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Abstract 

Efficiently treating cardiac patients before the onset of a heart attack relies on the pre-
cise prediction of heart disease. Identifying and detecting the risk factors for heart 
disease such as diabetes mellitus, Coronary Artery Disease (CAD), hyperlipidemia, 
hypertension, smoking, familial CAD history, obesity, and medications is critical 
for developing effective preventative and management measures. Although Elec-
tronic Health Records (EHRs) have emerged as valuable resources for identifying these 
risk factors, their unstructured format poses challenges for cardiologists in retrieving 
relevant information. This research proposed employing transfer learning techniques 
to automatically extract heart disease risk factors from EHRs. Leveraging transfer learn-
ing, a deep learning technique has demonstrated a significant performance in various 
clinical natural language processing (NLP) applications, particularly in heart disease risk 
prediction. This study explored the application of transformer-based language models, 
specifically utilizing pre-trained architectures like BERT (Bidirectional Encoder Represen-
tations from Transformers), RoBERTa, BioClinicalBERT, XLNet, and BioBERT for heart dis-
ease detection and extraction of related risk factors from clinical notes, using the i2b2 
dataset. These transformer models are pre-trained on an extensive corpus of medical 
literature and clinical records to gain a deep understanding of contextualized language 
representations. Adapted models are then fine-tuned using annotated datasets specific 
to heart disease, such as the i2b2 dataset, enabling them to learn patterns and rela-
tionships within the domain. These models have demonstrated superior performance 
in extracting semantic information from EHRs, automating high-performance heart dis-
ease risk factor identification, and performing downstream NLP tasks within the clinical 
domain. This study proposed fine-tuned five widely used transformer-based models, 
namely BERT, RoBERTa, BioClinicalBERT, XLNet, and BioBERT, using the 2014 i2b2 clini-
cal NLP challenge dataset. The fine-tuned models surpass conventional approaches 
in predicting the presence of heart disease risk factors with impressive accuracy. The 
RoBERTa model has achieved the highest performance, with micro F1-scores of 94.27%, 
while the BERT, BioClinicalBERT, XLNet, and BioBERT models have provided competi-
tive performances with micro F1-scores of 93.73%, 94.03%, 93.97%, and 93.99%, 
respectively. Finally, a simple ensemble of the five transformer-based models has been 
proposed, which outperformed the most existing methods in heart disease risk fan, 
achieving a micro F1-Score of 94.26%. This study demonstrated the efficacy of transfer 
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Introduction
Heart disease, chronic respiratory disease, and diabetes are among the many non-com-
municable diseases associated with the modern lifestyle. One of the highest death rates 
is caused by heart disease [1]. Heart disease is a term used to describe abnormalities of 
the heart. It is regarded as one of the world’s most powerful killers, surpassing Alzhei-
mer’s and cancer in power. The prevention of heart disease has become a serious issue 
in today’s world that needs to be addressed. It is estimated that one American dies of 
heart disease every 30 s [2]. Each year, 647,000 Americans suffer from heart disease [3]. 
Approximately 17.8 million deaths were caused by heart disease worldwide in 2017, an 
increase of 21.2% compared to 2007 [4]. In addition, heart disease can increase the need 
for hospital treatment by acting as a risk factor for other diseases. For example, they 
have been associated with a poor prognosis in the setting of COVID-19, threatening the 
ability of healthcare systems around the world [5]. Half of those who have a heart attack 
are not ’at risk’. These concerns require automatic prediction of heart disease and earlier 
identification, which is a critical issue. It is essential to prevent this life-threatening dis-
ease before it leads to millions of deaths. It is important to identify various risk factors 
to diagnose and prevent this disease earlier, such as Coronary Artery Disease (CAD), 
Diabetes, Hypertension, Hyperlipidemia, Smoking, Medications, Family history of CAD, 
and Obesity [6–9].

All other heart risk factors must be identified with indicators and temporal features, 
except CAD in the family and smoking status. Each characteristic of the indicator indi-
cates the clinical significance of the risk factor. A significant difficulty in the field of heart 
disease detection and prevention is the identification of risk factors reported in clinical 
notes.

That means it is a difficult problem in clinical data analysis to create a fully automated 
method to predict heart disease from EHR [10, 11]. Natural language used in clinical 
narratives stored in EHRs is sometimes described as idiosyncratic, with considerable 
variability in format and quality [12]. Structured data are commonly created for admin-
istrative purposes only in electronic health records, so the data are biased toward diag-
noses and procedures that are relevant to billing purposes. Unstructured clinical notes 
are the most in-depth source of data, but semantic labeling is not common because it 
requires advanced planning and analysis [13]. Although unstructured data has numer-
ous uses, there is a growing need to unlock them for primary and secondary purposes 
[14]. Secondary use of such data can include supporting observational studies, such as 
cohorts, cross-sections, and case–control research [15]. By developing systems for ana-
lyzing narrative clinical notes to register patients according to selection criteria, sam-
pling bias could be reduced [16]. Using NLP techniques, we can convert the meaning of 
human language into machine-readable representations that can be used for secondary 
purposes. NLP models from the general domain cannot be easily applied to clinical text 

learning using transformer-based models in enhancing risk prediction and facilitating 
early intervention for heart disease prevention.

Keywords: Coronary artery disease, Electronic health records, Natural language 
processing, Bidirectional encoder representations from transformers, Heart disease, 
Transformer-based models
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due to significant linguistic differences since it is likely to be simple terms, often referred 
to as the telegraphic style. Developing these systems for the clinical field is challenging 
because there are few publicly accessible annotated clinical narrative datasets. During 
the big data revolution, neural networks (NNs) were trained to model a variety of human 
languages with high accuracy as a result of the availability of large amounts of data in the 
general domain, but there has not been the same in small data scenarios, where models 
are often trained from scratch. Consequently, transfer learning methods have become 
increasingly popular, allowing previously trained models to be applied in new contexts 
with minimal annotation and labeling [17].

Transfer learning is a deep learning technique that refers to the process of adapting 
a model originally pre-trained for a specific task and is used as a basis for training a 
model to perform a different task using a new dataset [18, 19]. Although transfer learn-
ing has received much research in the field of medical image analysis, its application to 
text-clinical data is still lacking. Therefore, this scoping study aimed to investigate the 
feasibility of applying transfer learning to non-image data in the clinical text. Many of 
the most recent advances in generalizable and adaptable techniques are based on trans-
fer learning. When data is scarce, knowledge of fields, tasks, or languages with large data 
is applied [20]. Several clinical studies highlighted the potential of transfer learning to 
reuse models in a wide range of prediction tasks, data types, and even species. Trans-
fer learning was apparent to be particularly effective when applied to smaller datasets, 
rather than when machine learning algorithms were trained from scratch in terms of 
prediction [18].

Different methods can be used to transfer knowledge from a large dataset depending 
on the availability of the data source, task labels, and reused data [21]. Feature repre-
sentation transfer is one of the most common methods in which an input representa-
tion strategy that is trained unsupervised on a large dataset is transferred to a smaller 
annotated sample [21]. However, Goodfellow et al. [22] suggest that the application of 
this strategy has decreased since deep learning provides human intervention with large 
labeled datasets, while Bayesian methods perform better when small data are available. 
Mikolov et al. [23] promoted feature representation transfer in the NLP area, by releas-
ing word2vec embeddings trained on approximately 100 billion words extracted from a 
Google News corpus. However, this model has a low coverage rate for clinical text due 
to uncommon words and misspellings, prompting the search for other input representa-
tion strategies [24]. Bojanowski et al. The [25] suggested including sub-word informa-
tion in word vectors to accommodate morphology. Although deep learning has become 
common for text classification, Joulin et  al. [26] have developed fastText, a quick and 
accurate application of multinomial logistic regression that makes text classification on 
a large scale possible. More recently, the National Center for Biotechnology Information 
developed BioWordVec, which was trained using fastText on more than 30 million docu-
ments from the MIMIC-III (Medical Information Mart for Intensive Care) [27] and the 
PubMed clinical dataset. When combined, these tools can facilitate the transfer of learn-
ing from the large data domain to the clinical field by addressing the unique challenges 
posed by clinical settings [28, 29].

Motivation There is promise in the detection of heart disease risk factors using 
transformer-based models based on transfer learning approaches to learn bidirectional 
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relationships in EHR. We proposed a heart disease risk factor identification model by 
comparing five transformer-based models using EHR data. We modeled the task as 
NER task according to [30, 31]. The study uses several statistical criteria and evaluation 
measurements to support these findings. The evaluation included measures of precision, 
recall, and F1 at the micro-level when comparing the results of the fine-tuned trans-
former-based models to the document-level gold standard. The primary contributions of 
this paper can be summarized as follows: 

1. Developing a model that identifies heart disease risk factors in EHRs using transfer 
learning models.

2. In this study, we explored transfer learning using openly available biomedical contex-
tual embeddings.

3. Implement a transfer learning technique that could effectively use these embeddings 
to identify risk factors for heart disease.

4. The fine-tuned transformer-based models outperformed the 2014 i2b2/UTHealth 
shared task systems and models.

5. In this study, we applied five transformer-based models, which are contextual 
embeddings of BERT [32], BioBERT [33], BioClinicalBERT [34], RoBERTa [35], and 
XLNet [36] contextual embeddings.

6. Ensembling strategies help improve the performance of all eight risk factors extrac-
tion challenging.

The remaining sections of the paper are structured as follows, Section "Related work", 
provides a literature review of several recent related works on the 2014 i2b2UTHealth 
shared task track 2 and adaptation of transfer learning in clinical EHR. Section "Mate-
rials and methods", demonstrates the objectives of the proposed task, the description 
of the dataset, the description of the research problem, the pre-processing steps, the 
transfer learning models, and the transformer-based models. Pre-training and fine-tun-
ing process. Section "Experimental results and simulations", shows the evaluation and 
results of the proposed study. Finally, the conclusion and future works are discussed in 
Section "Conclusion and future work".

Related work
The proposed study is motivated by the challenges of the 2014 i2b2/UTHealth heart 
disease risk factor detection task, as well as some previous Information Extraction (IE) 
research in the clinical domain with the adaptation of transfer learning techniques.

Track 2 of the 2014 i2b2/UTHealth shared task

The National Center (https://www.i2b2.org/) for Biomedical Computing has organized 
the Informatics for Integrating Biology and Bedside (i2b2) (https:// www. i2b2. org/) Chal-
lenges since 2006 to encourage NLP study in the health domain. Track 2 of the 2014 
i2b2/UTHealth shared task proposed the challenge of text classification in the clinical 
domain with limited data and requested the participating teams to categorize patients 
based on eight risk factors for heart disease: CAD, diabetes, hypertension, hyperlipi-
demia, obesity, smoking, medications, and family history.

https://www.i2b2.org/
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The teams investigated a wide range of approaches, from rule-based to hybrid, using 
a wide variety of feature combinations and machine learning methods [30]. Participants 
could not clearly agree on the optimal approach to the challenging task because so many 
different hybrid systems were proposed. Most teams had discovered a challenging issue 
with the encoded pseudo-tables and heart disease risk indicators in clinical notes, which 
led to low F1 scores. Using SVM models based on custom-built lexica, the best team 
participating in 2014 achieved an F1-score of 0.9276 after reannotating a large portion of 
the training corpus [37].

A preprocessing step was performed to extract headings from sections, negation 
markers, modalities, and other output using the ConText tool [38], but no other syntac-
tic or semantic signals were used. They demonstrated that other automated systems can 
be improved with fine-grained annotations.

Kotfila and Uzuner [39] investigated the effectiveness of SVM classifiers trained on the 
shared dataset by comparing the size of training data, features, weighting schemes, and 
kernels.

The authors indicated that limited feature spaces with lowercase alphabetic tokens 
were equivalent to combinations of lexically normalized tokens and extracted seman-
tic concepts using MetaMap [40], and linear kernels were not significantly less effective 
than radial kernels.

Furthermore, they demonstrated that the use of SVM models may not require large 
corpora to achieve high efficiency.

Chen et al. [41] developed a hybrid pipeline system with three modules for tag extrac-
tion to extract tags based on phrases, logic, and discourse, as well as a module for identi-
fying time attributes with temporal indicators using SVM.

The system achieved significant efficiency among Information Extraction (IE) sys-
tems that do not require more annotations by treating phrase-based tagging as a Name 
Entity Recognition (NER) task and identifying time attributes as a temporal relationship 
extraction task.

In addition, Urbain [42] has used various techniques such as conditional random 
fields (CRFs) to identify risk factors, regular expressions to identify time attributes, and 
a semantic distribution model to classify specific risk factors. Torii et al. [43] have devel-
oped three classifiers for various identifications: a general classifier, a smoking status 
classifier, and a sequence labeling-based classifier, using hot-spot features (phrases anno-
tated as risk factor evidence) in conjunction with several open machine learning tools 
such as MedEx [44], Weka [45], LibSVM [46] and Stanford NER [47].

Related work in transfer learning and domain adaptation for NLP of EHRs

Several studies have proposed applications that applied text-based transfer learn-
ing. These applications have proposed the prediction of morbidity, mortality, and 
adverse events from oncological radiation [48–50], and the assessment of the risk of 
psychological stressors, diseases, and drug abuse [51–54]. Transfer learning methods 
have been applied to the clinical domain by sequentially training several tasks. The 
researchers pre-trained a convolutional neural network (CNN) in PubMed-indexed 
biomedical articles to identify medical subject headings and then transferred this 
model to predict International Classification of Diseases (ICD) codes in EHRs [55]. 
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A similar approach uses unlabeled data from three institutions and applies self-train-
ing and transfer learning to classify radiological reports using a small labeled data set 
[56]. Pre-trained word embeddings are commonly transferred to downstream tasks, 
such as applying medical embeddings to NER in the clinical domain [57]. Embed-
dings have been trained in both the general and clinical domains, and as a result, 
many methods have been developed to adapt embeddings, such as concatenation and 
fine-tuning [58]. Another proposed method pre-trained embeddings on the relation 
extraction task of the 2009 i2b2 challenge [59] and then transferred them to NNs for 
the extraction of clinical terms in the shared dataset [60].

Pre-trained transformers methods Transfer learning with transformer-based 
models has become a standard approach in NLP due to its effectiveness and effi-
ciency in leveraging pre-existing knowledge for various downstream tasks. Recently, 
transformer architectures [33] (e.g., BERT) applying self-attention mechanisms [61] 
have achieved the best results on many NLP tasks [62, 63]. A transformer-based 
NLP model has achieved significant performance in several areas, such as NER [64, 
65], relation extraction [66, 67], sentence similarity [68, 69], natural language infer-
ence [69, 70], and question answering [69, 71–73]. Transformer training involves two 
phases: (1) pretraining, where the language model is learned based on self-supervised 
training on a large unlabeled dataset; and (2) fine-tuning when the pre-trained model 
is applied to labeled training data to address specific tasks. Fine-tuning is the pro-
cess of applying a pre-trained language model to address several NLP tasks, which is 
known as transfer learning. Transfer learning is a technique for transferring knowl-
edge from one task to another [74]. The sample space for human language is enor-
mous; there are an infinite number of possible permutations of tokens, sentences, and 
their grammar and meaning. According to recent studies, the emergence and homog-
enization of large transformer models trained on large text data have been signifi-
cantly superior to previous NLP models [74].

Biomedical models based on BERT include BioBERT [33], BlueBERT [75], and Clin-
icalBERT [34]. These models use a continuous pretraining method, initializing the 
model weights using weights from BERT pre-trained on Book Corpus and Wikipe-
dia while using the same vocabulary. Pre-training from scratch using domain-specific 
corpora and vocabulary improves the performance of models SciBERT [76], PubMed-
BERT [77], and Biolm [78].

The BERT model has been applied to the scientific, clinical, and biomedical 
domains. BERT is pre-trained in PubMed and PubMed Central articles in BioBERT 
[33]. In BlueBERT [75], BERT is pre-trained on PubMed, PMC, and MIMIC III data 
[27]. ClinicalBERT [34] is pre-trained in MIMIC III data using BioBERT weights, 
while SciBERT [76], PubMedBERT [77] and Bio-lm [78] train BERT with domain-
specific data. SciBERT pre-trained on Semantic Scholar data. PubMed and PMC data 
are used to pretrain PubMedBERT. PubMed, PMC, and MIMIC III are used to pre-
train Bio-lm data [78]. BlueBERT and PubMedBERT have launched benchmarks for 
biomedical NLP-BLUE (Biomedical Language Understanding Evaluation) and BLURB 
(Biomedical Language Understanding & Reasoning Benchmark). Table 1 summarizes 
the state-of-the-art transformer-based models with their pre-trained dataset and 
training weights.
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Materials and methods
Objective task

We proposed a high-performance heart disease risk factor identification model, so we 
turned to open source NLP frameworks as part of our work to bring together clinical 
decision support functionalities and note taking interfaces. We modeled the task as a 
NER task according to [30, 31] and explored transfer learning using openly available 
biomedical contextual embeddings. Our main objective was to get a transfer learning 
process working with these embeddings. The context in which this is performed is as 
follows: 

1. In this study, we examined transfer learning models that employed BERT [32], 
BioBERT[33], BioClinicalBERT [34], RoBERTa [35], and XLNet [36] contextual 
embeddings pre-trained on PubMed abstracts [79] which are the best deep language 
models that based on encoder-decoder transformer architectures  [61] and have been 
pre-trained on massive unstructured text datasets.

2. Our research examines embedding-specific methods in order to improve perfor-
mance, including language-model finetuning, scalar mix, and aggregation of subword 
tokens.

3. We develop a model for the identification of heart disease risk factors based on the 
performance of transfer learning models. Risk factors can be extracted more effec-
tively with sentence enhancement at prediction time. Furthermore, it allows for a 
better understanding of the behavior of the embeddings. Ensembling strategies helps 
improve the performance of all eight risk factors that make extraction challenging.

Hypothesis

We proposed that transfer learning methods are deep learning methods using a pre-
training/fine-tuning learning architecture. Transfer learning methods have superior 
performance for heart disease risk factors prediction, and pre-trained embeddings can 
enhance classification efficiency in the clinical domain.

We proposed systematically investigating five widely used transformer-based models, 
including BERT, BioBERT, BioClinicalBERT, RoBERTa, and XLNet, to develop a model 
for the detection of heart disease risk factors that can identify diseases, risk factors, 
medications, and the time of occurrence.

Table 1 The recent pre-trained transformers models

Model Pre-trained dataset The training weights References

BERT model Book Corpus Wikipedia – [33]

BioBERT model PubMed PubMed Central articles BERT weights [33]

BlueBERT model PubMed PMC MIMIC III data BERT weights [75]

ClinicalBERT model MIMIC III data BioBERT weights [34]

SciBERT model Semantic Scholar data BERT weights [76]

PubMedBERT model PubMed PMC data BERT weights [77]

Bio-lm model PMC PubMed MIMIC III BERT weights [78]
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Dataset

The proposed model uses a data set provided by Partners HealthCare [http:// www. partn 
ers. orghttps:// www. i2b2. org/ NLP/ Heart Disea se/], which includes clinical notes and 
discharge summaries. The shared task dataset includes 1304 patient records that iden-
tify 296 diabetics with heart disease risk factors and temporal attributes based on DCT. 
According to the challenge provider, the dataset is divided into a training set with 60% of 
the records (790 records) and a test set with 40% of the records (514 records). The organ-
izers of the i2b2 NLP shared task provided two annotated datasets, namely SET1 and 
SET2, for development and training purposes. SET1 contained 521 de-identified clinical 
notes, while SET2 consisted of 269 de-identified notes. Therefore, a combined total of 
790 documents were accessible for training. The test set consisted of 514 de-identified 
clinical notes. The document annotation guidelines for annotating data can be used to 
identify the presence of diseases (including CAD, diabetes, and heart disease), eight rele-
vant evidence risk factors (including hyperlipidemia, hypertension, obesity, smoking sta-
tus, and family history), and associated medications. There are a number of indicators to 
determine whether there is a disease or risk factor in the patient at the time of the DCT 
(before, during, or after). Table  2 provides a summary of the tag types and their cor-
responding attribute values provided in the challenge data. There were two versions of 
the data released by the challenge organizers: complete and gold. Each clinical record in 
the Gold version is presented in XML format, and XML tags are used to annotate target 
concepts that are mentioned anywhere in the record (such as <DIABETES time=’’before 
DCT’ indicator=’’mention’ >) if they are present. Additionally, the complete version 
includes evidence annotations made by three clinicians in the text segments. Therefore, 
in this data set, each concept annotated at the document level is linked to the relevant 
text segment at the record level to provide evidence of heart disease (e.g., < DIABETES 
start = ’’4401’ end = ’4422’ text = ’’HbA1c 03/05/2074 6.6’ time = ’during DCT’ indica-
tor = ’A1C’ >). Figure 1 shows an example of the tag extracted from training data (220–
05.xml) in both versions, together with its evidence in the text field.

Research problem description

The research problem identified each type of tag as follows: First, identify the available 
evidence by its type and indicator. Then identify the time attribute (if it exists).

Risk factor tags can be categorized into three groups by analyzing the evidence of the 
tag based on the terminology used by Chen et al. [30]: 

1. Phrase-based risk factors are identified by detecting relevant phrases in the clinical 
note, such as ’diabetes’ or the name of a specific drug.

Fig. 1 Example of a sample of the Heart Disease Risk Factor Tags included in the complete and gold versions

http://www.partners.org
http://www.partners.org
https://www.i2b2.org/NLP/HeartDisease/


Page 9 of 27Houssein et al. Journal of Big Data           (2024) 11:47  

2. Logic-based risk factors are based on the analysis of the detected relevant phrase; for 
example, determining whether or not high blood pressure is a risk factor requires 
locating a blood pressure measurement and comparing the numbers.

3. Discourse-based risk factors that require sentence parsing because they are embed-
ded in clinical text fragments, such as the identification of family history or smoking 
status.

After classifying all tags into the three groups shown in Table  3, we presented a 
standard organizing principle for each category. The following Fig. 2 illustrates the 
proposed model modules, which include pre-processing, tag extraction, identifying 
time attributes, and post-processing. Initially, the preprocessing module detected 
sentence boundaries and tokenized the clinical notes in the raw data file. Then, 
the tag extraction module identified the type and indicator of the tag in each of the 
three categories in Table 3. Next, the module for identifying time attributes deter-
mined whether or not there was evidence for the time attribute. Fine-tuning of the 

Table 2 A summary of the shared task dataset’s risk factor tags

Annotation‑level training and testing set sizes, as well as indicators for each heart risk factor

Risk factor tags Indicator Time

Before DCT During DCT After DCT

(a) Tag: CAD Indicator Mention
Event
Symptom

260
224
54

261
20
24

259
2
3

(b) Tag: Diabetes indicator Mention
Glucose
A1C

518
16
89

524
9
21

518
0
0

(c) Tag: Hyperlipdemia indicator High LDL
High chol.
Mention

23
5
340

10
1
340

0
0
340

(d) Tag: Hypertension indicator High bp
Mention

41
523

322
521

0
519

(e) Tag: Obese indicator DMI
Mention

3
133

15
147

2
133

(f ) Tag: Medication type (type1) Thienopyridine
Statin
Thiazolidinedione
Aspirin
Metformin
Insulin
Fibrate
Ezetimibe
Diuretic
Anti diabetes
ARB
Sulfonylureas
DPP4 inhibitors
ACE inhibitor

97
436
43
424
187
204
22
12
113
1
98
159
1
326

98
427
41
6
176
218
20
12
99
1
93
155
0
318

97
438
40
424
181
212
22
12
106
1
97
157
0
323

(g) Tag: Family_history indicator Not present
Present

NA NA 768
22

(g) Tag: Smoker status Current
Ever
Never
Past
Unknown

NA NA 58
9
184
149
371
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proposed transformer-based models. For evaluation, the post-processing module 
transformed the tags from the complete version to gold version tags.

Preprocessing

Preprocessing involves first splitting full-text clinical records into separate sen-
tences. Using Metamap [40], tokens and sentences from clinical notes were assigned 
to concepts. The next step is to tokenize the sentence and add context-sensitive fea-
tures to each token and occurrence of the token. Meanwhile, we applied Splitta [80], 
an open-source machine learning model, to split sentences. As soon as a token or 
sentence is mapped to one of the targeted concepts (such as disease or syndrome, 
family group, smoke, etc.), its sentence is identified as one of the candidates for fur-
ther processing. The annotation set is processed using Metamap to identify the tar-
get concepts.

Table 3 Examples of evidence types for risk factors

Evidence category Risk factor indicator Example

Phrase-based indicators - CAD: mention
- Medication

- ’Coronary arteriosclerosis’, ’CAD’, ’3-vessel coronary 
artery disease’
- ’Insulin 70/30 HUMAN 70-30’, ’lisinopril’, ’Zestril 
(LISINOPRIL)’

Logic-based indicators - Diabetes: alc
-Hyperlimidemia: high LDL

- ’hgba1c 7.3%’, ’last 1/2137’ hgba1c 7.3%
- ’Her last LDL was over 100’, ’Cholesterol-LDL 
12/15/2105 110

Discourse-based indicators - CAD: event
- Smoker: current

- ’s/p ant SEMI + stent LAD’, ’s/p ant SEMI + stent LAD 
2/67’, ’MI in 2092’
- ’Has smoked 1/2ppd for 35 years, ‘Tobacco abuse’

Fig. 2 The proposed model for heart disease risk factor identification by fine-tuning transformer-based 
models
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The proposed model for identifying heart disease risk factors based on transfer learning 

models

This study aimed to systematically investigate five widely used transformer-based mod-
els, including BERT, BioClinicalBERT, RoBERTa, BioBERT, and XLNet to detect risk fac-
tors for heart disease by identifying diseases, risk factors, medications, and the time of 
occurrence. 

1. BERT model was pre-trained by masked language modeling, and then the next sen-
tence prediction was used to optimize it. The number of transformer layers is 12, 
with a hidden layer of size 768, and the number of attention heads is 8 in the base 
model architecture using 110 million parameters.

2. RoBERTa model (A Robustly Optimized BERT Pretraining Approach) is a trans-
former-based model based on the BERT’s architecture but is pre-trained using a 
dynamic masked language modeling approach and optimized by removing the next 
sentence prediction.

3. BioClinicalBERT model is based on the BERT architecture but is pre-trained on a 
large data set of biomedical and clinical texts, including EHR and biomedical texts. 
This allows the model to capture the specific language and terminology used in these 
domains. BioClinicalBERT also incorporates additional inputs, such as segment 
labels to indicate the source of each token (e.g. medication, diagnosis, test result), 
and position labels to indicate the position of each token within a segment.

4. BioBERT model was pre-trained on a large corpus of biomedical text, including bio-
medical research articles, clinical notes, and EHRs. This pre-training process allows 
the model to learn the patterns and structures of biomedical language, which can 
then be fine-tuned for specific downstream tasks, such as NER, text classification, 
and question answering. One of the main advantages of BioBERT is its ability to han-
dle the complex and domain-specific language used in the biomedical field, which 
can often be challenging for traditional NLP models. Additionally, BioBERT has 
achieved state-of-the-art performance on several biomedical language processing 
benchmarks, demonstrating its effectiveness in various tasks.

5. XLNet model is based on the transformer architecture, which has been used in other 
successful language models such as BERT. However, XLNet introduces a new train-
ing objective called permuted language modeling, which differs from the masked lan-
guage modeling used in BERT to predict tokens in a randomly permuted sequence of 
the input.

Fine-tuning the previous models, they can then be trained on the pre-processed 
data to detect the risk factor for heart disease as shown in Fig. 2. This involves fine-
tuning the model’s weights to optimize its accuracy. Feature extraction: Once the 
model is trained, it can be used to extract meaningful features from new EHRs. By 
analyzing the text of the records and extracting meaningful features using fine-tuned 
transformer-based models, the model can predict the risk factor for heart disease 
with a high degree of accuracy. Validation and Testing: To ensure that the model is 
accurate and generalizable, it is important to validate and test it on diverse datasets. 
This involves evaluating the model’s performance on a validation dataset and testing 
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it on a separate test dataset to assess its accuracy and generalizability. Deployment: 
Once the model is validated and tested, it can be deployed to identify heart disease 
risk factors from EHRs in real-world settings. This may involve integrating the model 
into EHR systems or developing a standalone application that can analyze EHR data 
and provide risk assessments to healthcare providers.

Transformer-based models incorporate two processes, the pre-training process 
and the fine-tuning process. The Pretraining Process: Previous research [33] demon-
strated that pretraining on a clinical dataset improved the clinical concept extraction 
efficiency; therefore, we investigated both general models pre-trained with a general 
English data set and clinical models pre-trained with a clinical data set for each of 
the 5 transformer-based models. We employed state-of-the-art transformer-based 
models pre-trained on general English domain datasets, such as bert-base-uncased 
(BERT-general), RoBERTa-base (RoBERTa-general), and XLNet. We used clinical 
transformer-based models that were pre-trained using the MIMIC-III [27] dataset, 
which contains clinical notes, such as BioBERT and BioClinicalBERT.

The Fine-tuning Process: To predict heart disease risk factors from clinical con-
cepts annotated in the training dataset, we built upon transformer-based models pre-
trained on the MIMIC data by adding a linear classification layer. It will be necessary 
to optimize the classification layer parameters and the transformer-based models to 
achieve significant results from the extraction of clinical concepts.

Experimental results and simulations
In this section, we describe in detail the weighted-averaged proposed model results 
that are achieved by the fine-tuned transformer-based models compared to the most 
recent systems and models from the 2014 i2b2 shared task, as shown in Table 4.

Table 4 illustrated a comparison between the fine-tuned transformer-based models’ 
results and the top-ranked systems [37, 41, 81] which use a hybrid of knowledge-and 

Table 4 The weighted-averaged evaluation results of fine-tuned transformer-based models and the 
most recent models and systems from 2014 i2b2 shared task

Bold indicates the best value

Model Precision Recall F1-score Micro 
F1-score 
(Accuracy

BERT 0.9251 0.9373 0.9284 0.9373

RoBERTa 0.9390 0.9427 0.9394 0.9427
BioBERT 0.9337 0.9399 0.9357 0.9399

BioClinicalBERT 0.9338 0.9403 0.9357 0.9403

XLNet 0.9361 0.9397 0.9371 0.9397

Roberts et al. [37] 0.9625 0.8951 0.9276 0.9276

Chen et al. [41] 0.9436 0.9106 0.9268 0.9268

Cormack et al. [82] 0.9375 0.8975 0.9171 0.9171

Yang and Garibaldi [81] 0.9488 0.8847 0.9156 0.9156

Khalifa and Meystre [83] 0.8951 0.8552 0.8747 0.8747

Chokkwijitkul et al. [10] 0.9180 0.8983 0.9081 0.9081
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data-driven techniques, and systems [10, 82, 83] that only use knowledge-driven tech-
niques, such as lexicon and rule-based classifiers.

Evaluation metrics

The performance of the proposed model using transformer-based models was evaluated 
based on the evaluation script provided by the shared task organizers. We used recall, 
precision, and the F1-measure as primary measurements. Both macro and micro-aver-
ages are included in the overall averages. Micro-averages are provided for each class 
indicator pair [The official evaluation script: https:// github. com/ kotfic/ i2b2_ evalu ation_ 
scrip ts].

Results and discussion

We applied transfer learning to develop a model that detects risk factors for heart dis-
ease from clinical texts over time using the 2014 i2b2 clinical NLP challenge dataset. 
The most recent models chosen for fine-tuning in the classification task included five 
transformer-based models: BERT, BioBERT, RoBERTa, BioClinicalBERT, and XLNet. 
Our objective was to identify diseases, risk factors, medications, and time factors based 
on DCT. First, the proposed transformer-based models retrieved these risk indicators 
and then determined their temporal attributes.

Data augmentation is applied to the i2b2 dataset for heart disease risk factor detection 
from EHR by generating variations of the existing data to increase the size of the train-
ing set. Data augmentation can help prevent overfitting and improve the generalization 
of the pre-trained models. The augmented data is validated to ensure semantic integ-
rity. Then the original dataset is integrated with the augmented data to generate a new 
training set. The annotation process for risk factors is applied to the new training set. 
The training process is performed on the new augmented dataset, then the fine-tuned 
models are validated using a validation set and finally tested using a test dataset to assess 
their performance.

The data augmentation is performed to address the issue of under-representation of 
a specific class and to ensure adequate representation of the minority class, in this case, 
the ’glucose’ class in the Diabetes-Indicator classification. When a particular class is 
under-represented in a dataset, it can lead to imbalanced training data, potentially caus-
ing the model to struggle in accurately learning and predicting the minority class.

To address this challenge, data augmentation techniques are employed. In this context, 
data augmentation involves duplicating instances belonging to the minority class within 
the training set. By creating additional copies of the minority class samples, the aug-
mented dataset now contains more instances representing the under-represented class.

After performing data augmentation and adding duplicated instances, the next step 
described is shuffling the entire training set. Shuffling the data ensures that the dupli-
cated examples of the minority class are evenly distributed throughout the training data. 
This process helps to promote a more balanced representation by preventing the model 
from encountering batches or patterns that are biased towards the majority class.

By employing data augmentation and shuffling, the training data is modified to have 
a more balanced representation of the minority class, such as ’glucose’ in this case. This 

https://github.com/kotfic/i2b2_evaluation_scripts
https://github.com/kotfic/i2b2_evaluation_scripts
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approach aims to improve the model’s ability to learn and generalize well for all classes, 
including the under-represented class.

After developing and fine-tuning the NLP techniques and transformer-based models 
using the training corpus (SET1 and SET2), they were applied to the testing corpus and 
the results were compared to the shared task organizers for analysis. The outputs of the 
transformer-based models were compared with the primary metric of the i2b2 challenge 
evaluation script provided by the shared task organizers, and all extracted tags are clas-
sified as true positive (i.e., the result matches the primary metric), false positive (i.e., the 
result does not match the primary measure), or false negative. The tables below show the 
results for each class of risk factors and their indicators.

We used the filter option provided by the evaluation script to determine the results for 
each class of risk factors. Using the option Conjunctive, it is also possible to determine 
specific risk factors and their attribute value indicators, such as the tag CAD and the 
attribute value of indicator = ’mention’.

According to the annotation standard, we give the results for each disease category 
separately, for general mention and disease-specific indicators. Results for the SMOK-
ING category are reported as status only, while results for the MEDICATION categories 
are combined and are accurately identified on the EHRs. For each heart disease risk fac-
tor class, the results in the tables below were generated for all temporal information tags 
and an attempt was made to categorize the (before, during, and after) DCT results.

The best-performing model in most cases for risk factor identification was RoBERTa 
with F-measure of 93.94%, a precision of 93.90%, and a recall of 94.27% at the weighted-
averaged level. According to the BERT prevailed in cases with higher numbers of cat-
egories with micro -precision, -recall, and -F1-scores of 92.51%, 93.73%, and 92.84%, 
respectively. BioBERT obtained -precision, -recall, and -F1-scores of 93.37%, 93.99%, 
and 93.57%, respectively in identifying risk factors. BioClinicalBERT attained a precision 
of 93.38%, recall of 94.03%, and F1-measure of 93.57% at the weighted-averaged level. 
XLNet achieved an F-measure of 93.71%, a recall of 93.97%, and a precision of 93.61% at 
the weighted level.

Furthermore, the best results achieved at the risk indicator level by applying the 
BioBERT model to identify hypertension, diabetes, and SMOKER were 0.91, 0.83, and 
0.90, respectively, using micro-averaged F1-measures. The BERT model performs best 
on Hypertension (0.90), Smoker (0.88), and FamilyHist (0.88). BioClinicalBERT per-
forms best on Hypertension (0.92), Smoker (0.94), and FamilyHist (0.88). RoBERTa 
performs best on Hypertension (0.92), Smoker (0.90), and FamilyHist (0.88). XLNET 
performs best on Hypertension (0.91), Smoker (0.90), and FamilyHist (0.88). The FAM-
ILY_HIST is a simple task because there are few records containing evidence of family 
members who have been diagnosed with CAD.

It is shown in Tables 5, 6, 7, and 8 how BERT, RoBERTa, BioClinicalBERT, and XLNet 
performed on the i2b2 test data with respect to F1-measure, Recall, and Precision at 
the risk indicator level. The overall performance of the transformer-based models at the 
level of time attributes associated with the presentation of the risk indicator based on 
DCT is shown in Tables 9, 10, 11 and 12. Table 13 shows the overall performance of the 
eight risk factor categories based on the i2b2 test data. Figure 3 shows the F1-Plot curve 
of five transformer-based models using the final dataset after the augmentation process.
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In this study, we evaluated model-ensembling techniques for improving the proposed 
risk factor detection model’s performance for heart disease. The provided predictions are 
based on ensembling fine-tuned transformer-based models, which achieved F1-scores of 
94.26%. The overall F1-scores for five different ensemble models are shown in Table 14. 
The ensemble model provides the best performance in all risk factor detections, demon-
strating the efficiency of the technique. We proposed to ensemble the five transformer-
based models to get the benefits of each model in the word embedding technique. The 
reason to use an ensemble of five transformer-based models is to apply the performance 
of different models. Every model within the ensemble can be particularly good at han-
dling particular kinds of datasets or capturing various linguistic patterns based on a pre-
training dataset. We might be able to improve overall performance and get more reliable 
results by integrating their outputs. Furthermore, ensembles can provide a type of model 
averaging that decreases overfitting and improves generalization. Therefore, the ensem-
ble approach has a powerful improvement in many NLP tasks [84].

The optimized hyperparameters of the most recent models chosen for fine-tuning are 
presented in Table 15.

Error analysis

We classified the risk factors into one of three groups, as mentioned in Table  3, 
determining the type of evidence for each risk factor. Evaluation of the test dataset 
provided by the shared task organizers showed that the proposed model based on 
transformer-based models performed effectively, with the best micro F1-score being 

Fig. 3 The F1-plot of the train- and validation-learning curves of five transformer-based models using the 
final dataset
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94.27% using RoBERTa model. Despite using fewer annotations, the fine-tuned trans-
former-based models performed better than the highest performing system partici-
pating in the shared task. Although the efficiency of the fine-tuned transformer-based 
models was exceptional, they did not achieve significant results with several types of 
tags, such as obesity, CAD, and smoking status.

Discourse-based indicators evidence had an unusually large number of negative 
samples (not an indicator) for the two types of tags that contain the most discourse-
based indicators (CAD and smoking status). An example would be the number of 
negative samples of CAD: events. The results may have been poor due to the large 
number of negative samples. There are only 2.4% of obesity status tags in the test data 
set. Due to the class imbalance issue associated with transfer learning techniques, 
their low frequency makes them challenging to recognize. The summary report of the 
i2b2 2014 challenge reveals that other participating systems also had similar results 
with these three types of tags.

In terms of disease indicators, hyperlipidemia had the lowest recall, and obesity 
had the lowest precision. Due to inaccurate chunking, some clinical notes containing 
hyperlipidemia indicators appearing as ’high cholesterol’, ’elevated lipids’, and ’elevated 
serum cholesterol’ failed to be recognized by our proposed model. Furthermore, our 

Table 5 BERT evaluation metrics for each risk factor indicator

Bold indicates the best value

Risk Factor Indicator Precision Recall F1-score Support

CAD Mention 0.84 0.93 0.88 260

Event 0.71 0.76 0.74 250

Test 0.89 0.12 0.21 68

Symptom 0.89 0.80 0.84 94

Diabetes Mention 0.98 1.00 0.99 693

A1c 0.67 0.92 0.77 65

Glucose 1.00 0.07 0.13 42

Hypertension Mention 1.00 0.99 0.99 548

High bp 0.98 0.99 0.98 212

Obese Mention 0.93 1.00 0.97 127

Obese_BMI 0.00 0.00 0.00 9

Hyperlipidemia Mention 0.98 1.00 0.99 240

High chol. 0.00 0.00 0.00 8

High LDL 0.85 0.74 0.79 31

Smoker Smoker_never 0.93 0.96 0.94 115

Smoker_ever 0.00 0.00 0.00 3

Smoker_current 0.00 0.00 0.00 39

Smoker_past 0.78 0.85 0.81 123

Smoker_unknown 0.99 0.97 0.98 203

Medication 0.89 0.68 0.77 7225

Family history NA 0.0000 0.0000 0.0000 13

Weighted average 0.9251 0.9373 0.9284 42946

Macro average 0.3144 0.2846 0.2736 42946

Micro average 0.9373 42946

Accuracy 0.9373 42946
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dictionary lookup module did not contain the associated ICD codes for some of these 
items.

In the testing corpus, there were at least two instances in which hyperlipidemia was 
mentioned directly following a word without a space, such as ‘hemodialysis Hyperlipi-
demia’, which our proposed model failed to recognize. As a result of including the con-
cept of ‘overweight’ in the Unified Medical Language System (UMLS) in the list of ICD 
codes for obesity, we experienced low precision. Although the obesity indicator ‘over-
weight’ appeared in one record of the training dataset, this generated a large number 
of false positives. Additionally, our proposed model generated false positives when the 
‘obese’ indicator was used as a mention instead of the ‘obesity’ indicator (e.g., ‘abdomen 
is moderately obese’ and ‘abdomen is slightly obese’). Regular expressions at the lexical 
level were not always effective in addressing other indicators of disease and risk factors.

The following issues are associated with heart disease indicators:

– Many different lexical forms and acronyms are used to refer to the same set of labo-
ratory indicators for heart disease. In the case of diabetes and hypertension, regu-
lar expressions are applied to determine blood glucose and pressure levels. Blood 
pressure can be stated using BP and b/p, and glucose levels can be described using 
BG, BS, FS and FG. This is an example of some of the shortcomings of our proposed 

Table 6 RoBERTa Evaluation Metrics for each risk factor indicator

Bold indicates the best value

Risk factor Indicator Precision Recall F1-score Support

CAD Mention 0.82 0.79 0.81 228

Event 0.72 0.70 0.71 278

Test 0.00 0.00 0.00 70

Symptom 0.90 0.39 0.54 95

Diabetes Mention 0.92 0.99 0.95 549

A1c 0.89 0.79 0.84 71

Glucose 0.00 0.00 0.00 40

Hypertension Mention 0.99 0.97 0.98 525

High bp 0.93 0.99 0.96 210

OBESE Mention 0.95 1.00 0.97 115

Obese_BMI 0.00 0.00 0.00 6

Hyperlipidemia Mention 0.87 0.99 0.93 232

High chol. 0.00 0.00 0.00 7

High LDL 0.50 0.10 0.17 30

Smoker Smoker_never 0.80 0.72 0.76 114

Smoker_ever 0.00 0.00 0.00 3

Smoker_current 0.00 0.00 0.00 37

Smoker_unknown 0.93 0.90 0.91 202

Smoker_past 0.85 0.59 0.69 121

Medication 0.87 0.74 0.80 7329

Family history 0.2000 0.0769 0.1111 13

Weighted average 0.9390 0.9427 0.9394 42946

Macro average 0.4195 0.4037 0.3915 42946

Micro average 0.9427 42946

Accuracy 0.9427 42946
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model, and it would be necessary to develop an integrated approach to address this 
problem to achieve improved accuracy.

– The numerical results of a laboratory must be extracted accurately. After the pro-
posed model has found the matching terms for laboratory or test indicators, the 
model must extract the numerical values associated with those terms and compare 
them with threshold levels that indicate an abnormality. When the numbers follow 
the term and are expressed as a single unit, like in ’GLU 230(H)’, it may be easy to 
extract them. There are, however, some phrases that may be more difficult to detect, 
such as ‘FS in the AM ∼ 90–180’; now 80–175, mostly 90–180’. This example is a case 
where ‘_’ is used to indicate value ranges, and several units can be denoted by using 
time and frequency terms such as ‘now’ and ‘mostly’.

– Training data sparsity: Sometimes, there were not enough training examples avail-
able to allow an adequate generalization of the proposed model. In the case of the 
cholesterol indicator for hyperlipidemia, there were only nine annotations available 
in the entire set of 790 training sets. For the LDL indicator, there were approximately 
33 annotations.

– Analysis of complex time attributes: Another issue with our proposed model is that 
indicators for laboratory tests require additional analysis for temporal information. 

Table 7 BioClinicalBERT Evaluation Metrics for each risk factor indicator

Bold indicates the best value

Risk Factor Indicator Precision Recall F1-score Support

CAD Mention 0.86 0.92 0.88 259

Event 0.80 0.81 0.80 258

Test 0.93 0.42 0.57 65

Symptom 0.85 0.80 0.82 99

Diabetes Mention 0.99 0.99 0.99 601

A1c 0.75 0.92 0.83 66

Glucose 1.00 0.38 0.55 40

Hypertension Mention 1.00 0.99 1.00 602

High bp 0.99 1.00 0.99 206

OBESE Mention 0.96 1.00 0.98 117

Obese_BMI 0.00 0.00 0.00 5

Hyperlipidemia Mention 0.97 0.99 0.98 286

High chol. 0.00 0.00 0.00 10

High LDL 0.79 0.79 0.79 29

Smoker Smoker_never 0.94 0.95 0.94 114

Smoker_ever 0.00 0.00 0.00 3

Smoker_current 0.00 0.00 0.00 40

Smoker_past 0.88 0.77 0.82 122

Smoker_unknown 0.99 0.99 0.99 202

Medication 0.88 0.74 0.80 7253

Family history 0.0000 0.0000 0.0000 13

Weighted average 0.9338 0.9403 0.9357 42946

Macro average 0.3715 0.3614 0.3505 42946

Micro average 0.9403 42946

Accuracy  0.9403  42946
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There are various time-attribute values used in the annotations of most laboratory 
tests and vital signs; in contrast, the time-attribute value ’continuing’ is primar-
ily used in the annotation of chronic disease mention (i.e. during, before, and after 
DCT). As an example, glucose and A1c tests were typically performed on a previ-
ous visit and are therefore labelled ’during DCT’. BP is often taken at the time of the 
patient’s visit and labeled ‘during DCT’.

Conclusion and future work
In conclusion, we developed a model to identify heart disease risk factors and dem-
onstrated that transfer learning can be effectively applied to detect heart disease 
risk factors and the time they are presented in EHRs. Our research highlighted that 
the application of transfer learning has increased dramatically in recent years. Sev-
eral studies have identified and demonstrated the significant role of transfer learning 
based on transformers in the extraction of clinical concepts from clinical notes and 
other clinical NLP tasks through fine-tuning. Using the shared dataset of heart dis-
ease risk factors i2b2, transformer-based models outperformed conventional models 
in terms of precision in predicting the presence of risk factors. Furthermore, it identi-
fied novel risk factors that were not captured by traditional models. Our experiments 

Table 8 XLNET Evaluation Metrics for each risk factor indicator

Bold indicates the best value

Risk Factor Indicator Precision Recall F1-score Support

CAD Mention 0.93 0.92 0.92 301

Event 0.69 0.78 0.73 241

Test 0.00 0.00 0.00 63

Symptom 0.94 0.49 0.64 94

Diabetes Mention 0.93 0.99 0.96 530

A1c 0.91 0.81 0.86 75

Glucose 0.00 0.00 0.00 40

Obese Mention 0.94 1.00 0.97 114

Obese_BMI 0.00 0.00 0.00 7

Hypertension Mention 0.99 0.99 0.99 515

High bp 0.97 0.98 0.97 205

Hyperlipidemia Mention 0.86 1.00 0.93 221

High chol. 0.00 0.00 0.00 7

High LDL 0.00 0.00 0.00 28

Smoker Smoker_never 0.80 0.72 0.76 114

Smoker_ever 0.00 0.00 0.00 3

Smoker_current 0.00 0.00 0.00 37

Smoker_past 0.85 0.59 0.69 121

Smoker_unknown 0.93 0.90 0.91 202

Medication 0.87 0.76 0.81 7352

Family history 0.2000 0.0769 0.1111 13

Weighted average 0.9361 0.9397 0.9371 42946

Macro average 0.3988 0.3848 0.3772 42946

Micro average 0.9397 42946

Accuracy 0.9397 42946
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investigate the effectiveness of the five models (BERT, RoBERTa, BioBERT, BioClin-
icalBERT, XlNet, and BioBERT) in terms of the extraction of risk factors for heart 
disease. The RoBERTa model achieved state-of-the-art performance with micro 
F1-scores of 94.27%, while the BERT, BioClinicalBERT, XlNet, and BioBERT mod-
els have provided significant performance with micro F1-scores of 93.73%, 94.03%, 
93.97%, and 93.99%, respectively. The results showed that a simple ensemble of the 
five transformer-based models is an effective strategy that significantly improved the 
performance of the proposed heart disease risk factor identification model with a 
micro F1-score of 94.26%. Using transformer-based models, our study demonstrated 
the effectiveness of transfer learning to improve the prediction of heart disease risk.

As part of our future work, we will focus on analyzing embedding-specific issues 
such as misclassification as well as the incorporation of fine-tuning processes into 
other clinical NLP tasks.

Table 9 BERT Evaluation Metrics for each risk factor indicator based on time attribute Identification

Bold indicates the best value

Risk factor Time attribute Precision Recall F-Score Support

CAD Before_DCT 0.78 0.93 0.85 462

During_DCT 0.00 0.00 0.00 94

After_DCT 0.67 0.63 0.65 116

Diabetes During_DCT 0.49 0.33 0.39 134

Before_DCT 0.78 0.85 0.81 557

After_DCT 0.00 0.00 0.00 109

Hypertension Before_DCT 0.00 0.00 0.00 33

During_DCT 0.79 0.87 0.83 363

After_DCT 0.89 0.79 0.84 364

Obese Before_DCT 0.00 0.00 0.00 35

During_DCT 0.89 0.75 0.82 65

After_DCT 0.73 0.67 0.70 36

Medication Before_DCT 0.62 0.42 0.50 910

During_DCT 0.67 0.34 0.45 785

After_DCT 0.61 0.26 0.36 715

Hyperlipidemia Before_DCT 0.00 0.00 0.00 85

During_DCT 0.66 0.95 0.78 160

After_DCT 0.00 0.00 0.00 34

Weighted average 0.9251 0.9373 0.9284 42946

Macro average 0.3144 0.2846 0.2736 42946

Micro average 0.9373 42946

Accuracy 0.9373 42946
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Table 10 RoBERTa Evaluation Metrics for each risk factor indicator based on time attribute 
Identification

Bold indicates the best value

Risk factor Time attribute Precision Recall F-Score Support

CAD Before_DCT 0.78 0.89 0.83 436

During_DCT 0.67 0.44 0.53 201

After_DCT 0.00 0.00 0.00 34

Diabetes During_DCT 0.00 0.00 0.00 107

Before_DCT 0.67 0.58 0.62 288

After_DCT 0.65 0.64 0.65 265

Hypertension Before_DCT 0.76 0.82 0.79 159

During_DCT 0.91 0.95 0.93 521

After_DCT 0.00 0.00 0.00 55

Obese Before_DCT 0.77 0.41 0.54 41

During_DCT 0.80 0.11 0.20 36

After_DCT 0.00 0.00 0.00 44

Medication Before_DCT 0.68 0.51 0.58 995

During_DCT 0.58 0.43 0.50 722

After_DCT 0.62 0.45 0.52 727

Hyperlipidemia Before_DCT 1.00 0.11 0.20 88

During_DCT 0.81 0.57 0.67 77

After_DCT 0.82 0.73 0.77 104

Weighted average 0.9390 0.9427 0.9394 42946

Macro average 0.4195 0.4037 0.3915 42946

Micro average 0.9427 42946

Accuracy 0.9427 42946
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Table 11 BioClinicalBERT Evaluation Metrics for each risk factor indicator based on time attribute 
Identification

Bold indicates the best value

Risk factor Time attribute Precision Recall F-Score Support

CAD Before_DCT 0.83 0.81 0.82 422

During_DCT 0.00 0.00 0.00 82

After_DCT 0.64 0.92 0.76 177

Diabetes During_DCT 0.61 0.66 0.63 267

Before_DCT 0.72 0.75 0.73 329

After_DCT 0.50 0.02 0.03 111

Hypertension Before_DCT 0.76 0.79 0.77 186

During_DCT 0.89 0.95 0.92 452

After_DCT 0.80 0.59 0.68 170

Obese Before_DCT 0.00 0.00 0.00 13

During_DCT 0.00 0.00 0.00 47

After_DCT 0.53 0.63 0.57 62

Medication Before_DCT 0.58 0.57 0.58 1002

During_DCT 0.39 0.08 0.13 609

After_DCT 0.67 0.42 0.52 808

Hyperlipidemia Before_DCT 0.81 0.75 0.78 151

During_DCT 0.71 0.71 0.71 141

After_DCT 0.00 0.00 0.00 33

Weighted average 0.9338 0.9403 0.9357 42946

Macro average 0.3715 0.3614 0.3505 42946

Micro average 0.9403 42946

Accuracy 0.9403 42946
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Table 12 XLNET Evaluation Metrics for each risk factor indicator based on time attribute 
Identification

Bold indicates the best value

Risk factor Time attribute Precision Recall F-Score Support

CAD Before_DCT 0.80 0.83 0.81 406

During_DCT 0.78 0.61 0.69 222

After_DCT 0.66 0.63 0.65 71

Diabetes During_DCT 0.67 0.49 0.57 272

Before_DCT 0.72 0.57 0.64 209

After_DCT 0.49 0.39 0.44 164

Hypertension Before_DCT 0.70 0.64 0.67 116

During_DCT 0.89 0.95 0.92 553

After_DCT 0.10 0.08 0.09 51

Obese Before_DCT 0.46 0.32 0.38 41

During_DCT 0.77 0.52 0.62 69

After_DCT 0.00 0.00 0.00 11

Medication Before_DCT 0.67 0.51 0.58 863

During_DCT 0.54 0.36 0.43 695

After_DCT 0.67 0.61 0.64 894

Hyperlipidemia Before_DCT 1.00 0.02 0.05 82

During_DCT 0.75 0.72 0.73 65

After_DCT 0.88 0.81 0.84 109

Weighted average 0.9361 0.9397 0.9371 42946

Macro average 0.3988 0.3848 0.3772 42946

Micro average 0.9397 42946

Accuracy 0.9397 42946

Table 13 Transformer Models

Model/risk factor BERT BioBERT BioClinical Bert RoBERTa XLNET

Diabetes 0.82 0.83 0.80 0.75 0.75

Hypertension 0.90 0.91 0.92 0.92 0.91

CAD 0.77 0.78 0.79 0.71 0.77

Medication 0.77 0.80 0.80 0.80 0.81

Smoker 0.88 0.90 0.94 0.90 0.90

Obese 0.81 0.81 0.71 0.70 0.74

Hyperlipidemia 0.78 0.80 0.83 0.75 0.77

FamilyHist 0.88 0.88 0.88 0.88 0.88

F-score (micro) 0.9373 0.9399 0.9403 0.9427 0.9397

Table 14 Ensembles

Bold indicates the best value

All Ensembles (BERT+BioBERT+BioClinic
alBERT+RoBERTa+XLNet)

Precision Recall F1-score Support

Macro average 0.3218 0.3330 0.3129 42946

Weighted average 0.9337 0.9426 0.9366 42946

Accuracy 0.9426 42946
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