740

4 13% 51% 0.4433 0.4588 0.7500 0.7500

5 32% 85% 0.3062 0.3159 0.9722 0.9773

Avg. – – 0.3361 0.3699 0.8165 0.8603
1 1% 25% 0.6875 0.7188 0.6667 0.5000

2 5% 72% 0.2692 0.2949 0.8182 0.7143

3 45% 78% 0.3045 0.3361 0.7232 0.7973

4 14% 53% 0.5000 0.5412 0.7419 0.7368

5 35% 89% 0.3145 0.3183 0.9271 0.8889

Avg. – – 0.4152 0.4418 0.7754 0.7275
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can see that both the accuracy and precision are comparable to the performance metrics 
of the non-distributed case. That is, an only FCM trained with all the available data.

Finally, comparing the two presented proposals, the Blind Federated Learning, and 
Blended Blind Federated Learning, the second proposal, where the new local model is 
obtained by averaging the parameters of the global method with the ones of the previ-
ous local method, instead of using the global model as the new local model as in the 
case of the Blind Federated Learning approach, generally performs better across all 
experiments but for the case when a precision-based aggregation is used.

Also, an important benefit to the use of FCM for the federated learning approach 
is that there is no need for the definition of an initial model as in the case of con-
ventional federated learning with neural networks, where an additional central server 
usually describes the architecture of the network that every participant will train. In 
this case, every participant trains the FCM without any predefined model from the 
server, making it a blind method. The presented approach addresses the challenge of 
federated learning without the requirement of an initial model, constituting a novelty 
in the field.

In the course of this research, we have proposed a methodology for federated learning 
without an initial model, primarily relying on FCMs. While this research has addressed 
the challenges associated with blind federated learning, an open research question 
remains unexplored: the development of federated models based on AI architectures dif-
ferent from FCMs. When dealing with AI models other than FCMs, the blind approach 
needs to be reformulated, as these models lack the specific characteristics of FCMs.
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