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Abstract 

Deep fake technology has emerged as a double-edged sword in the digital world. 
While it holds potential for legitimate uses, it can also be exploited to manipulate video 
content, causing severe social and security concerns. The research gap lies in the fact 
that traditional deep fake detection methods, such as visual quality analysis or incon‑
sistency detection, need help to keep up with the rapidly advancing technology used 
to create deep fakes. That means there’s a need for more sophisticated detection tech‑
niques. This paper introduces an enhanced approach for detecting deep fake videos 
using graph neural network (GNN). The proposed method splits the detection process 
into two phases: a mini-batch graph convolution network stream four-block CNN 
stream comprising Convolution, Batch Normalization, and Activation function. The final 
step is a flattening operation, which is essential for connecting the convolutional layers 
to the dense layer. The fusion of these two phases is performed using three differ‑
ent fusion networks: FuNet-A (additive fusion), FuNet-M (element-wise multiplicative 
fusion), and FuNet-C (concatenation fusion). The paper further evaluates the proposed 
model on different datasets, where it achieved an impressive training and validation 
accuracy of 99.3% after 30 epochs.
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Introduction
The rise of deep fake technology has opened a new frontier in the digital world, ena-
bling the creation of convincing synthetic video content. While this advancement offers 
potential for positive applications, it poses significant risks to information security and 
integrity. "Deep fake videos"—artificially synthesized video content manipulated using 
deep learning methodologies—pose significant threats to information integrity and 
security. The ability to manage videos can lead to misinformation, identity theft, and 
other forms of cybercrime. This has spurred a growing need for effective detection 
techniques to counteract the misuse of deep fake technology. Detecting deep fakes is 
complex due to the sophistication of contemporary AI-driven synthesis techniques. 
Traditional detection methods, such as those based on visual quality or inconsistencies, 
become less effective as deep fake technology evolves [1–3].

*Correspondence:   
mostafa_elgayar@mans.edu.eg

1 Department of Information 
Technology, Faculty 
of Computers and Information, 
Mansoura University, 
Mansoura 35516, Egypt
2 Department of Computational 
Mathematics, Science 
and Engineering (CMSE), College 
of Engineering, Michigan State 
University, East Lansing, MI 
48824, USA
3 Department of Mathematics, 
Faculty of Science, Mansoura 
University, Mansoura 35516, 
Egypt
4 Department of Statistics 
and Operations Research, 
College of Science, King Saud 
University, P.O. Box 2455, 
11451 Riyadh, Saudi Arabia
5 Artificial Intelligence 
Department, Faculty 
of Computer and Artificial 
Intelligence, Benha University, 
Banha, Egypt
6 Faculty of Computer Science 
and Engineering, New Mansoura 
University, Gamasa, Egypt

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00884-y&domain=pdf
https://orcid.org/0000-0002-4644-1835


Page 2 of 27El‑Gayar et al. Journal of Big Data           (2024) 11:22 

Deepfakes, artificial intelligence-based synthetic media where individuals in existing 
images or videos are replaced with someone else’s likeness, have become increasingly 
prevalent. The rapid advancement in deepfake technologies has made it increasingly 
challenging to distinguish between natural and manipulated media, posing significant 
threats to information credibility, privacy, and security. While various deepfake detec-
tion methods have been proposed, many need help with overfitting issues, high compu-
tational complexity, and lack of generalizability across different datasets and deepfake 
techniques. Additionally, most current methods focus primarily on video and image-
based deepfakes and overlook the potential use of other forms of media, like audio and 
text. Given these challenges, there is an urgent need for a robust, efficient, and com-
prehensive deepfake detection method that can effectively handle various media types 
and deepfake techniques. Furthermore, as deepfake technologies continue to evolve, it is 
crucial that our detection methods also adapt. Deep fakes can now convincingly mimic 
facial expressions, lip movements, and even voices, making them virtually indistinguish-
able from real videos. Furthermore, the wide variety of deep fake generation methods 
and their continual improvement make developing a universally applicable detection 
algorithm challenging. There is also the challenge of dataset imbalance, as the quantity 
of genuine videos vastly outweighs that of deep fakes, leading to biased detection results. 
Traditional Convolution Neural Networks (CNNs), while powerful image and video 
analysis tools, have certain limitations when applied to deep fake detection. One such 
limitation is their limited temporal context. CNNs analyze each video frame indepen-
dently, not considering the temporal correlations between different frames. This means 
they might miss out on material inconsistencies in deepfakes that could be detected by 
considering multiple frames in context. Additionally, CNNs are susceptible to adversar-
ial attacks. These attacks introduce subtle perturbations into an image or video designed 
to fool CNN and cause it to misclassify the content. This vulnerability can be exploited 
to create undetected deepfakes that pass through CNN-based detection systems. More-
over, CNNs are prone to overfitting, especially when trained on limited data. This could 
lead to poor generalization, causing the CNN to fail when encountering new or different 
types of deepfakes. The issue of overfitting could be more problematic in the context of 
deepfake detection due to the relative scarcity of deepfake videos for training purposes.

In this paper, we address these challenges by introducing a novel approach combin-
ing GNN and CNNs’ strengths. Our proposed model exploits GNN’s ability to capture 
spatial–temporal information and CNN’s capability to extract visual features from each 
frame. We further enhance the model’s robustness to adversarial attacks and prevent 
overfitting by employing three different fusion strategies and a mini-batch technique. 
This paper presents a novel, efficient model for these challenges, utilizing minibatch 
GNNs (miniGNNs). Comparable to CNNs, miniGNNs can efficiently train the network 
for deep fake video detection on a downsampled graph (or topological structure) in a 
minibatch manner. Additionally, the model trained can be employed directly to predict 
new data. Through our newly introduced miniGNNs, we aim to conduct a detailed com-
parison between CNNs and GNNs (both qualitatively and quantitatively). CNNs and 
GNNs are recognized for their ability to extract and symbolize information from deep 
fake videos, albeit from different vantage points—for instance, spatial–temporal features 
of CNNs, graph (or relational) representations of GNNs, etc. This naturally motivates us 
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to use them jointly, exploring various fusion strategies and enhancing their applicabil-
ity for deep fake video detection [4–6]. More specifically, the main contributions of this 
paper are threefold:

•	 We systematically analyze CNNs and GNNs, focusing on deep fake video detection. 
To the best of our knowledge, this is the first instance where the potential and draw-
backs of GNNs have been scrutinized within the research community, especially 
compared with CNNs. Unlike many other types of neural networks, GNNs are natu-
rally invariant to the order of input data points.

•	 We propose a novel supervised version of GNNs, which we call miniGNNs. As the 
name suggests, miniGNNs can be trained in a minibatch manner, striving to find a 
more robust and superior local optimum. Unlike traditional GNNs, our miniGNNs 
can train the networks using a training set and facilitate a straightforward inference 
of large-scale, out-of-sample data using the trained model.

•	 We develop three fusion strategies, including additive fusion (FuNet-A), element-
wise multiplicative fusion (FuNet-M), and concatenation fusion (FuNet-C), to 
achieve better deep fake video detection results by integrating features extracted 
from CNNs and our miniGNNs, in an end-to-end trainable network.

This manuscript introduces a novel model to detect deep fake videos that address 
these challenges. We propose a model that combines the strengths of GNN and CNN to 
enhance detection accuracy. GNN allows us to exploit the spatial–temporal information 
of the video content, which is often overlooked by other deep fake detection methods. 
On the other hand, CNN enables us to extract visual features from each frame effec-
tively. We further enhance the model by integrating the two phases using three different 
fusion networks, allowing the model to handle a wider range of deep fake techniques. 
We also address the dataset imbalance problem by applying a mini-batch technique, 
ensuring a balanced sample of genuine and counterfeit videos in each batch. Our pro-
posed model was evaluated on different datasets and achieved an impressive training 
and validation accuracy of 99.3% in just 30 epochs, demonstrating its effectiveness in 
detecting deep fake videos. This paper comprehensively describes our model, discusses 
the fusion strategies, and presents the evaluation results, contributing a new perspective 
to the ongoing discourse on deep fake detection.

The remainder of this article is organized as follows. Section  Literature review pro-
vides an in-depth examination of existing literature related to this topic. The proposed 
model is meticulously explained in section  Methodology and proposed model. A 
comprehensive set of experiments and their corresponding analyses form the crux of 
section Configuration of experimental results. The article reaches its culmination in sec-
tion Conclusion, where we offer concluding thoughts and allude to potential avenues for 
future research.

Literature review
Over the past few years, there has been a concerted effort by various authors to develop 
methods for identifying DeepFakes. Early studies focused on identifying visual incon-
sistencies within individual frames, with some methods utilizing biological signals and 
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others delegating feature extraction to CNNs. In one promising approach, authors pro-
posed using capsule networks with dynamic routing to achieve highly accurate results. 
Other successful methods have focused on localizing altered regions, particularly the 
face. Given the potential for DeepFakes to spread false information, there is a growing 
concern about the need to detect them accurately. To this end, some authors have sug-
gested tracking facial landmarks to learn behaviors typical of specific individuals, which 
can then be used to distinguish between authentic and fake video content [7–9].

Although CNNs have recently advanced, they have also automatically made it easier 
to generate fake visual images, commonly called DeepFakes. There are numerous simi-
lar techniques, including the face-swap approach employed on social media applica-
tions like Snapchat, which is a quick but subpar method. However, when faces are added 
to learned frames from source videos or collections of images, Generative Adversarial 
Networks (GANs) provide more desirable output, and both the FakeApp and Faceswap 
Github host methods for public use. In Face2Face, facial expressions are reenacted from 
source to target frames by an algorithm, allowing for merging videos with fabricated 
sound data to create entirely fake material. Recent studies demonstrate that algorithms 
can also produce speech that convincingly resembles a target speaker based on their text 
or words [10–14].

Despite achieving high accuracy, modern techniques for DeepFake detection still need 
to provide a comprehensive solution that can withstand various video modifications, 
particularly regarding voice biometrics. Consequently, they must be more reliable for 
detecting DeepFakes in the field.

Montserrat et al. [14] introduced a straightforward yet potent tactic that leverages the 
combined strength of convolutional neural networks (CNN), recurrent neural networks 
(RNN), and the DFDC dataset to attain the most impressive results. The system oper-
ates efficiently on a single GPU and swiftly processes video in less than eight seconds. 
Even though its main focus is on identifying modifications to facial features, it does 
not scrutinize the accompanying audio content, a potential area for enhancement that 
could significantly boost detection accuracy in future research. The ultimate objective 
of this study is to equip journalists, both locally and globally, with the means to uncover 
DeepFake videos. Despite its efficiency and speed, it exclusively focuses on identifying 
facial modifications, overlooking the potential use of accompanying audio content for 
detection. This leaves open the question of how integrating audio analysis could enhance 
detection accuracy.

Gu et al. [15] provided a unique Region-Aware Temporal Filter (RATF) module that 
dynamically builds various temporal filters for forged regions to detect deepfake videos. 
They break up the video into different snippets to capture the long-term temporal irreg-
ularity, and we suggest the Cross-Snippet Attention (CSA) method to encourage cross-
snippet interaction. Outstanding performance is shown by the proposed framework on 
four widely used benchmarks (FF++, Celeb-DF, DFDC, and WildDeepfake). Despite 
demonstrating remarkable performance on four widely used benchmarks, the authors 
should have discussed the method’s resistance to future, more sophisticated DeepFake 
techniques or its adaptability to other forms of media beyond video.

Wodajo and Atnafu [16] suggested using a convolutional vision transformer. Two parts 
comprise the Convolutional Vision Transformer: The convolutional neural network 
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(CNN) and the Vision Transformer (ViT). The CNN retrieves learnable features, and the 
ViT uses a mechanism called attention to categorize those learned as input. They got 
91.5 percent accuracy, an AUC value of 0.91, and a loss value of 0.32 after training our 
model on the DFDC dataset. While achieving impressive accuracy, the method’s applica-
bility to other manipulation techniques and the impact of varying dataset characteristics 
on its performance still need to be explored.

Kumar et  al. [17] conducted an exhaustive analysis of various neural network tech-
niques applicable to the classification of highly compressed DeepFakes. They dem-
onstrated that the proposed metric learning approach could effectively perform this 
classification. Employing a triadic network structure in the measured learning process 
proved particularly beneficial when evaluating the authenticity of a smaller quantity of 
video frames. A notable downside, however, is the method’s failure to generalize across 
different datasets, a fact attributed to the absence of adjustment of unsupervised features 
to harmonize the feature space between the source and target datasets. Such adaptabil-
ity could render the model more resilient and less reliant on labels. Despite promising 
results, the method needed help to generalize across different datasets. This could be 
attributed to adjusting unsupervised features to harmonize the feature space between 
other datasets. This limitation highlights the need for a more flexible model that is less 
reliant on labels.

Elhassan et  al. [18] developed and implemented a model known as the Deep-Fake 
Identification Technique with Mouth Features (DFT-MF). Utilizing a machine learning 
approach, this model identifies DeepFake videos by selectively focusing on, analyzing, 
and confirming lip or mouth movements. However, the method’s limitation lies in its 
narrow focus on the mouth area, neglecting the broader facial and body movements in 
its analysis. However, its narrow focus on the mouth area ignores more general facial 
and body movements, possibly leaving some deepfake manipulations undetected.

Ahmed et al. [19] delved into using advanced CNN amplification techniques to achieve 
real-time reconstruction of DeepFake imagery via devices such as video and surveillance 
cameras. The research effectively merges DeepFake’s amplified configuration with tar-
geting, elevating the accuracy rate to 95.77%. However, a minimal discrepancy exists in 
the estimated costs of implementing this technology. While achieving a high accuracy 
rate, the research does not delve into the potential discrepancies in the estimated costs 
associated with implementing this technology, which could impact its adoption.

Gandhi et al. [20] proposed a methodology based on adversarial techniques to improve 
DeepFake images and evade traditional DeepFake detection methods. Their method 
incorporates both the Fast Gradient Sign Method (FGSM) and the L2 norm-based attack 
by Carlini and Wagner in both Blackbox and Whitebox scenarios. However, a notable 
limitation of this approach is the substantial computational resources needed to manip-
ulate a single image. Further exploration is necessary to broaden the application of these 
enhanced adversarial attacks to various other domains. However, the significant com-
putational resources required to manipulate a single image may limit its scalability and 
applicability to different domains.

Das et al. [21] investigated a study to pinpoint the weaknesses and deficiencies within 
the existing DeepFake detection framework. Their theoretical and empirical scrutiny 
of ideal traditional datasets and systems revealed that the integration of Face-Cutout 
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can escalate the overall data variance and mitigate clustering problems while achiev-
ing a LogLoss reduction ranging from 15.2% to 35.3% across different datasets. Future 
research directions involve investigating the application of this reinforcement principle 
on a broader spectrum of DeepFake datasets. While their integration of Face-Cutout 
improved data variance and mitigated clustering problems, the research did not explore 
its application to a wider range of Deepfake datasets.

Suratkar et  al. [22] introduced a novel approach, presenting a study that employs 
transformational learning within CNN. This strategy involves assigning weights to the 
upper echelons of pre-trained deep CNNs, resulting in superior outcomes in reduced 
training durations compared to CNN models trained on nonlinear mapping weights for 
DeepFake video detection. Despite this advancement, the model’s efficacy could be aug-
mented by integrating ConvLstm2D (Tensorflow) layers and supplying the network with 
image sequences rather than isolated images. This modification could address temporal 
discrepancies in DeepFake videos and feature distortions. Despite its reduced training 
duration, the model could benefit from integrating ConvLstm2D layers and supply-
ing the network with image sequences rather than isolated images to address temporal 
inconsistencies in Deepfake videos.

El Rai et  al. [23] proposed a technique for distinguishing genuine videos or images 
from DeepFakes by creating a novel convolutional neural network called the Patch & 
Pair CNN (PPCNN). In this method, instead of processing the entire face, the face is 
segmented into smaller frames prior to the face pairs being input into the network. 
Although PPCNN has demonstrated its effectiveness in detecting DeepFake videos from 
the same dataset, enhancing its generalizability with a dual-branch learning framework 
could improve its performance on DeepFake videos stemming from different sources. 
While PPCNN has demonstrated effectiveness in detecting Deepfake videos from 
the same dataset, its performance on Deepfake videos from different sources may be 
improved by enhancing its generalizability with a dual-branch learning framework.

Li et  al. [24] draw attention to an escalating issue with partial facial alterations in 
Deepfake videos, which only execute modifications at the video level, disregarding the 
manipulation of all faces within the forged videos. The study addresses these Deepfake 
challenges by amalgamating the input face and video instances and treating them as bags 
and instances within this learning framework. In contrast to the conventional Multi-
Instance Learning (MIL) approach, which typically follows a linear path from instance 
consolidation to instance projection and then to bag prediction, a novel concept called 
"sharp MIL" (S-MIL) is introduced. S-MIL directly establishes a pathway from instance 
consolidation to bag prediction. However, it’s worth noting that the FFPMS dataset used 
in this context hasn’t undergone comprehensive testing across various platforms and 
DeepFake detection methods. Despite the introduction of the "sharp MIL" (S-MIL) con-
cept, the FFPMS dataset used in this context hasn’t undergone comprehensive testing 
across various platforms and DeepFake detection methods, leaving a gap in understand-
ing its performance potential.

Zhang et al. [25] have innovated a trailblazing phantom feature extraction method 
to enhance the identification of face swap images created from their original coun-
terparts via DeepFake. This method leverages deep learning and Error Level Analysis 
(ELA) to detect variances in image coding associations. After this, a CNN extracts 
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these phantom features and ascertains image authenticity. Although the proposed 
approach effectively sees image manipulation under lossy compression conditions, 
its performance dwindles in low-quality or lossless coding scenarios. While it shows 
promise in detecting manipulated images under lossy compression, its efficacy sig-
nificantly diminishes in low-quality or lossless coding scenarios. This limitation could 
hinder the method’s applicability across digital platforms and image qualities.

Vizoso et al. [26] delve into how significant media entities like the Wall Street Jour-
nal, Washington Post, Reuters, and influential internet companies including Google, 
Facebook, and Twitter, respond to the rise of DeepFakes, viewing them as a new form 
of disinformation. The research underscores methods of DeepFake detection and con-
templates the potential influence of DeepFake on democratic procedures and national 
security. Nonetheless, the study reveals a notable Western-centric cultural inclination 
in the digital platforms and media samples analyzed, which may pose issues in extrap-
olating the findings to similar entities in different cultural settings. However, their 
research exhibits a Western-centric bias, which may limit the generalizability of their 
findings to non-Western contexts. This raises the question of how DeepFakes and 
their implications are perceived and managed in diverse socio-cultural environments.

A highly effective deepfake detection model is suggested by Tran et  al. [27] for 
manipulated video, guaranteeing model correctness while maintaining the proper 
weight. A high-performance and lightweight model using CNN network was used 
as the basis. The DFDC dataset yielded an AUC and F1-score of 0.958 and 0.9243, 
respectively, and Celeb-DF v2 with 26M parameters yielded an AUC and F1-score of 
0.978 and 0.9628, respectively. However, the research does not discuss how the model 
would perform on deepfake techniques that are not video-based. Thus, the model’s 
effectiveness may be limited to video deepfakes. The issue of overfitting is particu-
larly problematic in the context of deepfake detection due to the relative scarcity of 
deepfake videos for training purposes. Moreover, this research is unsuitable for tasks 
requiring relational reasoning, i.e., understanding and utilizing relationships between 
different entities.

Jiang et al. [28] present a novel learning framework, Multiple Graph Learning Neu-
ral Networks (MGLNN). This framework is engineered to enable data classification 
using various graph-based perspectives. MGLNN’s primary objective is to amalgam-
ate multi-graph learning with diverse graph structures, thereby identifying the most 
suitable graph structure that enhances the learning process of GNN. The MGLNN 
framework is demonstrated to be versatile, catering to multiple graphs utilizing any 
specified GNN model. Furthermore, the MGLNN model was trained and optimized 
using a comprehensive approach. Experimental findings from various datasets suggest 
that MGLNN outshines several comparative methodologies in semi-supervised clas-
sification tasks. While the framework outperforms several comparative methodolo-
gies in semi-supervised classification tasks, its applicability to other tasks or domains 
still needs to be explored. Understanding how this framework can be adapted to dif-
ferent use cases beyond semi-supervised classification is imperative. Moreover, this 
research is unsuitable for tasks requiring relational reasoning, i.e., understanding and 
utilizing relationships between different entities. Furthermore, this research is unsuit-
able for simultaneously detecting spatial and temporal dynamics.
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Roy et  al. [29] endorsed the application of WilDect-YOLO, a high-precision real-
time object detection system, for identifying endangered wildlife species. Incorporat-
ing spatial pyramid pooling, DenseNet, and a redesigned path aggregation network has 
significantly bolstered the network’s overall performance. The proposed model distin-
guishes itself by outstripping contemporary advanced models, boasting a mAP and F1 
score of 96.89% and 97.87%, respectively, all at a remarkable detection speed of 59.2 
frames per second. However, the research must explore how this system would per-
form in other object detection scenarios. The potential application and performance of 
WilDect-YOLO in detecting non-wildlife objects or in varied environments is an area 
that warrants further investigation. Moreover, this research is unsuitable for simultane-
ously detecting spatial and temporal dynamics. Furthermore, this research is unsuitable 
for tasks requiring relational reasoning, i.e., understanding and utilizing relationships 
between different entities.

Hu et  al. [30] proposed a novel Deepfake detection method that takes advantage of 
the inherent flaws in Deepfake videos—unspecific face part discrepancies called Mover. 
Real faces can be restored quickly, whereas false faces are more difficult to repair due to 
Mover’s randomly selected regions of interest (ROIs), which masks regions of interest 
(ROIs) and restore faces to learn generic features. Four publicly available Deepfake video 
datasets FF++, CDF, WildDF, and DFDCP, are used to assess the proposed technique. 
Numerous tests using industry-recognized criteria show that Mover is quite successful. 
While the method performs well on several Deepfake video datasets, it fails to discuss 
the implications of different ROI selection strategies on detection performance, limiting 
our understanding of optimizing the method for diverse scenarios.

Hussain and Ibraheem [31] proposed a new approach to CNNs in conjunction with 
the Jaya algorithm optimization, which they provided for precisely identifying deepfake 
videos. The DFDC dataset and the Celeb-DF dataset, two publicly accessible datasets, 
are used to assess the methodology. On both datasets, the methodology performs at the 
cutting edge. With strong F1 scores suggesting a high precision and recall for recogniz-
ing deepfake movies, their method achieves an accuracy rate of 99.3% and 97.6% On the 
DFDC and the Celeb-DF datasets, respectively. In addition, their strategy is more resist-
ant to adversarial attacks than current cutting-edge techniques. While achieving high 
accuracy rates on the DFDC and the Celeb-DF datasets, the research needs to discuss 
how the model would perform against new or emerging manipulation techniques. This 
suggests testing the model against a wider range of deepfake techniques. Moreover, this 
research is unsuitable for tasks requiring relational reasoning, i.e., understanding and 
utilizing relationships between different entities.

Using MesoNet and a preprocessing module, Xia et  al. [32] suggested a method for 
detecting Deepfake videos. In order to improve the discriminating between multi-color 
channels, a preprocessing module is first developed to preprocess the clipped face pho-
tos. The traditional MesoNet is then fed with the previously processed photos. The 
proposed method’s detection performance is tested on two datasets; it outperforms 
existing approaches in terms of AUC on FaceForensics++ (0.974) and Celeb-DF (0.943). 
Although the method performed well on two datasets, the research does not explore the 
impact of the preprocessing module on different types of deepfake detection tasks, limit-
ing the method’s potential applicability to a broader range of deepfake scenarios.



Page 9 of 27El‑Gayar et al. Journal of Big Data           (2024) 11:22 	

To summarize this section, the literature on deepfake detection methods is extensive 
and diverse. Earlier works predominantly revolved around traditional machine-learning 
techniques and focused on specific cues like facial distortions, lighting inconsistencies, 
and blink rates. However, these methods often struggle with new, more sophisticated 
deepfake techniques. More recent studies have leaned towards deep-learning-based 
approaches. Convolutional neural networks (CNNs), Recurrent Neural Networks 
(RNNs), and auto-encoder architectures have been employed, often achieving high accu-
racies. Nevertheless, these approaches commonly face challenges related to overfitting, 
high computational complexity, and limited generalizability across different deepfake 
generation methods and datasets. Several research efforts have also explored the use 
of transfer learning and multimodal detection techniques. While these methods have 
shown promise, their performance can be heavily dependent on the quality and diversity 
of training data, and they often struggle to adapt to new deepfake techniques.

In our paper, we propose a GNN-based deepfake detection method that aims to over-
come these limitations:

•	 Overfitting: GNN’s reduced complexity compared to deep models like deep CNNs 
makes it less prone to overfitting. We also employ regularization techniques to 
improve the model’s generalization capabilities.

•	 Computational Complexity: By leveraging the relational data handling capacity of 
GNNs, we are able to achieve high detection accuracy without the need for highly 
complex models, therefore reducing computational requirements.

•	 Generalizability: Our model is trained and tested across several diverse datasets, 
ensuring that it performs well under a variety of conditions and deepfake techniques.

•	 Adaptability: The flexible and scalable nature of GNNs allows our model to adapt to 
new deepfake techniques, providing a future-proof solution to deepfake detection.

Methodology and proposed model
This section presents a novel model to address these challenges, utilizing minibatch 
graph neural networks (termed miniGNNs). Comparable to CNNs, miniGNNs can effi-
ciently train the network for deep fake video detection on a down-sampled graph (or 
topological structure) in a minibatch manner. Additionally, the model trained can be 
employed directly to predict new data. In addition, we develop three fusion strategies 
to enhance the detection of deepfake videos; these strategies encompass additive fusion 
(FuNet-A), element-wise multiplicative fusion (FuNet-M), and concatenation fusion 
(FuNet-C). These fusion techniques aim to improve the results of deep fake video detec-
tion by integrating features extracted from both CNNs and our miniGNNs within a net-
work that can be trained end-to-end. The proposed model is illustrated in Fig. 1. A graph 
is an intricate nonlinear construct that encapsulates one-to-many associations within a 
non-Euclidean realm. Regarding our scenario, the relationships among spectral signa-
tures form an undirected graph. Assume an undirected graph, G = (V, E), where V and E 
correspond to the sets of vertices and edges respectively. In the context of our work, the 
set of vertices is comprised of image pixels, while the set of edges is formed by the simi-
larities between any pair of vertices, namely vi  and vj . The adjacency matrix, represented 
as A, defines the relationships or connections (edges) between nodes/vertices within the 
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graph network. Each value in A is commonly determined using a Radial Basis Function 
(RBF), which evaluates the similarity between node features to establish the strength of 
connections between nodes.

where σ is a parameter to control the width of the RBF. The vectors xi and xj denote the 
spectral signatures associated with the vertexes vi and vj . Given two functions, f and g, 
their convolution operation can be represented as

where τ indicates the shift distance and * is the convolution operator symbol. The Fou-
rier transform of the convolution of f and g is equal to the pointwise multiplication of 
their individual Fourier transforms. This relationship can be written as:

where F denotes the Fourier transform and · indicates pointwise multiplication. The 
inverse Fourier transform (denoted by F−1 ) of the convolution of f and g is equal to 2π 
times the multiplication of their respective inverse Fourier transforms. Therefore, the 
convolution operation on a graph can be transformed into the Fourier domain to define 
the Fourier transform ( F  ) or identify a set of basis functions.

Deriving facial frames

Our novel miniGCN approach leverages graph convolutional networks to effectively 
identify manipulated facial regions in video content. We first isolate facial frames using 
multi-task cascaded convolutional neural networks (MTCNN). These facial images are 
then converted into visual embeddings and partitioned into patches represented as 

(1)Ai,j = exp

(

−
�xi − xj�

2

σ 2

)

(2)f (t) ∗ g(t) �

∫ ∞

−∞

f (τ )g(t − τ )dτ

(3)F [f (t) ∗ g(t)] = F [f (t)].F [g(t)]

(4)F
−1[f (t) ∗ g(t)] = 2πF−1[f (t)].F−1[g(t)]

Fig. 1  Architecture of proposed methodology
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graph nodes (as illustrated in Algorithm 1). Edges between nodes are constructed based 
on feature vector similarity using K-Nearest Neighbors. An aggregation and update 
function iteratively adjusts edge weights as graphs pass through the miniGCN layers. 
A vital aspect is the integration of the pyramid Resnet architecture, allowing the model 
to maintain a small spatial size at increasing depths for enhanced extraction of distin-
guishing facial features. This specialized design enables robust detection of subtle visual 
artifacts in deepfakes through comprehensive multiscale facial analysis. Our approach 
achieves state-of-the-art performance in identifying manipulated videos by combining 
MTCNN facial detection, graph representations, and pyramid Resnets in the miniGCN 
framework. MTCNN surpasses other facial detection techniques in its ability to pre-
cisely identify subtle facial landmarks like eyes, nose, and mouth in video frames. Unlike 
Haar cascade and Viola-Jones, MTCNN excels at extracting fine-grained facial details, 
even under challenging lighting variations and occlusion conditions. This robust per-
formance stems from MTCNN’s cascaded architecture that captures facial information 
coarse to finely across multiple networks. MTCNN achieves unparalleled accuracy in 
delineating facial boundaries and distinguishing the face from its surroundings by thor-
oughly analyzing various visual features from different scales. These capabilities make 
MTCNN an ideal choice for preprocessing video to detect reliably manipulated faces 
indicative of deepfakes. Its precision in modeling facial geometry ensures comprehen-
sive analysis of visual artifacts within isolated facial regions.

Algorithm 1   MTCNN preprocessing configurations

Transition from image to visual representations

The Mini-GCN requires graphs as input, so we transform images into equivalent graphs 
with nodes and edges using an image-to-visual embedding process. Each facial frame of 
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dimensions 224 × 224 × 3 is divided into N patches using patch embeddings to provide a 
compact representation. The image-to-graph process involves:

•	 Expanding the patch window so adjacent windows overlap by half.
•	 Padding the feature map with zeros to maintain resolution.
•	 Applying 4 depthwise convolution layers with 1-pixel padding between fully con-

nected layers and ReLU activation as shown in GCN architecture.
•	 The convolution layer accepts an input size of 224 × 224 × 3 with a specified stride, 

kernel size, padding, and number of kernels.

Graph neural network

GNNs inherently operate on nodes rather than images. Therefore, the patches derived 
from converting images to visual embeddings transform nodes that the network can 
effectively process as part of a graph structure. These patches, originating from indi-
vidual facial frames and represented as patch embeddings, serve as the nodes within 
this graph. Every patch is treated as a distinct node, and connections between nodes 
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are established using the K-Nearest Neighbor method, employing the feature vectors 
associated with each node. Consequently, this process yields a graph, which serves 
as input to the aggregation and update function, responsible for iteratively adjusting 
edge weights. The pyramid ResNet architecture incorporates multiscale image char-
acteristics while maintaining a compact spatial size as the layer depth increases. This 
characteristic dramatically enhances the model’s capacity to discern distinctive fea-
tures. In addition, the MTCNN is leveraged to extract facial frames from video con-
tent by identifying facial landmarks such as nose, eyes, and mouth. Figure 2 depicts 
the process for generating batches in the proposed miniGCNs. Like CNNs, this batch-
ing approach samples nodes to form each batch; however, a key difference is that after 
each sample, the graph or adjacency matrix within the produced batch must be recon-
structed according to the connections in graph G. In a data preparation phase, CNNs 
process input patches individually to create single-instance encoded labels as out-
put. Conversely, Graph Convolutional Networks (GCNs) operate on individual pixel 
samples alongside an adjacency matrix representing relationships between samples. 
This matrix must be calculated before training begins. Furthermore, CNNs effectively 
extract local spatial and spectral details from HS images at the feature representa-
tion phase. Meanwhile, thanks to the adjacency matrix, GCNs leverage their graph 
structure to model spatial connections between proximate, intermediate, and distant 
samples. Also, as deep learning models at the network training phase, CNNs typically 
employ mini-batch training strategies. In contrast, GCNs necessitate full-batch train-
ing since all samples must be fed to the network simultaneously to properly account 
for their graph-based relationships, as defined by the adjacency matrix.

Fig. 2  Showcases an essential process within the miniGCNs’ operation: extracting sub-graphs or ’batches’ 
from an encompassing graph, denoted as G
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Algorithm 2  Pruned net

Constructing the graph

The graph construction process involves extracting image patches from facial regions and 
converting them into feature vectors xi ∈ Rd of dimension d, where x = [x1, x2, . . . , xn]

,i = [1, 2, 3, . . . , n] for n patches. The feature vectors are treated as unordered nodes as 
U = [u1,u2, . . . ,un] . To form connections, we find the K nearest neighbors β(ui ) for each 
node ui . Edges eij are then created connecting uj to ui for all uj belonging to β ( ui ). The 
result is a facial graph G′ = (U,E) with nodes U and edges E established based on feature 
vector similarities of image patches. This graph representation, tailored to facial geom-
etry, allows capturing subtle manipulated artifacts by analyzing relationships between 
visual features extracted from key facial regions.

•	 Each patch is transformed into an M-dimensional feature vector yi, constituting the 
set of unordered nodes U.

•	 For each node ui , we find the K nearest neighbors β(ui ) based on feature similarities.
•	 An edge eij is created from neighbor uj to node ui.
•	 All edges constitute the set E, representing the graph as G′= (U,E).
•	 This entire graph creation process is denoted as G′ = G(y).

Manipulating the graph structure

The initial facial graph G′ = G(y) is constructed from image feature vectors y as 
described earlier. This graph is then passed through graph convolutional layers to allow 
information sharing between connected nodes. Specifically, the graph convolution oper-
ation consists of two components:

•	 Aggregation ( Lagg ): Node features are aggregated by combining features from neigh-
boring nodes using learnable aggregation weights.

•	 Update ( Ludate) : The aggregated neighbor features are used to update the features of 
each node through a set of learnable update weights.
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This localized filtering and feature aggregation between neighboring nodes enables the 
model to jointly analyze relationships among facial patches, identifying subtle inconsist-
encies in manipulated images.

As shown in Eq.  (5), graph convolution involves two key steps—aggregation and 
update, parameterized by learnable weights Lagg , and Lupdate . The aggregation function 
calculates node representations by aggregating features from neighboring nodes. This 
captures local contextual information around each node. The update function then com-
bines these aggregated neighbor features to compute updated representations for each 
node. Mathematically, this update process can be expressed as:

where β
(

yi
)

 signifies the neighboring nodes of yi, while g and h represent the aggrega-
tion and update functions, respectively. By aggregating local neighbor information and 
updating node features accordingly, the model iterates through multiple graph convolu-
tion layers to jointly analyze relationships between facial patches. This allows identifying 
subtle inconsistencies and manipulated features in graphs constructed from deepfake 
images. In the case of max pooling aggregation, it selects the maximum value among the 
patches with high magnitudes. Each neighbor’s vector undergoes processing through a 
fully connected layer and is subsequently aggregated using max pooling, which aids in 
minimizing information loss. It is shown as:

The core of our model is the max-relative graph convolution operation g(∗) defined 
in Eq.  (7). This computes node features by aggregating information from neighboring 
nodes using max pooling, capturing useful neighborhood characteristics. The multi-top 
update approach further distinguishes real and fake samples by dividing aggregated fea-
tures into tops, iteratively adjusting the tops with new weights, and concatenating the 
results to update nodes concurrently. Specifically, the combined features x′′i  are split into 
t tops [ top1 , top2 , …, topt ] and updated each iteration before concatenation. The max 
pooling aggregation, max-relative graph convolution, and multi-top update enable com-
prehensive analysis of subtle differences between real and manipulated faces. This spe-
cialized graph learning approach is crucial for detecting the distinct artifacts introduced 
in deepfake creation. Our model leverages these techniques to analyze facial regions and 
discern manipulated videos comprehensively.

Figure  3 provides insight into the evolution of relationships over time. It depicts an 
image graph constructed from two sequential moments—an initial state and a later 
stage. In the beginning, as seen in 3(b), connections are tightly bound by similarities in 
characteristics. Nodes affiliate most closely with those sharing kindred qualities. This 
reflects a network organized principally by content-based affinities. However, as shown 

(5)G′′ = F
(

G′, L
)

= update(aggregate(G′, Lagg ), Lupdate)

(6)x′i = h
(

xi, g
(

yi,β(xi), Lagg
)

, Lupdate
)

(7)g(∗) = x′′i =
[

xi, max
({

xj − xi| ∈ β(xi)
})]

(8)x′i =
[

top1L1update, top
2L2update, . . . , top

tLtupdate

]
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moving to 3(c), the passage of time brings continual reassessment and recalibration of 
relations. This signals a shift—from a structure staked first to likenesses evident soon, 
to connections cutting deeper to likenesses revealed through slow unfolding. The graph 
transitions from particularized to integrated, from initially bounded to comprehending 
the more profound totality of its depiction. In this way, Fig. 3 hints at how relationships, 
given time, may mature beyond surface comparisons to tap into latent unities under-
neath. It suggests how networks evolve from fragmentary to holistic as broader truths 
emerge through progressive intertwining over sequential moments.

Model architecture

The proposed method uses a hierarchical structure that leverages multiscale image 
properties and reduces spatial size as layers get deeper. This helps the model identify 
unique attributes more effectively. Hierarchical structures improve accuracy and reduce 
parameters, leading to robust models. They are well-suited for image datasets since they 
can capture distinct sample characteristics while reducing complexity. Image patches 
are converted into graphs within the miniGNN. The model consists of concatenated and 
abbreviated blocks as shown in Fig.  1. Each block contains a GraphNet subblock and 
an FFN subblock. GraphNet includes convolutional layers with batch normalization and 
ReLU activation, a graph convolution layer, and another convolutional layer. Linear lay-
ers are used before and after graph convolution to combine node features and enhance 
diversity. ReLU activation is used after graph convolution to minimize interference 
between layers.

Different neural networks can extract unique representations from this data: CNNs 
extract spatial-spectral features while GCNs model interrelationships between sam-
ples. However, no single model captures all useful information. We propose an intuitive 
fusion of CNNs and GCNs to boost discriminative power. Unlike traditional GCNs, our 
miniGCNs can be trained incrementally and integrated into CNNs. The resulting end-
to-end fusion network, FuNet, combines the benefits of both architectures. We consider 
three fusion strategies:

Fig. 3  Presents a graph where nodes of identical colors signify their immediate adjacency to a particular 
node. A Input image. B Graph connectivity at the first sequential block. C Graph connectivity at the 12th 
sequential block
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•	 Additive fusion (A): The CNN and GCN outputs are summed. This simple linear 
combination exploits the complementary nature of the two representations.

•	 Multiplicative fusion (M): The outputs are element-wise multiplied, allowing them to 
modulate each other and encode more complex interactions.

•	 Concatenative fusion (C): The outputs are concatenated, allowing the model to learn 
the most informative combination of features.

Our proposed approach optimally rearranges layers to discriminate real from fake data 
effectively. This arrangement consists of: (A) Convolutional layers to extract features. 
(B) Batch normalization for stability. (C) ReLu activation to address the vanishing gradi-
ent problem, enabling better model fitting with few additional resources while reducing 
overfitting. (D) Dropout for regularization. (E) The softmax function activates the Fully 
connected layer, which probabilistically converts the output vector for classification. (F) 
The softmax function, applied in the last layer, provides a probability distribution when 
comparing real and fake samples. This reveals how confident the model is in its predic-
tions. Table 1 summarizes the critical configuration of the graph neural network (GNN) 
model, showing the underlying design philosophy. The dimensional parameters signify 
the following:

•	 ‘FD’—the feature dimension, capturing the essential properties of the data
•	 ‘HD’—the hidden dimension ratio in the neural network, determining its representa-

tional power
•	 ‘N’—the number of neighbors each graph node is connected to, shaping the network 

topology
•	 ‘H x W’—the width and height of input images, specifying the spatial extent of the 

data

Configuration of experimental results
This section outlines the datasets, performance metrics, and experimental protocol used 
to rigorously evaluate the proposed approach. We conduct extensive experiments on 
various large-scale datasets to test the model thoroughly. The datasets provide real-world 
examples for testing the ability of the approach to generalize. Rigorous experimentation 

Table 1  Detailed settings of graph neural network

Stages Output size Parameter

Stage 1 H

4
× W

4
FD = 80
HD = 4
N = 9

Stage 2 H

8
× W

8
FD = 160
HD = 4
N = 9

Stage 3 H

16
× W

16
FD = 400
HD = 4
N = 9

Stage 4 H

32
× W

32
FD = 600
HD = 4
N = 9
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exposes strengths and weaknesses, informing areas for improvement. The performance 
metrics quantify how well the model achieves its objectives, revealing the true impact of 
various design decisions. Only through careful metric selection can we properly evalu-
ate different approaches. The details of the experiments—models compared, training 
parameters, preprocessing steps, etc.—are described to ensure reproducibility and fair 
comparison. This demonstrates the robustness and versatility of the proposed approach 
under different settings. By testing on multiple datasets with varying characteristics, 
using well-suited performance metrics, and delineating experimental details precisely, 
we aim to provide an objective and comprehensive evaluation of the model’s effective-
ness. Only through such rigorous experimentation can we gain valuable insights and 
effectively benchmark against other methods.

Datasets

This section evaluates the performance of the proposed method using three distinct 
datasets: FaceForensics++ (FF++), DFDC, and Celeb-DF, as outlined in Table 2. Face-
Forensics++ dataset is renowned for its complexity, comprising 1000 authentic YouTube 
videos featuring various faces, accessories, lighting conditions, and angles. This diver-
sity presents a formidable challenge in distinguishing accurate content from deepfake 
material. Some samples of FaceForensics++ are shown in Fig. 4. Various deep learning 
and computer graphics techniques were used to manipulate genuine videos, introduc-
ing intricate variations. The DFDCP dataset, on the other hand, encompasses 5000 vid-
eos featuring both authentic and driven content, all performed by professional actors. 
The creation of fake videos involved the utilization of deepfake and GAN techniques. 
This dataset captures a spectrum of acquisition scenarios, lighting conditions, poses, and 
diversities, encompassing gender, age, and skin tones, rendering it highly representative. 

Table 2  List of deepfake datasets

Dataset Release year No. Fake–No. Real Source

FaceForensics++ [33] 2019 4K–1K Youtube

DFDC [34] 2020 > 100K for both Celebrities

Celeb-DF [35] 2019 5639–590 Youtube

Fig. 4  Representative images from the FaceForensics++ Dataset
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Some DFDC samples are showcased in Fig. 5. Lastly, the Celeb-DF dataset includes 590 
real and 5639 fake celebrity videos sourced from YouTube. Some samples of Celeb-DF 
are shown in Fig. 6. The actual videos exhibit variations in face size, orientation, lighting, 
and background—reflecting real-world complexity. The deepfake creation method opti-
mizes facial brightness/contrast, minimizing discrepancies—making the manipulated 
videos visually deceptive.

Experiment procedures

The research methodology involved carefully studying facial frames extracted using the 
MTCNN algorithm resizing them to a resolution of 128 × 128 pixels. Across all experi-
ments, an 80:20 training–testing data split was maintained, with 80% of frames allocated 
for model training and the remaining 20% assigned for performance evaluation. The 
proposed model was built using the PyTorch deep learning framework. Table 3 lists the 

Fig. 5  Exemplary instances from the DeepFake Detection Challenge (DFDC) Dataset

Fig. 6  Selected examples from the Celeb-DF Dataset

Table 3  Tuning parameters

Hyperparameters Value

Learning Rate 0.0002

Optimizer AdamW

Batch Size 128

Dropout Rate 0.6

Epochs 30
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tuning parameters selected during the training phase. The entire experimentation was 
conducted on a powerful computing cluster featuring 4 NVIDIA Tesla V100 16G GPUs 
for accelerating calculations, 192 GB RAM for handling extensive data, and 48 processor 
cores clocked at 2.10 GHz for executing operations quickly. Additionally, most videos in 
the Celeb-DF and DFDC datasets are relatively short, typically lasting just a few seconds. 
Therefore, we suggest using 40 frames per video as this duration matches the videos’ 
lengths and ensures sufficient training duration.

Evaluation of the proposed model’s performance

To establish the effectiveness of the proposed deepfake identification technique, thor-
ough experiments were carried out utilizing the FF++, Celeb-DF, and DFDC datasets. 
Each portion of these datasets includes two types of samples: real ones with unmodi-
fied recordings representing one class and fake ones with manipulated content signi-
fying the other class. The proposed model’s performance was evaluated using 20% of 
each dataset’s samples kept separate during training. The results of these experiments 
are discussed in depth in the subsequent subsections. They aim to demonstrate how well 
the model achieves its intended purpose by accurately classifying real and fake samples 
across different datasets. In a confusion matrix, each column represents instances of a 
predicted class, while each row signifies instances of an actual class as shown in Fig. 7. 
Unmodified images are referred to as the positive class, whereas manipulated images are 
identified as the negative class. The evaluation criteria for detection and classification 
incorporate several common statistical metrics, defined by Eqs. (1)–(5) below.

•	 True Positive (TP): This refers to the number of positive samples (unmodified 
images) correctly identified in the dataset.

•	 False positive (FP): This signifies the count of negative samples (manipulated images) 
incorrectly classified as positive in the dataset.

•	 True Negative (TN): This represents the total of negative samples (manipulated 
images) accurately recognized in the dataset.

Fig. 7  Confusion matrix
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•	 False Negative (FN): This indicates the number of positive samples (unmodified 
images) inaccurately classified as negative in the dataset.

•	 Accuracy: As defined in Eq. 9, this represents the proportion of correctly identified 
samples across the entire dataset.

•	 Precision: As detailed in Eq. 10, this is the proportion of correctly identified positive 
samples relative to all samples labeled as positive.

•	 Recall: As specified in Eq. 11, this is the proportion of correctly identified positive 
samples relative to all actual positive samples.

•	 F1 Score: As prescribed in Eq.  12, this harmonizes precision and recall by taking 
their harmonic mean, weighing both metrics equally.

Discussion

This experiment was devised to assess the effectiveness of the proposed method in clas-
sifying various categories of deepfakes. The model was systematically tested on each sub-
set of the FF++ dataset and exhibited exceptional performance in detecting Deepfakes. 
This underscores its robust capability to discern face swaps generated through deep 
learning techniques. Notably, the model excelled in identifying distinguishing character-
istics between manipulations and static textures. The detection accuracy was relatively 

(9)Accuracy =
Tp+ Tn

Tp+ Fp+ Tn+ Fn

(10)Precision =
Tp

Tp+ Fp

(11)Recall =
Tp

Tp+ Fn

(12)F1− score =
2× (precision× recall)

precision+ recall

Fig. 8  Chart of DFDC training and validation accuracy
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lower for Face2Face and NeuralTextures, measuring 92.49% and 95.09%, respectively. 
These categories employed expression swapping to create faces with minimal seman-
tic alterations, challenging their detection. This underscores the intricacies involved in 
identifying this manipulation. The results demonstrated remarkable efficacy, achieving 
an accuracy level of 99.3% and a validation loss of under 5%, as depicted in Figs. 8 and 9, 
respectively. 

The model’s capacity for deepfake detection was further evaluated by pitting real 
Celeb-DF samples against a wide array of fake samples. The model achieved a remark-
able accuracy rate of 98.9% and an AUC of 0.98, as depicted in Fig. 10. It’s worth not-
ing that Celeb-DF grapples with a significant class imbalance, featuring 590 real videos 
compared to 5639 fake ones. However, the proposed method relies on identifying 
sample characteristics associated with color and texture alterations. Despite this class 
imbalance, the model demonstrated its ability to differentiate between highly realistic 
swapped faces within the Celeb-DF dataset. These swapped faces exhibited minimal 

Fig. 9  Chart of DFDC training and validation loss

Fig. 10  Chart of Celeb-DF ROC curve
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color discrepancies and reduced temporal flickering, posing a considerable challenge for 
forgery detection.

The effectiveness of the proposed approach in detecting deepfakes within the DFDC 
dataset was assessed by pitting authentic samples against manipulated ones. The results 
showcased exceptional performance, with an accuracy rate of 99.3% and an AUC of 0.96, 
as illustrated in Figs. 8 and 11, respectively. Notably, a substantial portion of the DFDC 
videos were recorded in dimly lit conditions, posing a considerable challenge. How-
ever, the method could distinguish between actual and manipulated samples, even in 
low-light scenarios and when individuals were captured inside profiles. This capability 
holds significance, given that many videos within the dataset feature actors engaged in 
conversations while facing each other in profile view. Despite the dataset’s diversity and 
these challenging variations, the proposed model demonstrated remarkable proficiency 
in detecting deepfake artifacts.

Numerous experiments were conducted to assess the impact of different activation 
functions, aiming to comprehend their influence on the proposed technique. These 
experiments involved subjecting the model to various activation functions, and the 
outcomes have been meticulously recorded in Table  4. Notably, among the activation 
functions examined, the ReLU function employed in the proposed method displayed 
superior performance across both datasets. An intriguing characteristic of ReLU is its 
adjustable parameter, which can be fine-tuned during the training process to enhance 

Fig. 11  Chart of DFDC ROC curve

Table 4  Evaluating the effectiveness of various activation functions

Activation Function Accuracy on DFDC Accuracy on FF++ Accuracy on 
Celeb-DF

GeLU 90.19 91.88 91.45

Hswich 87.9 95.4 93.6

LeakyReLU 85.1 71.3 83.7

ReLU 92.4 97.16 95.8
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the network’s overall performance. This parameter governs the slope of the function’s 
negative part. The outstanding performance of ReLU in the proposed method can be 
attributed to its capacity to adaptively learn the negative slope during training, setting it 
apart from other activation functions.

To evaluate the effect of the graph convolution, many experiments were conducted. 
These experiments scrutinized the impact of various graph convolutional approaches 
on the proposed method. The technique was tested with MaxRelative (MR) graph con-
volution, GraphSAGE, Edge GraphConv, and Graph Isomorphism Network (GIN). As 
Table 5 shows, MR graph convolution outperformed other variants in accuracy. GNNs’ 
dynamic neighbor shifting helps alleviate over-smoothing, broadening receptive fields 
substantially. MR GraphConv enhances this by recomputing edges between vertices in 
each layer’s feature space, combining optimal aspects of GraphSAGE, GIN, and Edge 
GraphConv to surpass individual methods. Rooted in relative positioning, MR Graph-
Conv assimilates more neighborhood information, yielding more expressive node rep-
resentations encompassing complex graph relationships. Designed for scalability and 
robustness, MR GraphConv outperformed Edge GraphConv, GraphSAGE, and GIN, 
which become computationally burdensome with larger graphs. To analyze more exten-
sive networks efficiently, MR GraphConv reduces dimensionality using max-pooling 

Table 5  Assessment of performance across varying graph convolution methods

Graph Convolution Accuracy on DFDC Accuracy on FF++ Accuracy on 
Celeb-DF

GraphSAGE 61.6 79.9 75.4

Edge GraphConv 73.19 92.3 88.9

GIN 43.9 56.11 51.4

MR GraphConv 99.3 97.17 92.2

Table 6  Empirical analysis of different detection methods on various datasets

Refs. Detection method Dataset Result

Xia et al. [32] MesoNet and a preproc‑
essing module

FF++ AUC = 0.974

Celeb-DF AUC = 0.943

Agarwalet al. [7] Temporal, behavioral 
biometric with CNN

FF++, DFDC-P and 
Celeb-DF

Less susceptible to coun‑
terattacks and generalizes 
effectively

Hussain and Ibraheem [31] CNNs in conjunction 
with the Jaya algorithm 
optimization

DFDC Accuracy rates = 98.3%

Celeb-DF Accuracy rates = 97.6%

Wodajo and Atnafu [16] Convolutional Vision 
Transformer

DFDC Accuracy = 91.5%
AUC = 0.91
Loss value = 0.32

Kharbat et al. [5] Region-Aware Temporal 
Filter (RATF)

FF++ and Celeb-DF Outstanding performance

Proposed Model Multi Fusion between 
GNN and CNN

FF++  Accuracy rate = 95.09%

DFDC Accuracy rate = 99.3%
AUC = 0.96

Celeb-DF Accuracy rate = 98.9% 
AUC = 0.98
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aggregation. Notably, it uses max-pooling rather than concatenation during neighbor 
aggregation, shrinking feature vectors and mitigating memory usage.

Empirical analysis of other deep fake methodologies

Table  6 provides a comparative overview of various deepfake detection methods and 
their performance metrics on different datasets. Xia et  al. [32] utilized MesoNet with 
a preprocessing module on the FF++ and Celeb-DF datasets, achieving AUC scores of 
0.974 and 0.943, respectively. Agarwal et al. [7] proposed a method combining temporal 
and behavioral biometric features with a CNN, demonstrating robustness against coun-
terattacks and effective generalization across FF++, DFDC-P, and Celeb-DF datasets. 
Hussain and Ibraheem [31] employed CNNs alongside the Jaya algorithm optimiza-
tion on the DFDC and Celeb-DF datasets, reporting accuracy rates of 98.3% and 97.6%, 
respectively. Wodajo and Atnafu [16] implemented a Convolutional Vision Transformer 
on the DFDC dataset, achieving an accuracy of 91.5%, an AUC of 0.91, and a loss value 
of 0.32. Kharbat et al. [5] introduced a Region-Aware Temporal Filter (RATF) method, 
showing outstanding performance on the FF++ and Celeb-DF datasets. Lastly, the pro-
posed model, which is a fusion between GNN and CNN, demonstrated accuracy rates 
of 95.09%, 99.3%, and 98.9% on the FF++, DFDC, and Celeb-DF datasets, respectively, 
with corresponding AUC scores of 0.96 and 0.98.

Conclusion
This manuscript introduced a novel, generalized, and interpretable GNN model 
designed to detect synthetic facial images created through various deceptive tech-
niques. The model’s hierarchical structure allows it to capture subtle characteristics 
within the frames, enhancing feature representation and detection precision. Our GNN 
model incorporates activation recalibration and variable refinement to optimize per-
formance while emphasizing discriminative features. It further takes advantage of both 
content and subsurface relationships through graph connections, fostering a compre-
hensive understanding of the data. The detection process is divided into two phases: 
a mini-batch graph convolution network stream and a four-block CNN stream that 
includes convolution, batch normalization, and activation functions. The final step is a 
flattening operation, which connects the convolutional layers to the dense layer. These 
two streams are integrated using three different fusion networks: FuNet-A, FuNet-M, 
and FuNet-C. Extensive testing across four diverse datasets demonstrated the model’s 
remarkable ability to identify various forms of deepfakes, including impersonation and 
trait or expression mimicking. The model exhibited remarkable adaptability, performing 
well regardless of the dataset, evaluation type, or source. This signifies that our model 
effectively grasps the underlying patterns that transcend surface differences in deepfake 
media. Moving forward, we plan to refine our model continually to enhance its deepfake 
detection capabilities across various formats. The main goal is to improve the model’s 
ability to discern superficial falsity and deepen its understanding of genuine content, 
thereby creating a more effective sentinel to safeguard the truth. Additionally, our model 
demonstrated impressive training and validation accuracy of 99.3% after 30 epochs 
when evaluated on different datasets. This achievement underscores the potential of our 
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proposed GNN approach in tackling the growing challenge of deepfake detection. While 
our current model uses FuNet-A, FuNet-M, and FuNet-C fusion networks, future work 
will investigate other fusion techniques to determine if they can improve performance. 
Also, we plan to refine our model for real-time deepfake detection. This is particularly 
important for applications like live video feeds, real-time broadcasting, and social media 
platforms. While our model is already interpretable, we aim to improve its explainability 
further. This can lead to a better understanding of the features and patterns it uses for 
detection, which can be invaluable for refining the model and developing new detection 
techniques. As deepfake technology evolves, new detection challenges will arise. We will 
continually adapt and update our model to ensure it remains effective against the latest 
deepfake techniques.
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