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Introduction
Cybersecurity, in the current era, has emerged as an international imperative, driven by 
the critical need to protect systems from unwanted, unauthorized, and unforeseen inter-
ference [1]. These interferences can range from data breaches and information theft to 
threats that undermine the integrity and functionality of systems. Safeguarding against 

Abstract 

Cybersecurity has emerged as a critical global concern. Intrusion Detection Systems 
(IDS) play a critical role in protecting interconnected networks by detecting malicious 
actors and activities. Machine Learning (ML)-based behavior analysis within the IDS 
has considerable potential for detecting dynamic cyber threats, identifying abnormali-
ties, and identifying malicious conduct within the network. However, as the number 
of data grows, dimension reduction becomes an increasingly difficult task when train-
ing ML models. Addressing this, our paper introduces a novel ML-based network intru-
sion detection model that uses Random Oversampling (RO) to address data imbalance 
and Stacking Feature Embedding based on clustering results, as well as Principal Com-
ponent Analysis (PCA) for dimension reduction and is specifically designed for large 
and imbalanced datasets. This model’s performance is carefully evaluated using three 
cutting-edge benchmark datasets: UNSW-NB15, CIC-IDS-2017, and CIC-IDS-2018. On 
the UNSW-NB15 dataset, our trials show that the RF and ET models achieve accuracy 
rates of 99.59% and 99.95%, respectively. Furthermore, using the CIC-IDS2017 data-
set, DT, RF, and ET models reach 99.99% accuracy, while DT and RF models obtain 
99.94% accuracy on CIC-IDS2018. These performance results continuously outperform 
the state-of-art, indicating significant progress in the field of network intrusion detec-
tion. This achievement demonstrates the efficacy of the suggested methodology, 
which can be used practically to accurately monitor and identify network traffic intru-
sions, thereby blocking possible threats.
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such threats is paramount in ensuring the smooth operation of systems, protecting sen-
sitive data, and preserving user trust [2]. Intrusion Detection Systems (IDS) have tradi-
tionally served as a cornerstone of perimeter security [3, 4].

These systems are crafted with the purpose of uncovering and responding to suspi-
cious or malicious activities within a network or system. Nevertheless, the conventional 
signature-based intrusion detection methods, reliant on established attack patterns and 
signatures, have been found lacking in the face of ever-evolving and sophisticated cyber 
threats. These solutions are engineered to identify and react to questionable or poten-
tially harmful actions occurring within a network or system. Nevertheless, conventional 
intrusion detection methods, which hinge on established attack patterns and signatures, 
have demonstrated their inadequacy when confronted with ever-changing and increas-
ingly complex cyber threats [5, 6].

To address the shortcomings of traditional IDS, the cybersecurity community has 
turned its attention to Machine Learning (ML) as a promising solution. ML-enabled 
IDS leverages behavior analysis to detect anomalies and threats, offering the potential 
for significantly higher accuracy and faster detection times [7, 8]. This paradigm shift in 
intrusion detection holds the promise of not only bolstering security but also reshaping 
the privacy landscape. This shift towards ML-enabled intrusion detection has sparked 
concerns regarding both privacy and the field of data science [9, 10]. ML algorithms, 
while effective at identifying threats, often require access to sensitive data. Balancing the 
need for security with privacy concerns is a challenge that demands innovative and ethi-
cal solutions [11].

ML in cybersecurity serves as a powerful tool to augment the ability of systems to 
understand diverse patterns and forecast potential data threats [12]. It optimizes pro-
cessing and training procedures to construct models that can effectively safeguard sys-
tems against dubious and spyware activities [6, 13]. It is a transformative technology that 
empowers systems to learn and adapt from data, making intelligent decisions without 
being explicitly programmed [14]. In the context of IDS, ML algorithms utilize historical 
and real-time data to identify patterns of normal behavior and anomalies that may indi-
cate security threats. By training on diverse datasets, these algorithms become proficient 
at recognizing new and emerging attack vectors. ML enhances IDS systems by provid-
ing faster and more accurate threat detection, reducing false positives, and adapting to 
evolving threats [15]. It empowers security systems to efficiently safeguard networks and 
data against unauthorized access and malicious activity [16].

In today’s landscape, the optimization of processing and training procedures is imper-
ative for constructing models that can effectively safeguard systems against dubious and 
spyware activities [12]. However, it’s worth noting that many contemporary ML-IDS 
solutions tend to be limited by their reliance on small, outdated and balanced datasets 
for model development [17–19]. The focus on these smaller, often outdated datasets, 
coupled with imbalances in the data distribution, while facilitating preprocessing and 
training with diverse ML algorithms, raises questions regarding the practical applicabil-
ity of these models in real-world scenarios, specifically when dealing with big data. The 
achievable accuracy of such models often hinges on the intricacies of dataset preproc-
essing and the selection of suitable algorithms, adding an additional layer of complexity 
to their effectiveness [20, 21].
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Therefore, we need to develop and validate ML-based intrusion detection for large, 
imbalanced datasets where all potential attack scenarios are encompassed. To address 
this gap, Our research places a significant emphasis on constructing a robust and 
well-structured framework that accommodates the detection of network intrusion in 
a more efficient manner on substantial datasets. We employ data preprocessing tech-
niques, including data normalization, feature resampling, Stacking Feature Embedded 
and dimension reduction techniques, to address the unique challenges posed by big 
datasets. The Key techniques of our approach are as follows:

• Stacking Feature Embedded (SFE): This technique enhances detection accuracy 
by introducing meta-features, providing a deeper insight into data patterns and 
anomalies.

• Random Oversampling (RO): By mitigating class imbalance issues, RO ensures 
equitable consideration of minority classes, resulting in a more balanced and reli-
able intrusion detection system.

• Principal Component Analysis (PCA): PCA optimizes the feature space, reducing 
dimensionality while preserving vital information, thus enhancing the efficiency 
and effectiveness of our ML models.

This comprehensive approach seeks to bridge the gap in intrusion detection, accom-
modating the intricacies of large, imbalanced datasets, and improving the robustness 
of security measures in the face of evolving threats.

Our proposed model’s performance is rigorously evaluated across a spectrum of ML 
classifiers, including Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and 
Extreme Gradient Boosting (XGB). These classifiers are trained using a reduced feature 
set. We assess our model using a comprehensive set of performance indicators, encom-
passing precision, recall, f1-score, confusion matrix, accuracy and the ROC curve. The 
ML algorithms integrated into our framework demonstrate an exceptional ability to 
detect attacks, consistently achieving accuracy rates exceeding 99.9%. This thorough 
performance evaluation ensures the robustness and reliability of our intrusion detection 
system, highlighting its effectiveness in identifying and countering potential threats. In 
summary, this paper’s contribution can be encapsulated as follows:

• We proposed a novel intrusion detection approach using efficient preprocess-
ing, oversampling management, stacking feature embedding, and dimensionality 
reduction to enhance intrusion detection performance.

• We addressed the issue of imbalanced data by implementing a random oversam-
pling strategy to ensure balanced consideration of minority and majority classes, 
leading to more robust intrusion detection.

• The introduction of Stacking Feature Embedded (SFE) enhances detection accu-
racy by introducing meta-features, providing a comprehensive understanding of 
data patterns and anomalies.

• Our utilization of Principal Component Analysis (PCA) for feature extraction 
optimizes intrusion detection performance while minimizing the dimensionality 
of the original dataset.
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• Evaluation of our approach with various ML algorithms on popular large and imbal-
anced datasets demonstrates its effectiveness in significantly improving intrusion 
detection accuracy and robustness.

The subsequent sections of this paper offer a concise overview of our proposed work. In 
Sect. "Literature review", we delve into the literature review, providing insights into the 
existing body of knowledge. Section "Methodology" is dedicated to the detailed descrip-
tion of our proposed methodology. Section  "Experimental setup and evaluations" out-
lines the experimental setup and evaluation procedures. Finally, in Sect.  "Conclusion", 
we draw the conclusions from our findings and explore avenues for future research.

Literature review
ML strategies have been widely utilized in cybersecurity over the last several decades 
due to their capacity to retrieve hidden patterns on the variations between malevolent 
and legitimate patterns [22, 23]. ML is an effective research tool for detecting any anom-
alies in the network stream of traffic [24]. As a result, previous researchers explored a 
variety of algorithms based on ML as well as hybrid and DL models in IDS.

ML approaches

Moualla et  al. [25] proposed a revolutionary network IDS model that plays a crucial 
role in network security and combats existing cyberattacks on networks utilizing the 
UNSW-NB15 data as a baseline. It was a dynamically scalable multiclass ML-based net-
work with several phases. The imbalance was handled by SMOTE technique, after that 
based on the Gini Impurity criterion, it employed the ET Classifier and finally, a pre-
trained Extreme Learning Machine (ELM) was utilized to classify each of the attacks 
using binary. Using the outputs of the ELM classifier as inputs to a fully connected layer, 
a logistic regression layer was employed to produce soft judgments for all classes and 
attained 98.43% accuracy.

Kasongo and Sun [26] presented a filter-based feature-dropping technique on the 
UNSW-NB15 IDS dataset, employing the XGB algorithm, and assessed its performance 
using various predictive algorithms, including Decision Tree (DT), Artificial Neural Net-
work (ANN), Logistic Regression (LR), K-Nearest Neighbor (KNN), and Support Vector 
Machine (SVM). They demonstrated that their approach led to a significant enhance-
ment in binary accuracy, increasing it from 88.13% to 90.85%. The overall accuracy 
rates for binary were 90.85% for DT, 84.4% for ANN, 77.64% for LR, 84.46% for KNN, 
and 60.89% for SVM. For multiclass, the accuracy rates were 67.57% for DT, 77.51% for 
ANN, 65.29% for LR, 72.30% for KNN, and 53.95% for SVM, all of which were evaluated 
using the 19 optimal selected features.

Nimbalkar and Kshirsagar [27] offered a feature selection method for IDS using Infor-
mation Grain (IG) and Grain Ratio (GR) where they selected 50% of the top most fea-
tures to build their model detecting Denial of Service (DoS) and Distributed Denial of 
Service (DDoS) attacks. The studies were carried out using well-known datasets, such as 
KDDCUP’99 and BOT-IOT. They selected 16 and 19 features for BOT-IOT and KDD-
CUP’99 datasets, respectively and then trained the model using the JRip classifier to 
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reach the desired performance. They achieved 99.99% and 99.57% accuracy for BOT-
IOT and KDDCUP’99 datasets, respectively.

Kumar et al. [28] presented IDS model that detects intrusions based on misuse to pro-
tect networks from modern threats, such as DoS attacks or exploits, probes, generics 
and so on. Intrusion detection rate (IDR) and false alarm rate (FAR) were determined 
using the UNSW-NB15 dataset. The IG and C5 classifier were utilized where, IG was 
used to pick 13 out of 47 features for feature selection and C5 gave 99.37% accuracy rate.

Ahmad et al. [29] proposed a feature clustering-based ML model where clusters were 
applied for Flow, Message Queuing Telemetry Transport (MQTT) and Transmission 
Control Protocol (TCP). The clustering process eliminated the overfitting that was the 
curse of dimensionality and data-set inequity. Various supervised ML methods were uti-
lized on the clusters, including RF and SVM. They employed the UNSW-NB15 dataset 
to train and test the model and found that RF produced 98.67% accuracy in binary and 
97.37% accuracy in multiclass.

Ahmad et al. [29] introduced an innovative ML model based on feature clustering, with 
distinct clusters created for Flow, Message Queuing Telemetry Transport (MQTT), and 
Transmission Control Protocol (TCP). This clustering approach effectively addressed the 
challenges of overfitting arising from high dimensionality and dataset imbalances. They 
applied a range of supervised machine learning methods, including RF and SVM, to 
these clusters. Using the UNSW-NB15 dataset for model training and evaluation, their 
results showed that RF achieved impressive accuracy, reaching 98.67% in binary classifi-
cation and 97.37% in multi-class classification.

Kshirsagar and Kumar [30] presented a filter-based feature selection technique that 
leveraged IG Ratio (IGR), Correlation Ratio (CR), and ReliefF (ReF). This method gener-
ated a feature subset by considering the average weight of each classifier, complemented 
by a Subset Combination Strategy (SCS). For CICIDS 2017 dataset, the number of fea-
tures was lowered from 77 to 24 and for KDDCUP’99, it was cut from 41 to 12. For 
CIC-IDS2017, it achieved a 99.95% accuracy rate in 133.66 sec using PART and for the 
KDDCUP’99 dataset, it achieved a 99.32% accuracy rate and took 11.22 sec.

In order to minimize the volume of the dataset, [31] employed evolutionary approach-
based feature selection (EFS) and a concurrent MapReduce technique was applied to 
partition the input data into the most crucial characteristics. After that, their model was 
classified for either normal or attack using the RF classifier. They used the popular KDD-
CUPP’99 dataset to evaluate performance and classify normal and deviant behavior. 
They selected 15 features to assess their model’s performance and its accuracy was found 
almost 93.9%.

Talita et  al. [32] developed an innovative approach that integrates Particle Swarm 
Optimization (PSO) for feature selection with the Naive Bayes (NB) classification algo-
rithm, which was applied to the KDDCUP’99 dataset. This dataset comprised of over 
400 thousand records and featured more than 40 characteristics. To optimize compu-
tational resources and memory usage, PSO was employed to select the most relevant 
38 features from the original set of over 40. The outcome of this method yielded an 
impressive accuracy rate of 99.12%, demonstrating superior efficiency in terms of both 
computation time and classification accuracy when compared to other feature selection 
techniques.
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Seth et al. [33] developed an IDS model that reduces prediction delay by minimizing 
the model’s sophistication using a hybrid feature selection (HFS) strategy. A quick gradi-
ent boosting technique called Light Gradient Boosting Machine (LightGBM) was used 
to build the model. This approach cut prediction latency by 44.52% to 2.25% and model 
development time by 52.68% to 17.94% using the CIC-IDS2018 dataset. It can achieve 
excellent accuracy by combining attribute choosing and LightGBM. The developed 
model achieved 97.73%, 96%, 99.3%, accuracy, sensitivity, precision rate respectively and 
a relatively low prediction latency.

Hammad et  al. [34] presented a model using t-SNERF to identify the cyber-attacks 
where t-SNERF was used for feature correlations, data reduction and trained the 
model using RF. To evaluate the model UNSW-NB15, CIC-IDS2017 and Phishing 
were employed. The offered innovative methodology outperformed current methods. 
The accuracy rate was 100% for UNSW-NB15, 99.70% for Phishing and 99.78% for 
CIC-IDS2017.

Guezzaz et al. [35] focused on enhancing the reliability of Network Intrusion Detec-
tion (NID) through the utilization of the DT (Decision Tree) algorithm. Their approach 
entailed two key steps: data quality improvement and feature selection based on entropy 
decision, followed by the construction of a dependable NID system using the DT classi-
fier. This proposed model underwent evaluation using two well-known datasets, NSL-
KDD and CIC-IDS2017, and yielded impressive results. Specifically, the model achieved 
a remarkable accuracy of 99.42% on the NSL-KDD dataset and 98.80% on the CIC-
IDS2017 dataset.

Stiawan et al. [36] offered a strategy for analyzing integral and essential aspects of mas-
sive network data, increasing traffic anomaly detection accuracy and speed. They used 
the CIC-IDS2017 dataset and picked important and significant features using IG, as well 
as sorting and grouping features according to their minimal weight values and then train 
the dataset using various ML classifiers. The number of relevant and meaningful attrib-
utes generated by IG has a considerable impact on accuracy and execution time. A num-
ber of ML algorithms, such as Random Tree (RT), RF, NB, Bayes Net (BN) and J48 were 
used to train the model but RF provided the best accuracy. In the RF classifier, they used 
22 relevant selected features, had the best accuracy of 99.86%, whereas the J48 classifier 
algorithm, which used 52 relevant selected features but took longer to execute, had the 
highest accuracy of 99.87%.

Deep learning approaches

Aleesa et al. [37] explored the application of DL models for binary and multiclass classi-
fication in the context of IDS. They conducted their evaluations using the UNSW-NB15 
dataset. Specifically, the study assessed the effectiveness of three distinct types of neural 
network models: Deep Neural Network (DNN), Recurrent Neural Network (RNN), and 
ANN. They used data cleaning techniques, such as handling missing values and categori-
cal values, followed by min-max normalization in order to make it more accurate. The 
efficiency was evaluated on accuracy; where, the ANN, RNN and DNN provided 99.26%, 
85.42%, 99.22% for binary classification and 97.89%, 85.4% and 95.9% for multilabel clas-
sification respectively.
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Choudhary and Kesswani [38] introduced an IDS based on DNN for identifying IoT-
related attacks. They evaluated the effectiveness of the DNN-based approach by testing 
it on three widely employed datasets: UNSW-NB15, KDDCUP’99 and NSL-KDD. The 
outcomes indicated that the DNN-based method achieved an accuracy rate of 91.50% 
when applied to each of these datasets.

In the study by Al and Dener [39], a more effective IDS model was introduced, uti-
lizing a combination of Long Short-Term Memory (LSTM) and Convolutional Neural 
Network (CNN) architectures. To address the issue of imbalanced datasets, they applied 
the Synthetic Minority Oversampling Technique (SMOTE) in conjunction with Tomek-
Link, referred to as the STL method. The research implementation was carried out using 
PySpark, and two distinct datasets, namely CICIDS-001 for multiclass and UNSW-NB15 
for binary classification, were used to evaluate the model’s performance. The proposed 
method was benchmarked against various popular ML and DL algorithms. In multila-
bel classification, the proposed approach performed an outstanding accuracy of 99.83%, 
while in binary classification, it demonstrated a high accuracy of 99.17%.

Adeyemo et al. [40] explored the effectiveness of network IDS using DL and ensemble 
techniques. They applied an LSTM model, a homogeneous approach with an optimized 
bagged RF and a heterogeneous approach with four standard classifiers. The evalua-
tion was conducted on the UNSW-NB15 dataset, split into two configurations: two and 
multi-attack datasets. The results showed that the LSTM achieved an 80% detection 
accuracy for the binary dataset and 72% for the multi-attack dataset. The homogene-
ous ensemble method reached impressive accuracy rates of 98% for the binary dataset 
and 87.4% for the multi-attack dataset. Similarly, the heterogeneous ensemble method 
also performed well, with a detection accuracy of 97% for the binary and 85.23% for the 
multi-attack dataset. This research highlights the promising performance of ensemble 
methods in the context of Intrusion Detection Systems.

Kim et al. [41] developed a DL model primarily focusing on detecting denial of ser-
vice (DoS) attacks. The KDDCUP’99 and CSE-CIC-IDS2018 were employed to assess 
the model’s performance. Notably, the latter dataset contained more sophisticated DoS 
attacks than the former. The study concentrated on the DoS category within both data-
sets and harnessed a CNN for model development. A comparative analysis was con-
ducted between the CNN and RNN. In the case of KDDCUP’99, the CNN demonstrated 
impressive accuracy rates, surpassing 99% accuracy in binary and multiclass, while the 
RNN achieved 99% accuracy in binary and 93% accuracy in multiclass. For the CSE-
CIC-IDS2018 dataset, the CNN model exhibited an average accuracy of 91.5%, whereas 
the RNN model averaged 65% accuracy. The CNN model consistently outperformed the 
RNN model in identifying specific DoS attacks characterized by similar attributes.

Hybrid approaches

Bhardwaj et al. [42] presented a hybrid strategy that combines a DNN model with Ant 
Colony Optimization (ACO) for learning premium hyperparameters for successful DNN 
classification in a cloud setting. DNN detects attacks more accurately by the usage of 
ideal settings. They used the CIC-IDS2017 dataset and got well performance. The detec-
tion and accuracy performance are both superior to state-of-the-art approaches, at 
95.74% and 98.25%, respectively.
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Khan [43] introduced a novel approach known as the Hybrid Convolutional Recurrent 
Neural Network for IDS (HCRNNIDS). This approach represents a hybrid IDS paradigm 
that leverages DL techniques to predict and classify malicious intrusions on the internet. 
In this model, the CNN was responsible for gathering local information through con-
volution, while the RNN was employed to capture temporal features, thereby enhanc-
ing the effectiveness and predictive capabilities of the ID system. To assess the model’s 
performance, the researchers conducted simulations using publicly available ID data, 
focusing on the contemporary and reputable CSE-CIC-DS2018 dataset. Through the 
application of a 10-fold cross-validation methodology, the proposed hybrid model exhib-
ited significant improvements over traditional ID approaches. It achieved a remarkable 
level of accuracy in fraudulent detection and prevention, reaching up to 97.75% for the 
CIC-IDS2018 dataset.

Kasongo and Sun [44] presented a Wrapper-based Feature Extraction Unit (WFEU) 
that leverages the Extra Trees technique to create a reduced optimum feature vector for 
a Feed-Forward Deep Neural Network (FFDNN) wireless IDS system. The proficiency 
was studied using the UNSW-NB15 and AWID ID datasets. Several ML algorithms, 
such as RF and SVM are compared to WFEU-FFDNN as well as NB and DT. Using the 
UNSW-NB15, the WFEU produced an ideal feature vector consisting of 22 features and 
achieved an overall accuracy of 87.10% for binary and 77.16% for multiclass. On the 
other hand, for AWID, 26 features were selected and revealed an accuracy of 99.66% for 
binary and 99.77% for multiclass.

Kasongo and Sun [44] introduced a Wrapper-based Feature Extraction Unit (WFEU), 
which harnessed the power of the Extra Trees technique to construct an optimized and 
reduced feature vector tailored for a Feed-Forward Deep Neural Network (FFDNN) 
wireless IDS. To evaluate its efficiency, they conducted experiments on the UNSW-NB15 
and AWID intrusion detection datasets. Comparative analyses were performed against 
various ML algorithms, including RF and SVM, along with conventional approaches 
such as NB and DT. On the UNSW-NB15 dataset, the WFEU method yielded an opti-
mal feature vector consisting of 22 features, achieving an impressive overall accuracy of 
87.10% for binary and 77.16% for multiclass. For the AWID dataset, a feature set of 26 
features was selected, resulting in remarkable accuracy rates of 99.66% for binary and 
99.77% for multiclass.

Zhang et al. [22] proposed a novel strategy for addressing imbalanced intrusion detec-
tion, surpassing existing intrusion detection algorithms. They introduced the SGM-
CNN model, which combined Synthetic Minority Over-sampling Technique (SMOTE) 
with a Gaussian Mixture Model (GMM). The model was validated using the UNSW-
NB15 and CIC-IDS2017 datasets. On the UNSW-NB15 dataset, the model exhibited 
remarkable accuracy rates of 99.74% for binary and 96.54% for multiclass. Furthermore, 
for the CIC-IDS2017 dataset, achieved an impressive detection rate of 99.85%.

Hassan et al. [45] introduced a hybrid DL model for efficient network intrusion detec-
tion, combining CNN and Weight-Dropped Long Short-Term Memory (WDLSTM). 
The CNN was employed to extract crucial features from IDS, while the WDLSTM was 
utilized to capture long-term dependencies and mitigate gradient vanishing issues. Their 
experiments focused on the UNSW-NB15 dataset. The CNN-WDLSTM model exhib-
ited an overall accuracy rate of 97.17% for binary and 98.43% for multiclass.
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The summary of related papers can be found in Table 1

Limitations of the existing works

One notable limitation in the existing works is their reliance on older datasets such as 
KDDCUP’99 and NSLKDD, which lack recent attack scenarios featured in datasets like 
CIC-IDS2018. Consequently, these works may not effectively address contemporary 

Table 1 Related work summary of various ML techniques

SL. NO. ML Technique Algorithm Author Dataset Accuracy (In %)

Binary Multi-class

1 ML RF [29] UNSW-NB15 98.67 97.37

2 ELM [25] 98.43

3 DT [26] 90.85 67.57

ANN 84.4 77.51

LR 77.64 65.29

KNN 84.46 72.30

SVM 60.89 53.95

4 C5 [28] 99.3

5 PART [30] CIC-IDS2017 99.95

KDDCUP’99 99.32

6 MapReduce+RF [31] 93.9

7 PSO+NB [32] 99.12

8 HFS+LightGBM [33] CIC-IDS2018 97.73

9 IG+GR+JRip [27] KDDCUP’99 99.57

BOT-IOT 99.99

10 t-SNERF [34] UNSW-NB15 100

CIC-IDS2017 99.78

Phishing 99.70

11 DT [35] NSL-KDD 99.42

CIC-IDS2017 98.80

12 IG+RF [36] 99.86

IG+J48 99.87

13 Deep Learning DNN [37] UNSW-NB15 99.92 95.9

RNN 85.42 85.4

ANN 99.26 97.89

14 DNN [38] KDDCUP’99 91.50

NSL-KDD

UNSW-NB15

15 LSTM+CNN [39] CICIDS-001 99.83

UNSW-NB15 99.17

16 CNN [45] KDDCUP’99 99

CIC-IDS2018 91.50

17 Hybrid Learning DNN+ACO [42] CIC-IDS2017 98.25

18 CNN+RNN [43] CIC-IDS2018 97.75

19 WFEU+FFDN [44] AWID 99.66 99.77

UNSW-NB15 87.10 77.16

20 SGM+CNN [22] 99.74 96.54

CIC-IDS2017 99.85

21 WDLSTM+CNN [45] UNSW-NB15 97.17 98.43
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and evolving cyber threats. Furthermore, many of these works overlook the importance 
of data balancing techniques. This omission leads to variations in their model’s perfor-
mance, particularly in terms of false positive and negative as well as true positive and 
negative rates. Moreover, the performance scores of existing works are inadequate for 
efficient network attack detection. As a result, their models may not be suitable for real-
world scenarios where data imbalance is a common issue. Additionally, most of these 
papers employ the use of the complete feature set for conducting their experiments. This 
approach can be time-consuming and computationally intensive, making it less practi-
cal for real-time anomaly detection in large-scale network environments. Another nota-
ble limitation is the absence of time complexity analysis in the majority of these papers. 
Understanding the computational demands of their algorithms is crucial for assessing 
their feasibility in real-world applications. Lastly, No existing works explore the Stacking 
Feature Embedded approach, a method that can potentially enhance intrusion detection 
accuracy by incorporating meta-features. The omission of this approach limits the com-
prehensiveness and effectiveness of their intrusion detection models.

Methodology
This section describes our proposed framework and data preprocessing techniques, 
including feature resampling and scaling, stacking feature embedded and feature extrac-
tion. We also provide a brief recap of the ML algorithms employed for intrusion detec-
tion. The proposed framework for stacking feature embedded and dimension reduction 
for intrusion detection on big and imbalanced datasets can ensure a reliable secure 
network by detecting the receiving packets as normal or attack packets. The schematic 
block diagram of our proposed paradigm is illustrated in Fig. 1. The approach is struc-
tured into the following phases:

• Step-1: Initially, preprocessing is accomplished by handling the missing value, 
removing space from column names, dropping the duplicate rows, merging the 
similar classes with low instances and reducing the size of the dataset by converting 
data types int64 to int32 and float64 to float 32. This step is crucial for data qual-
ity improvement. It addresses missing values, data type conversions, and other data 
cleaning tasks to prepare the dataset for analysis.

• Step-2: In the feature scaling step, we use standardization for input features and label 
encoding for output features. Standardization of input features and label encoding of 
output features ensure that the data is on the same scale, which is essential for ML 
algorithms.

• Step-3: In the feature resemble step, we use Random Oversampling (RO) by adding 
random samples to the minority class to solve the problem of the imbalanced dataset 
and make it a balanced dataset. To address the class imbalance using RO in the data-
set, making it more suitable for training ML models.

• Step-4: In the stacking feature embedded step, we utilize the clustering results as 
meta-features, enhancing the original features within the IDS dataset. Using cluster-
ing results as meta-features enriches the dataset with additional information derived 
from underlying patterns and structures, which can enhance model performance.
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• Step-5: In the feature extraction step, we reduce the dimensionality of the data-
set by extracting the feature using Principal Component Analysis (PCA). Dimen-
sionality reduction using PCA can help improve model efficiency by reducing the 
number of features while retaining essential information.

Fig. 1 Proposed framework for stacking feature embedded with PCA for intrusion detection
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• Step-6: In this phase, we perform data splitting to create separate training and testing 
subsets from the pre-processed dataset. We employ a k-fold cross-validation tech-
nique with k set to 10. This step is crucial to enhance accuracy and evaluate the mod-
el’s performance effectively. It ensures that the model is rigorously tested on different 
subsets of the data.

• Step-7: In this step, we evaluate the model’s performance using four established ML 
algorithms: DT, RF, ET, and XGB Classification. We employ k-fold cross-validation 
for these models, aiming to identify the most suitable ML models for IDS.

• Step-8: In the final phase, we assess the model’s performance using various perfor-
mance metrics, including Precision, Recall, Confusion Matrix, Accuracy, F1-score, 
and ROC curve. These metrics serve as benchmarks for comparing our model’s per-
formance with existing models, enabling us to select the best-performing model for 
the IDS task.

Data collection

We have utilized two benchmark big datasets for our research schemes, namely UNSW-
NB15 [46] and CIC-IDS2017 [47]. Both datasets are realistic to the IDS environments 
and have up-to-date attack categories to detect attacks. The following sections give a 
closer look at each of the datasets.

UNSW‑NB15

UNSW-NB 15 is a fairly recent dataset that comprises a vast quantity of internet traf-
fic patterns with 9 types of malicious activities, as opposed to KDD’98, NSL-KDD, 
KDDCUP’ 99, CAIDA, Kyoto 2006 + and ISCX dataset [48]. It includes current mini-
mal imprint assaults as well as contemporary Netflow for both regular and unusual 
situations. The IXIA perforectStrom apparatus was utilized within the Cyber Run Lab 
of the ACCS (Australian Center for Cyber Security) to make synthetic modern assault 
and genuine advanced ordinary behaviors for creating the crude network packets of the 
UNSW-NB15 dataset [46]. By catching100 GB of the crude activity utilizing the Tcp-
dump instrument. To create completely 49 features with the class, 12 algorithms are cre-
ated by employing Argus and Bro-IDS devices. Within the four CSV records, two million 
and 540,044 records are put away. A setup is conducted on the dataset by dividing it into 
a training set and a testing set. It has a total of 257,673 entries were 175,341 entries in 
the training set and 82332 entries in the testing set. With their respective class labels, 
the dataset includes both real-world modern typical behavior and staged attack actions 
from the present day. It incorporates 9 distinct contemporary new attacks as well as a 
large range of real-world activities [49]. Among the sorts of attacks are fuzzier, backdoor, 
analysis, reconnaissance, exploit, generic, DoS, shellcode and worm attacks. The data are 
very unbalanced in this dataset. Figures 2 and 3 demonstrate the distribution of benign 
and attack data for binary and multi labels before preprocessing, after preprocessing and 
after oversampling, respectively, while Table 2 briefly describes all of the attack classes in 
this dataset. In Table 3 shows the frequency distribution of attack categories.
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CIC‑IDS2017

Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs) serve as 
vital defenses against the relentless and increasingly sophisticated landscape of network 
attacks. An ongoing challenge in the field is the scarcity of dependable test and valida-
tion datasets, which hinders the consistent and accurate evaluation of anomaly-based 
intrusion detection methods, as noted by Sharafaldin et al. in 2018 [47]. One promis-
ing solution to this issue lies in the CIC-IDS2017 dataset, which features a comprehen-
sive collection of benign network traffic and a diverse range of contemporary, frequently 
encountered cyber attacks. This dataset closely mirrors real-world scenarios by utilizing 
PCAPs. Moreover, it provides a detailed summary of traffic monitoring through the uti-
lization of CICFlowMeter, offering labeled network flows with key information, includ-
ing timestamps, source and destination IP addresses, source and destination ports, 
protocols, and delineated attack vectors, all meticulously documented in CSV files, 
as described by Sharafaldin et al. in their 2018 work on intrusion detection. To create 

Table 2 Briefly describe all of the attack classes in the UNSW-NB15 dataset

Attack categories Brief description

Fuzzers By supplying a vast volume of random data, the insider tries to crash a software, operating 
system, or network

Backdoor Cyber attackers can get illegal access to websites using this form of software. By focusing 
on vulnerable entry points, the intruders were able to disseminate malware throughout the 
system

Analysis Pay special attention to malware attacks and computer intrusions in which attackers gain 
permissions by utilizing their technological capabilities

Reconnaissance Gathers data on system flaws that can be used to gain control of the system

Exploit A piece of software that exploits security flaws and vulnerabilities. An attacker can gain 
unrestricted access with this attack

Generic Has the ability to decrypt all block ciphers without having to know the cipher’s structure

DoS User access to machines and network resources can be suspended by an attacker. By deliv-
ering too much confusing traffic, the attacker overwhelms the network

Shellcode It is a sequence of instructions that executes software commands to harm a machine

Worm It includes security flaws that attack the host machine and spread throughout the network. 
It is capable of exploiting many applications’ security flaws

Table 3 The frequency distribution of attack categories of the UNSW-NB15 dataset

Attack categories Count % (percentage)

Normal 93000 36.09

Generic 58871 22.85

Exploits 44525 17.28

Fuzzers 24246 9.41

DoS 16353 6.35

Reconnaissance 13987 5.43

Analysis 2677 1.04

Backdoor 2329 0.90

Shellcode 1511 0.59

Worms 174 0.07

Total 257673 100
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various kinds of assaults such as Brute Force FTP, Brute Force SSH, DoS, Heartbleed, 
Web Attack, Infiltration, Botnet and DDoS presented the B-Profile technology, which 
profiles the conceptual activity of individual contacts and produces lifelike benign base-
line flow. According to the dataset’s appraisal methodology which was proposed [50], 
there are 11 requirements that must be met in order to create a trustworthy benchmark 
dataset. only this dataset meets all of the requirements and hardly any of the prior IDS 
datasets were capable of covering those 11 requirements. The distribution of binary and 
multi categories of attack labels before preprocessing, after preprocessing and after over-
sampling is depicted in Fig. 4 and Fig. 5 and attack categories are shown in Table 4.

CIC‑IDS2018

The CSE-CIC-IDS2018 dataset [47], a collaborative initiative by the Communica-
tions Security Establishment (CSE) and the Canadian Institute for Cybersecurity 
(CIC), endeavors to meet the pressing need for comprehensive datasets suitable for 
rigorously testing intrusion detection systems, with a specific focus on network-
based anomaly detection. Anomaly detection holds significant promise for identify-
ing emerging threats, but its practical implementation has been hindered by inherent 
complexities, demanding extensive testing and evaluation. Conventional datasets 
used for these purposes have shown limitations, stemming from privacy constraints, 
excessive anonymization, and a lack of representation of contemporary threat trends. 
This project seeks to overcome these limitations by introducing a structured approach 

Fig. 2 Binary frequency distribution of UNSW-NB15 dataset



Page 15 of 44Talukder et al. Journal of Big Data           (2024) 11:33  

Fig. 3 multilabel frequency distribution of UNSW-NB15 dataset

Table 4 The frequency distribution of attack categories of the CIC-IDS2017 dataset

Attack categories Count % (percentage)

BENIGN 22,73,097 80.3

DoS Hulk 2,31,073 8.16

PortScan 1,58,930 5.61

DDoS 1,28,027 4.52

DoS GoldenEye 10,293 0.36

FTP-Patator 7938 0.28

SSH-Patator 5897 0.21

DoS slowloris 5796 0.2

DoS Slowhttptest 5499 0.19

Web Attack 2180 0.08

Bot 1966 0.07

Infiltration 36 0.01

Heartbleed 11 0.01

Total 28,30,743 100
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for crafting benchmark datasets. This approach revolves around the creation of user 
profiles that offer abstract representations of network events and behaviors. These 
profiles are thoughtfully aggregated to construct datasets that exhibit distinctive fea-
tures, encompassing a wide range of evaluation scenarios. The final dataset encom-
passes seven distinct attack scenarios, namely Brute-force, Heartbleed, Botnet, Denial 
of Service (DoS), Distributed Denial of Service (DDoS), Web attacks, and network 
infiltration. The attack infrastructure comprises 50 machines, while the target organ-
ization consists of 5 departments, incorporating 420 machines and 30 servers. The 
dataset includes meticulously collected network traffic and system logs from each 
machine, along with the extraction of 80 features through the application of CICFlow-
Meter-V3. This dataset constitutes an invaluable resource for the systematic evalua-
tion of intrusion detection systems and offers a response to the growing demand for 
dynamic, adaptable, and comprehensive datasets within the domain of cybersecurity. 
It holds substantial promise for contributing to the advancement of intrusion detec-
tion research and its practical implementation in real-world security scenarios.In our 
research, we have sampled 10% of the dataset from each class to accommodate com-
putational resource constraints. Our experimental dataset comprises 933,277 data 
points with 80 distinct features and encompasses 15 attack classes. The frequency 
distribution of attack categories for the CIC-IDS2018 dataset is detailed in Table 5. 

Fig. 4 Binary frequency distribution of CIC-IDS2017 dataset
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The distribution of attack categories in the bar chart, both before preprocessing and 
after preprocessing, as well as after applying oversampling techniques, is illustrated in 
Fig. 6.

Data preprocessing

Data preprocessing is a crucial part of any ML model. Models without preprocessing can 
create problems with invalid, overfitting, generating error models, providing low accu-
racy and much more. So, preprocessing is a very significant part of an ML model. To 
analyze our model, we have used some preprocessing techniques such as: handling the 
missing value by eradicating rows containing null, -inf and inf values, removing space 
from columns names to work with columns smoothly and dropping the duplicate rows 
by keeping the first one and delete the rest from the dataset, merge the similar classes 
with low instance from output columns and finally, reduce the dataset size by converting 
data types from int64 to int32 and float64 to float32 to train models with less dataset size 
but same dataset entries.

Fig. 5 Multilabel frequency distribution of the CIC-IDS2017 dataset
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Feature scaling to normalize the features

Feature scaling is a crucial preprocessing step aimed at normalizing the values of fea-
tures within a consistent range. In our approach, we have employed both standardiza-
tion and label encoding techniques to achieve this objective.

Standardization

Standardization, also known as z-score normalization, is a pivotal method for feature 
scaling. It involves subtracting the mean from each feature’s value and dividing it by the 
standard deviation. This technique is especially effective when there is a substantial dis-
parity in feature values within the input data. Post-standardization, all features share a 
common scale, boasting a mean ( µ ) of zero and a standard deviation ( σ ) of one. This 
process significantly enhances the accuracy of our predictive models. Equation  1 pre-
sents the mathematical representation of the Z-score normalization.

In this equation, x represents the original feature value, xnew signifies the standardized 
value, µ corresponds to the mean of the original feature, and σ denotes the standard 
deviation of the original feature.

Label encoding

Label encoding is the practice of converting categorical data into numerical val-
ues, facilitating their utilization in machine learning algorithms. To train a machine 
learning model, we must transform categorical values into numerical representa-
tions to facilitate the model-building process during the training phase. This is 
achieved by replacing categorical values with integers ranging from 0 to (n-1), where 

(1)xnew =
x − µ

σ

Table 5 The frequency distribution of attack categories of the CIC-IDS2018 dataset

Attack categories Count (%) Percentage

Benign 6,58,454 70.553

DDOS attack-HOIC 68,601 7.351

DDoS attacks-LOIC-HTTP 57,619 6.174

DoS attacks-Hulk 46,191 4.949

Bot 28,619 3.067

FTP-BruteForce 19,336 2.072

SSH-Bruteforce 18,759 2.01

Infilteration 16,193 1.735

DoS attacks-SlowHTTPTest 13,989 1.499

DoS attacks-GoldenEye 4151 0.445

DoS attacks-Slowloris 1099 0.118

DDOS attack-LOIC-UDP 173 0.019

Brute Force -Web 61 0.007

Brute Force -XSS 23 0.002

SQL Injection 9 0.001

Total 9,33,277 100
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Fig. 6 The frequency distribution of CIC-IDS2018 dataset
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’n’ represents the total number of unique classes. For instance, if there are 11 dif-
ferent categorical classes, we assign integers from 0 to 10 in place of these classes. 
Table 6 exemplifies the label encoding process.

Feature resampling using random oversampling (RO)

Feature resampling is a process to rebalance the feature from the imbalanced fea-
tures in a dataset. The Random oversampling (RO) delivers a naive method to 
rebalance the class spreading for an imbalanced dataset. It performs an arbitrarily 
replicating instances from the minority group and incorporating them into the train-
ing part. For instance, if the ratio of the dataset’s class is 20:80, then 20 belongs to 
the minority and 80 belongs to the majority class. It is efficient for skewed distribu-
tion algorithms and for a class that can stimulate to fit for the model by replicating 
instances. In this proposed framework we considered big imbalanced datasets where 
RO is very crucial to balance the dataset for improving the performance without 
occurring overfitting problem. The RO process is depicted in Fig. 7.

Table 6 Label encoding process

Attack types Label 
encoding

Normal 0

Generic 1

Exploits 2

Fuzzers 3

DoS 4

Reconnaissance 5

Analysis 6

Backdoor 7

SSH-Patator 8

Shellcode 9

Worms 10

Fig. 7 Random oversampling process
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Stacking Feature Embedded using clustering with PCA

Within our experimental framework, we introduce a novel methodology known as 
Stacking Feature Embedded with PCA (SFE-PCA). This approach combines cluster-
ing and dimensionality reduction techniques to improve the performance of our ML 
models.

In the “Stacking Feature Embedded” phase, we first employ clustering methods, such 
as K-Means and Gaussian Mixture (GM) Clustering, to group data points based on their 
intrinsic patterns. The clustered results are then embedded as meta-dataset points into 
the original feature space. This augmentation adds a layer of complexity to our dataset, 
capturing finer details that might be missed by conventional approaches. Subsequently, 
Principal Component Analysis (PCA) is applied to this enriched feature set. PCA allows 
us to reduce the dimensionality while retaining the most informative features. This step 
ensures that we maintain a set of highly relevant and discriminative features, optimizing 
the input for our machine learning models.

The integration of clustering and PCA into the SFE-PCA approach aims to strike a bal-
ance between detailed feature representation and computational efficiency. By capturing 
essential information through clustering and refining it with PCA, we aim to empower 
our ML models with a more focused and effective feature set, ultimately contributing to 
improved performance and precision in our experimental results.

Stacking Feature Embedded using clustering

The proposed SFE methodology serves as a fundamental component of our experimental 
framework. It is designed to address the challenges posed by big and imbalanced data-
sets, particularly in the context of machine learning-based network intrusion detection. 
This approach combines the strengths of clustering techniques and feature embedding 
to improve detection accuracy. The SFE process is illustrated in Fig. 8. The following are 
the working principles of this approach:

• Cluster Formation: The process begins with the application of two clustering meth-
ods: K-Means and Gaussian Mixture Clustering. These techniques group data points 
into coherent clusters based on shared characteristics and patterns. Clustering 
reveals the underlying structure in the data, enabling a more comprehensive under-
standing.

• Feature Embedding: The output generated by the clustering phase is then embedded 
into the original feature space. This integration creates a set of additional features, 

Fig. 8 SFE process
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often referred to as meta-dataset points. These new features capture nuanced infor-
mation that enriches the overall dataset.

• Enhanced Data Representation: The dataset now includes the original features along-
side the newly embedded meta-dataset points. This augmented representation offers 
a more comprehensive view of the data, enabling the detection of subtle anomalies 
and patterns.

The approach was adopted to address the limitations of traditional intrusion detection 
methods when dealing with big and imbalanced data. By integrating clustering tech-
niques and feature embedding, our objectives encompass several key aspects. Firstly, 
we seek to enrich the reliability and accuracy of intrusion detection, providing a more 
robust defense against cyber threats. Additionally, our approach enables the capture of 
fine-grained details within network traffic data, improving our ability to discern subtle 
anomalies. Moreover, it facilitates the detection of previously undetected threats, con-
tributing to a more comprehensive security posture. Lastly, by incorporating these tech-
niques, we seek to improve the overall performance and precision of our ML models, 
making them more effective in safeguarding network environments.

This approach represents a crucial advancement in the field, promising to contribute 
to the development of more robust and effective intrusion detection systems for real-
world network security challenges.

Feature extraction using PCA

The curse of a high dimensional dataset makes a model more complex and leads to 
overfitting that fallout an ill performance. It is essential to reduce dimension for getting 
reduced dataset, less computation time, quickly visualize the data and remove redun-
dant features from the dataset.

Feature reduction in a dataset involves the generation of new features from existing 
ones, with the aim of preserving the essential information present in the original fea-
tures. PCA is a statistical technique that employs an orthogonal transformation to con-
vert a set of correlated variables into a set of uncorrelated variables. In both exploratory 
data analysis and the development of predictive machine learning models, PCA stands 
as a fundamental and widely employed tool. Additionally, It serves as an invaluable unsu-
pervised statistical method for exploring the relationships between a set of variables. It 
differs from regression in that it seeks to create a line of best fit, which is often referred 
to as a form of generic factor analysis. To reduce the dimension of the features from n to 
k, the following steps should be preceded:

1. Equation  2 is used to equalize the data’s initial attribute values by the mean and 
variance.

Here n represents the instances number and xi represents the data points.
2. Substitute xi by xi − µ

3. Each vector xj(i) should be rescaled to have unit variance.

(2)µ =
1

n

n∑

i=1

xi
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4. Substitute xj(i) by xj(i)
σ

5. The Covariance Matrix CM should be calculated as follows:

6. Determine Eigen-vectors and their related Eigen-values of CM.
7. To generate w, sort the Eigen-vectors by decreasing their Eigen-values and choose k 

Eigen-vectors with the largest Eigen-values.
8. Equation 5 is used to convert the data onto the new subspace using w.

where x represents one sample as a d × 1 dimensional vector and y represents the con-
verted k × 1 dimensional vector in the resulting subspace.

The number of features Dp that each data point represents determines the computa-
tional complexity of running the designed PCA [51].

The reduction ratio (RR) is the number of output dimensions divided by the number of 
input dimensions. [52]. The efficiency of PCA is inverse to RR. The lower the RR value, 
the higher the PCA’s efficiency.

In our proposed framework we adopted PCA to reduce the dimension of our datasets 
to get better performance with less number of features than the original. The reduced 
features contain the most important information of the datasets to produce the better 
performance to detect intrusion efficiently. During our proposed work, we considered 
the RR is 10:45 or 22.22% for UNSW-NB15 and 10:79 or 12.65% for the CIC-IDS2017 
dataset, which is used to provide higher accuracy with a lower false rate. Several existing 
works took 13–22 or 28.88%−48.88% PCA for UNSW-NB15 [28, 44] and 22–52 or 27%−
65.82% PCA for CIC-IDS2017 datasets [36, 53]. In this study we considered 10 PCA for 
both datasets to check the performance at these lower RR to prove the efficiency of our 
approach. The PCA process is depicted in Fig. 9.

(3)σj
2 =

1

n

n∑

i=1

(xj(i))
2

(4)CM =
1

n

n∑

i=1

xi.(xi)
T

(5)y = wT ∗ x

(6)O(Dp
3)

Fig. 9 Dimension reduction process using PCA
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ML algorithms

In this section, we have leveraged supervised ML algorithms to assess our performance 
in binary and multilabel classification tasks using our datasets. The detection of intru-
sion in the context of network security using ML is outlined as follows:

Decision Tree (DT)

A non-parametric supervised ML technique called the DT is used to solve problems 
with regression and classification. The prediction of the value of the output of a dataset 
is generated gripping decision rules from dataset features. It’s easy to comprehend and 
interpret and it can be visualized. It can handle multi-output problems [54]. It is widely 
used in IDS. Decision node, having multiple branches and confirmed to make the deci-
sion and Leaf nodes, not contain any branches and the output of those decisions are the 
two nodes in DT. The starting decision node is called the root node. To build a decision 
tree, Attribute Selection Measure (ASM) is performed on information gain and the Gini 
index to select the feature [55]. The change of entropy based on a feature after split-
ting is called IG. Based on the value of IG, we have separated the node and constructed 
the decision tree based on the value of IG. The measure of purity or impurity creating 
a DT is called GI. To create binary splits, GI is used. The lower GI should be preferred 
as compared to the higher GI. Pruning is the practice of deleting nodes from a tree that 
is no longer needed to achieve the best decision tree possible, which is accomplished 
through Cost Complexity Pruning and Reduced Error Pruning. Equ. 7 and 8show GI and 
IG respectively.

where,

and the probability of a data point in the subset of Di of a dataset D is denoted by ( Pi ).

Random Forest (RF)

Random Forest (RF) is a renowned supervised ML technique rooted in the concept of 
ensemble learning which involves the amalgamation of multiple classifiers to tackle com-
plex problems and enhance the overall performance of the model. RF serves as a meta 
predictor that leverages averaging to enhance predictive accuracy, all the while mitigating 
overfitting concerns by adapting various decision tree classifiers to diverse subsets of the 

(7)Gini(D) = 1−

n∑

i=1

(pi)
2

(8)Gain(A) = Entropy(D)− EntropyA(D)

(9)Entropy(D) = −

n∑

i=1

pilog2(pi)

(10)EntropyA(D) =

n∑

i=1

Di

|D|
× Entropy(Di)
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dataset. A bootstrap randomized resampling method creates each decision tree [56]. It 
requires the least amount of training time compared to other algorithms and estimates out-
put with high accuracy; it also operates efficiently on large datasets. It improves the model’s 
accuracy and eliminates the problem of overfitting. The algorithm gathers the prediction 
results from each tree, sets up a voting mechanism and then performs a majority vote 
among the classifiers to make a classification decision. It builds a forecast using the results 
of many decision trees, which improves prediction accuracy [57].

Extra Tree (ET)

An ensemble ML technique and meta-estimator, Extra-Tree is also called Extremely Ran-
domized Trees. In order to increase the model’s prediction accuracy, it applies a series of 
randomized decision trees, referred to as extra-trees, to various sub-samples of datasets 
and averages them. This prevents over-fitting. It’s an ensemble model, just like bagging and 
random forest in an ensemble decision tree. From the training datasets, it creates a huge 
number of unpruned decision trees in order to function. For regression and classification, 
respectively, the majority vote and average are used to predict the decision tree. It builds 
decision trees using the entire learning sample, and divides the nodes by randomly choos-
ing all of the cut-points [58].

Extreme Gradient Boosting (XGB)

A supervised ML method that uses gradient-boosted decision trees to improve speed and 
performance. XGB has remarkable speed as compared to other gradient boosting imple-
mentations [59]. The combination of residuals from earlier models, which new models 
form-leads to its ultimate forecasts. This method employs a gradient descent to lessen loss 
and improve model performance. When looking for cutting-edge solutions for various ML 
problems, data scientists have come to appreciate it, as a scalable end-to-end tree-boosting 
technique. [60]. Within XGB, the objective functions are composed of two key components: 
the training loss and regularization, with θ representing the optimal settings for the training 
data xi and the associated labels yi . Equation 11 illustrates the objective functions employed 
in XGBoost.

In this context, L represents the training loss function, which is a metric for evaluating 
the model’s performance in predicting the training datasets.

For instance, a straightforward example of a training loss function that represents Mean 
Squared Error (MSE):

The logistic loss function is a frequently used loss function in logistic regression:

(11)O(θ) = L(θ)+�(θ)

(12)L(θ) =
∑

i

(yi −
∧
yi)

2

(13)L(θ) =
∑

i

[yi ln(1+ e−
∧
yi)+ (1− yi) ln(1+ e−

∧
yi)]
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� is the regularization that controls the complexity of the model, which helps us to avoid 
overfitting which is given by

In this case, γ denotes encouraging pruning, T denotes the number of terminal nodes, w 
denotes the leaf weights, and � is expected to lower the outcome’s sensitivity [59].

Experimental setup and evaluations
In this section, we have first covered the environment setup and performance evalua-
tion measures in this section. Then, we have included descriptions for the CIC-IDS2017, 
CIC-IDS2018, and UNSW-NB15 benchmark datasets. We have employed four classifi-
cation methods for our experiments: DT, RF, ET, and XGB. Data on binary and multila-
bel classification are used to examine the performance.

Environment setup

The experiments are conducted in a robust computing environment, utilizing a high-
performance 2X-large virtual machine instance. This instance boasts 8 cores, allowing 
for efficient concurrent task handling and enhanced multi-threading capabilities. With 
64 GB of RAM, the system is well-equipped to accommodate memory-intensive appli-
cations, and it offers a generous 40 GB of disk space for data storage. The experiments 
are seamlessly executed using the Jupyter notebook through Anaconda Navigator. To 
support our performance evaluation, we leverage the Python programming language 
and a suite of indispensable libraries, including TensorFlow, Keras, Pandas, Scikit-learn, 
NumPy, Seaborn, Matplotlib, Imbalanced-learn etc.

Performance evaluation metrics

Several measures, such as accuracy, precision, recall, F1-score, ROC curve, and confu-
sion matrix, are used to evaluate the performance of our proposed model. The following 
defines these performance matrices:

Confusion matrix

The Confusion Matrix is a valuable tool for evaluating ML classification performance. It 
is a tabular representation containing four combinations of predicted and actual values: 
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) [61]. 
Table 7 illustrates a confusion matrix where TP represents correctly anticipated positive 
values, TN indicates accurately projected negative values, FP corresponds to incorrectly 

(14)�(f ) = γT +
1

2
�

T∑

j=1

�w�2

Table 7 Confusion Matrix

Actual positive Actual 
negative

Predicted positive TP FP

Predicted negative FN TN
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forecasted positive values, and FN signifies inaccurately predicted negative values. This 
matrix is essential for assessing Recall, F1-score, Accuracy and Precision.

Accuracy

Accuracy is a fundamental performance metric, representing the proportion of correctly 
predicted observations to the total observations. It is calculated as follows:

Precision

Precision quantifies the ratio of correctly predicted positive values to the total number of 
predicted positive values:

Recall

Recall measures the ratio of correctly predicted positive values to all actual positive 
values:

F1‑score

The F1-score represents the harmonic mean of precision and recall for classification 
problems:

ROC curve

ROC curves are commonly employed two-dimensional plots for assessing the signifi-
cance of classifiers [62]. These graphs provide a clear visualization of how a classifier’s 
sensitivity and specificity trade-off at various classification thresholds. This feature is 
valuable for selecting classifiers that align with specific user requirements, often associ-
ated with variable error costs and accuracy expectations, as noted in studies by [63, 64]. 
The area under the curve (AUC) represents the degree of discrimination in the ROC 
curve, while the ROC curve itself is a probability curve that assesses the model’s abil-
ity to distinguish between different categories. The true positive rate is plotted on the 
Y-axis, and the false positive rate is on the X-axis. An AUC value approaching 1 sug-
gests that the model excels at distinguishing between class labels, while an AUC value 
approaching 0 indicates poor predictive performance, implying that the results mirror 
randomness. This method serves as a means to visualize the classification’s efficiency, as 

(15)Accuracy =
TP + TN

TP + FP + FN + TN

(16)Precision =
TP

TP + FP

(17)Recall =
TP

TP + FN

(18)F1− Score = 2 ·
(Precision · Recall)

(Precision+ Recall)
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emphasized by [65]. In essence, classifiers with higher ROC curves are considered supe-
rior, as supported by [66].

K-fold cross-validation (CV)

K-fold CV is a standard method that partitions the training set into k smaller sets or 
folds. The model is trained on each fold, and it is tested on the remaining data after that. 
Using k-fold CV, the performance measure is obtained as the average of these values. We 
use k-fold CV in our studies, where k is 10 and the dataset is split into 90% training and 
10% testing for each fold. Figure 10 illustrates the k-fold CV process.

Result analysis
In our analysis of the results, we evaluated the performance of four ML models for Intru-
sion IDS such as DT, RF, ET and XGB. Our focus was on assessing key performance met-
rics by considering “All Features” and a novel “Proposal” feature set in our evaluation.

Results of UNSW-NB15 dataset

The performance results of binary and multilabel classification on the UNSW-NB15 
dataset are presented in Fig. 11, as well as in Table 8 and Table 9. These figures and tables 
showcase the experimental results for two distinct scenarios: All Features: In this case, 
“All Features” represent the dataset where we did not oversample any features. We pre-
processed, scaled, and applied these features directly to the machine learning models for 
training and performance evaluation. Proposal Features: Here, the “Proposal” refers to a 
methodology that encompasses various preprocessing steps that have been undertaken 
for evaluation. These results provide a comprehensive view of our model’s performance 
and the impact of feature selection and preprocessing on IDS using the UNSW-NB15 
dataset.

In the bar chart, it is evident that our proposed model exhibits a noteworthy increase 
in accuracy rates for binary and multilabel classification. Notably, the rate of accuracy 
improvement is more pronounced in the context of multilabel classification when com-
pared to binary classification

The binary result analysis, as presented in Table 8, showcases the performance evalu-
ation of various ML algorithms using both the “All Feature” and “Proposed” feature 
sets. Notably, among these algorithms, DT consistently emerges as the top performer 

Fig. 10 K-fold cross-validation process
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in terms of accuracy, precision, recall, and F1-score. With the “Proposed” feature set, 
RF demonstrates outstanding performance, achieving an impressive accuracy of 99.59%. 
This places RF at the forefront, surpassing other algorithms, including DT with an 

Fig. 11 Binary and multilabel accuracy performance bar chart for all features and proposal features for 
UNSW-NB15 dataset

Table 8 Performance analysis of binary classification for UNSW-NB15 dataset

ML Accuracy Precision Recall F1-score

All feature Proposal All feature Proposal All feature Proposal All feature Proposal

DT 98.56 98.97 98.42 98.98 98.44 98.97 98.44 98.97

RF 98.55 99.59 98.46 99.59 98.43 99.59 98.43 99.59

ET 97.9 99.59 97.71 99.59 97.73 99.59 97.73 99.59

XGB 98.9 98.81 98.71 98.81 98.82 98.81 98.82 98.81

Table 9 Performance metrics of multilabel classification for UNSW-NB15 dataset

ML Accuracy Precision Recall F1-score

All feature Proposal All feature Proposal All feature Proposal All feature Proposal

DT 85.38 99.79 60.24 99.79 60.63 99.79 60.63 99.79

RF 86.42 99.95 62.45 99.95 58.06 99.95 58.06 99.95

ET 85.55 99.95 59.49 99.95 56.15 99.95 56.15 99.95

XGB 87.73 95.04 76.92 95.29 66.59 95.03 66.59 95.03
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accuracy of 98.97%, XGB with 98.81%, and ET with 99.59%. This remarkable increase in 
accuracy is consistently reflected in other metrics. The success of RF can be attributed to 
its ensemble learning approach, which harnesses the strengths of multiple decision trees 
to create a robust and highly accurate model.

The multilabel performance analysis, as shown in Table 9, evaluates the performance 
of various ML algorithms on multiclass using both the “All Feature” and “Proposal” fea-
ture sets. Among these algorithms, RF consistently emerges as the top performer in 
terms of accuracy, precision, recall, and F1-score. Notably, with the “Proposal” feature 
set, RF and ET achieve an impressive 99.95% accuracy, surpassing all other algorithms, 
including DT with an accuracy of 98.97% and XGB with 95.04%. This substantial accu-
racy enhancement extends to precision, recall, and F1-score metrics, underscoring RF’s 
and ET’s success attributed to their ensemble learning approach, which leverages the 
strengths of multiple decision trees to create a robust model

The binary and multiclass confusion matrix is displayed in Fig. 12 and Fig. 13 respec-
tively. A successful predictive model is characterized by a low number of Type 1 (FP) 
and Type 2 (FN) errors in the confusion matrix. For RF, the TP rate stands impressively 
at 49.71%, while the TN rate is equally strong at 49.88%. Additionally, the FP and FN 
rates are remarkably low, at 0.15% and 0.26%, respectively. These findings highlight RF’s 

Fig. 12 Binary confusion matrix for UNSW-NB15 dataset
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robust performance in accurately identifying positive cases (intrusions) and negative 
cases (non-intrusions), making it a compelling choice for intrusion detection. For ET, the 
TP rate is an outstanding 49.77%, and the TN rate is equally impressive at 49.82%. Fur-
thermore, the FP and FN rates are notably low, at 0.08% and 0.32%, respectively. These 
results underscore the exceptional performance of ET in accurately identifying both 
positive cases (intrusions) and negative cases (non-intrusions), making it a compelling 
choice for intrusion detection.

Among all the evaluated models, it is evident that both RF and ET outperform the oth-
ers, showcasing superior performance in terms of TP and TN rates for IDS. They con-
sistently deliver higher TP and TN rates, demonstrating their effectiveness in accurately 
identifying intrusions while maintaining a low rate of false positives and false negatives 

The ROC curve is depicted in Fig.  14 for binary and multilabel classification. 
The ROC Curves clearly illustrate that the AUC (area under the curve) values are 
approaching 1, indicating a strong predictive model’s ability to distinguish between 
classes. In the binary classification scenario, the AUC scores are 98.97% for DT, 
99.98% for RF, 99.98% for ET, and 99.93% for XGB, with RF and ET algorithms lead-
ing in AUC score. In the multiclass classification, the AUC scores are 99.88% for 

Fig. 13 Multilabel confusion matrix for UNSW-NB15 dataset
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DT, 100% for RF, 100% for ET, and 99.83% for XGB, with RF and ET again displaying 
superior AUC scores compared to the others. These high AUC scores, close to 1, 
indicate the strong predictive performance of the models on the UNSW-NB15 data-
set, further validating their effectiveness.

Fig. 14 Binary and multilabel ROC curve for UNSW-NB15 dataset

Fig. 15 Binary and multilabel accuracy performance bar chart for all features and proposal features for the 
CIC-IDS2017 dataset
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Results of CIC-IDS2017 dataset

The performance results for binary and multilabel classification on the CIC-IDS2017 
dataset are presented in Fig. 15, along with detailed metrics in Table 10 and Table 11. 
These figures and tables display the experimental results for two distinct scenarios: 
All Features: In this case, “All Features” represent the dataset where features are nei-
ther oversampled nor modified extensively. These features are preprocessed, scaled, 
and then used to train and evaluate the ML models. Proposal Features: The “Proposal” 
indicates a set of features that have undergone various preprocessing steps and modi-
fications as part of our proposed methodology for evaluation. The inclusion of both 
scenarios allows for a comprehensive assessment of model performance on the CIC-
IDS2017 dataset

In the bar chart, it’s evident that our proposed model exhibits a substantial increase 
in accuracy for binary and multilabel classification. Interestingly, the rate of accuracy 
improvement is notably higher in multilabel classification when compared to binary 
classification.

In the binary classification, the accuracy rates on the proposed model are as follows: 
99.91% for DT, 99.94% for RF, 99.95% for ET, and 99.65% for XGB.

The accuracy rates for multilabel classification are 99.91% for DT, 99.94% for RF, 
99.95% for ET, and 99.65% for XGB on the proposed model. The confusion matrix is 
displayed in Fig. 16 for binary classification and Fig. 17 for multilabel classification. 
Upon examining the confusion matrix results for binary classification, it’s observed 
that RF, ET, and XGB provide similar accuracy rates, with slight variations in their TP, 
FP, and FN rates.

In the binary confusion matrix, it’s insightful to note that the TP rates are 50.07% 
for DT, RF, ET, and 49.91% for XGB. The TN rates are 49.84% for DT, 49.87% for RF, 
49.88% for ET, and 49.74% for XGB. Additionally, the FP rates are 0.0% for DT, RF, 
ET, and 0.17% for XGB, while the FN rates are 0.08% for DT, 0.06% for RF, 0.05% 

Table 10 Performance metrics for binary classification for CIC-IDS2017 dataset

ML Accuracy Precision Recall F1-score

All feature Proposal All feature Proposal All feature Proposal All feature Proposal

DT 99.87 99.91 99.78 99.91 99.78 99.91 99.78 99.91

RF 99.9 99.94 99.82 99.94 99.82 99.94 99.82 99.94

ET 99.83 99.95 99.73 99.95 99.7 99.95 99.7 99.95

XGB 99.92 99.65 99.83 99.65 99.86 99.65 99.86 99.65

Table 11 Performance analysis of multilabel classification for CIC-IDS2017 dataset

ML Accuracy Precision Recall F1-score

All feature Proposal All feature Proposal All feature Proposal All feature Proposal

DT 99.85 99.99 98.69 99.99 94.69 99.99 94.69 99.99

RF 99.89 99.99 98.98 99.99 94.17 99.99 94.17 99.99

ET 99.83 99.99 98.57 99.99 94.14 99.99 94.14 99.99

XGB 99.92 99.94 99.3 99.94 94.47 99.94 94.47 99.94
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for ET, and 0.18% for XGB. RF employs bootstrap repetitions and selects the best-
split method, making it an effective ensemble of independent decision trees working 
together. ET, on the other hand, uses the entire original sample and selects the split-
ting operation at random, resulting in an ensemble of extra trees. This diversity in 
learning methods contributes to achieving the highest accuracy. For multilabel clas-
sification, DT, RF and ET exhibit similar and superior accuracy with minor variances 
in TP, FP, and FN rates. Notably, XGB demonstrates lower accuracy compared to the 
other algorithms in binary and multilabel classification scenarios.

The ROC Curve, as illustrated in Fig. 18, provides a comprehensive view of the mod-
el’s performance in binary and multilabel classification. The ROC Curves showcase that 
the area under the curve (AUC) values are approaching the ideal value of 1, indicating a 
highly effective predictive model for distinguishing between classes. In the binary clas-
sification, the XGBoost (XGB) algorithm stands out with the highest AUC score. Spe-
cifically, the AUC scores are as follows: 99.92% for Decision Trees (DT), 99.98% for 
Random Forest (RF), 99.97% for Extra Trees (ET), and an impressive 99.99% for XGB. In 
multiclass classification, RF, ET, and XGB collectively achieve the highest AUC scores. 

Fig. 16 Binary confusion matrix for CIC-IDS2017 dataset
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Specifically, the AUC scores are 99.99% for DT, a perfect 100% for RF, ET, and XGB, 
emphasizing the exceptional predictive performance of these algorithms. These 

Fig. 17 Multilabel confusion matrix for CIC-IDS2017 dataset

Fig. 18 Binary and multilabel ROC curve for CIC-IDS2017 dataset
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consistently high AUC scores, close to 1, underscore the strong predictive capabilities of 
the model on the CIC-IDS2017 dataset, indicating its suitability for the task.

Results of CIC-IDS2018 dataset

The performance results of the CIC-IDS2018 dataset are presented in Fig.  19, as well 
as in Table  12. These figure and table showcase the experimental results for two dis-
tinct scenarios: All Features: In this case, “All Features” represent the dataset where we 
did not oversample any features. We preprocessed, scaled, and applied these features 
directly to the machine learning models for training and performance evaluation. Pro-
posal Features: Here, the “Proposal” refers to a methodology that encompasses various 
preprocessing steps that have been undertaken for evaluation. These results provide a 
comprehensive view of our model’s performance and the impact of feature selection and 
preprocessing on IDS using the CIC-IDS2018 dataset.

In the bar chart, it is evident that our proposed model exhibits a noteworthy increase 
in accuracy rates for attack classification. Notably, the rate of accuracy improvement is 
more pronounced in the context of the proposed feature when compared to all feature.

The result analysis, as presented in Table 12, highlights the performance assessment of 
various ML algorithms using both the “All Feature” and “Proposed” feature sets. Notably, 
among these algorithms, DT and ET consistently stand out as top performers in terms 
of accuracy, precision, recall, and F1-score. When considering the “Proposed” feature 
set, both DT and ET exhibit exceptional performance, achieving an impressive accu-
racy of 99.94%, surpassing other algorithms, including RF with an accuracy of 99.93% 
and XGB with 98.87%. This remarkable increase in accuracy extends to precision, recall, 

Fig. 19 Accuracy performance bar chart for all features and proposal features for the CIC-IDS2018 dataset

Table 12 Performance analysis of CIC-IDS2018 dataset

ML Accuracy Precision Recall F1-score

All feature Proposal All feature Proposal All feature Proposal All feature Proposal

DT 98.88 99.94 95.25 99.94 95.21 99.94 95.21 99.94

RF 98.74 99.93 98.25 99.93 91.55 99.93 91.55 99.93

ET 98.37 99.94 96.81 99.94 90.38 99.94 90.38 99.94

XGB 99.11 99.87 98.51 99.87 96.51 99.87 96.51 99.87
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and F1-score metrics, underscoring the effectiveness of DT and ET. Their success can be 
attributed to their decision tree-based learning approach, which allows them to effec-
tively model complex relationships in the data. Additionally, they demonstrate robust-
ness when applied to the “Proposed” feature set, which may involve a more intricate 
feature engineering process.

The confusion matrix is displayed in Fig. 20. A successful predictive model is charac-
terized by a low number of Type 1 (FP) and Type 2 (FN) errors in the confusion matrix. 
For DT, the TP rate stands impressively at 49.74%, while the TN rate is equally strong 
at 49.76%. Additionally, the FP and FN rates are remarkably low, at 0.16% and 0.24%, 
respectively. These findings highlight DT’s robust performance in accurately identifying 
positive cases (intrusions) and negative cases (non-intrusions), making it a compelling 
choice for intrusion detection. For ET, the TP rate is an outstanding 49.78%, and the TN 
rate is equally impressive at 49.82%. Furthermore, the FP and FN rates are notably low, 
at 0.18% and 0.28%, respectively. These results underscore the exceptional performance 
of ET in accurately identifying both positive cases (intrusions) and negative cases (non-
intrusions), making it a compelling choice for intrusion detection.

Among all the evaluated models, it is evident that both DT and ET outperform the 
others, showcasing superior performance in terms of TP and TN rates for IDS. They 

Fig. 20 Confusion matrix for CIC-IDS2018 dataset
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consistently deliver higher TP and TN rates, demonstrating their effectiveness in accu-
rately identifying intrusions while maintaining a low rate of false positives and false 
negatives.

In Fig. 21, the ROC curve depicts the performance of machine learning models on the 
CIC-IDS2018 Dataset. The ROC curves clearly demonstrate that the AUC values for DT, 
RF, ET, and XGB approach the desirable threshold of 1, indicative of an effective model 
for distinguishing between different classes. Notably, both RF and ET achieve the high-
est AUC scores. Specifically, the AUC scores are 99.99% for DT, a perfect 100% for RF 
and ET, and 84.85% for XGB. These high AUC scores, approaching 1, signify the strong 
predictive performance of the model on the CIC-IDS2018 dataset, underlining its effec-
tiveness in class differentiation.

Discussion

We have conducted a comprehensive comparative analysis of our proposed model in 
conjunction with other models. The comparative results are systematically presented in 

Fig. 21 ROC curve for CIC-IDS2018 dataset

Table 13 Comparison analysis of UNSW-NB15 dataset

SI. No. Authors Data 
balancing

Dimension 
reduction

Algorithm Selected 
reature

Binary 
Acc(%)

Multilabel 
Acc(%)

1 [25] SMOTE – ELM – 98.43 –

2 [26] – XGB DT, ANN 19 90.85 (DT) 77.51 (ANN)

3 [29] – MQTT+TCP RF – 98.67 97.37

4 [44] – WFEU FFDNN 22 87.10 77.16

5 [38] – – DNN – 91.50 –

6 [37] – – ANN – – 97.89

7 [39] STL – LSTM+CNN – – –

8 [22] SGM – CNN – – 96.54

9 [45] – – CNN-WDL-
STM

– 97.17 98.43

10 Our Proposal RO SFE-PCA RF 10 99.59 99.95

11 Our Proposal RO SFE-PCA ET 10 99.59 99.95
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tabular format, as outlined in Table 13 for the UNSW-NB15 dataset, Table 14 for the 
CIC-IDS2017 dataset, and Table 15 for the CIC-IDS2018 dataset. These tables offer val-
uable insights into the performance of our model relative to other models, facilitating a 
detailed examination of the results across different datasets.

In our research, we address the challenge of imbalanced datasets by employing Ran-
dom Oversampling (RO). Additionally, we apply the Stacking Feature Embeded (SFE) 
technique to augment feature sets and create metadata. Subsequently, we reduce the 
dimensionality to 10 features using Principal Component Analysis (PCA). Our model 
is then trained using popular machine learning algorithms, including DT, RF, ET, and 
XGB. The performance of our model is evaluated on two prominent datasets: UNSW-
NB15 and CIC-IDS2017. For the UNSW-NB15 dataset, we achieve noteworthy accuracy 
scores. In binary classification, our model attains accuracy rates of 98.97% (DT), 99.59% 
(RF), 99.59% (ET), and 98.81% (XGB). In multilabel classification, the accuracy scores 
reach 99.79% (DT), 99.95% (RF), 99.95% (ET), and 95.04% (XGB). For the CIC-IDS2017 
dataset, our model continues to excel. In binary classification, we obtain accuracy rates 
of 99.91% (DT), 99.94% (RF), 99.95% (ET), and 99.65% (XGB). In multilabel classifica-
tion, the accuracy scores are impressive, with 99.99% for DT, RF, and ET, and 99.94% for 
XGB. Furthermore, in the evaluation on the CIC-IDS2018 Dataset, our model maintains 
high accuracy rates. We achieve accuracy scores of 99.94% (DT), 99.93% (RF), 99.94% 
(ET), and 99.87% (XGB). The results analysis reveals that the highest accuracy rates for 

Table 14 Comparison analysis of CIC-IDS2017 dataset

SI. No. Authors Data balancing Dimension reduction Algorithm Selected 
feature

Accuracy(%)

1 [30] – IGR+CR +ReF PART – 99.95 (Binary)

2 Our Proposal RO SFE-PCA ET 10 99.95 (Binary)

3 [34] – t-SNE RF – 99.78

4 [53] – NTLBO LR 22 97.00

5 [35] – EDFS DT – 98.80

6 [36] – IG+Ranking +Grouping RF 22 99.86

7 [36] – IG+Ranking +Grouping J48 52 99.87

8 [42] – – DNN+ACO – 98.25

9 [22] SGM – CNN – 99.85

10 Our Proposal RO SFE-PCA DT 10 99.99

11 Our Proposal RO SFE-PCA RF 10 99.99

12 Our Proposal RO SFE-PCA ET 10 99.99

Table 15 Comparison analysis of CIC-IDS2018 dataset

SI. No. Authors Data 
balancing

Dimension 
reduction

Algorithm Selected 
feature

Accuracy (%)

1 [33] – HFS LightGBM 24 97.73

2 [43] – – CNN +RNN – 97.75

3 [41] – – CNN – 91.50

4 Our proposal RO SFE-PCA DT 10 99.94

5 Our proposal RO SFE-PCA RF 10 99.94
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binary and multilabel classification are 99.59% and 99.95%, achieved with RF and ET 
algorithms on the UNSW-NB15 dataset. In contrast, for the CIC-IDS2017 dataset, the 
highest accuracy rate is 99.99% for binary classification using the ET model and 99.99% 
for multilabel classification using DT, RF, and ET models.

In summary, our proposed model consistently outperforms existing methods in binary 
and multilabel classification scenarios with reduced features. The 10-feature dimension 
reduction (RR is 10:N, where N represents the input features) significantly enhances 
intrusion detection accuracy, minimizing false positive and negative rates. These results 
emphasize the importance of considering at least 10 features for optimal intrusion detec-
tion accuracy across various dimensional datasets.

Time complexity
Time complexity, which denotes the time required for executing an operation, plays a 
crucial role in assessing the efficiency of algorithms [67]. In the context of IDS, evaluat-
ing the time complexity of ML models is paramount for efficient operation. We analyze 
the time complexity of key algorithms such as DT, RF, ET and XGB models.

The time complexity of DT is typically O(n ·m · log(m)) , with ’n’ as data points and 
’m’ as features. It constructs a tree structure by recursively partitioning data based on 
features. RF consists of multiple DTs. Its time complexity is O(t · n ·m · log(m)) , with 
’t’ representing the number of trees. ET, an ensemble method, has a time complexity of 
O(t · n ·m · log(m) , building multiple randomized DTs to improve performance. XGB’s 
time complexity varies depending on the implementation but is generally O(t · d) , where 
’t’ represents the number of trees and ’d’ stands for the depth of the trees. The computa-
tional efficiency of the ML models utilized in our study is detailed in Table 16, displaying 
their respective time complexities.

Conclusion
In conclusion, our research has introduced a novel approach to network intrusion 
detection by combining various techniques to address the challenges of imbalanced 
data, feature embedding, and dimension reduction. Our model leverages the Ran-
dom Oversampling (RO) method to tackle data imbalance, utilizes feature embed-
ding through Kmeans and GM clustering results, and employs Principal Component 
Analysis (PCA) for dimension reduction. We have evaluated our model’s performance 
with four prominent ML algorithms, DT, RF, ET and XGB for binary and multilabel 
classification studies using three benchmark datasets: UNSW-NB15, CIC-IDS2017 
and CIC-IDS2018. Our experimental results have demonstrated exceptional accu-
racy rates, with RF and ET achieving 99.59% and 99.95% accuracy, respectively, on 

Table 16 Time complexity of ML models in IDS

SI. No. ML model Time complexity

1 DT (Decision Trees) O(n ·m · log(m))

2 RF (Random Forests) O(t · n ·m · log(m))

3 ET (Extra Trees) O(t · n ·m · log(m))

4 XGB (XGBoost) O(t · d)
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the UNSW-NB15 dataset. Besides, our model has achieved remarkable accuracy 
rates, with DT, RF, and ET reaching 99.99% on the CIC-IDS2017 dataset and for CIC-
IDS2018 we achieved 99.94% accuracy rate using DT and RF models. These perfor-
mance scores surpass those of existing methods, indicating the effectiveness of our 
approach in enhancing network intrusion detection. Our proposed model brings 
about substantial improvements across these benchmark datasets. Specifically, we 
observed a significant increase in accuracy, with enhancements ranging from 1.52% 
to 22.19% for UNSW-NB15, 0.12% to 2.99% for CIC-IDS2017, and 1.99% to 8.44% for 
CIC-IDS2018 when compared to prior research. These results highlight the remark-
able advancements our model introduces in the field of intrusion detection.

Our contributions to the field of network intrusion detection are substantial. We 
have addressed the persistent challenge of imbalanced data, ensuring that our model 
can handle real-world scenarios where intrusion instances are often rare compared 
to benign network traffic. The incorporation of feature embedding techniques has 
allowed us to capture more nuanced patterns and anomalies within the data, thus 
improving detection accuracy. Additionally, the application of PCA for dimension 
reduction has not only reduced computational complexity but also enhanced the 
interpretability of the model. The benefits of our new model extend beyond accuracy 
improvements. It offers a more robust and adaptable solution for intrusion detection, 
capable of handling varying data distributions and network environments. By com-
bining multiple machine learning algorithms, our model harnesses the strengths of 
each, providing a versatile tool for network security professionals. Furthermore, its 
enhanced accuracy and lower false positive rates can significantly reduce the burden 
of false alarms in intrusion detection systems, allowing security teams to focus on the 
most critical threats.

In practical terms, our model can be invaluable for IDS in safeguarding network infra-
structure. Its high accuracy rates and adaptability make it well-suited for identifying 
both known and novel threats, enhancing the overall security posture of organizations. 
The reduced false positive rates contribute to a more efficient use of resources, as secu-
rity teams can concentrate their efforts on genuine security incidents. Ultimately, our 
model represents a significant advancement in the field of network intrusion detection, 
offering a more reliable and efficient solution for protecting critical network assets

The limitation of our research is that we did not employ deep learning models along 
with optimization techniques. While our current approach has demonstrated remark-
able results, there remains untapped potential for further improving the performance of 
intrusion detection systems. In the future, we envision expanding our work to incorpo-
rate deep learning models, which have shown great promise in various fields, including 
intrusion detection. DL algorithms, such as DNN, RNN or Hybrid are capable of cap-
turing intricate patterns and representations in complex data, which can be particularly 
advantageous in the realm of network security.
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