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Abstract 

RNA Sequencing (RNA‑Seq) has been considered a revolutionary technique in gene 
profiling and quantification. It offers a comprehensive view of the transcriptome, 
making it a more expansive technique in comparison with micro‑array. Genes that dis‑
criminate malignancy and normal can be deduced using quantitative gene expression. 
However, this data is a high‑dimensional dense matrix; each sample has a dimen‑
sion of more than 20,000 genes. Dealing with this data poses challenges. This paper 
proposes RBNRO‑DE (Relief Binary NRO based on Differential Evolution) for handling 
the gene selection strategy on (rnaseqv2 illuminahiseq rnaseqv2 un edu Level 3 
RSEM genes normalized) with more than 20,000 genes to pick the best informative 
genes and assess them through 22 cancer datasets. The k‑nearest Neighbor (k‑NN) 
and Support Vector Machine (SVM) are applied to assess the quality of the selected 
genes. Binary versions of the most common meta‑heuristic algorithms have been 
compared with the proposed RBNRO‑DE algorithm. In most of the 22 cancer datasets, 
the RBNRO‑DE algorithm based on k‑NN and SVM classifiers achieved optimal conver‑
gence and classification accuracy up to 100% integrated with a feature reduction size 
down to 98%, which is very evident when compared to its counterparts, according 
to Wilcoxon’s rank‑sum test (5% significance level).

Keywords: RNA sequencing (RNA‑Seq), Micro‑array, High‑dimensionality, Cancer bio‑
mark, Meta‑heuristic, Nuclear reaction optimization (NRO), Relief algorithm, Differential 
evolution (DE), Gene selection

Introduction
DNA contains our recipe, “our genetic code”. Although each cell’s DNA is the same, 
each tissue structure is distinct and has a unique function, as DNA expresses which 
genes in a cell are active and which are not engaged through a mechanism called RNA 
transcription. This RNA is then converted into a protein responsible for cell struc-
ture and function. Therefore, analyzing a transcriptome profile is our method for 
determining the genetic changes in each cell from which we can evaluate diseases’ 
biomarkers. Differential expression analysis aims to discover quantitative changes in 
expression levels through statistical analysis to classify genes whose expression levels 
vary under different conditions, which helps us understand diseases and control them. 
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In this manner, Gene expression Profiling technologies have been significantly devel-
oped. There are two leading popular technologies: the hybridization-based technique 
“micro-array”, which is elder, and the next-generation sequencing-based “RNA-Seq” 
[1]. Both techniques are meant to quantify gene expression for statistical analysis and 
classification. The quantification data based on the next-generation sequencing-based 
RNA-Seq technique is chosen in this paper because it can detect RNA quantification 
levels more accurately than micro-array data. This reason is not the only advantage of 
the RNA-Seq technique but also because the previous technique has many limitations 
that have been overcome thanks to the next-generation sequencing-based technol-
ogy [2], which is the base of the RNA-seq method as mentioned above. One primer 
obstacle in the micro-array was the reliance upon existing sequencing knowledge that 
limited the detection range; this obstacle is no longer a problem in RNA-seq as it 
requires no previous knowledge and makes our dynamic detection range wide. That 
choice helps our results’ accuracy and the set of genes we get and gives us a close 
understanding of the disease’s accurate biomarker.

Lyu et al. [3] presented the scope of determining cancer genetic biomarkers depend-
ing on RNA-Seq gene expression data; it worked on normalized-level3 RNA-Seq gene 
expression data of 33 tumor types in Pan-Cancer Atlas, which we have also worked 
on in this paper. However, it was noted that the researchers in paper [3] used mixed 
samples of non-tumor samples as if they were all tumors. Therefore, we made a code 
to separate samples based on their type for binary classification and more accu-
rate tumor data. It is noteworthy that every record of data is comprised of a set of 
20531 genes “features”, which includes an abundance of extraneous genes and extra 
information.

The curse of dimensionality [4] is a popular challenge as a result of the evolutionary 
era of data availability, which leads to progress in Feature Selection (FS) algorithms and 
techniques. Generally, FS techniques follow four approaches: filter approach, wrapper 
approach, embedded approach, and hybrid approach [5, 6]. All these approaches aim to 
select the best features to distinguish the classes, which are, in our case, the informative 
genes related to their tumor.

The filter approach depends on the single relationship of each gene using statistical 
scores to represent the strength, which achieves high accuracy and selects the best group 
of genes. However, working on each gene separately discards the reality of the interre-
lationships between genes, and it can be trapped in a local optimum. It is also worth 
mentioning that the filter approach includes sub-types univariate and multivariate; the 
main difference is that the multivariate considers correlation in its rank. Examples of 
filter approach are t-test [7], Fisher score [8], signal-to-noise ratio [9], information gain 
[10], and Relief [11].

The wrapper approach can be seen as an exploration of all possible subsets, and the 
principle is to create and test a subset of genes. A particular classifier determines the 
output of a given subset, and the classification algorithm is used many times for each 
evaluation. This approach achieves higher performance than the filter approach because 
of the reality that it uses a classification algorithm that guides the learning process. How-
ever, that classifier requires high computational cost and slows the process, especially 
with our high-dimensional data.
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A metaheuristic is a higher-level procedure or heuristic used in computer science and 
mathematical optimization to find, generate, or select a heuristic (partial search algo-
rithm) that may offer a good enough solution to an optimization problem, particularly 
when there is incomplete or imperfect information or limited computing power. A sub-
set of solutions that would otherwise be too numerous to be fully enumerated or oth-
erwise investigated is sampled by metaheuristics. Metaheuristics may only make a few 
generalizations about the optimization problem, making them useful for various issues. 
Metaheuristics do not guarantee that a globally optimal solution can be found for a 
class of problems, unlike optimization algorithms and iterative techniques. Numerous 
metaheuristics use stochastic optimization, meaning that the outcome depends on the 
collection of generated random variables. Metaheuristics are generally more effective 
than optimization algorithms, iterative techniques, or basic heuristics in combinatorial 
optimization because they search a much more extensive range of feasible solutions. 
As a result, they are advantageous strategies for optimization issues. Several publica-
tions and research papers have been released on the issue. Meta-heuristic approaches 
can successfully address the FS problem among several wrapper solutions. Stochastic 
techniques may produce optimum (or nearly optimal) answers quickly, and academics 
have begun to use them. These techniques have many benefits, such as flexibility regard-
ing dynamic changes, the ability to self-organize without requiring specific mathemati-
cal properties, and the capacity to evaluate multiple solutions simultaneously. For that, 
meta-heuristic algorithms have attracted researchers’ attention for tackling optimization 
problems. Several meta-heuristic-based algorithms for solving the FS issue have recently 
been developed [12]. These algorithms yield trustworthy (near-optimal) solutions at a 
drastically decreased computational cost.

Evolutionary Approaches (EA), Swarm intelligence (SI) approaches, and Physics-
based Approaches (PHA) are the classes of metaheuristic approaches. SI approaches 
are a group inspired by swarms and animals’ behavior habits [13]. Multiple SI methods 
have been proposed in the literature and above. They have obtained reliable outcomes 
in a broad range of optimization issues, such as Particle Swarm Optimization (PSO) 
[14], Artificial Bee Colony (ABC), [15], Sparrow Search Algorithm (SSA) [16], Grey 
Wolf Optimization (GWO) [17], Bat Algorithm (BA) [18], Wheel Optimization Algo-
rithm (WOA) [19], Grasshopper Optimization Algorithm (GOA) [20], Sailfish Opti-
mizer (SFO) [21], Bird Swarm Algorithm (BSA) [22], and Harris Hawks Optimization 
(HHO) [23]. The EA approaches are designed by simulating biological evolutionary 
patterns such as mutation, crossover, and choice. Genetic Algorithm (GA) [24], Dif-
ferential Evolution (DE) [25], COVIDOA Optimization Algorithm [26], invasive tumor 
growth optimizer [27], and biogeography-based optimizer [28] are significant EA-based 
metaheuristic methods that have demonstrated their effectiveness in multiple optimiza-
tion areas. PHA has been created using the rules of physics found in nature techniques, 
including SA [29], Gravitational Search Algorithm (GSA) [30], Atom Search Optimiza-
tion (ASO) [31], and Henry Gas Solubility Optimization (HGSO) [32].

The embedded approach uses a learning algorithm to choose the relevant genes, 
directly interacting with the classification; the FS algorithm is integrated as part of the 
learning algorithm. The learning model is trained using an initial feature set to establish 
a criterion for measuring the rank values of features. The main objective is to reduce 
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the computation time for reclassifying different subsets, which is done in wrapper 
methods by incorporating the FS into the training process. The most common embed-
ded techniques are tree algorithms like Random Forest (RF). Some embedded methods 
perform feature weighting based on regularization models with objective functions that 
minimize fitting errors and, in the meantime, force the feature coefficients to be small 
or precisely zero. These Methods are the LASSO [33] with the L1 penalty, Ridge with 
the L2 penalty for constructing a linear model, and Elastic Net [34]. Examples of the 
embedded approach are SVM based on Recursive Feature Elimination (SVM-RFE) [35], 
RF [36], and the First Order Inductive Learner (FOIL) rule-based feature subset selec-
tion algorithm.

The hybrid approach is designed to combine the filter and wrapper approaches to 
achieve the advantage of each and maximize each approach’s benefits. The feature space 
dimension space is first reduced using a filter approach, which may produce numer-
ous candidate subsets with moderate complexity. Then, a wrapper is used as a learning 
strategy to determine the best candidate subset. The excellent efficiency of filters and the 
high accuracy of wrappers are typically achieved via hybrid approaches. Many intriguing 
methodologies, hybrid genetic algorithms [37], hybrid ant colony optimization [38], and 
mixed gravitational search algorithm [39], have recently been proposed. Practically any 
combination of filter and wrapper can be used to create a hybrid methodology.

Motivation and contributions

Nuclear Reaction Optimization (NRO) [40] is A brand-new meta-heuristic algorithm 
for global optimization, which mimics the nuclear reaction process. The proposed NRO 
algorithm can be divided into two phases, nuclear fission (NFi) and nuclear fusion, in 
accordance with the definitions of nuclear reaction characteristics (NFu). The nuclear 
fission phase primarily mimics this mechanism. The Gaussian walk and differential 
operators between the nucleus and neutron have been used for exploitation and explora-
tion in nuclear fission based on the types of nuclei and the probability of decay follow-
ing bombardment. The NFu phase primarily mimics the fusion of nuclear reactions. The 
ionization and fusion processes of the NFu can be included in this phase.

In order to address the Gene Selection (GS) problem, this paper suggests an improved 
binary version of the NRO algorithm, known as the RBNRO-DE algorithm, which is a 
promising method and shows precise performance. Initially, there’s a chance that the 
suggested algorithm will avoid local optima and achieve sufficient search accuracy, rapid 
convergence, and enhanced stability. The suggested RBNRO-DE achieves improved effi-
cacy by obtaining optimal or nearly optimum outcomes for many of the investigated 
issues, in contrast to state-of-the-art meta-heuristic algorithms. Furthermore, RBNRO-
DE uses a transfer function to convert continuous data into discrete values, and it incor-
porates the Relief algorithm and the DE technique for boosting exploration capacity and 
the best outcomes found inside the solution space through iterations. The rationality for 
applying the RBNRO-DE approach in FS is due to the fact that it is easy to understand 
and create, can handle a wide range of optimization problems and achieves worthwhile 
outcomes in a reasonable amount of time and lower computational costs; it also utilizes 
few control parameters. The fundamental contributions of this paper can be presented 
in the following:
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• RNA-seq next-generation sequencing-based level 3 data is pre-processed.
• The proposed NRO algorithm is a novel type of metaheuristic algorithm that has not 

been applied before to RNA-Seq gene expression data. Thus, its ability to resolve this 
issue has not been examined.

• NRO is modified and then re-created to develop a binary version called the RBNRO-
DE algorithm.

• For improving the feature space exploration capacity and enhancing the acquired 
optimal outcomes, the proposed RBNRO-DE algorithm embeds a Relief algorithm 
and a DE technique with the binary version of the NRO algorithm. This embedding 
enhances the algorithm’s performance by producing a new population that maintains 
the fundamental structure but has more appropriate positions.

• As GS has a broad search space, it frequently leads to the issue of being trapped in 
local optima in most current algorithms. The RBNRO-DE can efficiently explore 
large spaces to locate optima or near optima solutions while avoiding falling into 
local optima.

• The final results are estimated based on various performance metrics, including 
mean of fitness rate, mean of accuracy rate, and mean of features count selected.

• The influence of the proposed RBNRO-DE algorithm using the two suggested classi-
fiers (k-NN and SVM) is compared with its peers of literature algorithms.

• The proposed RBNRO-DE algorithm is evaluated on 22 different types of cancer 
datasets, and the results are displayed.

• The selected genes are conducted with cancer-type bio-mark.

Structure

The rest of the paper consists of five sections as follows: “Related work” section  dis-
cusses the literature of FS with genome data; then “Background details” section  ana-
lyzes and elaborates the base concepts of the presented methodology background; after 
that in “Proposed relief binary NRO based on DE (RBNRO-DE) for gene selection” sec-
tion provides a detailed explanation for the proposed RBNRO-DE algorithm, which is 
the improved version of NRO and its parameters to handle GS; “Experimental results 
and discussion” section presents the experimental results and comparisons with some 
competitive algorithms; and finally “Conclusion and future work” section contains the 
work conclusion and suggestions for future research.

Related work
This section will demonstrate the literature on researchers’ techniques to handle the high-
dimensionality of genome data for accurate classification. Deleting irrelevant genes plays 
an essential role in the performance of classification algorithms, so selecting genes is a nec-
essary step before using any Machine Learning (ML), deep learning (DL) algorithms, or 
other classification methods. For this consideration, we have studied some related studies 
in this scope to reach the goal of RNA-seq classification for cancer detection.

Li et al. [41] had an interest in finding tumors’ biomarkers; they worked on the pan-can-
cer public data set for 31 different types. GA/K-NN was the method they used to extract the 
genes. In this method, they carried out multiple iterations of subsets of genes and then asses 
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the accuracy with the k-NN algorithm. Using the resultant accuracy, they chose the best set of 
features. This method, with 90% success, has been used across 31 types of cancer.

Lyu et al. [3] presented work to find specific cancer biomarkers; they depended on the 
importance of genes to their contribution to the classification. They followed these steps: 
pre-processing the data and applying tumor-type classification using a convolutional 
neural network. After that, they generated heat maps for each class to pick out the genes 
corresponding to pixels with top intensities in the heat maps and finally validate the 
pathways of selected genes. In pre-processing, they used a variance threshold of 1.19 to 
delete the gene expression levels that had not changed as the GS step, which reduced the 
number of genes to 10381 of 19531, which is a filtering approach and The final accuracy 
they got was 95.59. Although the accuracy was good, it can still be much better, which 
can be achieved using a better FS approach to reduce that dimensionality.

Khalifa et al. [42] have followed the paper mentioned above [3] however, They focused 
on five cancer types of data: lung adenocarcinoma (LUAD), lung squamous cell carci-
noma (LUSC), breast invasive carcinoma (BRCA), kidney renal clear cell carcinoma 
(KIRC) and uterine corpus endometrial carcinoma (UCEC). The total dataset is 2086 
rows and 972 columns; each row contains a specific sample and the RPKM RNA-Seq 
values of a particular gene [43]. They used the hybrid approach for pre-processing the 
data as they proposed binary particle swarm optimization with design trees (BPSO-DT) 
algorithm; 615 features out of 971 were chosen as the best features of RNA-seq. The 
presented results and the performance metrics performed in this research showed that 
the proposed approach achieved an overall testing accuracy of 96.90%. The compara-
tive results were introduced, and the accuracy achieved in the present work outperforms 
that of other related work for the testing accuracy for five classes of tumors. Moreover, 
the proposed approach is less complex and has less time for training.

Xiao et al. [44] evaluated their method on three RNA-Seq gene expression data sets: 
lung adenocarcinoma, Stomach Adenocarcinoma (STAD), and breast invasive car-
cinoma. They depended on the DL technique as they used five different classification 
models followed by the DL model to ensemble each result of the five models and that 
have made an improvement in all the predictions evaluation as follows: LUAD 99.20% , 
BRCA 98.4% , and STAD 98.78&.

Liu et al. [45] have investigated genetic data but not in RNA-Seq. However, they used 
microarray data and followed the hybrid approach as well. Unlike the papers mentioned 
above, they have worked on each type independently. They used four gene datasets of 
colon cancer, small-round-blue-cell tumors, leukemia, and lung cancer to evaluate the 
algorithm’s performance. The algorithm depends on Relief as the feature pre-filter to 
remove the genes with low relevancy with the cancer type. PSO is used as the search 
algorithm, and finally, the classification accuracy of SVM is used as the evaluation func-
tion of the feature subset to get the final optimal gene subset cancer.

Danaee et al. [46] worked on the gene expression data using the power of encoders and 
decoders of neural networks as they used Stacked Denoising Autoencoder (SDAE) as the 
FS method. The effectiveness of the extracted representation was then assessed using 
supervised classification models to confirm the use of the additional features in cancer 
detection. Finally, by studying the SDAE connection matrices, they discovered a collec-
tion of highly interacting genes. They used RNA-seq expression data for both tumor 
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and healthy breast samples from The Cancer Genome Atlas (TCGA) database for our 
research. These data comprise 113 healthy samples and 1097 samples with breast can-
cer. The findings and analyses show that the highly interacting genes may serve as breast 
cancer indicators that merit further investigation. After training the SDAE, they chose 
a layer with a low dimension and validation error compared to other encoder stacks. It 
has four layers that were respectively 15,000, 10,000, 2000, and 500 dimensions thick. 
The chosen layer’s features are fed into the algorithms for classifying data. Deep learning 
models can, therefore, easily handle vast amounts of input data. Hence, they anticipate 
this model will perform better and highlight more insightful patterns if additional gene 
expression data becomes available.

According to the related work, most research with genetic data is at its beginning, and all 
of the work is trials to conduct and apply the concepts in this promising field. The research 
literature is filled with experiments on different methods, such as FS and deep learning state-
of-the-art techniques. However, due to the very high dimensions of genetic data, there is no 
perfect technique. FS of genome data detects the link of a gene to its class, which is a critical 
preprocessing task to overcome the curse of dimensionality and verification of the gene bio-
marker of cancer. Because of this, the objective of this study is to use a new wrapper approach 
RBNRO-DE algorithm and apply it for the first time on the RNA-Seq and compare the influ-
ence of the algorithm with other FS methods.

Background details
Relief algorithm

Relief algorithm [47, 48] is a highly effective, simple, and rapid filtering method for 
determining the features associated with each other. The essential idea of this algorithm 
is to identify features that cause values to be close for identical samples that are near 
each other and significant for the distinction between the different samples. Therefore, 
the algorithm relies on the weighted order of features. The higher the feature’s weight, 
the better the feature to classify, and vice versa.

The Relief algorithm begins by selecting a sample at random, after which it investi-
gates two types of nearest samples: one associated with comparable class samples called 
Near-Hit and the other related to different class samples called Near-Miss. Each feature’s 
weight can be assessed from the values of both Near-Hit and Near-Miss. The features are 
arranged according to their weights. The features with the highest weights will be chosen 
in the end. The weight W for the feature A can be measured using the following equation:

where WA is the feature’s weight A, xjA is the feature’s value A for data xj , and N repre-
sents the number of samples. NH(xj) and NM(xj) are the closest data points to xj that 
belong to the similar same and different classes, respectively.

NRO algorithm

The idea of nuclear reaction arose after finding neutrons derived from boron and 
nitrogen. This results from research into the interaction of uranium with neutron [49]. 

(1)WA =

N
∑

j=1

(

x
j
A − NM(xj)A

)2
−

(

x
j
A − NH(xj)A

)2
.
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Nuclear fission and nuclear fusion are the two processes that make up the nuclear reac-
tion [50]. As shown in Fig.  1, nuclear fission occurs when a heated neutron shells a 
weighty nucleus and transforms into lighter nuclei as fission outcomes and other mol-
ecules. When heated neutrons shell weighty nuclei, new neutrons are produced to shell 
other weighty nuclei. The nuclear fission chain reaction is the name for this methodol-
ogy. As a result, a significant amount of power is released, which is relative to the varia-
tion in mass between the atom and the masses of the majority of fission fragments.

Nuclear fusion, on the other hand, occurs when a nucleus is warmed until it is in a 
condition of plasma, where the strong nuclear force causes nuclear particles to get close 
enough to join together and overcome the Coulomb repulsion force, as seen in Fig. 2.

The nuclear fission process is first used during the presented approach, in which nuclei 
fragments absorb hot neutrons and then form odd or even-even nuclei. Essential fission 
products, which might be utilized for exploitation, and subaltern fission products, which 
can be used for exploration, are two types derived from odd nuclei. The even-even nuclei 
not present in fission can be sought near the existing positions (current optimal solu-
tion). After that, the presented approach utilizes the process of nuclear fusion, whereby 
the energy generated during nuclear fission is used to heat the nuclei, causing atomic 
fusion. Some nuclei constrained by the force of Coulomb repulsion slow down the 

Fig. 1 The nuclear fission process
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upcoming velocity for exploitation or reject one another for exploration. Other nuclei 
can be explored by overcoming Coulomb repulsion and bonding together by strong 
nuclear forces. The heated neutron or energy generated in nuclear interaction gives each 
nucle kinetic energy.

According to the above illustration, a physics-based optimization algorithm known 
as the NRO algorithm [50] has been developed to mimic the two nuclear reaction pro-
cesses, namely fission and fusion processes. The nuclear fission process involves the 
nuclear fission operators comprising of two cases: essential and subaltern fission of odd 
nuclei and nearby seeking a solution of the even-even nucleus. As for the nuclear fusion 
process, it has ionization and fusion phases that make up its nuclear fusion operators. 
Since the NRO algorithm might slip into the local optima trap, a fusion process incorpo-
rates a Levy flight methodology to jump out of the local optimal value.

Base processes of NRO algorithm

According to the NRO algorithm, the cycle generated by fission energy and fusion neu-
trons might be employed to find the most stable nucleus (optimal fitness value). Hence, 
nuclear fusion can arise from heating lighter nuclei with the energy emitted by nuclear 
fission. In contrast, nuclear fission can result from shelling the weighty nuclei by thermal 
neutrons from nuclear fusion. For exploitation and exploration of a search solution area, 
the NRO algorithm considers nuclear fission and nuclear fusion processes to occur in 
a closed container where all nuclei interface. The NRO algorithm considers a nucleus 
characteristic that comprises elements like position, potential energy, nucleus mass 
number, and charge property, which is a solution in a search solution area. The specific 
binding energy of each nucleus is assessed as the energy for each mass, which describes 
the nucleus’ stability. The essential processes of the NRO algorithm are depicted below. 

1. Nuclear fission process: According to the cycle between nuclear fission and nuclear 
fusion, it is thought that hot neutrons shelling a weighty nucleus for nuclear fission 

Fig. 2 The nuclear fusion process
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may be created by the nuclear fusion of two separate arbitrary nuclei. In order to 
mathematically model nuclear fission, Gaussian walk [51] is utilized to mimic the 
various fission elements with diverse cases. In general, two cases can be used to dis-
tinguish the attributes of various products. The first case is associated with forming 
subaltern fission products for exploitation and essential fission products for explora-
tion. These products are created when nuclear fission is applied to odd nuclei. The 
odd nuclei from which the subaltern fission products are generated are activated for 
fission utilizing energy emitted by heated neutrons and can be highly steady through 
β decay. On the other hand, the information on neutron and the present best solu-
tion is used by the existing solution to find a more satisfactory solution depending on 
the Gaussian walk. As for the odd nuclei from which the essential fission products 
are produced following the absorption of a hot neutron may not be steady because 
the fission fragment may not afford β decay. In the first case, rand ≤ PFi is correct, 
where rand signifies an arbitrary number distributed uniformly within the range 
[0, 1], and PFi is the probability of nucleus fission. For the subaltern fission products 
of odd nuclei, rand ≤ Pβ is correct, where Pβ is the likelihood of β decay. rand > Pβ 
is suitable for essential fission products of odd nuclei. The composition process of 
subaltern and actual fission products of odd nuclei can be expressed as follows: 

where XFi
i  means the ith fission product nucleus, randn means a normally distrib-

uted arbitrary number, and Xbest denotes the present most suitable nucleus. The 
Gaussian distribution’s parameters for subaltern fission products are Xbest and σ1 , 
while the parameters of Gaussian distribution for essential fission products are Xi 
and σ2 , σ1 and σ1 signifies the step sizes, g represents the present generation number, 
Xr means the rth nucleus whose index r is picked randomly from the population of 
nuclei. Additionally, Ps

ne represents a mutation factor, indicating that the subaltern 
fission product can exploit the slighter searching range, whereas Pe

ne indicates that 
the essential fission product can exploit the larger searching range, in which round is 

(2)

XFi
i =

{

Gaussian(Xbest , σ1)+ (randn · Xbest − Ps
ne · Nei), if rand ≤ Pβ ,

Gaussian(Xi, σ2)+ (randn · Xbest − Pe
ne · Nei), if rand > Pβ ,

}

if rand ≤ PFi,

(3)σ1 =

( log(g)

g

)

· |Xi − Xbest |,

(4)σ2 =

( log(g)

g

)

· |Xr − Xbest |,

(5)Ps
ne = round(rand + 1),

(6)Pe
ne = round(rand + 2),

(7)Nei =
(Xi + Xj)

2
.
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the closest integer and rand is an arbitrary number distributed uniformly within the 
range [0, 1]. Nei is the ith heated neutron, Xi and Xj represent the different random 
ith nucleus and jth nucleus, respectively. The second case is related to an even-even 
nucleus, which cannot be activated for fission. The status of the nucleus is altered 
even if there is no fission. The present nucleus’ information might be kept, and it 
comes from the Gaussian walk. In the second case, rand > PFi is correct, where PFi 
is the prospect of nucleus fission. It is expressed as follows: 

2. Nuclear fusion process: Whenever nuclei are heated to a plasma shape, they can 
merge to form nuclei heavier than the initial light nuclei, known as hot nuclear 
fusion. The nuclear fusion process includes two steps: ionization and fusion steps.

• The ionization step: It supposes that nuclear fission causes the emission of thermal 
ionization energy, which yields the motion of a nucleus. Differential operators can 
be involved in the ionization step. Firstly, each nucleus is rated given its fitness 
function level, starting with the biggest and ending with the smallest. For exploita-
tion, the nucleus with a higher fitness function value is kept for guiding, whereas 
the nucleus with a lower fitness function value is utilized for exploration.

 In the ionization step, when rand > Pai , where Pai is a probability value of the 
nucleus’s ionization and illustrates that the higher possibility value means a bet-
ter nucleus, the ionization step can be described as mathematically, to enhance 
the exploration’s quality, as follows: 

where XIon
i,d  is the dth variable of ith ion after ionization. The dth variables of r1th , 

r2th and ith fission nuclei are represented by XFi
r1,d , XFi

r2,d and XFi
i,d , respectively, and 

rand implies an arbitrary number between 0 and 1. Pai denotes a probability value 
of nucleus’s ionization, fit(XFi

i ) is the fitness function value of XFi
i  , rank(fit(XFi

i )) 
means the rank of XFi

i  in the population, and N is the overall number of nuclei. In 
contrast, when rand ≤ Pai , the thermal fission’s energy can’t ionize the more sta-
ble nucleus. As a result, XFi

i,d is adjusted to improve the exploitation’s performance 
using the following formula: 

where XFi
worst,d and XFi

best,d mean the dth variable for the worst and better fission 
product nucleus, respectively. The algorithm is sometimes susceptible to falling 
into the trap of local optimal conditions, where two solutions are almost identical, 

(8)XFi
i =

{

Gaussian(Xi, σ2), if rand > PFi.

(9)XIon
i,d =

{

XFi
r1,d + rand · (XFi

r2,d − XFi
i,d), if rand ≤ 0.5,

XFi
r1,d − rand · (XFi

r2,d − XFi
i,d), if rand > 0.5,

}

if rand > Pai,

(10)Pai =
rank(fit(XFi

i ))

N
.

(11)
XIon
i,d =

{

XFi
i,d + round(rand) · rand · (XFi

worst,d − XFi
best,d), if rand ≤ Pai.
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and the difference item might be zero. In this case, the search strategy is con-
sidered the most challenging part. Therefore, finding an algorithm-optimized 
approach for supporting the current solution in leaping out of a local optimal 
solution and investigating the global optimum is critical. This approach is called 
Levy flight distribution [52]. About Eq. (9), which was formed for improving the 
exploration in the ionization step, this equation can be applied appropriately when 
XFi
r2,d is not equal to the value of XFi

i,d . However, in case the value of XFi
r2,d is equal 

to the value of XFi
i,d . The Levy flight distribution approach should be employed to 

avoid a locally optimal solution as follows: 

where α is a scale factor whose value is determined by the problem’s scales 
( α = 0.01 ), and Levy(β) denotes the Levy flight step size. µ and ν are calculated 
from the normal distribution N (0, σ 2

µ) , and N (0, σ 2
ν ) respectively, and β = 1.5 . 

As for Eq. (11), which was formed for improving the exploitation in the ioniza-
tion step, this equation can be applied appropriately when XFi

worst,d is not equal to 
the value of XFi

best,d . However, in case the value of XFi
worst,d is equal to the value of 

XFi
best,d , then the Levy flight distribution approach should be utilized as follows: 

• The fusion step: It attempts to combine an ion with information from different 
ions and modify the status of the ions. Initially, all ions acquired from the ioniza-
tion are ranked given their fitness function levels, starting with the largest and 
ending with the lowest. In the fusion step, if rand > Pci,where Pci is a probability 
value of the ith ion, the ions of two light nuclei defeat the Coulomb repelling 
force and are fused through a robust nuclear force. Additional differential opera-
tors are used in the fusion stage to simulate the collision and fusion and boost 
the variety of the nuclei population to allow for more effective exploration. This 
situation can be depicted mathematically through the following equation: 

(12)XIon
i,d = XFi

i,d +

(

α ⊗ Levy(β)
)

d
·

(

XFi
i,d − XFi

best,d

)

,

(13)Levy(β) =
µ

|ν|1/β
,

(14)µ = N (0, σ 2
µ), ν = N (0, σ 2

ν ),

(15)σµ =

( Ŵ(1+ β) sin(�β/2)

Ŵ[(1+ β)/2]β2(β−1)/2

)1/β
, σν = 1.

(16)XIon
i,d = XFi

i,d +

(

α ⊗ Levy(β)
)

d
·

(

UBd − LBd

)

.

(17)XFu
i =

{

XIon
i + rand · (XIon

r1 − XIon
best )+ rand · (XIon

r2 − XIon
best )

−e−norm(XIon
r1 −XIon

r2 )
· (XIon

r1 − XIon
r2 ), if rand > Pci ,

(18)Pci =
rank(fit(XIon

i ))

N
.
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where XFu
i  is the ith product of fusion, XIon

i  represents the current ion, XIon
r1  and 

XIon
r2  denote the r1th and r2th ions, respectively, in which r1 and r2 are unlike.The 

difference expression (XIon
r1 − XIon

best) is used to describe a portion of fusion process, 
the expression (XIon

r2 − XIon
best) utilizes the difference to clarify another part’s infor-

mation of fusion, and the final expression (XIon
r1 − XIon

r2 ) means that ions defeat the 
Coulomb repelling force. The exponential coefficient seeks to accomplish an equi-
librium between exploration and exploitation. Pci stands for a probability value of 
nucleus’s fusion, fit(XIon

i ) is the fitness function value of XIon
i  , and rank(fit(XIon

i )) 
stands for the rank of XIon

i  in the population. On the other hand, when rand ≤ Pci , 
ions cannot defeat the Coulomb force and fail to be fused by a nuclear force. The 
Coulomb force may lessen the approach speed or repel the opposing motion if 
fusion does not occur. The mathematical formula is recommended as follows: 

where freq denotes the sine function’s frequency, g represents the present gen-
eration number, Gmax is the permissible maximum generation number, XIon

r1  and 
XIon
r2  represent the r1th and r2th ions, respectively, with distinct indexes. In the 

first row of Eq. (19), the state where the Coulomb force might lower the approach 
speed used the non-adaptive sine adjustment to exploit the solution space and 
converge to the optimal solution. The case in which the two ions repulse and are 
far from each other to explore is in the second row of Eq. (19). The Levy flight dis-
tribution approach is applied to enhance the algorithm’s capability to avoid getting 
stuck into a local optimum in the fusion step. In case of the value of XIon

r1 = XIon
r2  

in the fusion step, then the Levy flight distribution approach should be utilized for 
avoiding a locally optimal solution as follows: 

 The fission nucleus with the best fitness function value in the present genera-
tion should be saved as guiding information for the following process. While the 
fusion nucleus with the best fitness function value should be the globally acquired 
best solution. The individuals outside the search boundary are reformed using the 
boundary control approach.

Suggested classifiers

k‑NN classifier

The k-NN [53, 54] is a pattern classification algorithm, which is used to predict 
whether new sample instances will belong to one or another class based on which 
class the cases closest to it belong to for making a decision [55]. The k-NN is a wrap-
per for generating classification rules from training samples. Then, by comput-
ing the distances amongst the new un-classified instance and its closest k-training 

(19)
XFu
i =























XIon
i − 0.5 ·

(

sin(2� · freq · g + π) ·
Gmax−g
Gmax

+ 1
)

· (XIon
r1 − XIon

r2 ),
if rand > 0.5,
XIon
i − 0.5 ·

(

sin(2� · freq · g + π) ·
g

Gmax
+ 1

)

· (XIon
r1 − XIon

r2 ),
if rand ≤ 0.5,























if rand ≤ Pci .

(20)XFu
i = XIon

i + α ⊗ Levy(β)⊗ (XIon
i − XIon

best).
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neighbours, it tries to locate the cases in the training set most comparable to the new 
instances in the test set. Finally, depending on the training process, a novel instance is 
classified according to the most significant category likelihood.

However, while training k-NN, the option of k is fundamental and the sole factor 
to consider when categorizing a novel test set; therefore, it is picked after a series of 
trial and error runs. The k-NN classifier (k = five [56, 57]) with the Euclidean distance 
metric was utilized to assess the feature subsets in the literature experiments.

SVM classifier

The greatest margin hyper-planes in the space can be found using the SVM [58] to 
accurately classify training instances into different classes. SVM can analyze high-
dimensional data with a fast training period and minimal computational resources, 
even with a few training examples.

SVM employs a margin maximization strategy to avoid assessing the distributions 
linked to the statistics of distinct classes in the hyper-dimensional space. It creates 
hyper-planes to produce resolution boundaries for linear or nonlinear classification. 
Since the classes cannot be divided along a straight line in the nonlinear classification, 
SVM makes the data linearly separable by using the so-called kernel function [59] as 
a scalar product. SVM is used in a variety of industries, including bioinformatics [60], 
face detection [61], image classification [62], and text categorization [63].

Proposed relief binary NRO based on DE (RBNRO‑DE) for gene selection
As one of the most valuable uses of RNA-Seq gene expression data is disease classi-
fication, ML algorithms may be misled by the high dimensionality of data. Therefore, 
an enhanced version of NRO called RBNRO-DE, which indicates a Relief Binary NRO 
based on DE, is proposed to ignore irrelevant genes and identify the minor relevant 
genes’ subsets from the classification process.

The main characteristic of RBNRO-DE is that it achieves the best accuracy with the 
most minor subset of features. Two main phases constitute the proposed RBNRO-
DE. Firstly, a pre-processing phase uses the Relief algorithm to identify the relevant 
features by computing a weight for every feature to describe its relationship and then 
ignoring the irrelevant features with the lowest weights. The second phase includes 
applying the binary NRO algorithm combined with the DE technique to determine 
the most relevant and non-redundant features. When solving large-scale problems, 
the NRO algorithm is susceptible to the local optimal trap. To prevent this, the DE 
technique is included in the NRO algorithm.

The stages required for the proposed RBNRO-DE to be able to handle the GS strat-
egy include filtration, initialization, position improvement depending on the NRO 
algorithm, binary conversion, fitness estimation, and hybridization with DE. The fol-
lowing subsections describe these stages.
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Filtration of features

As illustrated in subsection “Relief algorithm”, the Relief algorithm is used to pre-process 
the population by filtering the features and choosing the relevant features. The weight 
of each feature is first evaluated by Eq. (1), and then the weights are ordered from the 
largest to the smallest weights to determine relevance for the classification process. By 
concentrating only on the relevant features and minimizing the initial search space, the 
Relief algorithm supports the NRO algorithm to obtain better features faster.

Initialization of nuclei population

The suggested BRNO initiates by randomly producing a population of N nuclei. Each 
nucleus represents a potential solution within its restricted lower and upper limits, 
depicted by a D dimensions vector equal to the original dataset’s feature count. The 
randomly generated position of each nucleus is employed in this randomly initialized 
step, which is confined within the [−1, 1] range at each variable of the position vector.

Improvement and adjustment of position

Positions are improved using equations linked to the NRO algorithm presented in 
Subsection  “NRO algorithm”. These equations are repeated until a certain stopping 
condition is fulfilled. This paper’s acceptable stopping condition for suitably assessing 
the proposed algorithm’s quality is the maximum number of generations Gmax.

Some nuclei may be outside the search space’s boundaries when optimizing the 
position utilizing the NRO algorithm. This paper offers a procedure for enhancing 
these worthless nuclei by adjusting them to an arbitrary position inside the permitted 
boundaries. By randomly varying the optimal position, this procedure will improve 
the exploitation of the NRO algorithm. This procedure can be expressed as follows:

where Xadjust
i,d  refers to the proper product nucleus, Xi,d is the value that surpasses the 

variable’s boundaries, XLB
d  denotes the lower boundary of product nuclei, XUB

d  denotes 
the upper boundary of product nuclei. An arbitrary value between XLB

d  and XUB
d  is 

returned through rand(XLB
d ,XUB

d ) with regular distribution.

Continuous to binary conversion

The nuclei positions are represented as continuous (real) values in the NRO. There-
fore, they can’t be utilized directly for the GS binary problem. To fit in with the binary 
character of GS, a binary conversion strategy for transforming the continuous (real) 
values of the nucleus’ positions into binary values is required. At the same time, the 
original algorithm’s structure is preserved.

In the binary vector, the continuous (real) values of the relevant selected features 
are expressed by ones, whereas zeros express the continuous values of the irrelevant 

(21)X
adjust
i,d =

{

Xi,d , ifXLB
d ≤ Xi,d ≤ XUB

d

rand(XLB
d ,XUB

d ), ifXLB
d > Xi,d or Xi,d > XUB

d .
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unselected features. The mathematical formulation to transform the continuous 
nucleus position Xg

i  to a binary position (Xg
i )bin , at each generation g, is as follows:

where δ represents a random threshold value within the range [0, 1]. This essential binary 
conversion strategy implies that if (Xg

i )bin is bigger than δ . It changes from its continuous 
value to the binary “one” (selected features for the classification process). In contrast, the 
continuous value of (Xg

i )bin has been adjusted to the binary “zero” if it is less than delta. 
(unselected feature for the classification process).

Estimation of fitness function

Two clashing goals should be considered to estimate the goodness of a solution and 
reach the optimal solution: maximizing the accuracy of classification from the classifiers 
(k-NN and SVM classifiers) while searching for the shortest size of elected features, and 
this enhances the algorithm’s predictive capacity. The fitness function will be used to bal-
ance the size of selected features and the accuracy of (k-NN and SVM) classifiers since 
accuracy may be impaired if the size of selected features is reduced more than desired. 
To minimize the two goals, the fitness function will focus on reducing the error rate of 
classification instead of the accuracy, as follows:

where Errrate reflects the rate of classification error from the (k-NN and SVM) classifi-
ers, featelected signifies the selected features’ length, and D indicates the dataset’s overall 
feature count. The weight parameters w1 and w2 refer to the significance of classification 
accuracy and the length of the elected features, respectively. Based on the comprehen-
sive trials executed in prior research [64, 65], w1 is assigned to 0.99, and w2 equals 0.01. 
Minimizing the error rate of classification Errrate (maximizing classification accuracy) 
is given more preference than shortening the length of the elected features featselected , 
which suggests that w1 should be given more weight than w2.

Embedding of the DE approach

One of the most influential and straightforward stochastic, population-based trial-and-
error approaches for acquiring the preferable solution to complicated optimization 
problems is DE [25]. The DE approach requires few control parameters, is simple to 
learn and use, and can handle a variety of optimization problems while producing valu-
able results quickly and at a reduced computational cost. DE depends on three primary 
stages: mutation, crossover, and selection, as follows:

• Mutation stage: It is also known as a differential mutation. With each iteration, 
this stage aims to create a mutated vector υi for each solution vector. To create the 

(22)(X
g
i )bin =

{

1 ifX
g
i > δ,

0 otherwise.

(23)fit = w1 × Errrate + w2 ×
|featelected |

|D|
, w1 ∈ [0, 1], w2 = 1− w1.
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mutated vector υi , three distinct nominee vectors Xr1 ,Xr2 ,Xr3 are randomly selected 
from the range [1, population size]. The difference between two of the nominee vec-
tors Xr2 ,Xr3 is then estimated. The third nominee vector Xr1 is then added to after 
this difference is multiplied by a mutation weighting factor ( WM ) within the range 
[0, 1] [66]. The following is a mathematical representation of υi : 

• Crossover stage: DE uses the crossover stage to enhance population diversity after 
the differential mutation stage. Combining values from the target vector Xi and the 
mutated vector υi yields creating an offspring vector ui . The binary crossover is char-
acterized as the most popular and straightforward crossover search operator in DE, 
which is mathematically expressed as: 

where jrand ∈ [1, 2, . . . ,DX ] is a uniformly distributed arbitrary number to guar-
antee that the mutated vector includes at least one dimension. Crossover rate CR is 
employed to determine the likelihood of each element being crossed; it is often set to 
a high value ( CR = 0.9). It is evident from Eq. (25) that CR and rand are compared. ui 
is derived from υi if the value of rand is less than or equal to the value of CR . If not, Xi 
is used to infer ui.

• Selection stage: Eventually, the selection stage is performed, as illustrated in Eq. (26), 
in which the target vector’s fitness function fit(Xi) and the corresponding offspring 
vector’s fitness function fit(ui) are compared, and the fitness function with the low-
est value is retained, and the best possible solution is ready for the next generation. 

ui is set to Xi if fit(ui) yields a value that is smaller than fit(Xi) . If not, the previous 
target vector Xi remains in place.

After illustrating the main stages of DE, the pseudo-code for these stages is presented in 
Algorithm 1.

(24)−→υ i =
−→
X r1 +WM(

−→
X r2 −

−→
X r3)

(25)ui,d =

{

υi,d , if rand ≤ CR or d = jrand ,
Xi,d , otherwise.

(26)Xi =

{

ui, if fit(ui) < fit(Xi)

Xi, otherwise.
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Algorithm 1 The main stages of DE

The exhaustive RBNRO‑DE algorithm

Finally, after describing the steps of the suggested RBNRO-DE algorithm in the preced-
ing Subsections to handle the GS strategy, Algorithm 2 provides the pseudo-code for the 
proposed RBNRO-DE algorithm. In addition, Fig. 3 includes a flowchart of the proposed 
RBNRO-DE algorithm to show its essential steps.
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Fig. 3 Flowchart of the proposed RBNRO‑DE algorithm
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Algorithm 2 The proposed RBNRO‑DE algorithm

Experimental results and discussion
The experimental results for the proposed RBNRO-DE algorithm and its peers are 
presented in this section. The models are evaluated using training and testing data-
sets. The final findings are derived using the evaluation metrics’ average value. The 
datasets used to verify the efficacy of the proposed model are described in Subsec-
tion “Dataset description”, the parameters that are utilized in working environments 
are presented in Subsection  “Parameters setting”, the evaluation criteria are shown 
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in Subsection  “Evaluation criteria”, and experimental results analysis is explained in 
Comparison results of the proposed RBNRO-DE against popular ML classifiers.

Dataset description

Extensive experiment techniques and other wrapper algorithms are conducted on 
22 gene expression datasets. The data used is the normalized-level3 RNA-Seq gene 
expression data of 22 tumor types in Broad Institute. It is publicly found and obtain-
able in [67]. We followed the whole process applied in paper [3] and noticed the dif-
ference between the data used in the mentioned paper from GitHub and the numbers 
written in the mentioned paper, which is copied from the site. The data from the site 
was a mixture of tumor and normal samples, while it was used as a tumor as a whole 
in the mentioned paper. Therefore, we investigated the data closely. First of all, the 

Table 1 Description of the datasets used in this study

# Cancer No. of tumour 
samples

No. of 
normal 
samples

1 Bladder urothelial carcinoma (BLCA) 408 19

2 Thyroid carcinoma (THCA) 501 59

3 Cervical and endocervical cancers (CESC) 304 3

4 Cholangiocarcinoma (CHOL) 36 9

5 Colon adenocarcinoma (COAD) 458 41

6 Esophageal carcinoma (ESCA) 184 13

7 Glioblastoma multiforme (GBM) 153 5

8 Thymoma (THYM) 120 2

9 Head and neck squamous cell carcinoma (HNSC) 520 44

10 Kidney chromophobe (KICH) 66 25

11 Kidney renal clear cell carcinoma (KIRC) 533 72

12 Kidney renal papillary cell carcinoma (KIRP) 290 32

13 Liver hepatocellular carcinoma (LIHC) 371 50

14 Lung adenocarcinoma (LUAD) 515 59

15 Lung squamous cell carcinoma (LUSC) 501 51

16 Pancreatic adenocarcinoma (PAAD) 178 4

17 Uterine corpus endometrial carcinoma (UCEC) 176 35

18 Pheochromocytoma and paraganglioma (PCPG) 179 3

19 Rectum adenocarcinoma (READ) 94 10

20 Sarcoma (SARC) 259 2

21 Skin cutaneous melanoma (SKCM) 103 1

22 Stomach adenocarcinoma (STAD) 415 37

Table 2 The main parameters of the ML classifiers

Classifier Parameters

k‑NN The Euclidean 
distance metric k = 5 
[56, 57]

SVM Polynomial kernel = 2
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site contains different forms of the same data that we chose to work on; we explored 
the data and found these challenges:

• Some Genes are named with ID but without symbol.
• Some Genes are not found in the annotation file.
• Samples are mixed up between normal and tumor and other staff.

As a result, we needed some pre-processing to separate and identify samples to get 
normal samples versus tumor samples that could be used in binary classification and 
to facilitate the process of FS. We faced the mentioned challenges as follows:

• We searched the annotation file for the found ID and got the gene symbol.
• We have compared with the annotation file, so more than 100 genes are removed.
• depending on the samples report, we separated each row depending on the sample 

type in an Excel sheet for binary classification.

Furthermore, the Relief algorithm, described in subsection “Relief algorithm”, is 
employed for pre-processing by computing the weight for each feature in the data-
set, and the weights are then sorted from biggest to smallest. Finally, the features 
with small weights are eliminated. After applying the Relief algorithm on the 22 gene 
expression datasets, we found that just 500 features had the largest weights. For that, 
the remaining irrelevant features with small weights were ignored, and these 500 rel-
evant features were only chosen for use in the FS process. The Relief algorithm can 
eliminate features that are irrelevant to classification.

After pre-processing, the resulting file became clean enough for use in the FS pro-
cess. Still, unlike paper [3], which provided multi-classification of all cancer types, we 
worked on each type separately to be more specific. Table 1 shows a detailed list of all 
22 tumour types and the corresponding number of samples.

Parameters setting

The proposed RBNRO-DE algorithm has been compared with binary conver-
sions of distinct meta-heuristic algorithms, which include Binary SSA (BSSA) [68], 
Binary ABC (BABC) [15], Binary BA (BBA) [69], Binary PSO (BPSO) [70], Binary 
WOA (BWOA) [57], Binary GWO (BGWO) [17], Binary GOA (BGOA) [20], Binary 
SFO (BSFO) [71], Binary BSA (BBSA) [22], Binary ASO (BASO) [31], Binary HHO 
(BHHO) [23], and Binary HGSO (BHGSO) [32]. The main parameters of the ML clas-
sifiers suggested in this paper are depicted in Table 2.

To ensure a fair comparison between different meta-heuristic algorithms, each method 
was subjected to thirty separate experiments on each dataset due to their stochastic 
nature. The resulting performance measures, which include accuracy, fitness, selected 
features, and standard deviation, were based on the average results of these experiments. 
To maintain consistency across all methods, each experiment’s population size and max-
imum number of iterations were set to 10 and 100, respectively. Furthermore, the num-
ber of attributes in the datasets used in this study indicated the problem size. To enable 
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Table 3 Configurations of parameter for all algorithms

Algorithm Parameter

All algorithms Run’s number = 30

Maximum number of iterations Gmax = 100

Population size N = 10

Dimensionality D = The number of attributes in the used benchmarks

Lower boundaries LB

Upper boundaries UB

Proposed RBNRO‑DE [25, 40] Probability of nucleus fission PFi =uniformly distributed random number

Probability of β decay Pβ =uniformly distributed random number

A scale factor α = 0.01

σν = 1

β = 1.5

Sine function’s frequency freq = 0.05

Mutation weighting factor WM = 0.85

Crossover rate CR = 0.9

BSSA Number of scroungers SD = 0.1∗N

Number of producers PD = 0.2∗N

Maximum number of generations in LSA = 20

Safety threshold ST = 0.8

BABC Number of employed bees = 16

Number of scout bees = 3

Number of onlooker bees = 4

BPSO Inertia weight (ωmax = 0.9ωmin = 0.4)

Acceleration coefficients (c2 = c1 = 1.2)

BBA Loudness A = 0.8

Lower and upper pulse frequencies = 0, 10

Pulse emission rate r = 0.95

BWOA a is linearly reduced from 2 to 0

b = 1.0

p = 0.5

BSFO Ratio between sardines and sailfish pp = 0.1

ε = 0.0001

A = 1

BHHO Rabbit energy E ∈ [−1, 1]

BGWO a is linearly reduced from 2 to 0

BGOA Cmin = 0.00004 and Cmax = 1

BBSA Frequency of flight ff = 10

Followed coefficient fl = 0.5

Effect on birds’ vigilance behaviors (a1 = a2 = 1.0)

Acceleration coefficients (c1 = c2 = 1.5)

Probability of foraging for food p = 0.8

BASO Multiplier weight β = 0.2

Depth weight α = 50

BHGSO Number of clusters = 2

l1 = 5E − 03 , l2 = 1E + 02 , and l3 = 1E − 02

α = β = 0.1 and K = 1.0
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individuals to search within a continuous search space, the domain was set to [− 1, 1], 
allowing them to explore a relatively wide but constrained search range.

In the presented framework, the optimality degrees of the outcomes are confirmed 
using a 10-fold cross-validation method to assure the reliability of the values received. 
This involves a data-splitting strategy that employs random sampling without replace-
ment to distribute training and testing groups. Each benchmark is divided into two sepa-
rate subsets through this method. Specifically, 80% of the benchmark data is randomly 
selected without replacement for training, ensuring that each data point is unique and 
not duplicated in the training set. The remaining 20% of the data is also uniquely chosen 
for testing. This approach ensures that the training subset is utilized to learn the ML 
classifier through optimization while the testing subset is employed to assess the per-
formance of the chosen features. By using random sampling without replacement, we 
ensure that there is no overlap between training and testing data, thus maintaining the 
integrity of the evaluation process. Each method’s remaining parameters are set consid-
ering the original variants and the data presented in their first publications. Standard 
configurations for all techniques and parameter settings for each method are shown in 
Table 3. Python is utilized in the computing environment to execute the runs with an 
Intel processor core i7, 16 GB of RAM, and an NVIDIA GTX 1050i GPU.

Evaluation criteria

To assess the performance of the proposed RBNRO-DE algorithm compared to others, 
each approach is independently verified 30 times in each dataset to validate the results 
statistically. To this end, the following standard performance measures for the FS prob-
lem are utilized.

• Average accuracy (AVGAcc) : this metric is the rate of correct data classification and 
is obtained by executing the algorithm independently 30 times, and is computed as 
follows: 

where m represents the size of the samples in the testing dataset, PLr and ALr are 
the classifier output labels of the predicted and actual class labels for sample r, 
respectively, and match(PLr ,ALr) represents a comparison discriminant function. If 
PLr == ALr , then match(PLr ,ALr) = 1 ; otherwise, match(PLr ,ALr) = 0.

• Average fitness value (AVGFit) : this metric measures the average fitness value 
obtained by executing the proposed algorithm independently 30 times, which defines 
the synergy between minimizing the error rate of classification and reducing the 
number of selected features. The lower value represents the better solution, which is 
evaluated in terms of fitness as follows: 

(27)AVGAcc =

30
∑

k=1

m
∑

r=1

match(PLr ,ALr)

(28)AVGFit =
1

30

30
∑

k=1

f k∗
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where f k∗  represents the optimal fitness value obtained in the kth run.
• Average size of selected features (AVGFeat) : this metric represents the average size 

(or FS ratio) of the number of features selected by executing the algorithm indepen-
dently 30 times and is determined as: 

where |dk∗ | is the absolute number of selected features in the best solution for the kth 
run, and |D| is the absolute total number of features in the original dataset.

• Standard deviation (STD): corresponding to the above results, the final average 
results obtained from the 30 independent runs of each algorithm on every dataset 
are evaluated in terms of stability as follows: 

where Y denotes the metric to be measured, Y ∗ k represents the value of the metric 
Y in the kth run, and AVGY  is the average of the metric over 30 independent runs.

The results presented in the following tables are the average values over 30 independ-
ent runs in terms of the fitness value (AVGFit) , classification accuracy (AVGAcc) , and the 

(29)AVGFeat =
1

30

30
∑

k=1

|dk∗ |

|D|

(30)STD =

√

√

√

√

1

29

30
∑

k=1

(Y k
∗ − AVGY )2

Table 4 Classification accuracy values of the proposed RBNRO‑DE against popular ML classifiers

Benchmark RBNRO‑DE 
with k‑NN

RBNRO‑DE 
with SVM

k‑NN SVM DT RF XGBoost

BLCA 1.0000 1.0000 0.9651 0.9884 0.9884 0.9419 0.9767

CESC 0.9839 1.0000 0.9839 0.9677 0.9839 0.9839 0.9839

CHOL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8889

COAD 1.0000 1.0000 0.9848 0.9848 0.9848 0.9848 0.9697

ESCA 0.9744 0.9915 0.9744 0.9744 0.9487 0.9744 0.9744

GBM 1.0000 1.0000 0.9688 1.0000 1.0000 1.0000 1.0000
HNSC 0.9938 1.0000 0.9558 0.8673 0.9469 0.9381 0.9469

KICH 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KIRC 0.9983 1.0000 0.9835 0.9752 0.8843 0.9256 0.9752

KIRP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LIHC 1.0000 1.0000 1.0000 1.0000 0.9765 0.9647 0.9765

LUAD 0.9913 0.9922 0.9826 0.9826 0.9652 0.9913 0.9826

LUSC 1.0000 1.0000 0.9730 0.9820 0.8919 0.9730 0.9820

PAAD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PCPG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
READ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SARC 0.9811 0.9962 0.9811 0.9811 0.9811 0.9811 0.9811

SKCM 1.0000 1.0000 1.0000 1.0000 0.9524 1.0000 1.0000
STAD 1.0000 0.9900 0.9333 0.9333 0.8556 0.9111 0.9333

THCA 1.0000 1.0000 1.0000 1.0000 0.9643 1.0000 1.0000
THYM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
UCEC 0.9992 1.0000 0.9250 0.9250 0.9250 0.9500 0.9500

Ranking ( W|T|L) 0|15|7 7|14|1 0|10|12 0|11|11 0|8|14 0|10|12 0|9|13
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number of selected features (AVGFeat) . The experimental results are closely analyzed and 
discussed in the subsequent subsections, where bold numbers indicate the best-required 
results.

Comparison results of the proposed RBNRO‑DE against popular ML classifiers

This section introduced a comparison of the proposed RBNRO-DE with k-NN and SVM 
classifiers and the most popular ML classifiers [k-NN, SVM, Decision Tree (DT), RF, and 
eXtreme Gradient Boosting (XGBoost)] in terms of classification accuracy, fitness val-
ues, precision, recall, and F1-score.

Table 4 shows the results of the proposed RBNRO-DE with k-NN and SVM classifiers 
compared with other popular ML classifiers regarding the classification accuracy values. 
The empirical results show that the proposed RBNRO-DE with SVM is ranked first by 
achieving the best results in 7 out of 22 datasets and identical results in 14 datasets as 
other techniques. The proposed RBNRO-DE with k-NN is ranked second by yielding 
identical results in 15 datasets as other techniques. It should also be noted that SVM 
ranked third by yielding identical results in 11 datasets as others, while k-NN ranked 
fourth by yielding identical results in 10 datasets as other techniques. Finally, DT is 
ranked last by yielding identical results in 8 datasets as other techniques.

Table  5 shows the results of the proposed RBNRO-DE with k-NN and SVM classi-
fiers compared with other popular ML classifiers regarding fitness values. The empirical 

Table 5 Fitness values of the proposed RBNRO‑DE against popular ML classifiers

Benchmark RBNRO‑DE 
with k‑NN

RBNRO‑DE 
with SVM

k‑NN SVM DT RF XGBoost

BLCA 0.0029 0.0025 0.0445 0.0215 0.0215 0.0676 0.0330

CESC 0.0185 0.0025 0.0260 0.0419 0.0260 0.0260 0.0260

CHOL 0.0025 0.0025 0.0100 0.0100 0.0100 0.0100 0.1200

COAD 0.0025 0.0025 0.0250 0.0250 0.0250 0.0250 0.0400

ESCA 0.0279 0.0113 0.0354 0.0354 0.0608 0.0354 0.0354

GBM 0.0025 0.0025 0.0409 0.0100 0.0100 0.0100 0.0100

HNSC 0.0089 0.0025 0.0538 0.1414 0.0626 0.0713 0.0626

KICH 0.0025 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100

KIRC 0.0047 0.0025 0.0264 0.0345 0.1245 0.0836 0.0345

KIRP 0.0025 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100

LIHC 0.0025 0.0026 0.0100 0.0100 0.0333 0.0449 0.0333

LUAD 0.0112 0.0103 0.0272 0.0272 0.0444 0.0186 0.0272

LUSC 0.0026 0.0025 0.0368 0.0278 0.1170 0.0368 0.0278

PAAD 0.0025 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100

PCPG 0.0025 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100

READ 0.0025 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100

SARC 0.0212 0.0067 0.0287 0.0287 0.0287 0.0287 0.0287

SKCM 0.0025 0.0025 0.0100 0.0100 0.0571 0.0100 0.0100

STAD 0.0029 0.0125 0.0760 0.0760 0.1530 0.0980 0.0760

THCA 0.0025 0.0025 0.0100 0.0100 0.0454 0.0100 0.0100

THYM 0.0025 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100

UCEC 0.0038 0.0025 0.0842 0.0842 0.0842 0.0595 0.0595

Ranking ( W|T|L) 2|11|9 9|11|2 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22
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results show that the proposed RBNRO-DE with SVM is ranked first by achieving the 
best results in 9 out of 22 datasets and identical results in 11 datasets as the proposed 
RBNRO-DE with k-NN. The proposed RBNRO-DE with k-NN is ranked second by 
achieving the best results in 2 out of 22 datasets and identical results in 11 datasets as 
the proposed RBNRO-DE with SVM. Finally, it should also be noted that other methods 
did not achieve optimal results on any of the datasets used regarding fitness values.

Table 6 shows the results of the proposed RBNRO-DE with k-NN and SVM classifiers 
compared with other popular ML classifiers regarding the precision values. The empiri-
cal results show that the proposed RBNRO-DE with SVM is ranked first by achieving 
the best results in 4 out of 22 datasets and identical results in 17 datasets as other tech-
niques. The proposed RBNRO-DE with k-NN is ranked second by achieving the best 
results in 1 out of 22 datasets and identical results in 17 datasets as other techniques. It 
should also be noted that SVM and k-NN ranked third by yielding identical results in 14 
datasets as others, while RF and XGBoost ranked fourth by yielding identical results in 
12 datasets as other techniques. Finally, DT is ranked last by yielding identical results in 
10 datasets as other techniques.

Table 7 shows the results of the proposed RBNRO-DE with k-NN and SVM classifi-
ers compared with other popular ML classifiers regarding the recall values. The empiri-
cal results show that the proposed RBNRO-DE with SVM is ranked first by achieving 
the best results in 2 out of 22 datasets and identical results in 20 datasets as other 

Table 6 Precision values of the proposed RBNRO‑DE against popular ML classifiers

Benchmark RBNRO‑DE 
with k‑NN

RBNRO‑DE 
with SVM

k‑NN SVM DT RF XGBoost

BLCA 1.0000 1.0000 0.9634 0.9875 0.9875 0.9405 0.9753

CESC 0.9839 1.0000 0.9839 0.9836 0.9839 0.9839 0.9839

CHOL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
COAD 1.0000 1.0000 0.9828 0.9828 0.9828 0.9828 0.9661

ESCA 0.9737 0.9912 0.9737 0.9737 0.9487 0.9737 0.9737

GBM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HNSC 0.9929 1.0000 0.9510 0.8661 0.9596 0.9327 0.9505

KICH 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KIRC 1.0000 1.0000 1.0000 0.9903 0.8879 0.9204 0.9810

KIRP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LIHC 1.0000 1.0000 1.0000 1.0000 0.9733 0.9605 0.9733

LUAD 1.0000 1.0000 1.0000 1.0000 0.9899 1.0000 1.0000
LUSC 1.0000 1.0000 0.9895 1.0000 0.9468 0.9794 0.9896

PAAD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PCPG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
READ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SARC 0.9811 0.9962 0.9811 0.9811 0.9811 0.9811 0.9811

SKCM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STAD 1.0000 0.9888 0.9294 0.9294 0.9024 0.9277 0.9294

THCA 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000 1.0000
THYM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
UCEC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Ranking ( W|T|L) 1|17|4 4|17|1 0|14|8 0|14|8 0|10|12 0|12|10 0|12|10
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techniques. The proposed RBNRO-DE with k-NN is ranked second by achieving iden-
tical results in 19 datasets as other techniques. It should also be noted that RF ranked 
third by yielding identical results in 18 datasets as others, while k-NN ranked fourth by 
yielding identical results in 17 datasets as other techniques. Finally, DT is ranked last by 
yielding identical results in 13 datasets as other techniques.

Table  8 shows the results of the proposed RBNRO-DE with k-NN and SVM clas-
sifiers compared with other popular ML classifiers regarding the F1-score values. 
The empirical results show that the proposed RBNRO-DE with SVM is ranked first 
by achieving the best results in 7 out of 22 datasets and identical results in 14 data-
sets as other techniques. The proposed RBNRO-DE with k-NN is ranked second by 
achieving the best results in 1 out of 22 datasets and identical results in 14 datasets as 
other techniques. It should also be noted that SVM ranked third by yielding identical 
results in 11 datasets as others, while k-NN and RF ranked fourth by yielding identi-
cal results in 10 datasets as other techniques. Finally, DT is ranked last by yielding 
identical results in 8 datasets as other techniques.

Comparison results of different versions of the proposed RBNRO‑DE

This section introduced a comparison between different versions of the proposed 
RBNRO-DE (RBNRO-DE with k-NN, RBNRO-DE with SVM, and RBNRO-DE with 

Table 7 Recall values of the proposed RBNRO‑DE against popular ML classifiers

Benchmark RBNRO‑DE 
with k‑NN

RBNRO‑DE 
with SVM

k‑NN SVM DT RF XGBoost

BLCA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CESC 1.0000 1.0000 1.0000 0.9836 1.0000 1.0000 1.0000
CHOL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8333

COAD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ESCA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
GBM 1.0000 1.0000 0.9677 1.0000 1.0000 1.0000 1.0000
HNSC 1.0000 1.0000 1.0000 1.0000 0.9794 1.0000 0.9897

KICH 1.0000 1.0000 1.0000 0.9808 1.0000 1.0000 1.0000
KIRC 0.9981 1.0000 0.9808 0.9808 0.9904 1.0000 0.9904

KIRP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LIHC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LUAD 0.9901 0.9911 0.9802 0.9802 0.9703 0.9901 0.9802

LUSC 1.0000 1.0000 0.9792 0.9792 0.9271 0.9896 0.9896

PAAD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PCPG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
READ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SARC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SKCM 1.0000 1.0000 1.0000 1.0000 0.9524 1.0000 1.0000
STAD 1.0000 1.0000 1.0000 1.0000 0.9367 0.9747 1.0000
THCA 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000 1.0000
THYM 1.0000 1.0000 1.0000 1.0000 0.9700 1.0000 1.0000
UCEC 0.9991 1.0000 0.9189 0.9189 0.9189 0.9459 0.9459

Ranking ( W|T|L) 0|19|3 2|20|0 0|17|5 0|16|6 0|13|9 0|18|4 0|16|6
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XGBoost) in terms of classification accuracy, fitness values, and number of selected 
features.

Table  9 shows the results of different versions of the proposed RBNRO-DE 
(RBNRO-DE with k-NN, RBNRO-DE with SVM, and RBNRO-DE with XGBoost) 
regarding classification accuracy values. The empirical results show that the proposed 
RBNRO-DE with SVM is ranked first by achieving the best results in 4 out of 22 data-
sets and identical results in 14 datasets as other versions. The proposed RBNRO-DE 
with XGBoost is ranked second by achieving the best results in 2 out of 22 datasets 
and identical results in 13 datasets as other versions. Finally, RBNRO-DE with k-
NN is ranked third by achieving the best results in 1 out of 22 datasets and identical 
results in 14 datasets as other versions.

Table 10 shows the results of different versions of the proposed RBNRO-DE (RBNRO-
DE with k-NN, RBNRO-DE with SVM, and RBNRO-DE with XGBoost) regarding the 
fitness values. The empirical results show that the proposed RBNRO-DE with SVM is 
ranked first by achieving the best results in 8 out of 22 datasets and identical results in 
11 datasets as other versions. The proposed RBNRO-DE with k-NN is ranked second by 
achieving the best results in 1 out of 22 datasets and identical results in 11 datasets as 
other versions. Finally, RBNRO-DE with XGBoost is ranked third by achieving the best 
results in 2 out of 22 datasets.

Table 8 F1‑score values of the proposed RBNRO‑DE against popular ML classifiers

Benchmark RBNRO‑DE 
with k‑NN

RBNRO‑DE 
with SVM

k‑NN SVM DT RF XGBoost

BLCA 1.0000 1.0000 0.9814 0.9937 0.9937 0.9693 0.9875

CESC 0.9919 1.0000 0.9919 0.9836 0.9919 0.9919 0.9919

CHOL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9091

COAD 1.0000 1.0000 0.9913 0.9913 0.9913 0.9913 0.9828

ESCA 0.9867 0.9956 0.9867 0.9867 0.9737 0.9867 0.9867

GBM 1.0000 1.0000 0.9836 1.0000 1.0000 1.0000 1.0000
HNSC 0.9964 1.0000 0.9749 0.9282 0.9694 0.9652 0.9697

KICH 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KIRC 0.9990 1.0000 0.9903 0.9855 0.9364 0.9585 0.9856

KIRP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LIHC 1.0000 1.0000 1.0000 1.0000 0.9865 0.9799 0.9865

LUAD 0.9950 0.9955 0.9900 0.9900 0.9800 0.9950 0.9900

LUSC 1.0000 1.0000 0.9843 0.9895 0.9368 0.9845 0.9896

PAAD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PCPG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
READ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SARC 0.9905 0.9981 0.9905 0.9905 0.9905 0.9905 0.9905

SKCM 1.0000 1.0000 1.0000 1.0000 0.9756 1.0000 1.0000
STAD 1.0000 0.9943 0.9634 0.9634 0.9193 0.9506 0.9634

THCA 1.0000 1.0000 1.0000 1.0000 0.9800 1.0000 1.0000
THYM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
UCEC 0.9995 1.0000 0.9577 0.9577 0.9577 0.9722 0.9722

Ranking ( W|T|L) 1|14|7 7|14|1 0|10|12 0|11|11 0|8|14 0|10|12 0|9|13



Page 30 of 75El‑Mageed et al. Journal of Big Data           (2024) 11:46 

Table 11 shows the results of different versions of the proposed RBNRO-DE (RBNRO-
DE with k-NN, RBNRO-DE with SVM, and RBNRO-DE with XGBoost) regarding the 
number of selected features. The empirical results show that the proposed RBNRO-DE 
with SVM is ranked first by achieving the best results in 8 out of 22 datasets and iden-
tical results in 10 datasets as other versions. The proposed RBNRO-DE with k-NN is 
ranked second by achieving the best results in 4 out of 22 datasets and identical results 
in 10 datasets as other versions. Finally, RBNRO-DE with XGBoost did not achieve the 
best results in any one of the utilized datasets. Therefore, the experimental results in this 
research will be conducted using k-NN and SVM classifiers due to their superiority and 
efficiency, as described in the following subsections.

Comparison results of the proposed RBNRO‑DE against other state‑of‑the‑art 

meta‑heuristic algorithms

To demonstrate the dominance of RBNRO-DE over other counterparts in literature, 
the best performing RBNRO-DE algorithm with the two suggested classifiers, k-NN, 
and SVM, is compared with other state-of-the-art meta-heuristic algorithms executed 
in identical situations. The comparison with RBNRO-DE incorporates binary versions 
of some optimization algorithms, such as BSSA, BABC, BBA, BPSO, BWOA, BGWO, 
BGOA, BSFO, BBSA, BASO, BHHO, and BHGSO. Note that the 22 original gene 

Table 9 Classification accuracy values of the proposed RBNRO‑DE based on k‑NN, SVM and 
XGBoost classifiers

Benchmark RBNRO‑DE with k‑NN RBNRO‑DE with SVM RBNRO‑DE 
with 
XGBoost

BLCA 1.0000 1.0000 1.0000
CESC 0.9839 1.0000 0.9839

CHOL 1.0000 1.0000 1.0000
COAD 1.0000 1.0000 1.0000
ESCA 0.9744 0.9915 1.0000
GBM 1.0000 1.0000 1.0000
HNSC 0.9938 1.0000 0.9735

KICH 1.0000 1.0000 1.0000
KIRC 0.9983 1.0000 0.9917

KIRP 1.0000 1.0000 1.0000
LIHC 1.0000 1.0000 1.0000
LUAD 0.9913 0.9922 1.0000
LUSC 1.0000 1.0000 0.9910

PAAD 1.0000 1.0000 1.0000
PCPG 1.0000 1.0000 1.0000
READ 1.0000 1.0000 1.0000
SARC 0.9811 0.9962 0.9811

SKCM 1.0000 1.0000 1.0000
STAD 1.0000 0.9900 0.9556

THCA 1.0000 1.0000 1.0000
THYM 1.0000 1.0000 1.0000
UCEC 0.9992 1.0000 0.9646

Ranking ( W|T|L) 1|14|7 4|14|4 2|13|7
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expression datasets are first subjected to the Relief algorithm, and the 500 relevant fea-
tures with the biggest weights are only chosen for use in the FS process. Subsequently, 
the suggested RBNRO-DE and the other state-of-the-art meta-heuristic algorithms are 
implemented only on these 500 pertinent features.

Comparisons based on the suggested k‑NN classifier

Table 12 reveals the results of the proposed RBNRO-DE compared with other optimiz-
ers based on the k-NN classifier regarding the classification accuracy values evaluated 
under the same implementation conditions. The empirical results show that the pro-
posed RBNRO-DE and BSFO scored the best in only one dataset. It should also be noted 
that all competitive algorithms yielded identical results in 20 datasets as RBNRO-DE 
with k-NN.

Table 13 reveals the average fitness and STD values of the proposed RBNRO-DE algo-
rithm with its other peers based on k-NN under identical implementation requirements. 
The proposed RBNRO-DE with k-NN classifier demonstrates higher quality than differ-
ent algorithms. By investigating Table 13, the results reveal that k-NN-based RBNRO-DE 
produced the least fitness values and competitive STD over all datasets. Furthermore, 
all the used datasets are large-scale, which verifies that the proposed RBNRO-DE can 
consistently execute on all datasets regardless of the size of the dataset. Currently, the 

Table 10 Fitness values of the proposed RBNRO‑DE based on k‑NN, SVM and XGBoost classifiers

Benchmark RBNRO‑DE with k‑NN RBNRO‑DE with SVM RBNRO‑DE 
with 
XGBoost

BLCA 0.0029 0.0025 0.0030

CESC 0.0185 0.0025 0.0170

CHOL 0.0025 0.0025 0.0100

COAD 0.0025 0.0025 0.0100

ESCA 0.0279 0.0113 0.0300

GBM 0.0025 0.0025 0.0100

HNSC 0.0089 0.0025 0.0283

KICH 0.0025 0.0025 0.0100

KIRC 0.0047 0.0025 0.0112

KIRP 0.0025 0.0025 0.0100

LIHC 0.0025 0.0026 0.0020
LUAD 0.0112 0.0103 0.0020
LUSC 0.0026 0.0025 0.0129

PAAD 0.0025 0.0025 0.0100

PCPG 0.0025 0.0025 0.0100

READ 0.0025 0.0025 0.0100

SARC 0.0212 0.0067 0.0197

SKCM 0.0025 0.0025 0.0100

STAD 0.0029 0.0125 0.0470

THCA 0.0025 0.0025 0.0200

THYM 0.0025 0.0025 0.0100

UCEC 0.0038 0.0025 0.0030

Ranking ( W|T|L) 1|11|10 8|11|3 2|0|20
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proposed RBNRO-DE can be positively inferred to be promising, with a demonstrated 
ability to balance exploitation and exploration in the search space on iterations and 
escape from local optima. While standard algorithms may evolve, trapping it.

Table 14 shows the number of extracted features using the proposed RBNRO-DE and 
its other counterparts for training the k-NN classifier. The proposed RBNRO-DE sur-
passed the other algorithms in all datasets regarding the number of extracted features. 
Furthermore, the RBNRO-DE’s capability to identify the most informative features is 
attributable to the ability to search within feasible regions while considering improved 
classification accuracy.

Table  15 displays the average precision values of the proposed RBNRO-DE algo-
rithm with k-NN and its counterparts. Out of 22 datasets, the proposed RBNRO-DE 
performed better than other methods in terms of mean precision values for 3 data-
sets. Alternatively, BABC, BPSO, BGWO, BGOA, BSFO, and BHHO achieved iden-
tical results as the proposed RBNRO-DE in 19 datasets, while BWOA performed 
similarly in 18 datasets. BASO and BHGSO ranked fourth by achieving identical 
results as the proposed RBNRO-DE in 17 datasets. Finally, BBA yielded identical 
results as the proposed RBNRO-DE in 15 datasets, ranking it last among all methods.

Table 11 The number of extracted features by the proposed RBNRO‑DE based on k‑NN, SVM, and 
XGBoost classifiers

Benchmark RBNRO‑DE with k‑NN RBNRO‑DE with SVM RBNRO‑DE 
with 
XGBoost

BLCA 147 125 300

CESC 125 125 238

CHOL 125 125 210

COAD 125 125 149

ESCA 125 140 300

GBM 125 124 195

HNSC 139 125 225

KICH 125 125 214

KIRC 153 127 386

KIRP 125 125 150

LIHC 125 130 233

LUAD 130 127 212

LUSC 131 125 400

PAAD 125 125 200

PCPG 125 125 195

READ 125 125 216

SARC 125 146 190

SKCM 125 125 182

STAD 144 129 267

THCA 125 126 222

THYM 125 125 140

UCEC 151 127 188

Ranking ( W|T|L) 4|10|8 8|10|4 0|0|22



Page 33 of 75El‑Mageed et al. Journal of Big Data           (2024) 11:46  

Table 12 The proposed RBNRO‑DE scores with k‑NN and its peers in terms of mean values of 
classification accuracy

Benchmark Metric RBNRO‑DE BSSA BABC BPSO BBA BGWO BWOA

BLCA Mean 1.0000 0.9930 0.9977 0.9934 0.9891 0.9950 0.9938

STD 0.0000 0.0057 0.0047 0.0058 0.0029 0.0058 0.0058

CESC Mean 0.9839 0.9839 0.9839 0.9839 0.9839 0.9839 0.9839
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CHOL Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

COAD Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ESCA Mean 0.9744 0.9744 0.9744 0.9744 0.9744 0.9744 0.9744
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GBM Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HNSC Mean 0.9938 0.9914 0.9914 0.9912 0.9912 0.9917 0.9912

STD 0.0041 0.0016 0.0016 0.0000 0.0000 0.0022 0.0000
KICH Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KIRC Mean 0.9983 0.9928 0.9939 0.9923 0.9917 0.9939 0.9923

STD 0.0033 0.0028 0.0037 0.0021 0.0000 0.0037 0.0021

KIRP Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LIHC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LUAD Mean 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LUSC STD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PAAD STD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PCPG STD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

READ STD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SARC STD 0.9811 0.9811 0.9811 0.9811 0.9811 0.9811 0.9811
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SKCM STD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

STAD STD 1.0000 0.9959 0.9985 0.9956 0.9889 0.9963 0.9952

Mean 0.0000 0.0054 0.0038 0.0054 0.0000 0.0052 0.0055

THCA Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

THYM Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

UCEC Mean 0.9992 0.9850 0.9875 0.9767 0.9692 0.9842 0.9767

STD 0.0045 0.0122 0.0125 0.0062 0.0106 0.0120 0.0062

Ranking W|T|L 1|20|1 0|18|4 0|18|4 0|18|4 0|18|4 0|18|4 0|18|4

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

BLCA Mean 0.9930 1.0000 0.9907 0.9942 0.9938 0.9888

STD 0.0057 0.0000 0.0047 0.0058 0.0058 0.0021
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Table 12 (continued)

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

CESC Mean 0.9839 0.9839 0.9839 0.9839 0.9839 0.9839

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHOL Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
COAD Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ESCA Mean 0.9744 0.9744 0.9744 0.9744 0.9744 0.9744

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GBM Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HNSC Mean 0.9912 0.9923 0.9912 0.9914 0.9912 0.9912

STD 0.0000 0.0030 0.0000 0.0016 0.0000 0.0000
KICH Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KIRC Mean 0.9937 0.9986 0.9934 0.9931 0.9926 0.9917

STD 0.0035 0.0031 0.0033 0.0031 0.0025 0.0000
KIRP Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LIHC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LUAD Mean 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LUSC STD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PAAD STD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PCPG STD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
READ STD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SARC STD 0.9811 0.9811 0.9811 0.9811 0.9811 0.9811

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SKCM STD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STAD STD 0.9967 1.0000 0.9922 0.9952 0.9963 0.9889

Mean 0.0051 0.0000 0.0051 0.0055 0.0052 0.0000
THCA Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
THYM Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
UCEC Mean 0.9775 0.9875 0.9783 0.9792 0.9758 0.9683

STD 0.0075 0.0125 0.0085 0.0093 0.0045 0.0111

Ranking W|T|L 0|18|4 1|20|1 0|18|4 0|18|4 0|18|4 0|18|4
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Table 13 The proposed RBNRO‑DE scores with k‑NN and its peers in terms of mean values of fitness

Benchmark Metric RBNRO‑DE BSSA BABC BPSO BBA BGWO BWOA

BLCA Mean 0.0029 0.0111 0.0071 0.0112 0.0147 0.0094 0.0107

STD 0.0002 0.0053 0.0044 0.0054 0.0024 0.0055 0.0054

CESC Mean 0.0185 0.0199 0.0202 0.0205 0.0198 0.0200 0.0202

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

CHOL Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

COAD Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

ESCA Mean 0.0279 0.0293 0.0296 0.0299 0.0293 0.0294 0.0297

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

GBM Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

HNSC Mean 0.0089 0.0125 0.0129 0.0133 0.0128 0.0124 0.0131

STD 0.0038 0.0016 0.0014 0.0001 0.0003 0.0021 0.0001
KICH Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

KIRC Mean 0.0047 0.0111 0.0104 0.0122 0.0120 0.0102 0.0120

STD 0.0030 0.0027 0.0034 0.0019 0.0002 0.0034 0.0019

KIRP Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

LIHC Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0042

STD 0.0002 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

LUAD Mean 0.0112 0.0126 0.0129 0.0131 0.0124 0.0127 0.0129

STD 0.0002 0.0002 0.0001 0.0001 0.0002 0.0002 0.0001
LUSC Mean 0.0026 0.0040 0.0043 0.0045 0.0038 0.0041 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0002

PAAD Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

PCPG Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

READ Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

SARC Mean 0.0212 0.0226 0.0229 0.0232 0.0226 0.0227 0.0230

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

SKCM Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

STAD Mean 0.0029 0.0083 0.0062 0.0093 0.0147 0.0081 0.0095

STD 0.0003 0.0050 0.0036 0.0051 0.0002 0.0050 0.0051

THCA Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

THYM Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

UCEC Mean 0.0038 0.0192 0.0171 0.0278 0.0354 0.0201 0.0277

STD 0.0044 0.0120 0.0122 0.0061 0.0100 0.0119 0.0062

Ranking W|T|L 22|0|0 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

BLCA Mean 0.0114 0.0044 0.0131 0.0103 0.0108 0.0159

STD 0.0054 0.0002 0.0044 0.0055 0.0054 0.0018
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Table 13 (continued)

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

CESC Mean 0.0202 0.0196 0.0197 0.0202 0.0203 0.0206

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CHOL Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
COAD Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
ESCA Mean 0.0296 0.0290 0.0291 0.0296 0.0298 0.0300

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002

GBM Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
HNSC Mean 0.0132 0.0115 0.0127 0.0129 0.0132 0.0136

STD 0.0001 0.0027 0.0002 0.0015 0.0001 0.0001
KICH Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
KIRC Mean 0.0107 0.0058 0.0104 0.0112 0.0117 0.0129

STD 0.0032 0.0027 0.0030 0.0028 0.0022 0.0001
KIRP Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
LIHC Mean 0.0043 0.0036 0.0038 0.0043 0.0042 0.0046

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
LUAD Mean 0.0129 0.0122 0.0124 0.0129 0.0130 0.0134

STD 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001
LUSC Mean 0.0043 0.0037 0.0039 0.0043 0.0043 0.0048

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
PAAD Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
PCPG Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
READ Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
SARC Mean 0.0229 0.0223 0.0224 0.0229 0.0230 0.0233

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
SKCM Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
STAD Mean 0.0080 0.0043 0.0117 0.0094 0.0084 0.0157

STD 0.0048 0.0003 0.0048 0.0052 0.0049 0.0001
THCA Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0046

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
THYM Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
UCEC Mean 0.0269 0.0167 0.0256 0.0252 0.0286 0.0367

STD 0.0072 0.0119 0.0083 0.0091 0.0045 0.0105

Ranking W|T|L 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22
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Table 14 The number of extracted features by the proposed RBNRO‑DE and its peers for training 
the k‑NN

Benchmark Metric RBNRO‑DE BSSA BABC BPSO BBA BGWO BWOA

BLCA Features number 147 210 238 235 196 218 229

STD 012.2759 020.5005 019.0668 017.1231 023.8320 018.2740 019.4349

CESC Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

CHOL Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

COAD Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

ESCA Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

GBM Features number 125 195 213 225 194 200 213

STD 006.5201 011.1676 005.4017 003.1107 009.6552 009.0478 008.5052

HNSC Features number 139 203 223 227 203 211 218

STD 014.6040 009.2619 011.9564 003.9131 013.2363 007.6528 007.4139

KICH Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

KIRC Features number 153 201 220 228 192 210 216

STD 027.5450 009.6266 011.7362 008.2710 008.7334 014.0754 010.1085

KIRP Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

LIHC Features number 125 197 214 226 193 201 212

STD 007.9387 007.7803 005.2248 003.3599 009.1664 010.0249 009.3500

LUAD Features number 130 197 216 223 191 205 213

STD 008.1948 008.9805 004.7380 006.1586 008.6065 010.5715 006.1465

LUSC Features number 131 199 216 223 189 204 213

STD 007.3182 008.7702 003.5448 004.8854 010.6856 007.1954 009.7011

PAAD Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

PCPG Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

READ Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

SARC Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

SKCM Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

STAD Features number 144 215 236 243 188 221 235

STD 013.0348 018.4264 013.9429 016.2897 010.2689 019.2425 022.6314

THCA Features number 125 195 213 225 194 200 214

STD 006.8977 011.2002 005.2890 003.0955 009.6552 009.8098 008.5935

THYM Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

UCEC Features number 151 216 238 236 242 220 231

STD 016.5202 015.4128 015.8235 010.1127 034.1306 011.2574 011.2706

Ranking W|T|L 22|0|0 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

BLCA Features number 226 219 195 228 232 237

STD 014.8147 011.4022 013.1673 014.5967 018.9006 014.1368
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Table 14 (continued)

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

CESC Features number 213 182 186 213 216 233

STD 005.6588 005.1941 006.4890 005.8784 006.0241 005.6373

CHOL Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

COAD Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

ESCA Features number 213 182 186 212 219 230

STD 005.6588 005.1941 006.4890 006.9363 004.6814 007.6373

GBM Features number 213 181 185 211 212 233

STD 005.7236 006.1079 006.4015 006.4446 004.9872 004.3855

HNSC Features number 221 195 196 220 224 241

STD 005.3150 019.4685 008.2621 007.7075 005.6832 006.2125

KICH Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

KIRC Features number 222 223 193 219 219 234

STD 015.1793 027.3403 017.3569 013.8249 012.7844 004.2059
KIRP Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

LIHC Features number 214 181 189 213 212 232

STD 004.8886 004.6332 006.8903 005.6941 004.8061 004.9711

LUAD Features number 216 181 192 215 218 238

STD 004.4297 005.1339 008.5025 006.1261 004.7123 004.9420

LUSC Features number 216 183 195 216 215 241

STD 003.4398 005.1635 006.4049 005.5422 006.1627 004.6596

PAAD Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

PCPG Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

READ Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

SARC Features number 213 182 186 213 216 232

STD 005.6588 005.1941 006.4890 006.3000 004.9778 003.4000

SKCM Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

STAD Features number 233 216 202 231 237 237

STD 014.2471 012.5628 013.9951 014.0445 015.3500 005.8622
THCA Features number 213 182 187 211 212 232

STD 005.6886 005.2624 005.8750 006.4446 005.0773 004.7843

THYM Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

UCEC Features number 229 215 207 228 235 267

STD 011.6593 029.4144 010.8403 010.3170 006.1427 030.5487

Ranking W|T|L 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22
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Table 18 The proposed RBNRO‑DE scores with SVM and its peers in terms of mean values of 
classification accuracy

Benchmark Metric RBNRO‑DE BSSA BABC BPSO BBA BGWO BWOA

BLCA Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CESC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CHOL Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

COAD Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ESCA Mean 0.9915 0.9752 0.9769 0.9744 0.9744 0.9769 0.9744

STD 0.0121 0.0046 0.0077 0.0000 0.0000 0.0077 0.0000
GBM Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HNSC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KICH Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KIRC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KIRP Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LIHC Mean 1.0000 1.0000 1.0000 1.0000 0.9992 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0029 0.0000 0.0000
LUAD Mean 0.9922 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913

STD 0.0026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LUSC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PAAD Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PCPG Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
READ Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SARC Mean 0.9962 0.9862 0.9887 0.9862 0.9811 0.9893 0.9868

STD 0.0075 0.0083 0.0092 0.0083 0.0000 0.0093 0.0086

SKCM Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

STAD Mean 0.9900 0.9889 0.9889 0.9889 0.9893 0.9889 0.9889

STD 0.0033 0.0000 0.0000 0.0000 0.0020 0.0000 0.0000
THCA Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
THYM Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
UCEC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ranking W|T|L 2|19|1 0|19|3 0|19|3 0|19|3 0|19|3 0|19|3 0|19|3

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

BLCA Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 18 (continued)

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

CESC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHOL Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
COAD Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ESCA Mean 0.9752 0.9778 0.9752 0.9752 0.9744 0.9744

STD 0.0046 0.0087 0.0046 0.0046 0.0000 0.0000
GBM Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HNSC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KICH Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KIRC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KIRP Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LIHC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LUAD Mean 0.9913 0.9916 0.9913 0.9913 0.9916 0.9913

STD 0.0000 0.0016 0.0000 0.0000 0.0016 0.0000
LUSC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PAAD Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PCPG Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
READ Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SARC Mean 0.9855 0.9987 0.9836 0.9855 0.9843 0.9811

STD 0.0080 0.0047 0.0064 0.0080 0.0070 0.0000
SKCM Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STAD Mean 0.9889 0.9893 0.9889 0.9889 0.9889 0.9889

STD 0.0000 0.0020 0.0000 0.0000 0.0000 0.0000
THCA Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
THYM Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
UCEC Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ranking W|T|L 0|19|3 1|19|2 0|19|3 0|19|3 0|19|3 0|19|3
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Table 19 The proposed RBNRO‑DE scores with SVM and its peers in terms of mean values of fitness

Benchmark Metric RBNRO‑DE BSSA BABC BPSO BBA BGWO BWOA

BLCA Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

CESC Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

CHOL Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

COAD Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

ESCA Mean 0.0113 0.0284 0.0272 0.0299 0.0293 0.0269 0.0297

STD 0.0118 0.0046 0.0075 0.0001 0.0002 0.0075 0.0002

GBM Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

HNSC Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

KICH Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

KIRC Mean 0.0025 0.0039 0.0043 0.0045 0.0038 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

KIRP Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

LIHC Mean 0.0026 0.0041 0.0044 0.0045 0.0050 0.0043 0.0044

STD 0.0001 0.0001 0.0001 0.0001 0.0028 0.0001 0.0002

LUAD Mean 0.0103 0.0125 0.0129 0.0131 0.0125 0.0126 0.0129

STD 0.0025 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

LUSC Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

PAAD Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

PCPG Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

READ Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

SARC Mean 0.0067 0.0178 0.0157 0.0184 0.0226 0.0148 0.0176

STD 0.0073 0.0080 0.0088 0.0080 0.0002 0.0090 0.0082

SKCM Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

STAD Mean 0.0125 0.0149 0.0153 0.0155 0.0145 0.0150 0.0153

STD 0.0031 0.0002 0.0001 0.0001 0.0020 0.0002 0.0002

THCA Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

THYM Mean 0.0025 0.0039 0.0043 0.0045 0.0039 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

UCEC Mean 0.0025 0.0039 0.0043 0.0045 0.0038 0.0040 0.0043

STD 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

Ranking W|T|L 21|0|1 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

BLCA Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0046

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
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Table 19 (continued)

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

CESC Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CHOL Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
COAD Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
ESCA Mean 0.0288 0.0258 0.0283 0.0288 0.0298 0.0300

STD 0.0045 0.0082 0.0046 0.0044 0.0001 0.0002

GBM Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0046

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
HNSC Mean 0.0043 0.0037 0.0037 0.0042 0.0042 0.0046

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
KICH Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
KIRC Mean 0.0043 0.0036 0.0038 0.0043 0.0043 0.0046

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002

KIRP Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
LIHC Mean 0.0045 0.0037 0.0040 0.0045 0.0045 0.0050

STD 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002

LUAD Mean 0.0129 0.0120 0.0123 0.0129 0.0126 0.0133

STD 0.0001 0.0014 0.0001 0.0001 0.0015 0.0001
LUSC Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
PAAD Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
PCPG Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
READ Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
SARC Mean 0.0187 0.0057 0.0200 0.0187 0.0200 0.0233

STD 0.0077 0.0044 0.0061 0.0077 0.0067 0.0001
SKCM Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
STAD Mean 0.0153 0.0143 0.0147 0.0152 0.0153 0.0156

STD 0.0001 0.0018 0.0001 0.0001 0.0001 0.0001
THCA Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
THYM Mean 0.0043 0.0036 0.0037 0.0042 0.0042 0.0047

STD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
UCEC Mean 0.0043 0.0037 0.0038 0.0042 0.0043 0.0047

STD 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001
Ranking W|T|L 0|0|22 1|0|21 0|0|22 0|0|22 0|0|22 0|0|22
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Table 20 The number of extracted features by the proposed RBNRO‑DE and its peers for training 
the SVM

Benchmark Metric RBNRO‑DE BSSA BABC BPSO BBA BGWO BWOA

BLCA Features number 125 195 213 225 194 200 213

STD 006.5286 011.4430 005.1800 003.1107 009.6552 009.3014 008.4364

CESC Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

CHOL Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

COAD Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

ESCA Features number 140 195 215 225 194 202 214

STD 025.9610 011.1676 009.5798 003.1107 009.6552 012.3307 008.3526

GBM Features number 124 195 213 225 194 199 214

STD 006.9048 011.2722 005.3071 003.1107 009.4670 010.2752 008.3552

HNSC Features number 125 196 214 225 194 202 214

STD 005.3109 008.4916 005.2240 003.1910 009.5620 010.7559 009.3384

KICH Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

KIRC Features number 127 197 215 225 192 200 213

STD 006.4339 009.4175 005.0869 004.2348 008.7022 011.5935 007.6397

KIRP Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

LIHC Features number 130 204 220 226 213 214 219

STD 007.2622 006.9902 006.2901 006.7951 017.6032 007.0566 007.8780

LUAD Features number 127 195 213 225 194 199 214

STD 008.4892 011.1676 005.3071 003.1107 009.6552 009.3690 008.3526

LUSC Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

PAAD Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

PCPG Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

READ Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

SARC Features number 146 203 227 234 194 211 224

STD 015.8213 020.8620 020.2457 014.4353 009.6552 017.7421 017.3949

SKCM Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

STAD Features number 129 195 213 225 194 199 214

STD 010.9780 010.2229 005.3765 003.2912 009.7883 009.0863 008.6847

THCA Features number 126 195 213 225 194 200 214

STD 006.0646 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

THYM Features number 125 195 213 225 194 200 214

STD 006.5072 011.1676 005.3071 003.1107 009.6552 009.3014 008.3526

UCEC Features number 127 196 213 225 192 201 213

STD 005.9258 009.0591 006.3084 004.2668 007.8506 008.2401 007.7356

Ranking W|T|L 22|0|0 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

BLCA Features number 213 182 186 211 212 232

STD 005.6588 004.9000 005.7673 006.4446 005.2478 004.4233
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Table 20 (continued)

Benchmark Metric BGOA BSFO BHHO BBSA BASO BHGSO

CESC Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

CHOL Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

COAD Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

ESCA Features number 213 190 186 212 219 230

STD 006.4381 020.4246 006.4712 008.9800 004.6814 007.6373

GBM Features number 213 182 186 211 211 232

STD 005.6926 005.0711 006.5051 006.4446 004.9193 004.1500

HNSC Features number 214 184 187 211 211 232

STD 005.2202 004.1162 005.7442 005.6612 004.7940 005.0205

KICH Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

KIRC Features number 213 182 188 214 215 231

STD 004.9378 006.3481 005.3084 005.8143 004.1991 008.0164

KIRP Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

LIHC Features number 224 186 201 223 225 250

STD 004.1324 007.3082 007.6577 006.4781 004.8103 007.9722

LUAD Features number 213 183 186 212 215 233

STD 005.6588 009.2949 006.3965 006.0970 005.9819 004.3436

LUSC Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

PAAD Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

PCPG Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

READ Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

SARC Features number 218 225 190 221 221 232

STD 013.9006 018.0083 013.4113 016.3965 011.7636 003.7035
SKCM Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

STAD Features number 213 184 186 212 215 232

STD 005.5447 012.1803 006.9193 005.8849 005.1182 004.5803

THCA Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

THYM Features number 213 182 186 211 212 233

STD 005.6588 005.1941 006.4890 006.4446 005.0773 004.3626

UCEC Features number 213 183 189 212 213 234

STD 005.6656 004.3767 008.7776 004.9845 004.9728 003.9660
Ranking W|T|L 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22
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Table 16 displays the average recall values of the proposed RBNRO-DE algorithm 
with k-NN and its counterparts. Out of 22 datasets, the proposed RBNRO-DE per-
formed better than other methods in terms of mean recall values for 3 datasets. Alter-
natively, BSSA, BABC, BPSO, BGWO, BWOA, BGOA, BSFO, and BBSA achieved 
identical results as the proposed RBNRO-DE in 19 datasets, while BHHO performed 
similarly in 18 datasets. BHGSO ranked fourth by achieving identical results as the 
proposed RBNRO-DE in 17 datasets. Finally, BASO and BBA yielded identical results 
as the proposed RBNRO-DE in 16 datasets, ranking it last among all methods.

Table  17 displays the average F1-score values of the proposed RBNRO-DE algo-
rithm with k-NN and its counterparts. Out of 22 datasets, the proposed RBNRO-DE 
performed better than other methods in terms of mean F1-score values for 4 data-
sets. Alternatively, BSSA, BABC, BPSO, BGWO, BGOA, BSFO, and BBSA achieved 
identical results as the proposed RBNRO-DE in 18 datasets, while BWOA and BHHO 
performed similarly in 17 datasets. BASO and BHGSO ranked fourth by achieving 
identical results as the proposed RBNRO-DE in 16 datasets. Finally, BBA yielded 
identical results as the proposed RBNRO-DE in 14 datasets, ranking it last among all 
methods.

Fig. 4 Convergence performance of the proposed RBNRO‑DE vs. the comparative algorithms based on k‑NN 
classifier over all datasets
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Comparisons based on the suggested SVM classifier

Table 18 shows the results of the proposed RBNRO-DE compared with other optimizers 
based on the SVM classifier regarding the classification accuracy values that are fairly 
evaluated under the same implementation conditions. The empirical results show that 
the proposed RBNRO-DE is ranked first by achieving the best results in 2 out of 22 data-
sets. BSFO is ranked second with the best results in only one dataset. It should also be 
noted that all competitive algorithms yielded identical results in 19 datasets as the pro-
posed RBNRO-DE with SVM.

Table  19 reveals the average fitness and STD values of RBNRO-DE with its other 
peers, based on SVM, under identical implementation requirements. Notably, the 
proposed RBNRO-DE with SVM classifier demonstrates higher quality than other 
algorithms. By investigating Table  19, the results reveal that SVM-based RBNRO-
DE produced the least values of fitness along with competitive STD in 21 out of 22 
datasets, accounting for 95% of all datasets. Furthermore, all the used datasets are 
large-scale, which verifies that the proposed RBNRO-DE is capable of consistently 
executing on all datasets regardless of the size of the dataset. For the only dataset 
that BSFO won, the mean fitness value is very close to RBNRO-DE. None of the other 

Fig. 5 Convergence performance of the proposed RBNRO‑DE vs. the comparative algorithms based on k‑NN 
classifier over all datasets (Cont.)
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Fig. 6 Convergence performance of the proposed RBNRO‑DE vs. the comparative algorithms based on k‑NN 
classifier over all datasets (Cont.)

Fig. 7 Convergence performance of the proposed RBNRO‑DE vs. the comparative algorithms based on k‑NN 
classifier over all datasets (Cont.)
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algorithms compared to RBNRO-DE ranked first in the 22 datasets. Now, RBNRO-
DE can be positively inferred to be promising, with a demonstrated ability to balance 
between exploitation and exploration in the search space on iterations and escape 
from local optima. While common algorithms may evolve, trapping it.

Based on the number of extracted features, the outcomes of the proposed RBNRO-
DE and other counterparts for training the SVM classifier are revealed in Table 20. By 
investigating the scores, an attractive observation is made for the proposed RBNRO-
DE based on SVM, which did better than other algorithms over 22 of the 22 data-
sets used in this paper. Furthermore, The excellence of the proposed RBNRO-DE with 
SVM in this context confirms its ability to identify the most significant regions of the 
search space and escape the search through regions of non-feasible spaces.

Table  21 displays the average precision values of the proposed RBNRO-DE algo-
rithm with SVM and its counterparts. Out of 22 datasets, the proposed RBNRO-DE 
performed better than other methods in terms of mean precision values for 3 data-
sets. Alternatively, BSFO achieved identical results as the proposed RBNRO-DE in 
19 datasets, while BABC, BGWO, BWOA, BBSA, and BASO performed similarly in 
18 datasets. BSSA, BPSO, BGOA, and BHHO ranked fourth by achieving identical 

Fig. 8 Convergence performance of the proposed RBNRO‑DE vs. the comparative algorithms based on SVM 
classifier over all datasets
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results as the proposed RBNRO-DE in 17 datasets. Finally, BBA yielded identical 
results as the proposed RBNRO-DE in 12 datasets, ranking it last among all methods.

Table 22 displays the average recall values of the proposed RBNRO-DE algorithm 
with SVM and its counterparts. Out of 22 datasets, the proposed RBNRO-DE per-
formed better than other methods in terms of mean recall values for 3 datasets. Alter-
natively, BSSA, BABC, BGWO, BWOA, BGOA, BSFO, and BBSA achieved identical 
results as the proposed RBNRO-DE in 19 datasets, while BPSO and BHHO per-
formed similarly in 18 datasets. BHGSO ranked fourth by achieving identical results 
as the proposed RBNRO-DE in 17 datasets. Finally, BASO and BBA yielded identical 
results as the proposed RBNRO-DE in 16 datasets, ranking it last among all methods.

Table  23 displays the average F1-score values of the proposed RBNRO-DE algo-
rithm with SVM and its counterparts. Out of 22 datasets, the proposed RBNRO-DE 
performed better than other methods in terms of mean F1-score values for 5 datasets. 
Alternatively, BWOA and BSFO achieved identical results as the proposed RBNRO-
DE in 17 datasets, while BSSA, BABC, BPSO, BGWO, BGOA, and BBSA performed 
similarly in 16 datasets. BHHO ranked fourth by achieving identical results as the 
proposed RBNRO-DE in 15 datasets. Finally, BBA yielded identical results as the pro-
posed RBNRO-DE in 12 datasets, ranking it last among all methods.

Fig. 9 Convergence performance of the proposed RBNRO‑DE vs. the comparative algorithms based on SVM 
classifier over all datasets (Cont.)
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Fig. 10 Convergence performance of the proposed RBNRO‑DE vs. the comparative algorithms based on 
SVM classifier over all datasets (Cont.)

Fig. 11 Convergence performance of the proposed RBNRO‑DE vs. the comparative algorithms based on 
SVM classifier over all datasets (Cont.)
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Convergence analysis

Figures 4, 5, 6, 7, 8, 9, 10,  11 show convergence performance of the proposed RBNRO-
DE with k-NN and SVM classifiers in comparison with its counterparts, which are all 
implemented under identical conditions of iterations number and population size. From 
Figs. 4, 5, 6, 7, 8, 9, 10,  11, it is obvious that the proposed RBNRO-DE with k-NN and 
SVM classifiers achieved optimal convergence performance on all datasets. Hence, the 
convergence behavior of the RBNRO-DE with k-NN and SVM classifiers proves its abil-
ity to achieve the optimum results in time while striking an effective balance between 
exploration and exploitation.

Wilcoxon’s rank‑sum test

The effectiveness of the proposed RBNRO-DE is recognized by executing the Wilcoxon 
test as a pair-wise test to evaluate whether there is a statistically significant devia-
tion between the fitness values achieved via the proposed approach and its peers [72]. 
According to the results shown in Tables  24 and  25, it is evident that the proposed 

Table 24 Results extracted by Wilcoxon’s rank‑sum test of the proposed RBNRO‑DE vs. the 
comparative algorithms based on k‑NN classifier

RBNRO‑DE–k‑NN vs. R
+ R

− P‑value Winner

BSSA 253.0 0.0 0 RBNRO‑DE

BABC 253.0 0.0 0 RBNRO‑DE

BPSO 253.0 0.0 0 RBNRO‑DE

BBA 253.0 0.0 0 RBNRO‑DE

BGWO 253.0 0.0 0 RBNRO‑DE

BWOA 253.0 0.0 0 RBNRO‑DE

BGOA 253.0 0.0 0 RBNRO‑DE

BSFO 253.0 0.0 0 RBNRO‑DE

BHHO 253.0 0.0 0 RBNRO‑DE

BBSA 253.0 0.0 0 RBNRO‑DE

BASO 253.0 0.0 0 RBNRO‑DE

BHGSO 253.0 0.0 0 RBNRO‑DE

Table 25 Results extracted by Wilcoxon’s rank‑sum test of the proposed RBNRO‑DE vs. the 
comparative algorithms based on the SVM classifier

RBNRO‑DE–k‑NN vs. R
+ R

− P‑value Winner

BSSA 253.0 0.0 0 RBNRO‑DE

BABC 253.0 0.0 0 RBNRO‑DE

BPSO 253.0 0.0 0 RBNRO‑DE

BBA 253.0 0.0 0 RBNRO‑DE

BGWO 253.0 0.0 0 RBNRO‑DE

BWOA 253.0 0.0 0 RBNRO‑DE

BGOA 253.0 0.0 0 RBNRO‑DE

BSFO 253.0 0.0 0 RBNRO‑DE

BHHO 253.0 0.0 0 RBNRO‑DE

BBSA 253.0 0.0 0 RBNRO‑DE

BASO 253.0 0.0 0 RBNRO‑DE

BHGSO 253.0 0.0 0 RBNRO‑DE
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RBNRO-DE with K-NN and SVM classifiers exceeds all other algorithms in all datasets. 
Therefore, all P-values that are listed in Tables 24 and 25 are less than 0.05 (5% signifi-
cance level) that demonstrate robust evidence against the null hypothesis and can show 
that the achieved results by the proposed method are statistically better and not hap-
pened by chance.

Computational complexity of the RBNRO‑DE and other state‑of‑the‑art meta‑heuristic 

algorithms

Time computational complexity of the RBNRO‑DE algorithm

To define the computational complexity of the proposed RBNRO-DE algorithm, we 
can analyze each of its five fundamental stages individually. These stages include fea-
ture filtration, population initialization, position improvement and adjustment, fitness 
function estimation, and DE technique. The comprehensive computational complex-
ity of the proposed RBNRO-DE algorithm can then be summarized in big-O notation 
as Otime(RBNRO − DE) , and can be calculated in big-O notation through the following 
equations:

Let N is the size of the population, Gmax means the maximum generations’ number, and 
D denotes the dimension size of problem. The following can be acquired as follows:
Otime(Features filtration) = Otime(D).
Otime(Population initialization) = Otime(N ).
Otime(Position improvement and adjustment) = Otime(Gmax × N × D).

Otime(Fitness function estimation) = Otime(Gmax × N ).

Otime(DE technique) = Otime(N × D). Therefore,

Space computational complexity of the RBNRO‑DE algorithm

The amount of memory or storage space needed for an algorithm to solve a problem 
as the size of the input increases is referred to as space computational complexity. It is 
often stated as the amount of additional memory that the algorithm requires in addition 
to the input. It consists of combining the following two main components: 

1. Input values space: It is the memory space needed to save the input data needed for 
the algorithm to operate. As exhibited in Algorithm 2 that provides the pseudocode 
of the proposed RBNRO-DE algorithm, there are nine input variables, which are: 
N, Gmax , D, PFi , Pβ , LB, UB, CR , and WM . Each variable represents just numerical 
values, so each uses 4 bytes of memory space. Therefore, these nine input variables’ 
total memory space complexity is 36 bytes ( 9× 4 bytes = 36 bytes). The input values 
space complexity is of constant space.

(31)

Otime(RBNRO − DE) = Otime(Features filtration)+ Otime(Population initialization)+

Otime(Position improvement and adjustment)+

Otime(Fitness function estimation)+ Otime(DE technique).

Otime(RBNRO − DE) = Otime(D)+ Otime(N )+ Otime(Gmax × N × D)+

Otime(Gmax × N )+ Otime(N × D) = Otime(Gmax × N × D).
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2. Auxiliary space: It indicates the additional space that the algorithm uses, apart from 
the input. It comprises the memory needed for the algorithm’s internal variables, 
data structures, and other parts. A certain amount of additional memory is used by 
the RBNRO-DE algorithm, regardless of the input size. This involves the following 
variables:

• The positions’ vector Xinitial , whose size is (N × D) proportional to the initial pop-
ulation of N positions with dimension size D, and each position takes 4 bytes of 
memory space, so the memory space complexity taken by Xinitial is (4 × N × D) 
bytes. Its space complexity is linear since the memory requires linear increases 
with value (N × D).

• The variables σ1 , σ2 , g, Ps
ne , Pe

ne , Nei , Pai , Pci , fit(XFi
i ) , fit(XIon

i ) , fit(XFu
i ) , fit(ui) , 

fit(Xi) , σµ , σν , fit(Xopt) . Each of these 16 variables represents just numerical val-
ues, so each one takes 4 bytes of memory space. Therefore, these eleven variables’ 
total memory space complexity is 64 bytes ( 16× 4 bytes = 64 bytes). Its space 
complexity is of constant space.

• The positions’ vectors XFi
i  , XIon

i  , XFu
i  , Xi , Xr , Xj , XFi

r1 , X
Ion
r1  , XFi

r2 , X
Ion
r2  , XFi

best , X
Ion
best , 

XFi
worst , Xbest , Levy(β) , µ , ν , Xadjust

i  , Xbin
i  , ui , υi , Xr1 , Xr2 , Xr3 , Xopt . The size of 

each of these 25 positions’ vectors is D proportional to the dimension size of the 
obtained positions, and each position takes 4 bytes of memory space. Therefore, 
the total memory space complexity for these eleven positions’ vectors is (100× D) 
bytes ( 25× 4 × D bytes). Its space complexity is linear since the memory requires 
linear increases with value D.

  Consequently, the total memory space complexity for all mentioned-above auxil-
iary variables is: (4 × N × D)+ 64 + (100× D) bytes.

Finally, the total memory space computational complexity for the proposed RBNRO-DE 
algorithm can be calculated as follows:

Table 26 The proposed RBNRO‑DE and its peers based on the computational complexity

Algorithm Time computational complexity Space 
computational 
complexity

RBNRO‑DE Otime(Gmax × N × D) Ospace(N × D)

BSSA Otime(Gmax × N × D) Ospace(N × D)

BABC Otime(Gmax × N × D) Ospace(N × D)

BPSO Otime(Gmax × N × D) Ospace(N × D)

BBA Otime(Gmax × N × D) Ospace(N × D)

BGWO Otime(Gmax × N × D) Ospace(N × D)

BWOA Otime(Gmax × N × D) Ospace(N × D)

BGOA Otime(Gmax × N × D) Ospace(N × D)

BSFO Otime(Gmax × N × D) Ospace(N × D)

BHHO Otime(Gmax × N × D) Ospace(N × D)

BBSA Otime(Gmax × N × D) Ospace(N × D)

BASO Otime(Gmax × N × D) Ospace(N × D)

BHGSO Otime(Gmax × N × D) Ospace(N × D)
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Table 27 Mean classification accuracy values of the proposed RBNRO‑DE with various recent 
algorithms based on k‑NN

Benchmark Metric RBNRO‑DE BMOA BBBO BAO BAVO

BLCA Mean 1.0000 0.9891 0.9996 0.9915 0.9926

STD 0.0000 0.0029 0.0021 0.0051 0.0056

CESC Mean 0.9839 0.9839 0.9839 0.9839 0.9839
STD 0.0000 0.0000 0.0000 0.0000 0.0000

CHOL Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

COAD Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

ESCA Mean 0.9744 0.9744 0.9744 0.9744 0.9744
STD 0.0000 0.0000 0.0000 0.0000 0.0000

GBM Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

HNSC Mean 0.9938 0.9912 0.9914 0.9912 0.9912

STD 0.0041 0.0000 0.0016 0.0000 0.0000
KICH Mean 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000
KIRC Mean 0.9983 0.9917 0.9972 0.9923 0.9928

STD 0.0033 0.0000 0.0039 0.0021 0.0028

KIRP Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

LIHC Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

LUAD Mean 0.9913 0.9913 0.9913 0.9913 0.9913
STD 0.0000 0.0000 0.0000 0.0000 0.0000

LUSC Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

PAAD Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

PCPG Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

READ Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

SARC Mean 0.9811 0.9811 0.9811 0.9811 0.9811
STD 0.0000 0.0000 0.0000 0.0000 0.0000

SKCM Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

STAD Mean 1.0000 0.9900 1.0000 0.9937 0.9956

STD 0.0000 0.0033 0.0000 0.0055 0.0054

THCA Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

THYM Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

UCEC Mean 0.9992 0.9675 0.9942 0.9858 0.9817

STD 0.0045 0.0115 0.0106 0.0124 0.0111

Ranking W|T|L 4|18|0 0|17|5 0|18|4 0|17|5 0|17|5
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Table 28 Mean fitness values of the proposed RBNRO‑DE with various recent algorithms based on 
k‑NN

Benchmark Metric RBNRO‑DE BMOA BBBO BAO BAVO

BLCA Mean 0.0029 0.0149 0.0048 0.0124 0.0114

STD 0.0002 0.0027 0.0020 0.0048 0.0052

CESC Mean 0.0185 0.0201 0.0198 0.0198 0.0198

STD 0.0001 0.0003 0.0002 0.0002 0.0001
CHOL Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

COAD Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

ESCA Mean 0.0279 0.0295 0.0292 0.0293 0.0292

STD 0.0001 0.0003 0.0002 0.0002 0.0002

GBM Mean 0.0025 0.0042 0.0038 0.0039 0.0039

STD 0.0001 0.0003 0.0001 0.0002 0.0002

HNSC Mean 0.0089 0.0131 0.0125 0.0127 0.0128

STD 0.0038 0.0003 0.0015 0.0002 0.0002
KICH Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

KIRC Mean 0.0047 0.0123 0.0070 0.0116 0.0109

STD 0.0030 0.0002 0.0036 0.0018 0.0025

KIRP Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

LIHC Mean 0.0025 0.0041 0.0038 0.0039 0.0038

STD 0.0002 0.0003 0.0001 0.0002 0.0002

LUAD Mean 0.0112 0.0127 0.0125 0.0125 0.0125

STD 0.0002 0.0003 0.0001 0.0002 0.0002

LUSC Mean 0.0026 0.0040 0.0039 0.0039 0.0039

STD 0.0001 0.0003 0.0001 0.0002 0.0002

PAAD Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0001
PCPG Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

READ Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

SARC Mean 0.0212 0.0228 0.0225 0.0225 0.0224

STD 0.0001 0.0003 0.0002 0.0002 0.0002

SKCM Mean 0.0025 0.0042 0.0038 0.0039 0.0039

STD 0.0001 0.0003 0.0002 0.0002 0.0002

STAD Mean 0.0029 0.0140 0.0043 0.0104 0.0086

STD 0.0003 0.0031 0.0002 0.0052 0.0052

THCA Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

THYM Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

UCEC Mean 0.0038 0.0368 0.0103 0.0182 0.0225

STD 0.0044 0.0110 0.0103 0.0120 0.0108

Ranking W|T|L 22|0|0 0|0|22 0|0|22 0|0|22 0|0|22
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Table 29 The number of extracted features by the proposed RBNRO‑DE and various recent 
algorithms for training the k‑NN

Benchmark Metric RBNRO‑DE BMOA BBBO BAO BAVO

BLCA Features number 147 206 223 200 204

STD 012.2759 015.0320 015.4840 019.2569 021.9808

CESC Features number 125 208 189 193 192

STD 006.5072 014.0640 007.6887 008.9966 005.9963
CHOL Features number 125 208 189 193 189

STD 006.5072 014.0640 007.6887 007.9956 007.9905

COAD Features number 125 208 189 193 191

STD 006.5072 014.0640 007.6887 007.9956 007.6408

ESCA Features number 125 208 189 194 190

STD 006.5072 014.0640 007.6887 008.2476 008.2742

GBM Features number 125 208 190 193 194

STD 006.5201 013.6888 005.8161 007.9956 007.9244

HNSC Features number 139 216 202 199 202

STD 014.6040 015.6185 008.7405 011.5670 008.7092
KICH Features number 125 208 189 193 191

STD 006.5072 014.0640 007.6887 007.9956 008.7204

KIRC Features number 153 204 212 198 192

STD 027.5450 011.1497 016.6688 014.8582 016.8513

KIRP Features number 125 208 189 193 192

STD 006.5072 014.0640 007.6887 007.9956 009.1633

LIHC Features number 125 206 192 193 191

STD 007.9387 013.7602 006.5599 008.3483 011.0355

LUAD Features number 130 202 195 195 193

STD 008.1948 012.7743 005.6474 009.5550 010.0203

LUSC Features number 131 202 196 196 195

STD 007.3182 014.0493 004.9912 009.9052 008.9886

PAAD Features number 125 208 189 193 191

STD 006.5072 014.0640 007.6887 007.9956 007.4303

PCPG Features number 125 208 189 193 192

STD 006.5072 014.0640 007.6887 007.9956 009.6669

READ Features number 125 208 189 193 190

STD 006.5072 014.0640 007.6887 007.9956 008.8018

SARC Features number 125 208 189 193 188

STD 006.5072 014.0640 007.6887 008.1132 010.0555

SKCM Features number 125 208 189 193 193

STD 006.5072 014.0640 007.6887 007.9956 009.5313

STAD Features number 144 203 217 211 210

STD 013.0348 018.8214 011.6924 023.9357 022.4698

THCA Features number 125 208 189 193 191

STD 006.8977 013.9975 008.1367 007.9956 007.5925

THYM Features number 125 208 189 193 191

STD 006.5072 014.0640 007.6887 007.9956 009.0934

UCEC Features number 151 232 226 211 216

STD 016.5202 026.7279 014.6514 017.8582 024.8912

Ranking W|T|L 22|0|0 0|0|22 0|0|22 0|0|22 0|0|22
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Table 30 Mean classification accuracy values of the proposed RBNRO‑DE with various recent 
algorithms based on SVM

Benchmark Metric RBNRO‑DE BMOA BBBO BAO BAVO

BLCA Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

CESC Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

CHOL Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

COAD Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

ESCA Mean 0.9915 0.9752 0.9795 0.9752 0.9769

STD 0.0121 0.0046 0.0103 0.0046 0.0077

GBM Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

HNSC Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

KICH Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

KIRC Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

KIRP Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

LIHC Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

LUAD Mean 0.9922 0.9913 0.9913 0.9913 0.9913

STD 0.0026 0.0000 0.0000 0.0000 0.0000
LUSC Mean 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000
PAAD Mean 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000
PCPG Mean 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000
READ Mean 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000
SARC Mean 0.9975 0.9811 0.9962 0.9843 0.9855

STD 0.0075 0.0000 0.0064 0.0070 0.0080

SKCM Mean 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000

STAD Mean 0.9900 0.9889 0.9889 0.9889 0.9889

STD 0.0033 0.0000 0.0000 0.0000 0.0000
THCA Mean 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000
THYM Mean 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000
UCEC Mean 1.0000 1.0000 1.0000 1.0000 1.0000

STD 0.0000 0.0000 0.0000 0.0000 0.0000
Ranking W|T|L 4|18|0 0|18|4 0|18|4 0|18|4 0|18|4
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Note that there are constant bytes, which will not be considered. For that, the total 
RBNRO-DE space computational complexity can be expressed in big-O notation as 
Ospace(RBNRO − DE) , and can be computed in big-O notation after removing all con-
stants as follows:

Comparison results between the RBNRO‑DE and other state‑of‑the‑art meta‑heuristic 

algorithms based on the computational complexity

Creating a comprehensive comparison of the time complexity and space complexity of 
multiple meta-heuristic optimization algorithms can be challenging because these com-
plexities can vary depending on the specific implementation, problem size, and other 
factors. Additionally, detailed time and space complexity analyses may not be available 
for all of the mentioned algorithms, and they may have different characteristics when 
applied to different problems. However, we try to provide a simplified comparison of 
these algorithms in terms of their general characteristics with respect to time and space 
complexity, as illustrated in Table 26.

Comparison results of the proposed RBNRO‑DE versus various recent algorithms 

from the published literature

As previously clarified, no meta-heuristic algorithm has ever been applied to RNA-Seq 
gene expression data. Therefore, the RBNRO-DE algorithm is considered the first meta-
heuristic algorithm to be proposed for solving GS problems of RNA-Seq gene expression 
data. This subsection presents the empirical results of comparisons based on the aver-
age classification accuracy values, fitness values, and selected features values in tackling 
the GS issue between the proposed RBNRO-DE and other recent meta-heuristic opti-
mization techniques from the published literature, including Binary meerkat optimiza-
tion algorithm (BMOA) [73], Binary Brown-bear Optimization (BBBO) algorithm [74], 
Binary Aquila Optimization (BAO) algorithm [75], and Binary African Vultures Optimi-
zation (BAVO) algorithm [76].

Comparisons based on the suggested k‑NN classifier

The accuracy values of the proposed RBNRO-DE optimizer and other recent optimizers 
based on the k-NN classifier were compared in Table 27 under the same implementation 
conditions. Based on the empirical results, RBNRO-DE yielded the best results in four 
datasets. In the remaining 18 datasets, RBNRO-DE with k-NN and other competitive 
recent algorithms produced identical results.

Table  28 compares the performance of the proposed RBNRO-DE algorithm with 
other algorithms based on k-NN using the same implementation requirements. The 
results indicate that the proposed algorithm outperforms its competitors in producing 

Space complexity(RBNRO-DE) = Input values space+ Auxiliary space =

36+
(

(4 × N × D)+ 64 + (100× D)
)

bytes.

Ospace(RBNRO − DE) = Ospace(Input values space)+Ospace(Auxiliary space) =

Ospace(1)+
(

Ospace(N × D)+ Ospace(1)+ Ospace(D)
)

= Ospace(N × D).
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Table 31 Mean fitness values of the proposed RBNRO‑DE with various recent algorithms based on 
SVM

Benchmark Metric RBNRO‑DE BMOA BBBO BAO BAVO

BLCA Mean 0.0025 0.0042 0.0038 0.0039 0.0039

STD 0.0001 0.0003 0.0002 0.0002 0.0001
CESC Mean 0.0025 0.0042 0.0038 0.0039 0.0039

STD 0.0001 0.0003 0.0002 0.0002 0.0002

CHOL Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

COAD Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0001
ESCA Mean 0.0113 0.0287 0.0242 0.0284 0.0267

STD 0.0118 0.0046 0.0099 0.0046 0.0074

GBM Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0001 0.0002 0.0002

HNSC Mean 0.0025 0.0041 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0001 0.0002 0.0002

KICH Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

KIRC Mean 0.0025 0.0041 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0001 0.0002 0.0002

KIRP Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

LIHC Mean 0.0026 0.0046 0.0040 0.0040 0.0040

STD 0.0001 0.0003 0.0001 0.0002 0.0002

LUAD Mean 0.0103 0.0128 0.0124 0.0125 0.0124

STD 0.0025 0.0003 0.0001 0.0002 0.0002

LUSC Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

PAAD Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

PCPG Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

READ Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

SARC Mean 0.0067 0.0228 0.0068 0.0196 0.0183

STD 0.0073 0.0003 0.0062 0.0066 0.0077

SKCM Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

STAD Mean 0.0125 0.0152 0.0148 0.0149 0.0147

STD 0.0031 0.0003 0.0001 0.0002 0.0002

THCA Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

THYM Mean 0.0025 0.0042 0.0038 0.0039 0.0038

STD 0.0001 0.0003 0.0002 0.0002 0.0002

UCEC Mean 0.0025 0.0042 0.0039 0.0039 0.0038

STD 0.0001 0.0002 0.0001 0.0002 0.0002

Ranking W|T|L 22|0|0 0|0|22 0|0|22 0|0|22 0|0|22
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Table 32 The number of extracted features by the proposed RBNRO‑DE and various recent 
algorithms for training the SVM

Benchmark Metric RBNRO‑DE BMOA BBBO BAO BAVO

BLCA Features number 125 208 189 193 193

STD 006.5286 014.0640 007.9983 008.0170 006.6821

CESC Features number 125 208 189 193 193

STD 006.5072 014.0640 007.6887 007.9956 008.0890

CHOL Features number 125 208 189 193 192

STD 006.5072 014.0640 007.6887 007.9956 010.8417

COAD Features number 125 208 189 193 192

STD 006.5072 014.0640 007.6887 007.9956 007.4521

ESCA Features number 140 208 196 194 193

STD 025.9610 013.8923 016.6035 008.1260 017.7150

GBM Features number 124 208 188 193 192

STD 006.9048 013.6888 007.3182 007.9822 007.9989

HNSC Features number 125 206 190 194 192

STD 005.3109 015.9243 006.5255 008.1131 008.2482

KICH Features number 125 208 189 193 189

STD 006.5072 014.0640 007.6887 007.9956 008.1326

KIRC Features number 127 205 192 193 192

STD 006.4339 014.0017 006.0144 008.7689 007.8977

KIRP Features number 125 208 189 193 189

STD 006.5072 014.0640 007.6887 007.9956 008.6346

LIHC Features number 130 231 201 201 202

STD 007.2622 013.0229 006.2286 011.3090 011.3774

LUAD Features number 127 208 189 193 189

STD 008.4892 014.0640 007.3964 009.0367 008.2643

LUSC Features number 125 208 189 193 192

STD 006.5072 014.0640 007.6887 007.9956 009.5594

PAAD Features number 125 208 189 193 190

STD 006.5072 014.0640 007.6887 007.9956 009.7116

PCPG Features number 125 208 189 193 189

STD 006.5072 014.0640 007.6887 007.9956 009.0618

READ Features number 125 208 189 193 190

STD 006.5072 014.0640 007.6887 007.9956 007.7618

SARC Features number 146 208 216 201 197

STD 015.8213 014.2892 016.4592 021.0692 017.7620

SKCM Features number 125 208 189 193 190

STD 006.5072 014.0640 007.6887 007.9956 009.0873

STAD Features number 129 208 190 193 187

STD 010.9780 013.4048 006.9580 009.5803 009.4139

THCA Features number 126 208 189 193 190

STD 006.0646 014.0640 007.6887 007.9956 008.5437

THYM Features number 125 208 189 193 190

STD 006.5072 014.0640 007.6887 007.9956 009.1520

UCEC Features number 127 209 194 193 188

STD 005.9258 011.5318 007.4748 007.7749 008.0639

Ranking W|T|L 22|0|0 0|0|22 0|0|22 0|0|22 0|0|22
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higher-quality fitness values with lower standard deviation across all datasets used in 
the experiments. It is worth noting that all these datasets are large-scale, which demon-
strates the proposed algorithm’s ability to perform consistently regardless of the dataset 
size. Additionally, the RBNRO-DE algorithm has shown remarkable performance in bal-
ancing exploitation and exploration to avoid getting trapped in local optima. Overall, 
these results suggest that the proposed RBNRO-DE algorithm is promising and has the 
potential to evolve beyond the other recent algorithms.

Table  29 shows the number of extracted features using the suggested RBNRO-DE 
and other recent optimization algorithms for training the k-NN classifier. The proposed 
RBNRO-DE exceeded the other recent algorithms in all datasets regarding the number 
of the selected features. Also, the RBNRO-DE’s ability to determine the most instructive 
features is attributable to the capability to explore the feasible regions while maintaining 
enhanced classification accuracy.

Comparisons based on the suggested SVM classifier

The mean accuracy results of the suggested RBNRO-DE optimizer and other recent 
optimization methods regarding the SVM classifier were shown in Table  30 under 
identical implementation conditions. The proposed RBNRO-DE produced the most 
promising results in four datasets based on the results. In the remaining 18 datasets, 

Table 33 Classification accuracy values of the proposed RBNRO‑DE with k‑NN and different filter 
and embedded methods

Benchmark RBNRO‑DE Variance 
Threshold

Correlation Chi‑
square

ANOVA Linear‑
Regression

Ridge 
Regularization

Lasso 
Regularization

Elastic 
Net

BLCA 1.0000 0.9884 0.9884 0.9767 0.9535 0.9884 0.9884 0.9884 0.9884

CESC 0.9839 0.9839 0.9839 0.9839 0.9839 0.9839 0.9839 0.9839 0.9839

CHOL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

COAD 1.0000 1.0000 0.9848 1.0000 1.0000 1.0000 1.0000 1.0000 0.9697

ESCA 0.9744 0.9744 0.9744 0.9744 0.9744 0.9744 0.9744 0.9744 0.9744

GBM 1.0000 1.0000 0.9688 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

HNSC 0.9938 0.9823 0.9912 0.9735 0.9823 0.9823 0.9902 0.9912 0.9823

KICH 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KIRC 0.9983 0.9917 0.9917 0.9923 0.9928 0.9917 0.9917 0.9917 0.9917

KIRP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

LIHC 1.0000 1.0000 1.0000 0.9765 0.9882 1.0000 1.0000 1.0000 0.9882

LUAD 0.9913 0.9913 0.9913 0.9652 0.9565 0.9913 0.9913 0.9913 0.9652

LUSC 1.0000 1.0000 1.0000 0.9910 1.0000 1.0000 1.0000 1.0000 0.9910

PAAD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

PCPG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

READ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SARC 0.9811 0.9811 0.9811 0.9811 0.9811 0.9811 0.9811 0.9811 0.9811

SKCM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STAD 1.0000 0.9889 0.9889 0.9778 1.0000 0.9889 0.9778 1.0000 0.9889

THCA 1.0000 1.0000 1.0000 0.9821 1.0000 1.0000 1.0000 1.0000 0.9911

THYM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

UCEC 0.9992 0.9500 0.9500 0.9500 0.9750 0.9750 0.9750 0.9750 0.9750

Ranking 
( W|T|L)

4|18|0 0|17|5 0|15|7 0|13|9 0|16|6 0|17|5 0|17|5 0|18|4 0|12|10
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the proposed RBNRO-DE with SVM and other recent competitive algorithms yielded 
equivalent results.

Table 31 shows the fitness values of the suggested RBNRO-DE and other recent opti-
mization algorithms regarding the SVM classifier. The outcomes show that the proposed 
technique exceeds its peers by producing the smallest fitness values with lower standard 
deviation across all benchmarks employed in the experimentations. It is worth noting 
that all these datasets are large-scale, demonstrating the suggested algorithm’s capability 
to perform consistently regardless of the size of the dataset. Also, the proposed RBNRO-
DE has shown promising performance in balancing exploitation and exploration to avoid 
getting trapped in local optima.

Table 32 displays the number of extracted features chosen by the suggested RBNRO-
DE and other recent optimization algorithms for training the SVM classifier. The pro-
posed RBNRO-DE exceeded the other recent algorithms in all datasets regarding 
the number of selected features. Also, the RBNRO-DE’s ability to determine the most 
instructive features is attributable to the capability to explore the feasible regions while 
maintaining enhanced classification accuracy.

Table 34 Fitness values of the proposed RBNRO‑DE with k‑NN and different filter and embedded 
methods

Benchmark RBNRO‑DE Variance 
Threshold

Correlation Chi‑
square

ANOVA Linear‑
Regression

Ridge 
Regularization

Lasso 
Regularization

Elastic 
Net

BLCA 0.0029 0.0215 0.0215 0.0330 0.0560 0.0215 0.0215 0.0215 0.0215

CESC 0.0185 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260 0.0260

CHOL 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

COAD 0.0025 0.0100 0.0100 0.0250 0.0100 0.0100 0.0100 0.0100 0.0400

ESCA 0.0279 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354

GBM 0.0025 0.0100 0.0100 0.0409 0.0100 0.0100 0.0100 0.0100 0.0100

HNSC 0.0089 0.0275 0.0188 0.0363 0.0275 0.0275 0.0100 0.0188 0.0275

KICH 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

KIRC 0.0047 0.0182 0.0182 0.0100 0.0100 0.0182 0.0182 0.0182 0.0182

KIRP 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

LIHC 0.0025 0.0100 0.0100 0.0333 0.0216 0.0100 0.0100 0.0100 0.0216

LUAD 0.0112 0.0186 0.0186 0.0444 0.0530 0.0186 0.0186 0.0186 0.0444

LUSC 0.0026 0.0100 0.0100 0.0189 0.0100 0.0100 0.0100 0.0100 0.0189

PAAD 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

PCPG 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

READ 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

SARC 0.0212 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287

SKCM 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

STAD 0.0029 0.0210 0.0210 0.0320 0.0100 0.0210 0.0320 0.0100 0.0210

THCA 0.0025 0.0100 0.0100 0.0277 0.0100 0.0100 0.0100 0.0100 0.0188

THYM 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

UCEC 0.0038 0.0595 0.0595 0.0595 0.0348 0.0348 0.0100 0.0100 0.0348

Ranking 
( W|T|L)

22|0|0 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22
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Comparison results of the proposed RBNRO‑DE versus different filter and embedded 

methods

This subsection presents the experimental results of the proposed RBNRO-DE and vari-
ous filter and embedded methods.

Comparisons based on the suggested k‑NN classifier

Table 33 shows the results of the proposed RBNRO-DE compared with other filter and 
embedded methods based on the k-NN classifier regarding the classification accuracy 
values that are fairly evaluated under the same implementation conditions. The empiri-
cal results show that the proposed RBNRO-DE is ranked first by achieving the best 
results in 4 out of 22 datasets. Lasso regularization is ranked second by yielding identical 
results in 18 datasets as the proposed RBNRO-DE. It should also be noted that variance 
threshold, linear regression, and ridge regularization methods ranked third by yielding 
identical results in 17 datasets as the proposed RBNRO-DE.

The average fitness values of the proposed RBNRO-DE algorithm based on k-NN and 
various filter and embedded methods are shown in Table 34. From the results presented 
in Table 34, it can be observed that RBNRO-DE with k-NN produces the least fitness 
values for all datasets. Additionally, it is noteworthy that the proposed RBNRO-DE can 
perform consistently on all datasets, irrespective of their size, as all the datasets used in 
this study are large-scale.

Table 35 The number of extracted features by the proposed RBNRO‑DE with different filter and 
embedded methods for training the k‑NN

Benchmark RBNRO‑DE Variance 
Threshold

Correlation Chi‑
square

ANOVA Linear‑
Regression

Ridge 
Regularization

Lasso 
Regularization

Elastic 
Net

BLCA 147 500 412 300 300 206 200 310 500

CESC 125 500 439 300 300 209 203 220 500

CHOL 125 500 152 290 280 204 158 180 200

COAD 125 500 287 310 190 202 201 270 200

ESCA 125 500 339 300 300 206 234 250 200

GBM 125 500 254 209 190 199 255 190 500

HNSC 139 500 382 310 300 202 180 420 500

KICH 125 500 106 250 160 196 231 190 160

KIRC 153 500 470 300 300 206 199 390 200

KIRP 125 500 339 290 280 202 199 170 200

LIHC 125 500 410 130 200 218 192 420 200

LUAD 130 500 423 240 300 196 231 430 200

LUSC 131 500 293 300 300 218 194 350 300

PAAD 125 500 360 300 300 205 221 250 500

PCPG 125 500 327 500 500 199 199 200 500

READ 125 500 324 500 500 203 235 190 300

SARC 125 500 431 500 500 200 200 200 500

SKCM 125 500 242 500 500 181 192 180 500

STAD 144 500 428 500 500 217 216 340 200

THCA 125 500 311 500 300 199 194 152 300

THYM 125 500 369 300 300 203 205 210 500

UCEC 151 500 422 500 500 219 206 280 300

Ranking 
( W|T|L)

21|0|1 0|0|22 1|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22
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Table 35 shows the number of selected features using the proposed RBNRO-DE with 
the k-NN classifier and different filter and embedded methods. The proposed RBNRO-
DE surpassed the other algorithms in 21 out of 22 datasets regarding the number of 
extracted features. Correlation ranked second by achieving the best results in one 
dataset.

Comparisons based on the suggested SVM classifier

Table 36 shows the results of the proposed RBNRO-DE compared with other filter and 
embedded methods based on the SVM classifier regarding the classification accuracy 
values that are fairly evaluated under the same implementation conditions. The empiri-
cal results show that the proposed RBNRO-DE is ranked first by achieving the best 
results in 4 out of 22 datasets. Lasso regularization is ranked second by yielding identical 
results in 18 datasets as the proposed RBNRO-DE. It should also be noted that variance 
threshold, linear regression, and ridge regularization methods ranked third by yielding 
identical results in 17 datasets as the proposed RBNRO-DE.

The average fitness values of the proposed RBNRO-DE algorithm based on SVM and 
various filter and embedded methods are shown in Table 37. From the results presented 
in Table 37, it can be observed that RBNRO-DE with SVM produces the least fitness val-
ues for all datasets.

Table 36 Classification accuracy values of the proposed RBNRO‑DE with SVM and different filter 
and embedded methods

Benchmark RBNRO‑DE Variance 
Threshold

Correlation Chi‑
square

ANOVA Linear‑
Regression

Ridge 
Regularization

Lasso 
Regularization

Elastic 
Net

BLCA 1.0000 1.0000 1.0000 0.9884 0.9767 1.0000 1.0000 1.0000 1.0000

CESC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CHOL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

COAD 1.0000 1.0000 0.9848 1.0000 1.0000 1.0000 1.0000 1.0000 0.9697

ESCA 0.9915 0.9744 0.9744 0.9744 0.9744 0.9744 0.9744 0.9744 0.9744

GBM 1.0000 1.0000 0.9688 0.9688 1.0000 1.0000 1.0000 1.0000 1.0000

HNSC 1.0000 1.0000 1.0000 0.9735 0.9912 1.0000 1.0000 1.0000 1.0000

KICH 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KIRC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KIRP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

LIHC 1.0000 0.9765 0.9765 0.9765 0.9765 0.9765 0.9765 0.9765 0.9882

LUAD 0.9922 0.9913 0.9913 0.9565 0.9652 0.9913 0.9913 0.9913 0.9652

LUSC 1.0000 1.0000 1.0000 0.9910 1.0000 1.0000 1.0000 1.0000 0.9910

PAAD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

PCPG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

READ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SARC 0.9962 0.9811 0.9811 0.9811 0.9811 0.9811 0.9811 0.9811 0.9811

SKCM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

STAD 0.9900 0.9889 0.9889 0.9778 0.9889 0.9889 0.9889 0.9889 0.9889

THCA 1.0000 1.0000 1.0000 0.9821 1.0000 1.0000 1.0000 1.0000 0.9911

THYM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

UCEC 1.0000 1.0000 1.0000 0.9500 0.9500 1.0000 1.0000 1.0000 0.9500

Ranking 
( W|T|L)

5|17|0 0|17|5 0|15|7 0|11|11 0|14|8 0|17|5 0|17|5 0|17|5 0|13|9
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Table 38 shows the number of selected features using the proposed RBNRO-DE with 
the SVM classifier and different filter and embedded methods. The proposed RBNRO-
DE surpassed the other algorithms in 21 out of 22 datasets regarding the number of 
selected features. Correlation ranked second by achieving the best results in one dataset.

Discussion

Based on the empirical analysis, it can be demonstrated that the proposed RBNRO-DE 
with k-NN and SVM classifiers yielded more reliable results than other recent algo-
rithms for handling the GS strategy on (rnaseqv2 illuminahiseq rnaseqv2 un edu Level 
3 RSEM genes normalized) with more than 20,000 genes to pick the best informative 
genes and assessed them through 22 cancer datasets. Binary versions of the most com-
mon meta-heuristic algorithms have been compared with the proposed RBNRO-DE 
algorithm. In most of the 22 cancer datasets, the RBNRO-DE algorithm based on k-NN 
and SVM classifiers achieved optimal convergence and classification accuracy up to 
100% integrated with a feature reduction size down to 98%, which is very evident when 
compared to its counterparts, according to Wilcoxon’s rank-sum test (5% significance 

Table 37 Fitness values of the proposed RBNRO‑DE with k‑NN and different filter and embedded 
methods

Benchmark RBNRO‑DE Variance 
Threshold

Correlation Chi‑
square

ANOVA Linear‑
Regression

Ridge 
Regularization

Lasso 
Regularization

Elastic 
Net

BLCA 0.0025 0.0100 0.0100 0.0215 0.0330 0.0100 0.0100 0.0100 0.0100

CESC 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

CHOL 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

COAD 0.0025 0.0100 0.0100 0.0250 0.0100 0.0100 0.0100 0.0100 0.0400

ESCA 0.0113 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354

GBM 0.0025 0.0100 0.0100 0.0409 0.0409 0.0100 0.0100 0.0100 0.0100

HNSC 0.0025 0.0100 0.0100 0.0363 0.0188 0.0100 0.0100 0.0100 0.0100

KICH 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

KIRC 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

KIRP 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

LIHC 0.0026 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0216

LUAD 0.0103 0.0186 0.0186 0.0530 0.0444 0.0186 0.0186 0.0186 0.0444

LUSC 0.0025 0.0100 0.0100 0.0189 0.0100 0.0100 0.0100 0.0100 0.0189

PAAD 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

PCPG 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

READ 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

SARC 0.0067 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287 0.0287

SKCM 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

STAD 0.0029 0.0210 0.0210 0.0320 0.0210 0.0210 0.0210 0.0210 0.0210

THCA 0.0025 0.0100 0.0100 0.0277 0.0100 0.0100 0.0100 0.0100 0.0188

THYM 0.0025 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

UCEC 0.0025 0.0100 0.0100 0.0595 0.0595 0.0100 0.0100 0.0100 0.0595

Ranking 
( W|T|L)

22|0|0 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22
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level). Moreover, the RBNRO-DE optimizer showed a more significant exploration and 
exploitation behaviour than its peers, verified by subsequent underlying causes.

Firstly, a pre-processing phase uses the Relief algorithm to identify the relevant fea-
tures by computing a weight for every feature to describe its relationship and then ignor-
ing the irrelevant features with the lowest weights. The second phase includes applying 
the binary NRO algorithm combined with the DE technique to determine the most 
relevant and non-redundant features. When solving large-scale problems, the NRO 
algorithm is susceptible to the local optimal trap. To prevent this, the DE technique is 
included in the NRO algorithm.

Moreover, the suggested RBNRO-DE based on the k-NN and SVM classifiers empha-
sizes its behaviour to obtain the optimal solution on time, ensuring an effective equilib-
rium between exploration and exploitation capabilities. Eventually, due to the non-exact 
repeatability of the optimization outcomes, separate optimizer implementations can 
generate various subsets of attributes, which may confuse the user. Therefore, on differ-
ent occasions or applications, RBNRO-DE or other optimizers implemented here can 
select multiple subsets of features.

Table 38 The number of extracted features by the proposed RBNRO‑DE with different filter and 
embedded methods for training the SVM

Benchmark RBNRO‑DE Variance 
Threshold

Correlation Chi‑
square

ANOVA Linear‑
Regression

Ridge 
Regularization

Lasso 
Regularization

Elastic 
Net

BLCA 125 500 412 300 300 206 200 310 500

CESC 125 500 439 300 300 209 203 220 500

CHOL 125 500 152 290 280 204 158 180 200

COAD 125 500 287 310 190 202 201 270 200

ESCA 140 500 339 300 300 206 234 250 200

GBM 124 500 254 209 190 199 255 190 500

HNSC 125 500 382 310 300 202 180 420 500

KICH 125 500 106 250 160 196 231 190 160

KIRC 127 500 470 300 300 206 199 390 200

KIRP 125 500 339 290 280 202 199 170 200

LIHC 130 500 410 130 200 218 192 420 200

LUAD 127 500 423 240 300 196 231 430 200

LUSC 125 500 293 300 300 218 194 350 300

PAAD 125 500 360 300 300 205 221 250 500

PCPG 125 500 327 500 500 199 199 200 500

READ 125 500 324 500 500 203 235 190 300

SARC 146 500 431 500 500 200 200 200 500

SKCM 125 500 242 500 500 181 192 180 500

STAD 129 500 428 500 500 217 216 340 200

THCA 126 500 311 500 300 199 194 152 300

THYM 125 500 369 300 300 203 205 210 500

UCEC 127 500 422 500 500 219 206 280 300

Ranking 
( W|T|L)

21|0|1 0|0|22 1|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22 0|0|22
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Conclusion and future work
In this study, we applied the meta-heuristic RBNRO-DE algorithm for solving FS prob-
lems of RNA-Seq gene expression data for the first time and identifying possible bio-
markers for various tumour types to improve the best solution. Results were satisfactory, 
demonstrating the algorithm’s capabilities and effectiveness were significantly increased. 
k-NN and SVM, two well-known classifiers, were used to assess the usefulness of each 
subset of the chosen features. The performance of the proposed RBNRO-DE algorithm 
was compared to binary versions of 12 well-known meta-heuristic algorithms to validate 
it on various tumour types with multiple samples. The evaluation was conducted using 
a variety of metrics, such as the AVGFit , AVGAcc , and AVGFeat values. The suggested 
algorithm in this research, RBNRO-DE based on k-NN and SVM classifiers, performed 
better than the other algorithms for dealing with FS problems results. Future research 
could examine how the RBNRO-DE algorithm integrates with various optimization 
algorithms. To further explore the effectiveness of the RBNRO-DE algorithm for FS in 
supervised classification, other classifiers (such as DTs, artificial neural networks, etc.) 
could be used.
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