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Abstract 

Internet of Things (IoT) devices are widely used but also vulnerable to cyberattacks 
that can cause security issues. To protect against this, machine learning approaches 
have been developed for network intrusion detection in IoT. These often use feature 
reduction techniques like feature selection or extraction before feeding data to models. 
This helps make detection efficient for real-time needs. This paper thoroughly com-
pares feature extraction and selection for IoT network intrusion detection in machine 
learning-based attack classification framework. It looks at performance metrics 
like accuracy, f1-score, and runtime, etc. on the heterogenous IoT dataset named Net-
work TON-IoT using binary and multiclass classification. Overall, feature extraction gives 
better detection performance than feature selection as the number of features is small. 
Moreover, extraction shows less feature reduction compared with that of selection, 
and is less sensitive to changes in the number of features. However, feature selection 
achieves less model training and inference time compared with its counterpart. Also, 
more space to improve the accuracy for selection than extraction when the number 
of features changes. This holds for both binary and multiclass classification. The study 
provides guidelines for selecting appropriate intrusion detection methods for particu-
lar scenarios. Before, the TON-IoT heterogeneous IoT dataset comparison and recom-
mendations were overlooked. Overall, the research presents a thorough comparison 
of feature reduction techniques for machine learning-driven intrusion detection in IoT 
networks.

Keywords: Internet of Things, IoT, Intrusion detection, Feature selection, Feature 
extraction, Machine learning, Attack classification

Introduction
The Internet of Things (IoT) refers to the technology of connecting everyday life and 
devices to the internet. IoT is growing and changing quickly, with the goal of linking 
things like wireless sensors, smart cameras, televisions, and other smart home devices 
online [1]. The number of Internet-connected IoT devices is rising rapidly, with over 2 
billion connected in 2017. Experts predict there will be over 7.5 billion IoT devices gen-
erating 73.1 zettabytes of data by 2025 [2]. While IoT devices are becoming widespread 
and assisting people in many areas, they often have very limited security capabilities. 
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This is despite the huge growth of IoT and the large amounts of data it creates. In sum-
mary, IoT adoption is surging, connecting billions of devices and generating massive 
data. However, IoT devices typically lack strong security protections even as their use 
proliferates.

Due to the security limitations of IoT devices, it is crucial to create network intrusion 
detection systems (NIDS) that can quickly and dependably detect and prevent attacks 
on IoT networks [3]. For this purpose, many machine learning techniques have been 
developed for intrusion detection in IoT, along with public datasets of network traffic 
[4]. However, these datasets frequently contain numerous irrelevant or redundant fea-
tures, which negatively impacts the complexity and accuracy of machine learning mod-
els [5]. A common approach to develop efficient NIDS is through feature reduction, 
which decreases the dimensionality of network traffic data fed into the machine learn-
ing model. This helps lower computational costs and latency while enhancing model 
generalization.

Two of the most common are feature selection and feature extraction, which help 
address the issues caused by excessive features. Feature selection selects a subset of 
the most informative features from the original set [6]. It reduces dimensionality while 
retaining the semantic interpretability of the selected features. In contrast, feature 
extraction transforms the original features into a new low-dimensional space via math-
ematical projection [7]. While it can effectively reduce dimensionality, however, the 
extracted features lose intuitive meanings. In the realm of IoT security, feature selection 
enables the creation of lightweight and efficient IDS by judiciously choosing a subset of 
the most relevant original features. On the other hand, feature extraction techniques 
offer a valuable means to transform and distill the essence of the original feature set, 
reducing overall data dimensionality while retaining critical information. By optimizing 
the efficiency and interpretability of intrusion detection models, both feature selection 
and feature extraction become indispensable tools for enhancing the cybersecurity pos-
ture of IoT ecosystems, ensuring effective threat detection in a manner tailored to the 
limitations and intricacies of IoT devices and networks.

While existing works have focused on using either feature selection, feature extrac-
tion or hybrid method of the two, to improve certain performance metrics for NIDS 
[8, 9], there remains a research gap in comprehensively comparing these two methods, 
especially on modern IoT datasets [10]. Very few studies have evaluated the trade-offs 
between detection accuracy and computational complexity under the same experimen-
tal settings. However, such a comparison is essential to provide guidelines for choosing 
the appropriate feature reduction technique based on the IoT system constraints and 
intrusion detection requirements.

Therefore, this research aims to conduct an in-depth investigation of feature selection 
and feature extraction for building lightweight NIDS tailored to IoT environments. We 
focus on comparing the two techniques because they take contrasting approaches to 
reducing dimensionality, and may have different advantages and limitations in the con-
text of IoT-based NIDS [11]. The findings can provide data-driven insights to guide the 
selection of feature reduction methods for optimal efficiency and detection performance 
in IoT network protection systems. In summary, our work addresses the gap in compara-
tive studies on feature reduction techniques for machine learning-driven NIDS on IoT 



Page 3 of 44Li et al. Journal of Big Data           (2024) 11:36  

data. By benchmarking feature selection and extraction head-to-head, we derive valu-
able guidelines for striking the right balance between detection accuracy and complexity 
in IoT environments.

This comparative study reveals that feature selection and feature extraction have dif-
ferent strengths and weaknesses for building lightweight NIDS on IoT data. Our experi-
ments demonstrate that when a substantial number of features are reduced, feature 
selection generally achieves higher detection accuracy, demanding less training and 
inference time. Conversely, as the number of features decreases, feature extraction excels 
over feature selection. Additionally, examining the F1-scores for different attack classes 
under various feature quantities using various machine learning classifiers provides a 
deeper insight into the detection capabilities of both methods. This analysis reveals that 
while feature extraction shows less sensitivity to changes in the number of reduced fea-
tures, it also demonstrates the ability to detect a wider array of attack types compared to 
feature selection. Moreover, both methods favorite Decision Tree classifier considering 
both classification metrics and run time performance, which is more suitable for NIDS 
in IoT network. Based on these observations, we present a detailed theoretical guide, 
elaborated in Table 20 within “Result verification statistically” section, to aid in the selec-
tion of the most appropriate intrusion detection method for distinct scenarios.

The key contributions in this paper are provided as follows.

1) A comprehensive performance evaluation between feature selection and feature 
extraction, involving performance metrics and run-time using the IoT data set, is 
conducted and evaluated.

2) The 3-phase machine learning pipeline framework, involving data preprocessing, 
feature reduction, and classification with multiple machine learning classifiers, is cre-
ated for performance evaluation.

3) The NIDS for IoT is tested using public IoT datasets, named Network TON-IoT [10], 
to build models and compare performance between two feature reduction methods.

The subsequent sections are structured as follows: “Related works” section explores 
previous studies linked to this research, “Methodology” section explains the proposed 
methodology, “Experimental setup and analysis” section details the experimental setup 
and analysis, “Result and analysis” section displays the outcomes and discussions of two 
feature reduction techniques, and lastly, “Conclusion” section concludes this paper.

Related works
In this section, related studies on NIDSs that were implemented using feature reduction 
methods are discussed.

In the realm of NIDS, there has been widespread use of feature selection to reduce 
the complexity of the original traffic data. Many studies employ filter-based feature 
selection method to select the discriminate feature towards target class. For instance, 
in study [8], Mutual Information (MI)-based approach was proposed to select the fea-
tures for NIDS, the study compared both linear and non-linear, specifically correla-
tion-based and MI-based feature selection techniques, while MI-based outperform 
correlation-based approach on accuracy of attack detection. After that, Ambusaidi 
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et  al. [12] introduced a feature selection algorithm that utilized MI in combination 
with an variant support vector machine classifier. This approach exhibited enhanced 
accuracy and decreased model complexity compared to prior methods, on datasets 
such as KDD Cup 99, NSL-KDD [10] and Kyoto 2006+ [13].

In study [14], the authors conducted an analysis of a dataset named UNSW-NB15 
[15] for NIDS. The filter-based feature reduction technique using machine learning 
algorithm such as XGBoost algorithm was applied to select features. In the same way, 
Disha and Waheed [16] designed feature ranking based on Gini Impurity by Ran-
dom Forest (RF) to analyze the classification performance for NIDS using the latest 
TON-IoT dataset, while did not consider too much on computational cost for feature 
reduction process. However, most of the datasets as networking dataset are outdated 
as the benchmark data sets to evaluate classification models in NIDS for IoT security.

Furthermore, many studies use wrapper-based feature selection to find out the best 
feature subsets to improve the classification performance. Shafiq et  al. [17] intro-
duced a feature selection method called CorrAUC and a wrapper-based FS algorithm 
that employs the area under the curve (AUC) metric to choose effective features for 
machine learning (ML) algorithms. The method was tested on the Bot-IoT dataset 
[18] with four ML algorithms and the approach effectively selected informative fea-
tures, however, it had lower precision for certain attacks like keylogging attack.

In addition, various techniques employing heuristic optimization algorithms, such 
as genetic algorithms (GA) as a search strategy to identify optimal feature subsets are 
detailed in [19–21]. These methods demonstrated lower false alarm rates compared 
to baseline approaches, using datasets like UNSW-NB15 and KDD99. In study [22], 
The researchers utilized the Pigeon Inspired Optimizer (PIO) for the feature selec-
tion process, binarizing the continuous pigeon inspired optimizer and contrasting 
it with the conventional approach for binarizing continuous swarm intelligent algo-
rithms. The evaluation was conducted on datasets including KDDCUP99, NLS-
KDD, and UNSW-NB15, showcasing outcomes that demonstrated a high detection 
rate and accuracy while minimizing false alarms. In addition, some studies designed 
lightweight models to meet the characteristic of IoT network, Liu et al. [23] proposed 
Particle Swam Optimization (PSO) with one-class Support Vector Machine (SVM) 
[24] optimized PSO for feature selection with light GBM to build lightweight models 
for detecting attack. However, it is worth noting that these feature selection strate-
gies often come at a high computational cost, especially when relying on GA, PSO, 
or machine learning-based classifiers, as a result, which have negative impact on 
resource-constraint IoT system and networks.

Moreover, many studies employed hybrid feature selection methods to improve the 
performance of the attack classifiers while reducing overfitting in model training task. 
In study [25], the authors utilized association rule mining and central attribute values 
outperformed NSLKDD when tested on the UNSW-NB15 dataset. In addition, some 
studies employed ensemble feature selection techniques to find out the significant 
features, for example, Moustafa et al. [26] employed an ensemble Intrusion detection 
technique, which combined DT, ANN and NB as the base learners to learn the opti-
mal features from statistic flow features, while Leevy et al. [27] employed information 
gain, information gain ratio, and Chi-squared  (Chi2) feature ranking techniques for 
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feature selection. However, the cost for computation is overlooked with the purpose 
of improving the performance metrics.

As a response to this challenge, researchers investigated a correlation-based feature 
selection method that offers a more computationally efficient solution for NIDS, con-
sidering the correlation among features [6]. This approach was initially applied to the 
KDD99 and UNSW-NB15 datasets in [28]. More recently, Moustafa et al. [26] proposed 
correlation-based method which was improved for multivariate correlation-based net-
work anomaly detection systems, moreover, Gavel et al. [29] employed correlation-based 
fitness function using the ant lion optimization to select features using AWID dataset 
for wireless network. Zhou et al. [30] chose the optimal features by removing the redun-
dant features and selecting the most informative features based on the threshold of cor-
relation. These works lead to a substantial improvement in NIDS accuracy, albeit with 
increased complexity. In light of the need for real-time and low-latency attack detection 
solutions, this study will place greater emphasis on the correlation-based feature selec-
tion method.

Unlike feature selection, which maintains a subset of initial features in Network Intru-
sion Detection Systems (NIDS), feature extraction focuses on condensing the original 
features into a lower-dimensional vector while preserving much of the data and applied 
in various research domains. In the research domain of image processing and pattern 
recognition, feature extraction involves transforming raw data, such as images, into a 
reduced and more meaningful representation [31]. The primary goal is to capture essen-
tial information that is relevant for subsequent analysis, classification, or recognition 
tasks. For example, Miseikis et  al. [32] employed a multi-objective convolutional neu-
ral network to extract features, identify and precisely localize the robot in 2D camera 
images, allowing flexibility in camera movement and providing accurate 3D position 
estimates for the robot base and joints. Aggarwal [33] explored the use of the Grey-level 
Co-occurrence Matrix (GLCM) feature extractor in classifying brain tumor MRI images 
with a random forest classifier. The results indicate that GLCM features with optimal 
parameters can achieve promising accuracy in capturing significant texture components. 
Various methods, such as principal component analysis (PCA), linear discriminant 
analysis (LDA), and autoencoders (AE) based on neural networks, have been utilized for 
reducing dimensions in NIDS.

For example, in [34], the KDD99 dataset’s dimensionality was greatly reduced by PCA, 
improving NIDS performance and accuracy while handling attack classification via sup-
port vector machines. Various PCA variants, such as hierarchical PCA neural networks 
using 1998 DARPA dataset [35] and kernel PCA with genetic algorithms [36] have been 
adopted for intrusion detection to improve precision for less common attacks. PCA is 
also employed to recent network traffic datasets like UNSW-NB15 and CICIDS2017 can 
be found in [37, 38]. Additionally, LDA has been utilized as a feature reduction method 
in NIDS to notably decrease computational complexity, as seen in [39]. In [40, 41] the 
combination of PCA and LDA were employed to build a two-layer dimension reduction 
approach, effectively reducing dimensionality, and detecting low-frequency malicious 
activities over the NSLKDD dataset.

To improve efficiency of feature extraction in NIDS, various research works have applied 
AE-based neural networks. In particular, Yan and Han [7] introduced a stacked sparse AE 
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approach to build non-linear mapping of high-dimensional to low-dimensional data over 
the NSLKDD dataset. Khan et al. [42] employed a deep stacked AE to reduce the number of 
features for both binary and multiclass classification, achieving higher accuracy than previ-
ous methods. Several AE-based networks on long short-term memory (LSTM), including 
variational LSTM [43] and bidirectional LSTM [44], have been developed for dimensional-
ity reduction in NIDS, addressing imbalances and high-dimensional problems effectively. 
However, it’s worth noting that AE-based methods, derived from deep neural networks, 
entail higher computational costs in both training and testing compared to statistical-based 
PCA and LDA algorithm.

To mitigate the computational costs issue, a network pruning algorithm was recently pro-
posed to build lightweight detection model in [45] to significantly reduce the complexity of 
AE structures for feature extraction in NIDS, using UNSW-NB15 and CICIDS data sets. 
Moreover, in [46], a network design integrates an autoencoder (AE) network using con-
volutional and recurrent neural networks to extract spatial and temporal features without 
human intervention.

Since there is a wide range of studies that employed various feature reduction or dimen-
sionality reduction techniques, which can be classified into two methods, namely feature 
selection and feature extraction, to build lightweight detection models for NIDS. How-
ever, few studies conduct comprehensive comparison for the performance and efficiency 
between the two methods, particularly for IoT data. For example, Aminanto et al. [9] com-
bined AE-based feature extraction and supervised machine learning feature selection to 
learning representations of the original features, without performance comparison between 
them, while [47] only conducted comparison for two methods using traditional networking 
data set UNSW-NB15.

It’s important to highlight that most of the previously mentioned studies have con-
centrated on enhancing either the accuracy of detection or reducing the computational 
complexity of Network Intrusion Detection Systems (NIDS). They accomplished this by 
utilizing machine learning classifications and feature engineering methods such as FS and 
FE to minimize data complexity. Nonetheless, the existing literature lacks a comprehensive 
comparison between these two feature reduction methods with current datasets in IoT net-
works. Our study endeavors to fill this gap.

In particular, we initiate the creation of a machine learning-driven NIDS framework uti-
lizing diverse IoT data, emphasizing the feature reduction evaluation phase. Within this 
context, we identify feature selection through the correlation matrix and feature extraction 
using PCA as promising approaches for practical low-latency NIDS operations. We then 
perform an extensive assessment using the contemporary TON-IoT dataset derived from a 
heterogenous IoT network, comparing performance measures for detection. This includes 
accuracy, precision, recall, F1-score, and runtime intricacies such as feature reduction time, 
model training time, and inference time for these methodologies. Our evaluation encom-
passes both binary and multiclass classifications while maintaining consistency in the quan-
tity of selected or extracted features.
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Methodology
In this section, we put FS or FE technique as module factor into the pipeline of 
machine learning-based network intrusion detection system (NIDS) respectively, 
according to the final performance metrics of the classification models. Here is the 
framework of the methodology according to Fig. 1, which can be divided into three 
phases, data pre-processing, feature reduction, and classification. A detailed explana-
tion of the three workflow of the proposed model is provided as following, particu-
larly for two feature reduction methods.

(1) Data preprocessing

 During this phase, the data is processed by cleansing, partitioning, and normaliza-
tion to standardize the data format. The dataset is divided into two sets, training for 
feature reduction and testing for final model prediction. A detailed description is 
presented in “Phase 1 data preprocessing” section.

(2) Feature reduction
 This critical stage employs FS or FE techniques to identify the most crucial attributes, 

thereby reducing data dimensionality. The transformed data through both methods 
is then utilized in subsequent classification tasks. “Phase 2 feature reduction” sec-
tion offers an in-depth description of feature reduction methods.

(3) Classification modeling
 Various machine learning models, involving Decision Tree, Random Forest, k-Near-

est Neighbors, Naive Bayes, and Multiple Layer Perception, are employed to vali-
date the impact of the two feature reduction methods. These models perform 
binary and multiple classifications, offering a comprehensive comparison based on 
multiple performance metrics.

Fig. 1 Framework of proposed NIDS for comparison of feature reduction methods
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Dataset

Below is the key information about the TON-IoT Network dataset, which will be 
employed in our experiments detailed in “Experimental setup and analysis” section. 
Subsequently, a comprehensive discussion on data preprocessing for this dataset will 
be provided.

TON-IoT dataset was generated from heterogeneous data sources collected from 
Telemetry datasets of IoT and IIoT sensors, operating systems datasets of Windows 
as well as Ubuntu network traffic datasets. It was first introduced in [48], and this 
dataset comprises 22,339,021 instances of data and includes two target classes: the 
“label” class, containing normal and attack data, and another class with ten cat-
egories—normal and nine attack types, such as Backdoor, DDoS, DoS, Injection, 
Password, Ransomware, Scanning, XSS, and MITM. There are six feature groups: 
Connection, Statistical, DNS, SSL, HTTP, Violation, and Labeling, holding a total of 
45 features in the original data. However, in this research, our data analysis involves 
the “Train_Test_Network.csv” dataset, comprising both training and testing sets, 
totaling 461,043 records. Table  1 displays the distribution of labels for the binary 
class and types for the multiple-class, while Table  2 shows the dataset’s respective 
features.

Phase 1 data preprocessing

Data preprocessing refers to the process of transforming raw data into a clean, con-
sistent, and meaningful format that can be used for analysis. It plays a vital role in 
ensuring the quality and suitability of data for machine learning based classification 
models in IoT security [49]. Thus, to achieve accurate and reliable results, proper data 
preprocessing of IoT datasets is crucial. As described in the methodology framework, 
feature elimination, missing value handling, duplicates removal, non-numerical fea-
tures encoding, and normalization, after that, data splitting is implemented to split 
the original data into training set and test set, in which, the training set is used for 
following normalization, feature reduction, and model training process, while the 
test set will be set aside for final model prediction for both binary and multi-class 
classification.

Table 1 Classes description in network TON_IoT

No. Type of classes Amount No. Type of sub-classes Amount

1 Normal 300,000 1 Normal 300,000

2 Attack 161,043 2 Backdoor 20,000

3 ddos 20,000

4 dos 20,000

5 Injection 20,000

6 Password 20,000

7 Ransomware 20,000

8 Scanning 20,000

9 xss 20,000

10 mitm 1043
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Table 2 Features description in network TON_IoT

No. Feature Description No. Feature Description

1 ts Timestamp of connection 
between flow identifiers

24 dns_rejected DNS rejection, where the 
DNS queries are rejected by 
the server

2 src_ip Source IP addresses which 
originate endpoints’ IP 
addresses

25 ssl_version SSL version which is offered 
by the server

3 Src_port Source ports which 
Originate endpoint’s TCP/
UDP ports

26 ssl_cipher SSL cipher suite which the 
server chose

4 Dst_ip Destination IP addresses 
which respond to end-
point’s IP addresses

27 ssl_resumed SSL flag indicates the session 
that can be used to initiate 
new connections, where T 
refers to the SSL connection 
is initiated

5 Dst_port Destination ports which 
respond to endpoint’s TCP/
UDP ports

28 ssl_established SSL flag indicates establish-
ing connections between 
two parties, where T refers to 
establishing the connection

6 proto Transport layer protocols of 
flow connections

29 ssl_subject Subject of the X.509 cert 
offered by the server

7 Service Dynamically detected 
protocols, such as DNS, 
HTTP and SSL

30 ssl_issuer Trusted owner/originator 
of SLL and digital certificate 
(certificate authority)

8 Duration The time of the packet 
connections, which is 
estimated by subtracting 
‘time of the last packet 
seen’ and ‘time of the first 
packet seen’

31 http_trans_depth Pipelined depth into the 
HTTP connection

9 src_bytes Source bytes which are 
originated from payload 
bytes of TCP sequence 
number

32 http_method HTTP request methods such 
as GET, POST and HEAD

10 dst_bytes Destination bytes which 
are responded payload 
bytes from TCP sequence 
numbers

33 http_uri URIs used in the HTTP 
request

11 conn_state Various connection states, 
such as S0 (connection 
without replay), S1 (con-
nection established), and 
REJ (connection attempt 
rejected)

34 http_version The HTTP versions utilized 
such as V1.1

12 missed_bytes Number of missing bytes 
in content gaps

35 http_request_body_len Actual uncompressed 
content sizes of the data 
transferred from the HTTP 
client

13 src_pkts Number of original packets 
which is estimated from 
source systems

36 http_response_body_len Actual uncompressed 
content sizes of the data 
transferred from the HTTP 
server

14 src_ip_bytes Number of original IP bytes 
which is the total length 
of IP header field of source 
systems

37 http_status_code Status codes returned by the 
HTTP server

15 dst_pkts Number of destination 
packets which is estimated 
from destination systems

38 http_user_agent Values of the UserAgent 
header in the HTTP protocol
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Feature elimination

To maintain the generalization of the models that can be used for real-scenario clas-
sification models in IoT networks, the features that represent the identifiers of the 
test environment in which the data was generated are eliminated. The “ts” feature 
represents the timestamp of each connection, while ‘src_ip’, ‘src_port’, ‘dst_ip’, ‘dst_
port’ stands for the identifier of each instance, all these features are not significant 
as the predictors for following model training [50], therefore, after eliminating the 
unnecessary features in this stage, 38 features are left in the data set, with the excep-
tion of the two labels.

Missing value handling

Since all the “–” values among the features means not available from the perspective 
of networking domain knowledge, for example, the connection feature named “ser-
vice” that has “–” value, which means the instance does not have the service value. 
Similarly, the instances that have “–” value in DNS features means that the instances 
are not DNS-capable instances. In the same way, the remaining features involving 
SSL, HTTP and Violation features that contain “–” value, means these instances do 
not support the SSL, HTTP and Violation capability. Thus, we replace it with the 
value “n/a,” which means it is not available for this feature, and will create a corre-
sponding new feature, named “<feature_name>_n/a,” as detailed in “Non-numerical 
features encoding” step.

Table 2 (continued)

No. Feature Description No. Feature Description

16 dst_ip_bytes Number of destination IP 
bytes which is the total 
length of IP header field of 
destination systems

39 http_orig_mime_types Ordered vectors of mime 
types from source system in 
the HTTP protocol

17 dns_query Domain name subjects of 
the DNS queries

40 http_resp_mime _types Ordered vectors of mime 
types from destination sys-
tem in the HTTP protocol

18 dns_qclass Values which specifie the 
DNS query classes

41 weird_name Names of anomalies/viola-
tions related to protocols 
that happened

19 dns_qtype Value which specifies the 
DNS query types

42 weird_addl Additional information 
is associated to protocol 
anomalies/violations

20 dns_rcode Response code values in 
the DNS responses

43 weird_notice It indicates if the violation/
anomaly was turned into a 
notice

21 dns_AA Authoritative answers of 
DNS, where T denotes 
server is authoritative for 
query

44 Label Tag normal and attack 
records, where 0 indicates 
normal and 1 indicates 
attacks

22 dns_RD Recursion desired of DNS, 
where T denotes request 
recursive lookup of query

45 Type Tag attack categories, such 
as normal, DoS, DDoS and 
backdoor attacks, and nor-
mal records

23 dns_RA Recursion available of DNS, 
where T denotes server 
supports recursive queries
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Duplicates removal

After investigate the dataset, there are 11,071 rows duplicated in the data set, thus, 
we need consider the mechanism to handle. Because duplicate instances cannot con-
tribute to meaningful data to the model building process, we directly drop the dupli-
cate instances. Here we remove the duplicated instances and leave the unique ones in 
the dataset. Now the remaining the dataset of 449,972 rows with unique instances is 
generated.

Non‑numerical features encoding

Since non-numerical data can be used for model training process, while part of the 
original dataset of Network TON-IoT has 38 features, including 15 numerical fea-
tures and 23 non-numerical features. Since there are many categorical features in the 
dataset, so we need to convert the non-numerical features into numerical ones, so 
that the followed reduction and machine learning algorithms can process the data. 
Label encoding and one-hot encoding are methods for handling categorical variables 
in machine learning. The choice between them depends on the specific dataset and 
the ML algorithm we use.

Label encoding is simpler and more space-efficient, but it may introduce an arbi-
trary order to categorical values. One-hot encoding avoids this issue by creating 
binary columns for each category, but it can lead to high-dimensional data [51]. In 
our work, we implement different encoding scheme considering the characteristics of 
various features in the dataset.

We employ the one-hot encoding method for the connection features “proto,” “ser-
vice,” and “conn_state” because they all have distinct and finite values. The new features 
will be encoded as “proto_icmp,” “proto_tcp,” and “proto_udp” features with binary val-
ues like 0 or 1. For instance, the “proto” feature has the values “icmp,” “tcp,” and “udp.” 
The only difference is that “service_n/a” and “conn_state_n/a” will be generated since the 
original features contain “n/a,” which is not available in the original features. Otherwise, 
the same scheme will be applied to features “service” and “conn_state.”

Regarding the DNS features, such “dns_query,” one-hot encoding or directly applying 
the label may not be the best course of action due to the feature’s numerous possible val-
ues. As a result, we employ a binary encoding approach to classify this feature as either 
DNS request available or not, indicating whether or not the instance has DNS requests. 
Regarding the characteristics “dns_AA”, “dns_RD”, “dns_RA”, and “dns_rejected”, we con-
vert the non-numerical features into numerical ones using a one-hot encoder.

The non-numerical SSL features are “ssl_version,” “ssl_cipher,” “ssl_resumed,” “ssl_
established,” “ssl_subject,” and “ssl_issuer.” Binary encoding is used in these features 
because the majority of them have SSL functionality disabled. One-hot encoder is 
used to convert the “ssl_resumed” and “ssl_established” features into numerical ones.

Regarding HTTP features, the non-numerical http features are “http_trans_depth”, 
“http_method”, “http_uri”, “http_version”, “http_user_agent”, “http_orig_mime_types”, 
and “http_resp_mime_types”. For “http_uri”, “http_user_agent”, “http_orig_mime_
types”, and “http_resp_mime_types”, binary encoding will be applied, while one-hot 
encoding will be applied to “http_trans_depth”, “http_method”, and “http_version”.
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Regarding the weird features, the non-numerical weird features are “weird_name” 
“weird_addl” and “weird_notice”. For “weird_name” binary encoding will be used, and 
for “weird_addl” and “weird_notice” one-hot encoding will be used.

Consequently, as presented in Fig.  2, the number of features will increase from the 
initial 38 to 77 in this step once the aforementioned features are encoded, many of which 
are not particularly useful in classifying attacks. To reduce the complexity of machine 
learning models during the classification stage, it is therefore required to condense such 
a vast number of attributes into a small number. Different encoding schemes are used for 
the non-numerical features above based on the features’ qualities in the dataset, enabling 
the transformed data to proceed to the next phase. 

Data splitting

Data splitting is to split the original data into two sets, one is training set which is used 
for model training, while the other sets named test sets is used for model test, or the 
final performance evaluation for the trained model. However, to avoid data leakage in 
the following step of data transformation, such as normalization and feature reduction, 
and following machine learning process, data splitting was implemented before that [51].

Moreover, in order to verify the effectiveness of the trained model, the proportion of the 
classes of the test data set keeps nearly the same class distribution as the training set to 
simulate the real scenario of IoT networks. Thus, we use stratified splitting scheme to split 
the dataset into training and test data with the proportion of 80:20, in which the 80% of the 
dataset will be used for model training to improve the performance of the final model, while 
the remaining percent will be used for model evaluation. As a result of the data splitting, the 

Fig. 2 The features of network TON_IoT before and after numerically encoded
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distribution and the specific number of instances of the normal/attack class and 10 classes for 
binary classification and multi-classification purposes, respectively, are shown in Figs. 3, 4.

Normalization

Normalization is used to keep the scale of the feature without bias to the features with large 
values. In machine learning, two commonly used feature scaling techniques are normaliza-
tion and standardization. The studies [25, 47] used normalization technique to scale the 
features, thus, we use min–max scaling to normalize the data. The data in this experiment 
were normalized between the range of 0 and 1 using min–max scaling. The normalization 
formula is shown as Eq. (1):

(1)Xnormalized =
X − Xmin

Xmax − Xmin
,

Fig. 3 Proportions of the normal/attack classes in training and test set of TON-IoT

Fig. 4 Proportions of the 10 classes in training and test set of TON-IoT
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where X is the original value of the data point, Xnormalized is the normalized value of the 
data point. Xmin is the minimum value of the variable, while Xmax is the maximum value 
of the variable of the data set.

As demonstrated in Algorithm 1, we developed our preprocessing technique based on 
the preceding procedures discussed above in the phase 1 data pro-processing.

Algorithm 1 Data preprocessing in phase 1

Phase 2 feature reduction

Feature selection

There are a series of feature selection techniques implemented in NIDS for IoT security, 
such as Gini-impurity [3], Chi-square [4], Information Gain [5], Mutual Information [25] 
and Feature Correlation [29, 33, 50]. In this work, we focus on employing feature corre-
lation to pick informative features based on the range of the given threshold because 
it has been found to attain competitive detection accuracy and complexity when com-
pared to other selection equivalents. The correlation between each feature and the target 
variable is typically calculated in a correlation-based feature selection approach. In this 
methodology, we implement correlation-based feature selection based on Pearson cor-
relation coefficient technique [46], by selecting features that are not correlated with each 
other to reduce multicollinearity. The defined correlation score threshold values based 
on the correlation score are set iteratively till final full number of features of the dataset, 
to build classifiers using five machine learning models, which will be explained in phase 
3.

The Pearson’s correlation coefficient (PCC) represents a straightforward linear cor-
relation approach used to evaluate feature interdependencies. Employing this corre-
lation-based technique, our objective is to select features highly correlated to other 
features. This selection process relies on the correlation matrix computed from the 
preprocessed training set following the steps outlined in “Phase 1 data preprocessing” 
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section. To calculate the correlation coefficient between feature f1 and f2, the PCC is 
derived from the formulated features f1 and f2 as follows:

where cov is the covariance and σ is the standard deviation, while Mf1 and Mf2 indicate 
the means of f1 and f2 respectively.

The Pearson correlation coefficient is a measure of the linear correlation between 
two variables, ranging from − 1 to 1. A coefficient of 1 indicates a perfect positive cor-
relation, a coefficient of − 1 indicates a perfect negative correlation, and a coefficient 
of 0 indicates no correlation. The closer the coefficient is to 1 or − 1, the stronger the 
correlation between the variables.

The average correlation score for each feature with others is then calculated based on 
algorithm 2. The average correlation scores provide a summary measure of the overall 
correlation tendency of each feature with respect to all other features in the dataset. A 
higher average score indicates a feature that, on average, tends to be positively correlated 
with other features, while a lower average score suggests a feature with weaker or more 
varied correlations. The assumption of the features to be selected is based on the inde-
pendence of each feature, in which features with weak or no correlation might be more 
independent, potentially contributing unique information to the model [46].

Algorithm 2 Calculating average correlation score for each feature in phase 2

(2)PCC
(

f1, f2
)

=
cov

(

f1, f2
)

σf1 × σf2
,

(3)
cov

(

f1, f2
)

σf1 × σf2
=

∑N
i=1

(

xi −Mf1

)(

yi −Mf2

)

√

∑N
i=1

(

xi −Mf1

)2 ×
√

∑N
i=1

(

yi −Mf2

)2
,

(4)Mf 1
= 1/N

N
∑

i

xi,

(5)Mf 2
= 1/N

N
∑

i

yi,
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Since the average score of each feature is calculated, the next step is to define the 
threshold or range of the average score in order to select a different range of features for 
the benchmark number of features for comparison with feature extraction, followed by 
model training and validation. The criteria of the range are based on two aspects: one 
is to select the features from a small size with increasing features until a full set of fea-
tures is covered; the other aspect is that the number of selected features is based on the 
threshold or range of average scores based on the overall average scores of the features, 
which will be detailed and visualized in “Features selected based on correlation thresh-
olds” section.

Furthermore, we only need to consider such feature correlation during the training 
phase, while during the testing phase, we directly select the selected features from the 
original high-dimensional training data set to generate the reduced-dimensional test 
data in Fig.  1’s feature reduction module. In contrast, in feature extraction, the PCA 
technique is applied on both the training and test data sets to reduce dimensionality, 
which will be considered as the run duration of the feature reduction operation.

Feature extraction

There is a series of feature extraction methods used in IoT security domain, involving 
PCA [39], LDA [52], and AE [53], while PCA and AE stand out as the mostly used extrac-
tion methods applied in NIDS for IoT security. Unlike feature selection, which uses cho-
sen features to map those in the original dataset, these feature extraction techniques use 
a projection matrix or an Autoencoder-based neural network learned from a training 
dataset to condense the high-dimensional data into lower-dimensional data. It should be 
noted that the AE approach often deals with the higher computational complexity asso-
ciated with deep neural networks (DNN), resulting in greater latency as compared to 
PCA. Consequently, this study exclusively focuses on the PCA-based feature extraction 
approach, a choice driven by the imperative need for resource-constraint IoT devices 
and low latency NIDS to protect IoT network from cyber threats.

Principal Component Analysis (PCA) is a powerful dimensionality reduction tech-
nique used to transform high-dimensional data into a lower-dimensional representation, 
while retaining the most important information. The mechanism of PCA is based on the 
calculation of eigenvectors and eigenvalues of the data’s covariance matrix. The equation 
that underlies PCA is as follows:

Here C represents the covariance matrix of the standardized data X consisting of N sam-
ples, and XT is the transpose of X . The matrix C captures the relationship between fea-
tures in the data.

The projection matrix Wk is a key component in PCA and represents the transforma-
tion matrix that projects the original data onto the first k principal components. Each 
column of Wk corresponds to a principal component.

(6)C =
1

N
X ∗ XT ,

(7)Wk = [V1,V2,V3, . . .Vk ],
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Here V1,V2,V3, . . .Vk are the eigenvectors corresponding to the top k eigenvalues of the 
covariance matrix.

The matrix that performs the projection of the data onto the first k principal com-
ponents is often represented as Wk , where each column is a principal component. The 
projection is as followings:

Here Xproj is the projected data onto the first k principal components, Wk is the trans-
pose of the projection matrix.

Then reconstruction of data can be implemented by the from the first k principal com-
ponents as:

which illustrates how well the original data can be approximated using the reduced set of 
principal components.

After that, Scree Plot Calculation for each extracted feature is calculated as following:

Here is the i-th eigenvalue of the covariance matrix, 
∑d

j=1 �j is the sum of all eigenvalues, 
the Scree Plot values indicate the proportion of total variance explained by each princi-
pal component. It shows the explained variance for each principal component, can be 
calculated by arranging the eigenvalues in decreasing order.

In the training phase, we commence by preparing the dataset for PCA. This step 
involves fitting the PCA model to the training data, capturing the principal components, 
and simultaneously transforming the data accordingly. The algorithm operates by first 
standardizing the data by subtracting the mean and dividing by the standard deviation 
for each feature to ensure that all features have the same scale, and then computing the 
covariance matrix C . Eigenvalues and eigenvectors are derived from this matrix C , and 
by sorting the eigenvalues in descending order, the most significant components are 
selected. A projection matrix is constructed from these eigenvectors, enabling the data 
to be projected onto a lower-dimensional subspace. The result is a compact represen-
tation of the data, capturing the essential information while reducing dimensionality, 
making it useful for simplifying machine learning models. For comparison purpose, the 
defined number of components in PCA are exactly the same as the number of features 
selected by feature selection for each iteration.

In the testing phase, it’s a common practice in machine learning workflows to fit the 
PCA model on the training data and then use the learned transformation to transform 
both the training and test datasets. This approach ensures that the same transformation 
is applied consistently to both sets of data, maintaining the relationship between the 

(8)Xproj = X ∗Wk ,

(9)Xreconstructed = Xproj ×WT
k ,

(10)Scree ploti =
�i

∑d
j=1 �j

,
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principal components [39]. When dealing with test data, the pre-fitted PCA transfor-
mation is applied using the transform method, ensuring consistency in the application 
of learned transformations across both training and test datasets. In addition, differ-
ent from the run time of feature selection for test set ignored in performance evalua-
tion, that of PCA for test data is calculated as the whole run time in feature reduction in 
phase 3.

As demonstrated in Algorithm  2, we developed and analyzed our feature reduction 
algorithm based on the preceding procedures discussed above in the phase 2 feature 
reduction.

Algorithm 3 Feature reduction in phase 2

Phase 3 attack classification

In this phase, for classification tasks, we choose following five classic machine learning 
models mostly utilized in recent works for NIDS, to implement comprehensive com-
parison among different classifiers between two feature reduction methods. The specific 
hyperparameters of the models will be explained in “Experimental setup and analysis” 
section.

Decision tree (DT)

The decision tree classifier is a widely used machine learning model that aims to cre-
ate a tree-like structure of decisions based on the features of the data [54]. It works by 
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recursively splitting the data into subsets based on the feature that best separates them, 
typically using measures like Gini impurity or information gain. The main benefit of 
decision trees lies in their interpretability and ability to handle both numerical and cat-
egorical data. The primary goal of the algorithm for decision tree classification is to use a 
cost function to find the optimal splits. Decision trees can be applicable to IoT network 
intrusion detection due to their transparency and ease of understanding which features 
are critical for detecting attacks. The Gini impurity is used in this work as the splitting 
criterion, selecting a feature for splitting at each stage of the tree training, as Eq.  (11) 
illustrates:

where D is the training dataset, C is a set of class labels, and P (i) is the percentage of 
samples that have class label I in C. In C, the Gini impurity is 0 when there is just one 
class.

Random forest (RF)

The random forest classifier is an ensemble method that builds multiple decision trees 
and combines their outputs to make predictions [55]. Each tree is trained on a random 
subset of the data with replacement (bootstrap samples) and a random subset of fea-
tures. This ensemble approach reduces overfitting and improves prediction accuracy. 
The main benefit of random forests is their robustness and ability to handle high-dimen-
sional data. However, they may not provide as much interpretability as single decision 
trees. The algorithm behind random forests aggregates the results from multiple deci-
sion trees. Random forests can be particularly useful for IoT intrusion detection, as they 
offer a good balance between accuracy and interpretability. The Gini impurity as pre-
sented in Eq. (11) is also used as a split criterion.

k‑Nearest neighbors (kNN)

The k-nearest neighbors classifier is a simple instance-based learning model that classi-
fies data points based on the majority class among their k nearest neighbors in feature 
space [56]. It operates on the assumption that similar data points share the same class 
label. The main benefit of kNN is its simplicity and effectiveness for non-linear data. 
However, it can be sensitive to the choice of the distance metric and the value of k. The 
algorithm calculates distances (e.g., Euclidean distance) between data points to find the 
k-nearest neighbors. In IoT intrusion detection, kNN can be useful when there is a need 
to adapt quickly to new attack patterns and anomalies. Due to its widespread usage as a 
distance metric, the Euclidean Distance was selected. Equation (12) defines the Euclid-
ean Distance Equation as follows:

(11)G(D) =
C
∑

I=1

(P(i)+ (1− P(i))),
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where the Euclidean distance function between the two samples is represented by d (x, 
y), xi is the first observation, yi denotes the second sampling of the data, and n denotes 
the number of observations.

Naive Bayes (NB)

The Naive Bayes classifier is a probabilistic model based on Bayes’ theorem, which cal-
culates the probability of a data point belonging to a specific class given its feature val-
ues [57]. It assumes that features are conditionally independent, which is a simplifying, 
albeit “naive,” assumption. Naive Bayes is computationally efficient, particularly for text 
classification tasks, and can handle high-dimensional data. However, its performance 
may suffer if the independence assumption is violated. The algorithm calculates class 
probabilities using Bayes’ theorem. In IoT intrusion detection, Naive Bayes can be use-
ful when computational resources are limited and there is a need for quick training and 
classification. Bayes’ theorem is expressed in Eq. (13):

where P(L|X) is the posterior probability of class L, P(L) is the prior probability, P (X | 
L) is the likelihood function, and P(X) is the probability, these parameters are estimated 
using the training set.

Multi‑layer perceptron (MLP)

The Multi-Layer Perceptron classifier is a type of artificial neural network that consists 
of multiple layers of interconnected nodes (neurons) [58]. It can learn complex non-
linear relationships in data through a process called backpropagation. MLPs are highly 
flexible and can approximate any continuous function, making them suitable for various 
tasks. However, they require a larger amount of data for training and careful tuning of 
hyperparameters to prevent overfitting. The algorithm involves feedforward and back-
propagation steps, where weights are updated to minimize the error between predicted 
and actual outputs. In IoT intrusion detection, MLPs can be applied when the data is 
highly complex, and feature engineering has been performed effectively.

As shown in Algorithm 4, we created above five classifiers and trained it with 80% of 
the dataset samples, and tested it with the remaining 20% samples for performance eval-
uation between feature selection and feature extraction.

(12)d
(

x, y
)

=

√

√

√

√

n
∑

i=1

(

xi − yi
)

,

(13)P(L|X) =
P(X |L)P(L)

P(X)
,
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Algorithm 4 Normal/attack classification in phase 3

Experimental setup and analysis
We present an extensive set of experiments examining the performance of the NIDS 
using feature selection and extraction methods outlined in “Methodology” section. This 
evaluation involves a variety of machine learning-based classification models. Our com-
parison entails performance metrics such as accuracy, precision, recall, F1-score, and 
MCC elaborated in “Performance evaluation” section. Both binary and multiclass classi-
fications are evaluated, and we also explore model training and inference times to evalu-
ate detection method efficiency. Additionally, our thorough comparison of FS and FE 
methods offers valuable insights into their impact on performance metrics. This includes 
a comparison with and without feature reduction, providing guidance on selecting the 
appropriate detection techniques for specific IoT network scenarios.

Experimental setup

Table 3 details the setup of the computing platform, hardware, its operating system, and 
a variety of software information utilized for constructing the NIDS framework in this 
work.

Performance evaluation

We analyze the following metrics in order to evaluate the performance comprehensively: 
accuracy, precision, recall, F1-score, MCC, model training time, and inference time. True 
positive (TP), true negative (TN), false negative (FN), and false positive (FP) are the four 
words used to describe these measurements. For the purpose of assessing the capacity for 
particular class classification, confusion matrices based on the four factors are also pro-
posed in this study. F1-score is determined specifically based on precision and memory as 
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follows, which is regarded as a harmonic mean of precision and recall. The Matthews Cor-
relation Coefficient (MCC) is a metric that takes into account true and false positives and 
negatives, providing a balanced measure of classification performance. It ranges from − 1 
to 1, where 1 indicates perfect prediction, 0 indicates no better than random chance, and 
− 1 indicates total disagreement between prediction and observation. All the performance 
metrics Eqs. (14)–(18) are shown as follows:

As to the evaluation of model efficiency, since either feature selection or feature reduc-
tion must go through the data-preprocessing stage, so we do not take this step into account, 
and focus on the evaluation of run time of feature reduction, model training using training 
set, as well as model prediction using test set. In particular, feature reduction time consists 
of the amount of time needed to compute (Feature Calcuation) and choose the reduced 
features (Feature Selection) until the data set containing the reduced features is updated, 
which is then fed into machine learning models using the following formula, Eq. (19):

(14)Accuracy =
(TP + TN )

(TP + FN + FP + TN )
,

(15)Precision =
TP

(TP + FP)
,

(16)Recall =
TP

(TP + FN )
,

(17)F1− Score =
2 ∗ Precision ∗ Recall
Presicion+ Recall

.

(18)MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )

.

(19)Reduction Time = TimeFeature Calcuation + TimeFeature Selection.

Table 3 Hardware and software specifications of the implementation environment

Hardware Description

Computing platform Google colab

Process 2-core Xeon 2.2 GHz

RAM 16 GB

Disk usage 100 GB

Software Description

Operating system Linux

Machine x86_64

Python 3.10.12

Other packages Pandas, Numpy, Scikit-learn, 
Matplotlib, Scipy, Scikit-plot, and 
time
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The model training time refers to the training time of each classification model 
(

Model Training
)

 , as following, Eq. (20):

Meanwhile, the inference time means the prediction time of machine learning classi-
fiers 

(

Model Testing
)

 in the testing phase, as follow Eq. (21):

In particularly, the run time of feature reduction involves transformation of training 
set and test set using corresponding feature selection or feature extraction algorithm, 
respectively.

Hyperparameter settings of classifiers

To perform binary and multiclass classification tasks, we employ five machine learning 
models from the Python Scikit-learn library: Decision Tree (DT), Random Forest (RF), 
K-nearest Neighbours (kNN), Gaussian Naive Bayes (NB), and Multi-layer Perceptron 
(MLP). The hyperparameter settings for each model are described in Table 4.

Features selected based on correlation thresholds

Correlation scores matrix is implemented using Pearson correlation algorithm and the 
result is presented as Fig. 5. It provides a comprehensive view of the relationships and 
dependencies among different variables. The accompanying heatmap visually enhances 
the interpretability of these correlations, using a color spectrum to emphasize the 
strength and direction of the relationships. The Average correlation score of each feature 
will be calculated in the next step based on the scores in this matrix.

As we can see from Fig. 6, which displays the average correlation score among the 
features, we manually define the range of the thresholds based on the result of the 
average score in the figure. In order to cover all ranges of the size of feature subsets, 
we manually select the features with the least average correlation score until the 

(20)Training Time = TimeModel Training .

(21)Inference Time = TimeModel Testing .

Table 4 Hyperparameter settings of each model

Machine learning model Hyperparameter settings

DT Criterion: Gini
Splitter: best
max_depth: None
random_state: 42

RF n_estimators: 100
criterion: Gini
max_depth: 5
random_state: 42

kNN n_neighbors: 3

NB Default parameters

MLP hidden_layer_sizes: 100
activation: relu
alpha: 0.0001
batch_size: auto
learning_rate: constant
max_iter: 200
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Fig. 5 Pearson correlation score matrix of the features in network ToN-IoT

Fig. 6 Average correlation score for each feature in pre-processed TON-IoT
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maximum score, ranging from [− 0.01 0.01] to [− 0.015 0.015], [− 0.02 0.02], [− 0.03 
0.03] to [− 0.1, 0.1], which is divided based on scores representative of purpose in 
the figure with the different colors of boundary lines. To be specific, we select the 9 
features in [− 0.01 0.01] in order to start the evaluation and comparison in the light-
weight model, while selecting 22 in [− 0.015 0.015], 33 in [− 0.02 0.02], 47 in [− 0.03 
0.03] for evaluation based on increasing number of features, and selecting 77 full 
features in [− 0.1, 0.1] for evaluation of the effect between reduced and full features. 
Thus, we choose the features based on the proposed range of the average correlation 
score. Following the selection of a certain number of features, the same number of 
components will be computed and chosen for the performance comparison analysis 
with feature extraction using PCA.

As a result, in Table 5, we present lists of 9, 22, 33, 47, and 77 (full features) selected 
features, as well as the corresponding average correlation thresholds used to achieve 
those numbers of selected features, in order to implement comprehensive compari-
son for a better understanding of two feature reduction methods.

Features extracted based on PCA

We extract the same number of features as the features selected by feature selection 
for evaluation and comparison. In our study, we presented the explained variance 
score of each extracted feature under different schemes (7, 22, 33, 47, and 77 extracted 

Table 5 Correlation threshold with the features selected

Correlation threshold Number 
of 
features

Selected features

[− 0.01 0.01] 9 ‘conn_state_RSTRH’, ‘conn_state_S3’, ‘proto_icmp’, ‘conn_state_SHR’, ‘conn_
state_S1’, ‘conn_state_SH’, ‘service_http’, ‘conn_state_S0’, ‘conn_state_REJ’

[− 0.015 0.015] 22 ‘conn_state_RSTO’, ‘service_smb’, ‘dns_qclass’, ‘conn_state_SF’, ‘dns_AA_T’, 
‘service_smb;gssapi’, ‘service_ftp’, ‘service_dhcp’, ‘conn_state_RSTOS0’, 
‘service_dce_rpc’, ‘service_gssapi’, ‘conn_state_S2’, ‘dns_RA_T’, ‘conn_state_
RSTRH’, ‘conn_state_S3’, ‘proto_icmp’, ‘conn_state_SHR’, ‘conn_state_S1’, 
‘conn_state_SH’, ‘service_http’, ‘conn_state_S0’, ‘conn_state_REJ’

[− 0.02 0.02] 33 ‘ssl_established_F’, ‘missed_bytes’, ‘dns_RD_F’, ‘dns_rejected_T’, ‘dns_RD_T’, 
‘conn_state_RSTR’, ‘dns_qtype’, ‘http_method_HEAD’, ‘proto_udp’, 
‘conn_state_RSTO’, ‘service_smb’, ‘dns_qclass’, ‘conn_state_SF’, ‘dns_AA_T’, 
‘service_smb;gssapi’, ‘service_ftp’, ‘service_dhcp’, ‘conn_state_RSTOS0’, 
‘service_dce_rpc’, ‘service_gssapi’, ‘conn_state_S2’, ‘dns_RA_T’, ‘conn_state_
RSTRH’, ‘conn_state_S3’, ‘proto_icmp’, ‘conn_state_SHR’, ‘conn_state_S1’, 
‘conn_state_SH’, ‘service_http’, ‘conn_state_S0’, ‘conn_state_REJ’, ‘conn_
state_OTH’, ‘proto_tcp’

[− 0.03 0.03] 47 ‘dns_query’, ‘service_dns’, ‘src_bytes’, ‘dns_RA_F’, ‘dst_bytes’, ‘dns_AA_F’, 
‘service_ssl’, ‘ssl_resumed_F’, ‘http_response_body_len’, ‘dns_rejected_F’, 
‘dns_rcode’, ‘ssl_established_F’, ‘missed_bytes’, ‘dns_RD_F’, ‘dns_rejected_T’, 
‘dns_RD_T’, ‘conn_state_RSTR’, ‘dns_qtype’, ‘http_method_HEAD’, 
‘proto_udp’, ‘conn_state_RSTO’, ‘service_smb’, ‘dns_qclass’, ‘conn_state_SF’, 
‘dns_AA_T’, ‘service_smb;gssapi’, ‘service_ftp’, ‘service_dhcp’, ‘conn_state_
RSTOS0’, ‘service_dce_rpc’, ‘service_gssapi’, ‘conn_state_S2’, ‘dns_RA_T’, 
‘conn_state_RSTRH’, ‘conn_state_S3’, ‘proto_icmp’, ‘conn_state_SHR’, ‘conn_
state_S1’, ‘conn_state_SH’, ‘service_http’, ‘conn_state_S0’, ‘conn_state_REJ’, 
‘conn_state_OTH’, ‘proto_tcp’, ‘dns_AA_NA’, ‘dns_rejected_NA’, ‘dns_RD_NA’, 
‘dns_RA_NA’, ‘service_NA’

N/A 77 All the features of the dataset transformed by pre-processing stage
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features), and the percentage of the total variance in the original dataset that is cap-
tured by each principal component. In other words, it quantifies the amount of infor-
mation that each principal component retains from the original features.

In Fig. 7, after performing PCA to the dataset, the principal components are ordered 
by the amount of variance they explain. For each scree plot, the first principal compo-
nent explains the most variance, the second explains the second most, and so on, with 
the bar chart presented for 7, 22, 33, 47, and 77 extracted features, respectively, which 
is the same as the number of the features selected for evaluation and comparison pur-
poses. In addition, the explained variance is expressed as a ratio or percentage of the 
total variance. Thus, higher explained variance ratios indicate more significant contribu-
tions of principal components in capturing the dataset’s variability. It helps in making 
informed decisions about the number of components to retain for following tasks, such 
as model training and validation.

Result and analysis
Binary classification

Initially, we explore the performance and runtime of feature selection and extraction 
methods in binary classification, presented in Tables  6, 7, 8, 9, and 10. For every fea-
ture number scheme, five iterations are carried out in order to get an affirmative conclu-
sion. The average result is then computed using the outcomes of each iteration. These 
tables showcase the performance metrics and times for 9, 22, 33, 47, and 77 features 
(full features) selected or extracted, respectively. The highlighted values, in bold and 
red, denote the superior outcomes for both feature selection and extraction. These best 

Fig. 7 The explained variance and cumulative total variance for extracted feature schemes



Page 27 of 44Li et al. Journal of Big Data           (2024) 11:36  

Table 6 FS vs. FE for binary classification with 9 features

Models Accuracy 
(%)

Precision 
(%)

Re-call (%) F1-score 
(%)

MCC FS (s) Training (s) Inference 
(ms)

Feature selection

 DT 80.73 79.50 77.74 78.44 0.5721 8.38 0.22 12.11
 RF 79.07 78.53 74.55 75.73 0.5293 7.56 801.32

 kNN 77.44 82.90 69.38 70.66 0.5050 1.09 709,996.65

 NB 78.99 82.82 71.94 73.58 0.5366 0.11 12.50

 MLP 80.73 79.50 77.74 78.44 0.5721 37.3 136.17

Feature extraction

 DT 86.54 85.12 86.33 85.62 0.7128 5.27 1.44 8.10
 RF 86.45 85.02 86.30 85.54 0.7127 18.61 838.21

 kNN 71.00 76.33 76.79 70.99 0.3409 1.55 10,172.81

 NB 83.35 81.76 82.68 82.15 0.6443 0.13 18.52

 MLP 86.30 84.85 86.26 85.41 0.7111 81.58 139.20

Table 7 FS vs. FE for binary classification with 22 features

Models Accuracy 
(%)

Precision 
(%)

Re-call (%) F1-score 
(%)

MCC FS (s) Training (s) Inference 
(ms)

Feature selection

 DT 81.27 80.00 78.55 79.15 0.5853 7.82 0.46 11.85
 RF 77.72 84.92 69.30 70.57 0.5192 8.99 776.08

 kNN 78.65 85.26 70.66 72.19 0.5398 0.07 196,772.36

 NB 78.34 85.02 70.24 71.69 0.5324 0.17 28.58

 MLP 81.27 80.00 78.55 79.15 0.5853 56.56 174.12

Feature extraction

 DT 85.94 84.49 85.55 84.94 0.7119 4.92 1.84 12.71
 RF 86.54 85.11 86.37 85.63 0.7147 26.44 631

 kNN 64.29 62.85 63.80 62.82 0.7287 0.05 193,070.46

 NB 84.77 83.26 84.75 83.83 0.6799 0.19 37.25

 MLP 86.53 85.11 86.42 85.64 0.7151 128.43 478.01

Table 8 FS vs. FE for binary classification with 33 features

Models Accuracy 
(%)

Precision 
(%)

Re-call (%) F1-score 
(%)

MCC FS (s) Training (s) Inference 
(ms)

Feature selection

 DT 86.40 84.96 86.19 85.47 0.7114 8.28 0.64 17.69
 RF 85.90 84.45 86.17 85.07 0.7059 11.74 848.32

 kNN 83.75 86.96 78.30 80.30 0.6469 0.13 231,367.82

 NB 79.92 85.77 72.51 74.33 0.5675 0.27 40.52

 MLP 86.45 85.01 86.29 85.54 0.7129 75.38 184.73

Feature extraction

 DT 86.83 85.42 86.59 85.91 0.7201 6.13 3.13 11.58
 RF 86.58 85.15 86.40 85.67 0.7154 38.67 657.02

 kNN 89.10 87.78 89.28 88.39 0.7669 0.06 227,237.45

 NB 83.37 83.56 79.55 80.89 0.6299 0.27 45.47

 MLP 86.54 85.11 86.35 85.62 0.7151 45.43 84.14
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values encompass the highest accuracy, precision, recall, F1-score, MCC, and the lowest 
feature reduction, training, and inference times within each table column. Time values 
for feature reduction and training are measured in seconds (s), while inference time per 
data sample is measured in milliseconds (ms).

Regarding the classification performance, we initially explore the impact of an 
increasing number of features on the performance of both FS and FE methods. 
Expanding the number of features appears to enhance the performance of the FS 
model, while this increase shows no obvious effect on the FE model. Figure 8 illus-
trates that as the number of features increases, the performance of FS models gen-
erally improves from 9 features to 77 full features. In contrast, the performance of 
FE models remains nearly consistent, with the exception of the kNN model, which 
displays optimal performance with 33 features, as indicated in Fig. 9. While the per-
formance of the best models in FS improves as the number of features increases from 
Tables  6, 7, 8, 9, and 10, the performance of certain models, like the decision tree, 
significantly decreases from Tables 8, 9, and 10. This trend aligns with the expectation 

Table 9 FS vs. FE for binary classification with 47 features

Models Accuracy 
(%)

Precision 
(%)

Re-call (%) F1-score 
(%)

MCC FS (s) Training (s) Inference 
(ms)

Feature selection

 DT 84.23 83.44 81.68 82.40 0.6509 5.47 0.86 30.00
 RF 86.23 84.82 85.76 85.23 0.7057 15.96 524.71

 kNN 82.82 82.28 79.54 80.55 0.6176 0.09 148,293.32

 NB 81.20 84.15 75.15 77.02 0.5861 0.28 44.95

 MLP 86.52 85.09 86.34 85.61 0.7142 67.58 72.34

Feature extraction

 DT 83.81 82.92 85.61 83.26 0.6848 5.01 6.50 10.47
 RF 86.94 85.54 86.72 86.04 0.7225 35.72 569.59

 kNN 86.76 85.34 87.16 86.00 0.7129 0.05 147,798.15

 NB 69.74 70.52 59.96 58.85 0.2859 0.21 43.87

 MLP 86.59 85.16 86.39 85.67 0.7152 59.03 105.07

Table 10 FS vs. FE for binary classification with 77 (full) features

Models Accuracy 
(%)

Precision 
(%)

Re-call (%) F1-score 
(%)

MCC FS (s) Training (s) Inference 
(ms)

Feature selection

 DT 78.28 76.59 75.24 75.79 0.5128 0 1.65 24.21
 RF 88.22 86.99 89.56 87.69 0.7651 12.94 553.13

 kNN 80.55 80.74 83.44 80.19 0.6413 0.09 188,417.64

 NB 59.57 71.04 67.75 59.20 0.3865 0.36 55.02

 MLP 86.58 85.15 86.38 85.66 0.7153 70.78 83.49

Feature extraction

 DT 74.68 73.37 75.10 73.64 0.4845 3.98 10.01 12.25
 RF 87.04 85.65 86.78 86.14 0.7243 47.68 579.27

 kNN 80.56 80.75 83.45 80.19 0.6414 0.08 186,251.17

 NB 79.76 81.24 73.97 75.58 0.5473 0.28 63.89

 MLP 86.59 85.16 86.39 85.67 0.7153 86.44 152.35
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that as the number of selected features increases, more irrelevant or noisy features 
might emerge, potentially impacting the detection performance negatively.

Furthermore, the performance of FE in classification surpasses that of FS, particu-
larly when considering a small number of features. The comparison between the two 
methods in Fig.  10 reveals that when the number of reduced features is relatively 
small—9, 22, 33, and 47—the classification performance of FE notably outperforms 
that of FS. This advantage is particularly pronounced for the cases involving 9 and 22 
features. For instance, as demonstrated in Table 6, using the DT classifier, the high-
est accuracy and F1-score of FE are 86.54% and 85.62%, respectively, while FS exhib-
its lower performance with 80.73% accuracy and 78.44% F1-score using the same DT 
classifier. However, as the number of features increases, for instance, to 47 and 77 full 
features in Tables 9 and 10, the effectiveness of FE gradually diminishes relative to FS. 
In the case of full features, both FS and FE favorite RF classifier to achieve the best 
performance metrics compared with other classifiers, Furthermore, FS exceeds FE in 

Fig. 8 The best performance of FS models for binary classification

Fig. 9 The best performance of FE models for binary classification
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terms of accuracy and F1-score, with 88.22% and 87.69%, respectively, surpassing FE 
with 87.04% and 86.14% under the same RF classifier.

As for which model two feature reduction methods prefer, the favorite models of 
FS and FE are different when the number of reduced features are different. Tables 6 
and 7 demonstrate that with FS, the DT classification method consistently delivers 
the highest accuracy, precision, recall, and F1-score. This is followed by the MLP 
model, which becomes more favorable in Tables 8 and 9, and ultimately, the RF model 
emerges as the optimal choice with the full feature set in Table 10. In contrast, the FE 
method exhibits a different pattern, initially favoring DT with 9 features in Table 6, 
transitioning to MLP with 22 features in Table  7, and then showing stronger per-
formance with the kNN classifier at 33 features, which marks the peak performance 
point. Subsequently, the RF classifier becomes the preferred choice for the FE method 
in Tables 9 and 10.

As for run time performance, we firstly investigate the run time of the two feature 
reduction methods. It is shown from Fig. 11. The runtime efficiency of FE surpasses 
that of FS, especially with a smaller number of features—specifically, 9, 22, and 33. 
However, the disparity in runtime between the two feature reduction methods nar-
rows as the reduced features increase. This occurs because the FS algorithm demands 

Fig. 10 The performance comparison of FS and FE models for binary classification

Fig. 11 The run time of FS and FE with reduced features in binary classification
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extra computational resources to compute the average correlation score for every 
feature, making it more time-consuming compared to the PCA-based feature extrac-
tion, which compresses high-dimensional data into a lower-dimensional format, as 
detailed in “Methodology” section.

Moreover, as for the model training time, FS takes less time than FE with small number 
of features, such as 9 and 22 for all the models according to the Tables 6 and 7, particu-
larly for the model training time of DT and RF for all feature settings based on Tables 6, 
7, 8, 9, and 10. However, the training time of kNN, NB, and MLP in feature selection 
exceeds that in feature extraction when reduced features are increasing, such as 33, 47 
and 77, except for the case of MLP in 77 full features, in which the training time under 
FS is 70.78 s, while that with features under feature extraction is 86.44 s.

The inference time comparison between models using FS and FE shows a consistent 
superiority in favor of the FE model for all feature settings except the case with 22 fea-
tures. Notably, the DT classifier remains the optimal choice for both feature reduction 
methods in minimizing inference time. The DT classifier stands out among other classi-
fiers for reducing both training and inference times. Similarly, the kNN classifier exhib-
its the shortest training time but considerably prolonged inference time, while the NB 
classifier, despite its weaker accuracy performance, demonstrates modest computational 
efficiency.

Finally, in order to better understand the attack detection performance of FS and FE, 
we evaluate and compare the class-wise f1-score, namely normal and attack, using the 
best model of FS and FE respectively in each feature setting, involving 9, 22, 33, 47 and 
77 full features. We can refer to the Fig. 12, the F1-score of both normal and attack traf-
fic improve little with the increasing number of features for both feature selection and 
extraction, which demonstrate the effect of feature reduction method to achieve good 
performance with less run time of created models. Moreover, the F1-score of normal 
traffic is obviously higher than that of attack traffic for all feature settings, that’s because 
of the class imbalance before normal and attack case in training set, which makes sense 
since class imbalance handling, which is not the focus of our work, is not implemented.

In addition, we find that the performance of FE can achieve the highest performance 
result with more fewer features, for example, FS for both DT and MLP need 33 features 
to achieve highest F1-score, while, FE can achieve the same performance value using 9 
features on DT classifier, and 22 features on MLP classifier. Moreover, FE is less sensitive 

Fig. 12 The class-wise F1-score between FS and FE methods for reduced features
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to different models’ differing feature counts, such as DT and MLP, while that of FS, var-
ies significantly compared with that of FE, according to the Table 11. However, F1-score 
of FS for both DT and MLP improves significantly when the number of features increase 
from 9 till 33, particularly for the attack class, compared with that of FE, which proved 
that the performance can be improved when more informative features are added. 
Moreover, based on the outstanding models highlighted in the table, we further present 

Table 11 Class level F1-score analysis between FS and FE in binary classification

Fig. 13 The confusion matrix of the outstanding models between FS and FE in binary classification
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the confusion matrix of the outstanding models in Fig. 13. We can find out that FS out-
performs FE slightly on normal traffic classification, while provides less capability to rec-
ognize the attack traffic.

Multiclass classification

Next, we investigate the performance and computational time analysis of both FS and 
FE methods for multi-class classification, using Tables 12, 13, 14, 15, and 16. The same 
as the logic of the binary classification, five iterations are performed for each feature 
number scheme in order to obtain an affirmative result. The results of each cycle are 
then used to calculate the average result. The tables highlight the best values in bold and 
underscore the superior results for both feature selection and extraction in ‘bold and 
italics’, following the same criteria applied in the binary classification outlined in “Binary 
classification” section.

The performance of multi-class classification performance is significantly lower than 
that of binary classification, such as the accuracy and f1-score of the best trained model 

Table 12 FS vs. FE for multiclass classification with 9 features

Models Accuracy 
(%)

Precision 
(%)

Re-call (%) F1-score 
(%)

MCC FS (s) Training (s) Inference 
(ms)

Feature selection

 DT 72.65 40.81 33.33 29.39 0.4553 8.38 0.75 11.00
 RF 71.42 33.75 27.65 24.06 0.3606 10.00 826.79

 kNN 70.11 33.06 26.29 22.29 0.5271 4.26 807,363.15

 NB 19.22 24.14 34.37 19.2 0.2498 0.88 50.40

 MLP 72.65 40.81 33.33 29.39 0.4553 72.16 230.48

Feature extraction

 DT 77.04 57.75 45.29 40.66 0.5768 5.27 1.40 12.13
 RF 76.25 42.42 43.33 36.83 0.5563 20.99 1317.2

 kNN 41.74 43.36 21.24 15.26 0.1835 1.53 10,193.23

 NB 52.43 30.69 50.32 32.64 0.4104 0.81 72.35

 MLP 76.90 53.66 45.11 39.77 0.5692 129.93 239.49

Table 13 FS vs. FE for multiclass classification with 22 features

Models Accuracy 
(%)

Precision 
(%)

Re-call (%) F1-score 
(%)

MCC FS (s) Training (s) Inference 
(ms)

Feature selection

 DT 73.52 59.02 35.47 32.53 0.4781 7.82 1.60 19.29
 RF 69.24 28.63 21.32 16.82 0.3446 10.19 790.10

 kNN 72.55 60.57 30.39 28.82 0.4451 0.64 192,447.54

 NB 19.36 34.90 41.03 17.70 0.2758 1.58 99.98

 MLP 73.52 59.02 35.47 32.53 0.4781 107.55 179.01

Feature extraction

 DT 77.25 72.18 48.18 45.00 0.5840 4.92 3.47 12.93
 RF 77.14 61.21 45.24 40.45 0.5716 25.02 922.89

 kNN 51.86 41.04 31.09 29.50 0.5809 1.23 200,249.55

 NB 55.84 37.60 63.32 41.57 0.4618 1.92 169.60

 MLP 77.43 66.47 46.00 41.50 0.5793 180.86 135.30
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Table 14 FS vs. FE for multiclass classification with 33 features

Models Accuracy 
(%)

Precision 
(%)

Re-call (%) F1-score 
(%)

MCC FS (s) Training (s) Inference 
(ms)

Feature selection

 DT 77.23 77.23 45.69 41.00 0.5750 8.28 1.20 15.34
 RF 70.21 37.68 23.57 20.42 0.3751 26.77 1558.13

 kNN 76.23 65.60 40.58 37.63 0.5440 0.69 225,211.54

 NB 32.64 29.45 45.45 23.91 0.2758 0.96 157.66

 MLP 77.28 66.66 45.83 41.26 0.5762 158.29 198.80

Feature extraction

 DT 77.62 67.34 48.67 45.53 0.5831 6.13 5.18 21.81
 RF 77.33 61.54 45.64 41.19 0.5753 30.58 901.71

 kNN 66.34 46.62 33.70 30.94 0.4532 0.66 227,584.21

 NB 44.71 42.86 57.43 39.01 0.3895 1.67 233.32

 MLP 77.45 68.01 46.00 41.50 0.5792 213.14 194.79

Table 15 FS vs. FE for multiclass classification with 47 features

Models Accuracy 
(%)

Precision 
(%)

Re-call (%) F1-score 
(%)

MCC FS (s) Training (s) Inference 
(ms)

Feature selection

 DT 77.25 72.18 48.18 45.00 0.5524 5.47 3.47 12.93
 RF 77.14 61.21 45.24 40.45 0.3606 25.02 922.89

 kNN 51.86 41.04 31.09 29.50 0.5271 1.23 200,249.55

 NB 55.84 37.60 63.32 41.57 0.2498 1.92 169.6

 MLP 77.43 66.47 46.00 41.50 0.5638 180.86 135.3

Feature extraction

 DT 65.35 50.12 37.58 32.36 0.4156 5.01 7.85 12.35
 RF 76.65 52.36 44.17 39.43 0.5626 35.90 719.71

 kNN 67.51 55.02 39.23 33.82 0.4694 0.44 143,359

 NB 32.40 36.20 56.10 31.93 0.3050 0.64 210.78

 MLP 77.46 68.08 46.02 41.51 0.5795 90.35 103.62

Table 16 FS vs. FE for multiclass classification with 77 (full) features

Models Accuracy 
(%)

Precision 
(%)

Re-call (%) F1-score 
(%)

MCC FS (s) Training (s) Inference 
(ms)

Feature selection

 DT 51.29 33.16 25.02 16.00 0.2450 0 1.94 16.79

 RF 69.38 29.90 21.68 19.06 0.3507 13.46 758.22

 kNN 57.24 48.56 34.46 25.69 0.3720 0.48 187,612.41

 NB 20.14 34.66 41.28 19.76 0.1973 0.79 257.37

 MLP 77.47 67.96 46.03 41.56 0.5796 151.02 117.19
Feature extraction

 DT 54.98 38.23 34.68 22.60 0.2982 3.98 10.01 16.80

 RF 76.84 62.80 44.55 39.72 0.5661 48.97 801.26

 kNN 57.25 45.09 34.42 25.47 0.3718 0.49 188,883.26

 NB 22.50 34.92 42.80 22.52 0.2204 0.76 322.33

 MLP 77.46 68.01 46.05 41.53 0.5796 116.71 118.47
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decision tree in multi-classification are 72.65% and 29.39%, while those of are 80.73% 
and 78.44% in binary classification, when using 9 selected features. Because more com-
plex sub-class distribution of the data and less training data for each class, especially 
for the rare attack instances such as MITM attack, which cause low detection rate com-
pared with normal/attack binary models. However, we concentrate on the performance 
comparison of two feature reduction methods under multi-class classifiers.

We firstly investigate how performance changes with increasing number of features 
for both feature selection and feature reduction method. As the same outcome of binary 
classification, the increasing number of reduced features can improve the performance 
of feature selection model, while there is no obvious effect for that of feature extraction 
model. It is shown from Figs. 14 and 15, when the number of reduced features increases, 
the classification performance of feature selection generally improves, particularly from 
that of 9 features to 47 selected features, while that of feature extraction has no signifi-
cant improvement, particularly for the accuracy. In addition, more features can also 
cause performance degrade for both feature selection and feature extraction. For exam-
ple, the f1-score of FS model decrease when the number of features increased from 47 to 
77 (full) features, while that of FE model decrease starting from 33 features, since more 
noisy or irrelevant features are expected to worsen the detection performance.

Moreover, the classification performance of FE is much better than that of FS espe-
cially for small number of features, which is the same as that of binary classification. As 

Fig. 14 The best performance of FS models for multi-class classification

Fig. 15 The best performance of FE models for multi-class classification
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it is shown from Fig. 16, comparing the two feature reduction methods, we find that the 
classification performance of feature extraction is much better than that of feature selec-
tion, when the number of features is relatively small, such as 9 and 22. For instance, the 
highest accuracy and F1-score of DT model with feature extraction is 77.04% and 40.66% 
respectively, while those of feature selection is lower with 72.65% and 29.39%. However, 
when there is increasingly larger number of features added, starting from 33, 47 till 77 
full features, the performance gap between FS and FE is not significant, and only the 
precision of FS is higher than that of FE, when the number of features is 33, 47 and 77 
full features.

In addition, different from the binary scenario, where MLP is the best classifier for 
feature selection, and KNN is the best classifier for feature extraction, with 33 features, 
while the favorite models of multi-class classification using FS and FE are different. It is 
showed from the Figs. 14 and 15, DT outperforms other classifiers in both FS and FE, 
when the number of features is relatively small, such as 9, 22, 33 features, while MLP 
achieve higher performance than other models, when that of features increase to 47 till 
77 full features, that is because DT as less complex tree-based model can handle the data 
with limited features, however, MLP as more complex neural networks can handle the 
data with more features.

As for run time performance, we firstly investigate the run time of the two feature 
reduction methods. Since there is no change for the two feature reduction algorithms 
in binary classification and multiple classification, thus the run time for multi-class clas-
sification is the same as that of binary classification, which is explained in “Binary clas-
sification” section. Moreover, as for the model training time, the same as that of binary 
classification, FS takes less time than FE when the number of features is relatively small, 
such as 9, 22, and 33 for all the DT models according to the Tables 12, 13 and 14, How-
ever, when MLP as the best performance model in the number of features 47 and 77 full 
features, the model training time of FE is significant lower than that of FS, according to 
the Tables 15 and 16. As for the inference time of the best performance models, DT is 
obviously more efficient than that of MLP for both feature selection and feature extrac-
tion for all feature settings. Inference time of FS is lower than that of FE when limited 
number of features are used, such as 9, however, in contrast, more time is used than for 
FS than FE when the number of features increased.

Fig. 16 The performance comparison of FS and FE models for multi-class classification
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Finally, our comparison focuses on the F1-scores for detecting individual attack types, 
involving 10 attack classes and 1 normal class (as outlined in “Methodology” section) 
across Tables 17, 18, and 19. These tables outline the performance of FS and FE using 9, 
22, 33, 47 features, and 77 full features. Within these tables, our emphasis remains on 
the DT and MLP classifiers for FE and FS, respectively, to achieve optimal detection per-
formance, as previously discussed. Observations from Tables 17 and 18 indicate that FE 
generally outperforms FS across most classes, except for the injection attack in Table 19. 
Notably, both methods achieve higher F1-scores for specific classes such as DDoS, Nor-
mal, Scanning, and XSS in contrast to other classes.

Remarkably, the multiclass classification accuracy of FE proves less affected by the 
number of reduced features compared to FS. A significant finding emerges from FS’s 
inability to accurately detect any MITM samples, even with the best models, across all 
numbers of features. In contrast, FE using the best classifiers can successfully detect 

Table 17 Class-wise F1-score comparison between FS and FE in multiclass classification

Class Feature selection Feature extraction

Number of features Number of features

9 22 33 47 77 9 22 33 47 77

Backdoor 0.61 0.61 0.61 0.61 0.61 0.61 0.62 0.62 0.61 0.61

ddos 0.71 0.71 0.85 0.86 0.86 0.85 0.85 0.87 0.86 0.86

dos 0.00 0.08 0.08 0.09 0.09 0.00 0.18 0.17 0.09 0.09

Injection 0.00 0.06 0.03 0.08 0.06 0.02 0.06 0.06 0.06 0.06

mitm 0.00 0.00 0.00 0.00 0.00 0.05 0.29 0.28 0.00 0.00

Normal 0.86 0.86 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89

Password 0.00 0.10 0.10 0.10 0.10 0.09 0.10 0.10 0.10 0.10

Ransomware 0.13 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

Scanning 0.00 0.00 0.69 0.70 0.70 0.70 0.72 0.72 0.70 0.70

xss 0.62 0.67 0.68 0.68 0.68 0.67 0.63 0.70 0.68 0.68

Average 0.29 0.33 0.41 0.45 0.42 0.41 0.45 0.46 0.42 0.42

Table 18 Class-wise F1-score comparison between FS and FE in multiclass classification of the same 
DT
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MITM samples with 9, 22, and 33 features. This observation is primarily attributed to 
the machine learning classifier rather than the chosen feature reduction method.

Further exploration into the matter includes a comparison of the F1-scores for each 
class between the two feature reduction methods, using the same Decision Tree and 
MLP classifiers in Tables 18 and 19, respectively. Table 19 shows that, similar to FS, FE 
with the same MLP classifier is unable to detect any MITM attack samples accurately. 
These tables demonstrate that FE, employing the same classifier, tends to identify a 
broader range of attack types compared to FS. For example, FS with DT classifiers fails 
to detect Injection, Password, and Scanning attacks under 9 features, while its counter-
part successfully identifies these attacks across all five numbers of features. The disparity 
arises from FE’s ability to extract crucial information from all available features, enabling 
detection of a wider range of attack types, unlike the FS approach that predominantly 
relies on a subset of selected features highly correlated to specific attack types.

Additionally, we look into the confusion matrix of the excellent models in Fig. 17 based 
on the models that stand out in the table. In contrast to the binary classification result, 
we can observe that FE marginally beats FS in the usual traffic identification task. In par-
ticular, DT_FE_33 and MLP_FE_22 are both capable of identifying normal traffic more 
accurately than DT_FS_47 and MLP_FS_47, respectively. In terms of attack categoriza-
tion, DT_FE_33 is more capable than MLP_FE_22; on the other hand, MLP_FS_22 is 
less capable than MLP_FE_22 of classifying backdoor assaults, while MLP_FE_22 is less 
capable than MLP_FS_47 of recognizing DoS attacks. No model hyperparameter adjust-
ment or class imbalance optimization may result in a loss of the ability to detect every 
attack. However, since the goal of this study is to distinguish between feature extrac-
tion and feature selection, we can do optimization to improve classification performance 
even more in the future.

Result verification statistically

In order to come up with the affirmative conclusion, statistical verification is imple-
mented using T-test in this section. Two metrics are used for verification including 

Table 19 Class-wise F1-score comparison between FS and FE in multiclass classification of the same 
MLP
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t-statistic and p-value, for example, the negative sign indicates that the average of one 
group is significantly below the average of the other group. The t-statistic is a meas-
ure of how many standard deviations a data point is from the mean of the distribu-
tion. The p-value is a measure of the evidence against a null hypothesis. In the context 
of a t-test, it represents the probability of obtaining the observed results (or more 
extreme) if the null hypothesis is true. A small p-value (typically less than the signifi-
cance level, e.g., 0.05) suggests that we can reject the null hypothesis. The statistical 

Fig. 17 The confusion matrix of the outstanding models between FS and FE in multi-classification

Table 20 Summary of t-test verification test

No. Data T-statistic P-values Significant

1 Accuracy of binary and multiclassification using FE between 9, 22 and 
33, 47 features respectively

− 9.3139 0.0026 *

2 Accuracy of binary and multiclassification using FS between 33, 47 
and 9, 22 features respectively

− 7.0103 0.0006 *

3 Feature reduction time between FS and FE for each feature scheme 3.5833 0.0372 *

4 Model training time between FS and FE for each feature scheme − 2.2707 0.0324 *

5 Model inference time between FS and FE for each feature scheme 
(except for kNN model)

− 3.4921 0.0251 *

6 DT runtime (including the run time of both model building and infer-
ence) compared to other models for both FS and FE

− 3.6216 0.0152 *
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test summary, Table 20, is based on the original data in binary and multi-classification 
results from Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16. The data in comparison 
Table 21 that have been validated using the t-test method are listed here; for informa-
tion on the other conclusion features, see the tables and figures in “Binary classifica-
tion” and “Multiclass classification” sections.

In summary, when evaluating binary and multiclass classification within the NIDS 
utilizing the Network TON-IoT dataset, FE emerges as not only offering superior 
classification performance but also reduced feature reduction time compared to its FS 
counterpart, particularly as the number of reduced features increases. The advantage 
of FE is notably higher and more consistent, especially with smaller quantities of fea-
tures, such as 9 and 22. However, FS generally demonstrates shorter model training 
and inference times than feature extraction, which is significant to lightweight model 
design of NIDS in IoT network.

Among the five classifiers, the DT proves to be the optimal choice for enhancing 
the performance of both feature reduction methods, particularly when the number 
of features remains small, such as 9 and 22. Conversely, a neural network-based MLP 
exhibits superior performance for both reduction methods as the number of features 
increases, reaching values of 33, 47, and 77 full features (refer to the Figs.  14, 15). 
It’s important to highlight that FE shows less sensitivity to changes in the number of 
reduced features compared to FS, a trend that remains consistent across both binary 
and multiclass classifications. A detailed, comprehensive comparison between two 
feature reduction methods in NIDS using contemporary IoT dataset is provided in 
Table 21 for further insights.

Table 21 Comparison between FE and FS in various scenarios

No. Content FS FE

1 Higher accuracy when no. of features is small, such as 9 and 22 ✓
2 Higher accuracy when no. of features gets large, such as 33 and 47 ✓
3 Lower feature reduction time ✓
4 Lower model training time ✓
5 Lower inference time ✓
6 DT is the most favorite classifier considering runtime ✓ ✓
7 DT is the most favorite classifier considering performance for multi-classification 

with small and moderate number of features, such as 9, 22, and 33
✓ ✓

8 MLP is the most favorite classifier considering performance for multi-classification 
with more features, such as 47 and 77

✓ ✓

9 Less sensitive to the number of selected/extracted features ✓
10 Less sensitive to various machine learning models ✓
11 Detection performance degrades when number of features is too large ✓
12 Detection performance increase when more informative features added ✓
13 Detect more diverse attack types when using the same classifier ✓
14 F1-score of attack class is much lower than that of normal class (binary) ✓ ✓
15 F1-score of attack class degrades when number of features increases (binary) ✓
16 Higher F1-score in detecting DDoS, normal, scanning and XSS classes ✓
17 Higher F1-score in detecting injection classes ✓
18 More potential to improve performance when the number of features is small ✓
19 More potential to improve performance when the number of features is large ✓
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Conclusions
IoT systems and networks always suffer from computational resource constraints, 
which impact the applicability of attack classification model training, validation, and 
deployment for cyber security in real IoT scenarios. Feature reduction is pivotal for 
constructing a cost-effective and lightweight model capable of classifying attacks in 
IoT scenarios. Specifically, the objective is to mitigate the challenges associated with 
resource constraints in IoT devices by reducing the number of features through a 
thorough evaluation of feature selection and feature extraction methods. In this study, 
we conducted a thorough comparison between two dimensionality reduction meth-
ods, FS and FE, using the contemporary and heterogenous Network TON-IoT data-
set for classification in NIDS. Our extensive analysis revealed that, when reducing a 
significant number of features (e.g., 9 or 22), FE not only achieved higher accuracy 
in attack detection but also required less time for dimensionality reduction. How-
ever, as the number of features increased (e.g., 33 or more), FS outperformed feature 
extraction. Therefore, FS demonstrated more potential with fewer features, whereas 
FE showed room for improvement with a larger number of features. Additionally, we 
observed that the effectiveness of FS declined significantly with an increased number 
of selected features, while FE consistently improved. Our study identified the MLP 
as the optimal classifier for FE, while the DT was the top performer in FS provid-
ing the highest accuracy in attack detection. Both two reduction methods favor the 
DT for lightweight classification models. Moreover, we found that FE is less sensitive 
to changes in the number of features and can detect a broader range of attack types 
compared to FS. Both methods exhibit a tendency to detect more attacks, especially 
abnormal classes, when a larger number of features are selected or extracted. These 
insights offer valuable guidance for choosing the most suitable intrusion detection 
method in specific IoT scenarios. It’s important to note that our assessment concen-
trated on two specific feature reduction techniques using classic machine learning 
algorithms on the TON-IoT dataset. Future research aims to explore the applicabil-
ity of these findings across a variety of IoT datasets with different applications, such 
as IoTNIDS, BoT-IoT, MQTT-IoT-IDS, and Edge-IIoTSet. Moreover, our future plans 
involve conducting an extensive evaluation of additional feature reduction methods 
within authentic IoT environments, aiming to narrow the gap between academic 
offline analysis and real-time analysis in practical IoT scenarios.
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