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Abstract 

Using recent information and communication technologies for monitoring and man‑
agement initiates a revolution in the smart grid. These technologies generate massive 
data that can only be processed using big data tools. This paper emphasizes the role 
of big data in resolving load forecasting, renewable energy sources integration, 
and demand response as significant aspects of smart grids. Meters data from the Low 
Carbon London Project is investigated as a case study. Because of the immense stream 
of meters’ readings and exogenous data added to load forecasting models, address‑
ing the problem is in the context of big data. Descriptive analytics are developed 
using Spark SQL to get insights regarding household energy consumption. Spark 
MLlib is utilized for predictive analytics by building scalable machine learning models 
accommodating meters’ data streams. Multivariate polynomial regression and decision 
tree models are preferred here based on the big data point of view and the literature 
that ensures they are accurate and interpretable. The results confirmed the descriptive 
analytics and data visualization capabilities to provide valuable insights, guide the fea‑
ture selection process, and enhance load forecasting models’ accuracy. Accordingly, 
proper evaluation of demand response programs and integration of renewable energy 
resources is accomplished using achieved load forecasting results.

Keywords: Apache Spark, Big data (BD), Demand response (DR), Load forecasting (LF), 
Smart grid (SG), Smart meters

Introduction
The electric grid changes to be smarter by deploying modern information and com-
munication technologies like smart meters and digital relays. Smart meters are widely 
installed in the smart grid (SG) [1], and they are the primary source of data generated 
across it [2]. They provide a communication channel between the utility and consum-
ers and offer online energy measurements [1–3]. Combining these measurements with 
exogenous data (weather, demographic, and holiday data) can be applied to understand 
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consumption patterns, make load forecasting (LF) [4], and enable demand response 
(DR) programs.

DR programs become more significant in the SG context because they can alter load 
profiles to be more flexible with grid conditions and maintain grid security against over-
loading and power failure [2, 5]. Applying DR programs requires accurate forecasting for 
the electric energy consumption and the available power on the generation side, which 
is more stochastic with the high penetration of renewable energy sources (RES). LF can 
help the utility provide reliable service by predicting load consumption and then using 
the predicted values as references for DR programs. Utilities also depend on LF to plan 
for network upgrading and maintenance activities. Dynamic Time-of-Use (DToU) tariff 
is one of the DR programs; where the electricity price has fixed rates at different times [5].

The main challenge to using measurements of smart meters is that these devices 
generate enormous amounts of data that cannot be handled using traditional tools 
and software [4, 6]. The ability to digest, store, and analyze this data can reveal new 
insights about load usage patterns and provide a database for more accurate and scal-
able Machine Learning (ML) models [1]- [3]. Using tools of big data (BD) becomes more 
relevant because the data in the SG has the same features as BD. These features are sum-
marized by:

• Volume: Huge amounts of data are generated (e.g., over a year and a 15-min resolu-
tion, 1 million smart meters generate data of 2920 TB volume [7]).

• Velocity: The data is streamed at a very high speed. Achieving fast processing and 
online decision-making (e.g., dynamic demand response [7]) needs powerful tools.

• Value: The data generated has no value till usable knowledge is extracted [2].
• Variety: The data generated in SG may be:

– Structured data (energy consumption data and measurements taken by digital 
relays),

– Semi-structured data (data obtained from XML data or web services like weather 
data), or

– Unstructured data (SMS notification about tariff and energy use) [7].

BD issues in SG

Researchers are enthusiastic about arguing sources, applications, and challenges of BD in 
SG which are reviewed in Table 1. As shown in Table 1, there are a lot of BD sources distrib-
uted across SG. These data sources capture high-resolution data that can be used in several 
applications. Applications in distribution systems are the most interesting ones regarding 
the electricity market, grid economics, and efficient operation. One main challenge that 
hinders these applications is the last one specified in Table 1, which is data processing and 
analysis with cost-effective tools and models. This study addresses this challenge by apply-
ing BD tools to handle BD sets and extract beneficial knowledge from them.

Over time, BD technologies have been developed. The need for tools that can harvest, 
store, process, and analyze the data generated rises to encounter the era of BD. Hadoop 
and Apache Spark are the most common and open-source BD ecosystems [9, 16]. In 
[9], a comprehensive explanation of the components of these ecosystems is provided. 
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Therefore, the advantages of the Spark ecosystem over Hadoop are summarized as 
follows:

• Speed: Spark performs computations in memory and not on the desk. This feature 
saves the time of writing on and retrieving data from the desk.

• Ease of use: Spark supports many application programming interfaces (APIs): 
Python, R, Scala, and Java.

• Capability: Spark supports streaming applications, machine learning, and SQL (like 
querying).

Figure 1 illustrates the components of the Apache Spark engine, Spark APIs, and Spark 
data citizens. As presented in Fig.  1, Spark has four distinctive engines. This research 

Table 1 BD sources, applications, and challenges in SG

BD sources Smart meters [1, 8–12]

Weather data [1, 2, 12]

Gas turbines and wind turbines [13]

Sensors (e.g., Internet of Things sensors, geographical information 
system data) [9, 12]

Substation data collected from:
‑ Phasor Measurement Units (PMUs) [9, 12],
‑ Remote Terminal Units (RTUs) [9, 12], and
‑ Digital relays

SCADA [8, 9, 12]

BD applications LF and RES forecasting [1, 2, 9, 12] to improve integration of RES [12]

DR applications [8, 12, 14, 15]

Asset management [2, 12]

Preventive maintenance and health monitoring [9]

Power quality monitoring [9]

BD challenges BD management issues such as:
‑ Data privacy and security [8, 12]
‑ Data storage [12]

Data processing and analysis [2, 16] with cost‑effective solutions [12]

Engine Components
APIs Data Citizens

Spark SQL

Spark MLlib 

Spark Streaming

GraphX

Java

Scala

Resilient Distributed 

Dataset (RDD) 

DataFrame

Dataset

Python

R

Apache Spark 

Fig. 1 Apache Spark engine components, APIs, and data citizens
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utilizes Spark SQL and Spark MLlib. Spark SQL is used for descriptive analytics while 
Spark MLlib is used for predictive analytics to build scalable ML models using the power 
of distributed clusters.

Besides the four components of the Spark engine displayed in Fig.  1, Spark uses 
Hadoop Distributed File System (HDFS) for data storage. Currently, the DataFrame is 
the most popular data citizen supported by Spark, which is applied in this work. Python, 
one of the supported APIs in Spark, is used in this work.

LF and ML models

Because of the large volume of smart meters data and the exogenous data considered 
in LF problems, LF in SG becomes a BD problem. Exogenous data (like weather data, 
social information, and geographic information system data) increases the predictability 
and accuracy of the model [7]. In this research work, short-term LF for households is 
applied to enable and assess the DR programs since the households’ energy consumption 
accounts for a large portion of the total energy consumption in the SG [7].

Some LF techniques have evolved from statistical-based methods, such as Auto 
Regressive Moving Average (ARMA), Auto Regressive Integrated Moving Average 
(ARIMA) [17], and Regression models [18, 19]. Some other techniques are ML and deep 
learning algorithms [3, 20]. This section presents a literature review of the ML models 
used for LF tasks in the BD context.

Different predictive models used for LF tasks are discussed in [20]. According to such 
review, Artificial Neural Networks (ANN) are gaining more confidence in the predictive 
modeling task as they can capture nonlinear relationships and thus deliver more accu-
rate results. A detailed LF methodology, starting from the data gathering phase to finally 
predict the demand, is proposed in [21] using seven different ML algorithms based on 
BD. Nevertheless, such algorithms were implemented in Python, even though Python is 
not adequate for BD problems.

Although many reported efforts have been exerted on the LF problem, fewer ones 
addressed the problem using BD tools. Spark and Prophet (an open-source forecasting 
procedure offered by Facebook) were utilized to make LF for simulated data [17]. Such 
work proved that adding meteorological data enhanced the accuracy of LF. In [22], dif-
ferent ML models implemented in Spark were compared against the same models in the 
Python Sklearn library using residential smart meters data offered by the Low Carbon 
London (LCL) project. The results indicated that Sklearn could not handle BD sets, and 
employing Spark was mandatory for this case. Also, the results displayed that ML mod-
els of Spark were more accurate than those of the Sklearn library. Linear regression (LR) 
model was verified by such work to have the least testing and training times besides the 
best accuracy. One defect of LR model is that it requires high computational power due 
to matrix operations. By decreasing number of features and applying multi-core parallel 
processing in [18] made LR model faster and mitigated this problem. The abovemen-
tioned works were interested in the LF problem without further applications in SG.

Captured high-resolution data by smart meters can be used for energy consumption 
monitoring and DR applications. In [1], Spark is employed for the task of the Extract-
Transform-Load (ETL) process, Tslearn library (a Python library) is used to make LF, 
and finally, Tableau is engaged for descriptive analytics. The accuracy of that model 
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was high, but the applied tools were not appropriate for BD applications. The role of 
BD in DR was emphasized in [2, 12]. Some solutions for DR were presented in [10, 14, 
15] based on BD. Data from smart meters was utilized to predict customer eligibility for 
being recruited in DR programs [10]. An approximated optimized function was imple-
mented in [14] for large-scale customer selection for DR programs based on the data of 
smart meters.

Research gap and contribution

From the literature review, it is noticed that few research works were interested in pro-
viding scalable solutions for SG applications. Most of the work was conducted from the 
computer science point of view, like testing and evaluating a suggested BD platform or 
comparing different predictive algorithms using a given dataset. Many works have used 
compound predictive models for LF tasks to enhance accuracy. Clustering is applied as 
a pre-step before the regression model to group customers and then fit a customized 
regression model for each group. Compound models require more computational bur-
dens than single models, and these requirements rise exponentially for BD sets. Also 
from the literature, it is deduced that the contribution of BD analytics to RES integration 
in SG was limited. For that reason, the main contributions of this study are shortened to 
the following:

• Discuss the eligibility of different ML models suitable for BD applications.
• Address the LF task through a case study using actual smart meters data to build 

scalable, high-accuracy, and simple (i.e., not compound) models. The models are 
established based on a concise feature selection using the descriptive analysis results.

• Compare the ML models applied (regarding their accuracy, fitting, and testing times), 
and then get a recommendation about which model to use.

• Utilize the LF results to put a framework for evaluating the DToU tariff and help to 
integrate RES efficiently. This framework would make the SG operation more eco-
nomical and efficient.

Therefore, this paper employs Apache Spark to analyze the massive data released by 
the smart meters to address the research question of how big data analytics can provide 
new insights to the Distribution Network Operator (DNO) to help in RES integration 
and implementation of DR programs. Also, this work investigates how to provide accu-
rate LF results with low computational efforts in ML models. Applying BD tools in SG is 
postulated to provide valuable insights that would help the DNO understand consump-
tion behaviors and provide scalable ML models for LF tasks. LF results are also proposed 
to be the baseline for applying DR programs and issuing DToU tariffs.

The rest of the paper is organized as follows: "Description of LCL Project Data" section 
introduces the LCL project and data used in this research work. "ML Models for Scala-
ble Models" section briefly argues the ML models from the BD point of view and justifies 
the selection of LR and decision tree regression (DTR) models. Then, a brief introduc-
tion to the two selected models is presented in "Introduction to LR, DTR Models, and 
Evaluation" section. The methodology, platform, and framework used for evaluating 
customer response to DToU tariffs and for integrating RES are revealed in "Proposed 
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Methodology" section. Results for descriptive and predictive analytics are discussed in 
"Results and Discussion" section. Conclusions are drawn in the last section.

Description of LCL project data
This paper has used the data of the LCL project as a case study. The utilized data is the 
energy consumption captured by smart meters of 5,567 households in London between 
November 2011 and February 2014 with a 30-min interval. In 2013, 1044 households 
were selected for the DToU experiment for one year. The total readings captured over 
the project were over 167 million records [23]. Such data is open for reuse on the web-
site of UK Power Networks [24]. Utilities in the UK apply a customer segmentation tool 
called ACORN that segments customers based on demographic conditions. Figure  2 
illustrates the count of houses enrolled in the LCL project grouped by their ACORN cat-
egory (Affluent, Comfortable, or Adversity) and the type of program they were enrolled 
in (either standard or DToU program). Based on [23, 24], two different types of DToU 
tariff events are proposed for the LCL project:

• Constraint Management (CM): It is used when the predicted load exceeds the grid 
capability limits. This type is critical for the distribution network because it prevents 
the grid from overloading and saves money spent to reinforce the grid. CM events 
were established with a Low–High-Low (LHL) price pattern. As a result, customers 
can shift their unnecessary loads to the low tariff periods.

• Supply Following (SF): A combination of high and low DToU prices are used to 
encourage customers to shift load away from periods where there is a shortfall in the 
supply of electric power to periods with surplus power supply and high RES genera-
tion.

As energy consumption depends on weather data and demographic conditions, such 
data was added to enrich our analysis and ensure more precise forecasting. The weather 
data was involved from Darksky API.

It is worth mentioning that LCL project data is utilized by other prior works such as 
[1, 4, 22, 25]. Table  2 displays a quick comparison among such works. It summarizes 
the scope, platform used, ML model, and target variable of such investigations. Since 

Fig. 2 Houses enrolled in the LCL project grouped by ACORN category
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utilizing BD for SG applications is the main issue of this study, the main concerns for 
previous work in [1, 4, 22, 25]; regarding the contribution of BD and SG are also high-
lighted in the last columns of Table 2.

ML models for scalable models
This study considers Spark MLlib for its advantages noted before and meanwhile, 
Apache Spark supports data streaming and querying that serve applying ML models. In 
the beginning, brief guidelines for different regression models and their eligibility for BD 
applications are discussed in this section.

ANNs are the most popular ML models but are not implemented in Spark MLlib. 
Furthermore, ANNs are non-self-interpretable models, require high computational 
power, and are prone to overfitting [18]. K-nearest neighbor and support vector regres-
sion models are not implemented in Spark Mllib. K-nearest neighbor is not suitable for 
BD sets. It requires vast memory to save all data points, and the prediction time is very 
long since the computations are repeated each time a new reading comes, which is not 
acceptable for fast streaming data [26]. Because of the kernel trick that the support vec-
tor machine models apply, such models are not suitable for BD sets since the kernel 
trick needs much memory and processing. On the other hand, the regression models 
implemented in Spark MLlib are investigated in [22]. According to [22], random for-
est, LR, and DTR models have the best-evaluating indices (e.g., accuracy, testing time, 
and training time). Ensemble learning is another promising domain in the ML field, and 
it is proven to provide accurate models. The idea of ensemble learning is to use differ-
ent models to obtain better performance. It relies on the concept of the wisdom of the 
crowd. However, this type suffers from extraordinary computational costs when it fits 
large-scale datasets [27]. The ensemble learning models in Spark MLlib are random for-
est and gradient-boosted trees based on DTR models.

Based on these fundamentals, LR and DTR models were selected to be applied in this 
study. LR and DTR are self-interpretable models. It means that their results can be eas-
ily understood and communicated with stakeholders, and ML engineers can inspect the 
model and troubleshoot any errors after revising the results. Nevertheless, LR requires 
massive computational resources due to heavy matrix operations; this work makes a 
concise feature selection, as discussed in [18], to reduce the matrix size so the model 
computation effort and time are optimized.

In summary, this paper considers regularized LR and DTR models. Regularized LR 
models often reduce model over-fitting and remove the least effective model coeffi-
cients. Besides, eliminating some model coefficients reduces the computation effort for 
LR. The following section briefly introduces the LR model with its regularized versions 
and the DTR model.

Introduction to LR, DTR models, and evaluation
Introduction to the LR model

The linear regression (LR) model is the most elementary regression model that assumes a 
linear relationship between the target and dependent variables [18]. Equation (1) displays 
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this relationship where y is the target variable (load consumption in this study), X is the 
matrix of independent variables, β is the matrix of coefficients and C is the intercept.

Multivariate Polynomial Regression (MPR) is an extension of LR models by increasing the 
model degree. MPR can capture nonlinear relationships between the target and depend-
ent variables. MPR chooses the coefficients that minimize the cost function for each train-
ing point. Regularized models (such as the Ridge, Lasso, and Elastic net models) penalize 
model coefficients to avoid over-fitting, improve model generalization, and reduce model 
fitting and testing times [28].

Cost functions for Ridge, Lasso, and Elastic net models are expressed in Eq. (2), (3), and 
(4), respectively, where J is the cost function, βj are model coefficients, Ypredicted(i) is the 
predicted energy consumption, and Yobserved(i) is the true observed value for energy con-
sumption. Finally, n denotes the total number of observations or rows, and M describes the 
number of columns (e.g., features) in the training dataset. Equation (2) and Eq. (3) display 
that the Ridge model penalizes the model factors by their squared values while Lasso penal-
izes them by their absolute values. Elastic net models are a combination of Lasso and Ridge 
models [28]. The term α refers to the mixing parameter that mixes Ridge and Lasso penal-
ties. The parameters � and α are used interchangeably in ML references.

Introduction to the DTR model

DTR models are widely used since they are easy to interpret, handle categorical features, 
do not require feature scaling, and can capture nonlinearities and feature interactions. The 
implementation of DTR models in Spark MLlib has been optimized to make the model fast 
and scalable [29]. The algorithm tests the different features to split data on and then selects 
the feature that achieves the minimum weighted variance [30]. The value of variance is cal-
culated according to Eq. (5). The weighted variance is the corrected value of variance based 
on the ratio of points on each split.

(1)y = β · X +C

(2)JRidge =
1

2n

n
∑

i=1

(Ypredicted(i) − Yobserved(i))
2 + �

M
∑

j=1

βj
2

(3)JLasso =
1

2n

n
∑

i=1

(Ypredicted(i) − Yobserved(i))
2 + �

M
∑

j=1

| βj |

(4)

JElasticnet =
1

2n

n
�

i=1

(Ypredicted(i) − Yobserved(i))
2 + α



�

M
�

j=1

| βj | +(
1− �

2
)

M
�

j=1

βj
2





(5)Variance =
1

n

n
∑

i=1

(Ypredicted(i) − Yobserved(i))
2
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The result of the regression tree is the mean of all data points included in the final node 
(i.e., leaf). Splitting data in the tree stops if the maximum depth of the tree is reached, the 
reduction in the weighted variance is less than a threshold, or the number of points in a 
node is less than a threshold.

Evaluating ML models

Table 3 summarizes the general characteristics of both DT and MPR models. Spark MLlib 
provides various evaluation metrics as described in Eqs. (6–9), where MSE is the mean 
squared error, RMSE is the root mean squared error, MAE is the mean absolute error, and 
R2 is the coefficient of determination (where y denotes the average of all true values of the 
target variable y ). These metrics are reported for evaluating and comparing the models. 
Nevertheless, the R2 evaluation metric was used only for the hyperparameter tuning pro-
cess. When the value of such metrics increases, it indicates that the model has an increased 
error except for the R2 metric. The value of the R2 metric ranges between 0 and 1, when its 
value increases (or approaches 1), it means the model is more accurate.

(6)MSE =
1

n

n
∑

i=1

(

ypredicted(i) − yobserved(i)
)2

(7)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

ypredicted(i) − yoberved(i)
)2

(8)MAE =
1

n

n
∑

i=1

|ypredicted(i) − yobserved(i)|

(9)R2 = 1−
MSE

∑n
i=1

(

yobserved(i) − y
)2

Table 3 Comparison between MPR and DTR models

Model Pros Cons Over-fitting mitigation

MPR (LR) ‑ Self‑Interpretable
‑ Simple to implement

‑ Requires feature preprocessing and 
feature scaling
‑ High computation effort in the 
case of BD sets due to heavy matrix 
operations

Model regularization by Ridge, Lasso, 
or Elastic net

DTR ‑ Self‑Interpretable
‑ Does not require fea‑
tures preprocessing
‑ Handles categorical 
features

‑ Tends to be over‑fitting
‑ Most likely used for classification 
problems
‑ Not suitable for high‑dimensional 
data

Pruning (e.g., decreasing the tree 
depth)
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Proposed methodology
As discussed before, analyzing LCL project data necessitates the usage of a BD plat-
form because of the large volume of the Dataset and the need for fast processing. So, 
Python data analysis libraries such as Pandas would crash if used for analyzing such a 
Dataset. Accordingly, descriptive analytics were performed in this work via the Spark 
SQL module. Also, the Spark SQL module was used to make summary statistics on 
the entire Dataset. Matplotlib and Seaborn are used to plot the summarized results 
obtained from Spark SQL. Sklearn library is not a decent candidate for predictive 
analytics in this case study because it cannot handle BD sets [22]. On the other hand, 
Spark MLlib can train scalable and optimized models and thus it was used on this 
study for predictive analytics.

Feature selection

The number of features is condensed as discussed in [18] to mitigate the heavy matrix 
computations for the MPR model and decrease the DTR depth and complexity. 
Reducing the number of input features makes the applied ML models faster, more 
robust, more interpretable, and more scalable for BD applications. For determining 
the most effective weather parameters for the energy consumption prediction pro-
cess, the heat maps for Pearson correlations are plotted. Figure 3 displays the abso-
lute correlations among different weather variables, while Fig.  4 demonstrates the 
absolute correlations between energy consumption and weather variables. It is worth 
highlighting that the correlations shown in Fig.  4 denoted by ‘Energy’ belonging to 
an individual household energy consumption (one house), while the aggregated sum 
of energy consumption for one settlement block of houses (i.e., around 50 houses) is 
denoted by ‘Energy sum’.

From Fig.  4, it is inferred that individual household consumption has little correla-
tion with weather parameters (in the range of 0.01 to 0.06). However, the correlation 
is much more significant for the aggregated sum of energy consumption for the whole 
block for temperature, apparent temperature, and dew point (of values 0.43, 0.45, and 
0.44, respectively). From Fig.  3, strong correlations are observed among temperature, 

Fig. 3 Absolute correlations among weather variables
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apparent temperature, and dew point (with values ranging between 0.84 and 0.99). To 
avoid multicollinearity, the apparent temperature is only considered since it has the 
highest correlation with the energy sum variable (0.45).

Fitting regression models

Based on the above analysis, the target variable is designated as “the sum of the energy 
consumption of all residential houses”; since predicting aggregated energy consumption 
is much easier than predicting the energy consumption of a single household, where the 
slight variations of individual household consumption are canceled out. Also, the DNO 
is more interested in the total substation or feeder load.

Spark MLlib was used for training regularized MPR and DTR models for the sum of 
load consumption of one settlement block (i.e., Block # 0) and again for all households 
in the LCL project. To assess the customer response for the DToU program, the sum of 
load consumption for blocks (# 2, 4, 6, 8, 46, and 48) was also forecasted as these blocks 
had the same CM events at the same time. It is noteworthy that building regression 
models for one settlement block is beneficial since DNOs can have insights into the cor-
responding feeder or the distribution transformer load. Also, utilities need insights into 
the predicted load for each housing block to target customers; who are more engaged in 
DR programs.

Table 4 displays a sample of the DatatFrame fed to the ML model predicting the 
sum of energy consumption for Block # 0 after accomplishing the feature selection 
process. The meaning of these variables is demonstrated in Table  5. In the results 
section, other variables that affect the prediction process are investigated. The 
parameter count (LCLid) is included as there were a lot of missing data records at 
some time instances. This variable is valuable in real applications to compensate 

Fig. 4 Absolute correlations between energy consumption and weather variables

Table 4 A sample of Spark DataFrame (for Block # 0) after feature selection

Count (LCLid) Temperature Hour Weekend Sum (energy)

44 8.78 19 1 40.748

47 21.84 8 0 13.408

43 7.41 11 1 27.39

5 6.44 4 0 1.302
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houses with power outages. For example, with a power outage in some part of the 
network, the affected houses would consume no power.

Concerning the regression model for forecasting the sum of energy of all houses, 
the features are the same as demonstrated in Table 4 except for the variable count 
(LCLid). It decomposes into three variables that exhibit the number of houses per 
ACORN category. This decomposition was not done for the regression model run 
for one block since the houses of one block belong to the same ACORN category. It 
is also worth clarifying that the regression models would not consider the applied 
tariff. As revealed in Fig. 5, the portion involving low and high tariffs was limited, so 
regression models cannot be trained on these features. However, it can be utilized to 
evaluate customer responsiveness to DToU tariffs and create an automated frame-
work for tariff design and RES integration.

Assessing customer responsiveness to DToU tariffs

For assessing the customer responsiveness to the DToU tariff, the difference between 
the predicted energy consumption (from the ML model) and the actual energy con-
sumption is estimated as expressed in Eq.  (10), where Epredicted and EActual are the 
forecast and actual energy consumptions, respectively.

By neglecting the error of the ML model itself, there should be some deviation 
between these two values because ML models do not consider the applied tariff. By 
applying the low tariffs, it is anticipated that �E deviates more to negative values as 
per the actual consumption increases motivated by the low price of electricity.

(10)�E = Epredicted − EActual

Table 5 Features description

Feature Name Type Description

Count (LCLid) Feature variable The number of houses registered at this time instance because there were 
many house records missed at some times

Temperature Feature variable The ambient temperature at this time (in Celsius)

Hour Feature variable The hour at which the energy is recorded

Weekend Feature variable Whether the day is a public holiday and weekend or a normal working day 
(Boolean variable)

Sum (energy) Target variable The sum of energy of all houses at the given time instance

Fig. 5 Tariffs applied in the LCL project
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Framework for RES integration and issuing DToU tariffs

In the proposed framework, the LF results obtained from the ML model (aligned with 
RES forecasting) were used to generate proper DToU tariffs and also evaluate customer 
response to these tariffs. The flowchart of this framework is illustrated simply in Fig. 6. 
Firstly, the framework guarantees a secure operation for the SG by verifying that the 
forecasted load does not exceed the grid capability limits (i.e., ratings of downstream 
feeders) by applying a CM event. Secondly, the framework computes the total RES share, 
and a supply following (SF) event is issued based on the RES share in load demand. 
When the predicted RES share is high, a low tariff is suggested, and vice versa for high 
tariffs. SF events guarantee efficient operation for the SG. Customer response to CM and 
SF events is evaluated; as described in "Assessing Customer Responsiveness to DToU 
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Grid Limits CM Event 

Forecasting RES Production
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Share

SF Event 
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Fig. 6 Flowchart of the proposed framework for DToU tariff generation and RES integration using predictive 
analytics results
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Tariffs" section. In case the response is not satisfactory, other solutions should be con-
sidered; such as:

• Increasing the number of customers in the DToU program.
• Organizing campaigns to increase customer awareness about DR programs and the 

sustainable operation of the SG.
• Investing in energy storage systems (e.g., batteries and electric vehicles).
• Reinforcing the grid to withstand peak loading.

Overall implementation and requirements

Dataproc service from Google Cloud Platform (GCP) is selected for this work. Cloud 
services provide scalable services that can scale up only when computing power is 
wanted. This feature lowers monthly fees. The free trial on GCP offers the platform 
shown in Fig. 7 with sufficient capabilities for analyzing the entire data of the LCL pro-
ject. It comprises the following:

• One master node that has two virtual CPUs with 7.5 GB RAM,
• Three worker nodes, each has two virtual CPUs and 7.5 GB RAM.

The overall outline for data flow and procedures for Spark implementation in this 
study is demonstrated in Fig. 8. The following are five main phases in this work:

1) Data gathering from different databases and APIs: as mentioned, smart meters data 
is combined with ACORN category data, bank holidays data, and weather data to 
enrich our analysis and build accurate predictive models.

2) Data cleaning and validating: by eliminating null values and false data (like zero 
energy measurements that would confuse ML models. The zero values are wrong 
as they represent power outages or bad communications). The portion of that bad-

Master Node: 
1 Node 
2 vCPU

7.5 GB RAM

Worker Nodes: 3 Nodes
Each 2 vCPU, Each 7.5 GB RAM 

Fig. 7 GCP cluster features
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unclean data is very limited compared to the overall data. Then, the data is grouped 
and aggregated to be ready for subsequent analysis.

3) Descriptive analytics: via Spark SQL to get insights and recognize consumption 
behavior.

4) Feature engineering: based on the descriptive analysis was done as explained in "Fea-
ture Selection" and "Fitting Regression Models" section. This stage aims to select the 
most important features and set the target variable of the ML models. New features 
were added to the model based on the exploratory analysis; like Count (LCLid) fea-
ture.

5) Predictive analytics: using Spark MLlib to build MPR and DTR models. DTR mod-
els require no data preprocessing. On the other hand, MPR models require some 
data preprocessing practices (such as feature scaling, polynomial expansion, and hot 
encoding [31]). Also, the models’ hyperparameters are tuned using cross-validation 
[32].

Data Gathering & Integration

Descriptive Analytics 

Data Preprocessing

Data Aggregation 

& Grouping
Exclude Outliers Drop null values

Feature Engineering 

Create features Setting target feature  

Predictive Anlaytics 

MPR RT

Data Splitting Hyperparameter Tuning Testing model

One Hot Encoder 

Polynomial Expansion 

Standard Scaling 

Eliminate Least 

important features 

Fig. 8 Data sources and their applications in this work
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Results and discussion
In this section, the results obtained from the descriptive and predictive analyses are 
demonstrated and discussed.

Results of descriptive analysis and discussion

Descriptive analytics assist the DNO in understanding consumer behaviors and pat-
terns, allowing the DNO to make informed decisions for appropriate DR programs and 
planning preventive maintenance actions.

Regarding all consumers

As previously stated, the Spark SQL module is used to compute summary statistics, and 
the Matplotlib library is used to plot the summarized data. Figure 9 displays the average 
load consumption for all the consumers for each hour. On the other side, Fig. 10 dem-
onstrates the average load consumption for each month along with the average appar-
ent temperature recorded in each month. As shown, Fig. 9 agrees with the typical daily 
profile, and Fig. 10 ensures that the average load consumptions in colder months were 
higher than in hotter ones. Figure 11 demonstrates the relation between the apparent 
temperature and the average energy consumption for all time stamps. The regression 

Fig. 9 Average energy consumption per hour

Fig. 10 Average energy consumption and apparent temperature per month
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line plotted in the graph ensures the negative correlation between the two variables 
emphasizing the conclusion of Fig. 10.

Regarding the acorn category and weekend feature

Figure  12 displays the average energy consumption for all days in January 2013 based 
on the acorn category. It highlights how demographic conditions influence the energy 
consumption pattern. To also investigate the effect of the weekend feature, the average 
energy consumption for working days is compared with the average consumption for 
weekends for the three acorn categories, as presented in Fig. 13. As revealed, the average 
consumption for weekends is slightly higher than normal working days, and the average 
consumption varies according to the acorn category.

Results from predictive analysis and discussion

Evaluating different tested models

As mentioned before, aggregating hundreds of millions of energy records is only pos-
sible using a distributed computing cluster and a BD tool like Spark. Table 6 summa-
rizes the scores of evaluating metrics for different tested models and the value-tuned 
hyperparameter. The key outcomes of the tabulated scores can be summarized in the 
following:

Fig. 11 Scatter plot for average energy consumption versus apparent temperature

Fig. 12 Time‑series plot for average energy consumption per day in January 2013 for each acorn category
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• The R2 metric is higher for the MPR model than the DTR model.
• The performance of regularized and non-regularized models is almost the same. 

It is because the features were selected wisely before fitting the models. Also, the 
number of samples used for training the model was very high, which enabled the 
model to capture the interrelations among the features and avoid overfitting. ML 
practitioners do not always consider regularizing models when the model perfor-
mance is the same on testing and training sets. In our case, the R2 metric of the 
cross-validation set is 0.95 and 0.94 for the testing set.

• The Elastic net model does not indicate more advance than the Ridge and Lasso 
models. The best hyperparameters for the Elastic net model were: α = 0, � = 
0.001. It means the mixing parameter was 0 and the Elastic net is the same as the 
Ridge model.

On the other hand, the achieved results for the regression models run for all the 
houses (the right section of Table 6) ensure that the R2 metric is better as forecast-
ing load improves when the number of households increases. Nonetheless, other met-
rics (i.e., MAE,MSE , and RMSE ) were higher than the regression model for only one 
housing block because the target variable (i.e., energy sum) for all houses model have 
much higher values than for the model of only one block. As mentioned before in 
Table  2, the target variables for other published studies in the literature differ from 

Fig. 13 Average energy for weekends and working days based on acorn category

Table 6 Evaluating metrics for different tested models

Model For only one block (Block # 0) For all houses in the LCL project

Tuning R2 MAE MSE RMSE Tuning R2 MAE MSE RMSE

Plain NA 0.944 1.721 6.112 2.472 NA 0.963 70.232 9894.756 99.472

Lasso �=0.001 0.943 1.778 6.253 2.501 � = 0.0001 0.961 71.695 10,362.92 101.798

Ridge �=0.001 0.943 1.769 6.202 2.490 �=1e−05 0.965 68.073 9238.572 96.117

Elastic net �=0.001
(L2 penalty)

0.943 1.769 6.202 2.490 �=1e−05

(L2 penalty)
0.965 68.073 9238.573 96.117

DTR Max depth = 5 0.91 2.004 10.338 3.215 Max depth = 5 0.922 107.58 23,989.95 154.88
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the target variable applied in this work. Hence, comparing the performances of ML 
models used in this work and the works mentioned in Table 2 is not applicable.

During the interval from 14th March to 19th March 2013, the actual and predicted 
load profiles for forecasting the sum of energy of settlement Block # 0 are revealed in 
Fig.  14, while the sum of energy of all blocks is displayed in Fig.  15. As shown in the 
figures, DTR is less flexible than other models. The actual load profile for Block # 0 is 
more dispersed than the load profile for all the households. The noticed notches on the 
16th and 17th of March are because a CM event was issued on those days. Also, the SF 
(supply following) event was applied on 14th March with a high tariff between 5:00 a.m. 
and 7:30 a.m. Through other days (i.e., 15th and 18th March), the prediction was mostly 
precise.

DTR had low performance regarding its accuracy as the maximum depth of the tree 
was not allowed to increase above 5 to limit the computational efforts and have bet-
ter insights. Tuning the depth of the tree by cross-validation should give more accurate 

Fig. 14 Actual and predicted load profiles for the sum of energy of Block # 0

Fig. 15 Actual and predicted load profiles for the sum of energy of all blocks
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results. For example, R2 metric would reach 0.982 if the tree depth becomes 12 for the 
model predicting the sum of load consumption of all houses. To get more insights, the 
complete DTR can be plotted by the D3.js library. As the original tree is so large and 
complex, the top nodes of the tree for LF of all houses are shown in Fig. 16. The plotted 
tree provides insights into how the model estimated the target and which are the most 
important features.

Computational efforts for different tested models

In BD applications, computational efforts are considered because these efforts increase 
exponentially as data size increases. The fitting and testing times of the models run on 
Spark MLlib are presented in Fig. 17. The exact time values differ according to the plat-
form capability, but the order of the models is still the same. As displayed, Elastic net 
model has the highest fitting times as the hyperparameter tuning tries all the possible 
combination values of regularization parameter � and mixing parameter α . Other regu-
larization models test only the possible values of regularization parameter � . However, 
testing times for regularized models were the lowest. The testing time parameter is more 
important than fitting time as the model is fitted once but used many times for predic-
tions. The fitting times were higher for Lasso and Elastic net models than for the Ridge 

Fig. 16 DTR for load prediction of all houses

Fig. 17 Fitting and testing times for all the models run for only Block # 0 and all blocks
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model. Thus, regularized models are preferred as they deliver faster results than plain 
non-regularized and DTR models.

As revealed, the prediction results are accurate and interpretable even though we 
applied standalone models and avoided using compound models (like fuzzy and cluster-
ing models) to enhance the model’s accuracy. Using simplified models is crucial in the 
BD context to reduce computational power. Reducing the number of features fed to the 
ML models made the models scalable and faster.

Results of customer response assessment

Summarized information about CM events conducted in the LCL project is offered in 
[23]. The CM events on settlement blocks # 2, 4, 6, 8, 46, and 48 are evaluated. These 
events were applied to households enrolled in the DToU program, and then the assess-
ment was done for these houses only. For these designated blocks, the total number of 
households was 300, while only 96 were enrolled in the DToU program. The evalua-
tion was achieved according to "Assessing Customer Responsiveness to DToU Tariffs" 
section, and the results are presented in this section. The predictions were made using 
the Ridge model based on the recommendation in "Computational efforts for different 
tested models" section that regularized models have better performance regarding pre-
diction computational effort.

Through all CM events, the number of occurrences of low tariffs was 383 times and 
120 times for high tariffs. Figure 18 displays the histogram for energy consumption dif-
ferences between actual and prediction values. It is noticed that customers were more 
interactive with high tariffs as the histogram is left-skewed. Conversely, customer 
response was worse for low tariffs.

Figure 19 displays the actual and predicted energy consumptions during six different 
examined CM events, as examples. The events were chosen to cover different months 
throughout the year. The selected events are P4_3D_0 in March, P1_3D_0 in May, 
P9_2D_0 in January, P4_2D_0 in February, P9_2D_1 in March, and lastly P1_2D_0 in 
November, as discussed in [23]. From the graphs of Fig. 19 (a to f ), it is noticed that:

Fig. 18 A histogram of energy difference for low and high tariffs
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• High tariffs were applied in peak hours from 17:00 to 23:00 in the six examined 
events. Accordingly, a considerable reduction in actual consumption is achieved in 
the three events P4_3D_0, P1_3D_0, and P4_2D_0 (as revealed in Fig. 19a, b, d). On 
the contrary, no decrease in energy consumption is attained in the other three exam-
ined cases P9_2D_0, P9_2D_1, and P1_2D_0 (as revealed in Fig. 19c, e, f ).

• During low tariffs, and as illustrated in Fig.  19c (for P9_2D_0), there was a good 
response from customers on the 19th and 20th of January, which were Saturday and 
Sunday. However, the correlation between the good response to low tariffs during 
weekends should be investigated more by applying more CM events at weekends. 
The customer responses on 2nd May, 3rd May (Fig. 19b), 17th March (Fig. 19e), and 
27th November (Fig. 19f ) were also good but less compared with the responses on 
19th and 20th of January. Finally, it was found that the customers did not respond 
to low tariffs applied in the last night hours (i.e., after 00:00) in any of the examined 
events.

Fig. 19 Six examples of CM events for blocks # 2, 4, 6, 8, 46, and 48
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Limitations and challenges

One main limitation of the applied ML models in this study is that their forecasting 
accuracy increases as the number of houses increases. Thus, these models are not suit-
able to forecast the energy consumption for only one house or a small group of houses. 
On the other hand, another limitation arises when the data size increases beyond the 
limit of the cluster RAM as the used cluster should be scaled up. Besides, obtaining a 
huge dataset to be used as a case study is a key challenge because of the data privacy 
issues.

Regarding the available LCL project data, obtaining detailed information about the 
time of applying DToU events, the RES capacity, and grid capability limits was not possi-
ble. Such data was essential to make a complete analysis of the proposed framework and 
to enrich the study results.

Conclusions
The developing usage of smart meters and information technologies in SG creates a 
large amount of data. This study highlights the significance of deploying BD tools to sup-
port the operation of SG. Apache Spark, as an integrated data analytics engine, is used 
to perform descriptive and predictive analytics on 167 million records of smart meters 
data from the LCL project in addition to exogenous data (like weather and demographic 
data). Spark SQL descriptive analytics offer new insights that help DNO recognize con-
sumption behavior (such as consumption patterns and trends). Descriptive analytics dis-
played how residential energy consumption relies highly on weather and demographic 
conditions.

Spark MLlib was used to train MPR and DTR models for the LF task because these 
models were proven in the literature to be precise and self-interpretable. As a result of 
reducing the number of features based on the exploratory analysis (i.e.,  four selected 
features for one block model and six features for the model of all blocks), ML models 
become more scalable, more computationally efficient, and less prone to overfitting. 
The R2 metric of fitted models exceeded 0.96 to predict the sum of energy consumption 
for all houses. So, this study recommends the regularized models, especially the Ridge 
model, as it has the least fitting and testing times concerning all tested cases.

Assessing the customer response to CM events highlighted the weak response to the 
DToU program, especially the low tariffs. Customer response to SF events is supposed 
to be weaker than the reaction to CM events which are designed to accomplish better 
customer response.

The results ensure that BD analytics can provide insights into load consumption 
patterns, trends, and predictions. Predictions are vital for planning, initiating DToU 
programs, and evaluating customer response to such programs. Also, these predic-
tions can be utilized in a framework that facilitates RES integration. Accordingly, all 
these measures will make the grid operation more secure, efficient, economical, sus-
tainable, and automated as the framework will generate the tariffs automatically.

Future work may extend to cover more analyses to catch the reason for weak 
responses to DToU programs and explore other solutions that can control con-
sumption behavior for customers. For attaining a comprehensive grid simulation to 
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investigate the framework proposed in this study, actual data is required for a par-
ticular grid (RES production, grid capability limits, and load consumption). The main 
challenge of conducting such work is data availability because of the privacy and 
security issues related to making the data available for public use.
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