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Abstract 

Background: Patents are indicators of technological developments. The science 
& technology categories, to which they are assigned to, form a directed, weighted 
network where the links are the references between patents belonging to the respec-
tive categories. This network can be conceived as a kind of intellectual ecology, lending 
itself to mathematical analyses analogous to those carried out in numerical ecology. 
The non-metric Bray–Curtis dissimilarity, commonly used in quantitative ecology, can 
be used to describe the internal dynamics of this network.

Results: While the degree-distribution of the network remained stable dur-
ing the studied years, that of the sub-networks of with at least k links showed that k = 5 
is a critical number of citations: this many are needed that the bias towards already 
highly cited works come into effect (preferential attachment). Using the dij Bay-Curtis 
dissimilarity between nodes i and j, a surprising pattern emerged: the log-probability 
of a change in dij during a quarter of year depended linearly, with a negative coeffi-
cient, on the magnitude of the change itself.

Conclusions: The developed methodology could be useful to detect emerging 
technological developments, to aid decisions, for example, on resource allocation. The 
pattern found on the internal dynamics of the system depends on the categorisation 
of the patents, therefore it can serve as an indicator when comparing different catego-
risation methods.
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Graphical Abstract

Introduction
With the advent of “Big Data”, the bottleneck in predictive sciences is not finding rel-
evant data but how to make sense of them. Studying patent databases may reveal patterns 
in technological advances that can be used to aid decision making, for example during 
resource allocations.

Patents are one of the most important indicators of human technological advance-
ments. They are connected by references, thus generating links between the technologi-
cal categories, too, to which the patents are assigned. This network can be conceived as 
a kind of intellectual ecology, lending itself to mathematical analyses analogous to those 
carried out in numerical ecology [1].

One of the most important concepts in trend- and pattern-recognition is the dissimi-
larity between two objects. The choice how to quantify it is not obvious and does not 
necessarily result in a distance-concept, for which the criteria are:

 (i) d(A,B) ≥ 0 and d(A,A) = 0 (i.e. the dissimilarity between two different objects A and 
B is a non-negative number and it is zero if A = B).

 (ii) (A,B) = d(B,A) (symmetry)
 (iii) d(A,B) < d(A,C) + d(C,B), for any third C (triangle inequality)

The last requirement does not necessarily hold for many commonly used dissimilarity 
measures. It is difficult to achieve, for example, for transport routes, due to their typi-
cal hub-centred organisations, if the distance is measured by the duration of the travel 
between nodes, as a journey to a hub is generally faster than between non-hubs.

A record in a patent database contains certain attributes of a given patent, among oth-
ers the scientific-technological category to which it has been assigned. Patents typically 
refer to other patents, which can be conceived as links between the respective techno-
logical categories. If a patent assigned to category cj refers to patents assigned to catego-
ries c1…cn, then we say that the latter categories influence cj. If we quantify the weight of 
this influence by the number of the respective references, then an ‘influence-vector’ can 
be assigned to each category, showing how much it is affected by the other categories.

Patent data have been used by several authors [2–4] to describe, possibly predict, tech-
nological changes. Érdi et al. [2] defined a citation vector v = [v1 … vn] for each patent, 
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where an entry vi represented how many times patents from category i, were cited in the 
patent. After suitable normalisation, vi was seen as a weight to what extent the category 
ci influenced the patent. The authors grouped the patents according to the Euclidean 
distance between their citation vectors, then, by means of the Ward-algorithm [5], pro-
duced a dendrogram, the temporal dynamics of which were used to predict significant 
changes in the system.

A critical point in this approach is the use of the Euclidean metric, i.e., the distance 
concept was derived from the scalar product of vectors. We demonstrate, in what fol-
lows, the advantages of considering a non-metric dissimilarity measure instead. We show 
how the state and internal dynamics of technological developments can be described by 
network science methods and using the dissimilarity measure of Bray–Curtis [6]. The 
transformation of Gower [7] will be used to visualize the state and temporal behaviour of 
the system in two dimensions.

Method
The Bray–Curtis (BC) dissimilarity measure

Let the {ci} (i = 1…n) be technological categories and define the S = [sij]nxn citation 
matrix as follows: let sij be the total number of patents that was put in the cj category 
and cited patents assigned to ci where i ≠ j. This sij number, a non-negative integer, can be 
conceived as a quantification of the extent to which the ci category influenced cj, i.e., the 
weight of the ci → cj directed edge. As these can change with time, in fact we can also use 
the S(t) = [sij(t)]nxn notation. Our rule sets the diagonal entries of the matrix S(t) to zero.

Quantify the dissimilarity between the cj and ck technological categories by means of 
their respective influence vectors following the idea of Bray and Curtis [6]:

where, for the i = 1…n index of the summation, i ≠ j, and i ≠ k.
This way, again, we excluded the references of the categories to each other, as we want 

to see how similar category cj is to category ck, in terms of the composition of their influ-
ence vectors, from which we left out the direct link between them. We call djk ∈ [0,1], the 
BC-dissimilarity assigned to the (cj,ck) category-pairs. The focus of our analysis is the 
temporal variation of the DBC = [djk]nxn dissimilarity matrix.

A subset of the categories will be called contracting in a time interval, if the above dis-
similarity between any two members of the subset consistently decreases during that 
interval. This means that the composition of the respective influence vectors of the cat-
egories belonging to this subset is becoming more and more similar to each other. Note 
that the direct link between two categories do not affect their BC-dissimilarity, as the 
summations in Eq. (1) excludes the i = j and i = k cases. In other words, if the (cj,ck) cat-
egories get closer to each other, that does not necessarily mean that they would refer 
to each other at higher probability, but it is the composition of their two respective 

(1)djk =

∑n
i=1

∣

∣sij − sik
∣

∣

∑n
i=1 sij +

∑n
i=1 sik

(

j = 1 . . . n; k = 1 . . . n
)
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influence-vectors (that excludes the direct cj → ck and ck → cj references) that is becom-
ing similar with time.

Gower‑visualisation of the Bray–Curtis dissimilarity between categories

Consider the G = [gkl]nxn Gower-transformation of a DBC = [dkl]nxn dissimilarity matrix:

where d’kl = − 0.5 dkl.2

The eigenvectors of G form a basis, with properties that can be utilized for visuali-
zation [1]. Namely, as the G matrix has non-negative and different eigenvalues (λ1, λ2 
….), consider the V matrix of its vk column-eigenvectors and take the W matrix of the 
wk = sqr(λk)·vk modified (column-) eigenvectors (k = 1, 2…). As proved by Gower [7], the 
scalar product of any two row-vectors of the W = [w1, w2 …] matrix will be equal to the 
dissimilarity between the two respective categories that can be visualized by these row-
vectors with ordinary Euclidean distance between them. Besides, their first 2–3 com-
ponents are much greater than the rest, which can therefore be omitted, for the sake of 
representing the categories by these first few components of the row vectors, i.e., in 2 or 
3 dimensions.

The temporal evolution of the obtained points demonstrates how the dissimilarities 
increase or decrease with time, with the potential of identifying what combinations of 
technological areas emerge or tend to form clusters (Fig. 4.).

Data
We analysed a freely available dataset on patents registered in 2018–19 of the United 
States Patent and Trademark Office (USPTO). The database is updated quarterly on the 
PatentsView Web portal. Accordingly, in what follows, we use the notation q1 = quarter 
1 of 2018; … q8 = quarter 4 of 2019. Data were downloaded from the ‘Data Downloads 
Tables’ (tables named ‘ipcr’ and ‘uspatentcitation’). Relevant data from the two tables 
were merged to establish the International Patent Classification (IPC) category of each 
patent. Each record of the compiled table represented a patent with (i) a unique ID of 
the actual patent; (ii) the IDs of the patents cited by the actual one; and (iii) the ID of 
the patents citing the actual one. Besides, the record also contained the IPC categories 
to which the actual patent was assigned and the date when the patent was approved. As 
we found different levels of patent classification, for the sake of simplicity, only the first 
level categories have been exploited. If the category or the approval date was not avail-
able, then the record was omitted. Altogether 115 categories (ci, where i = 1 … 115) were 
distinguished and linked by reference lists of the patents as described above. The catego-
ries were divided, in the database, into 8 groups denoted by A-H, and we followed this 
notation.

(2)gkl = d′kl −

∑n
j=1 d
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kj

n
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Results
In each quarter year of 2018-19, more than 80,000 patents were processed and each of 
them was assigned to one of the 115 categories, so the number of nodes in the network 
is N = 115. Their total number of references were more than 300,000 in each quarter-
year, about third of which was omitted because they cited patents that were assigned to 
the same category.

This way, we constructed a weighted, directed network of categories, where the 
direction of an edge is from a cited category to a citing one and its weight is the num-
ber of respective citations. As follows from above, the sum of the weights (the entries 
of our S matrix) is ca. 200,000. The weights span from one to several hundreds, the 
smaller numbers being much more frequent (the lowest number, 1, occurring > 1000 
times), than the higher ones. The degree-distribution of the network nodes (i.e., the 
frequency diagram of the number of citations in the categories) follows the power-
law as shown by Fig.  1. This indicates that the overall weighted citation network of 

Fig. 1 The distribution of the weighted degrees of nodes (categories) throughout 2018–2019, on the log–
log scale, follows the power-law

Fig. 2 In-degree distributions in the q1 quarter-year if only those edges are considered whose weight is 
exactly k, where (a) k = 1; (b) k = 2; (c) k = 5
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categories falls in the commonly observed scale-free group [8], throughout all the 8 
quarter of years.

Note that the non-weighted version of the network would have ca. 5-6000 edges, 
out of the possible 13,000, so it is relatively dense. In this network, the average in-
degree of a node (i.e. how many other categories it cited at least once) would be ca. 
45–50, out of the possible maximum 114.

For the weighted network, which is our focus, we studied the properties of some 
weight-defined subnetworks. Figure 2 shows the distribution of the in-degrees of the 
nodes (i.e. the proportion, or relative frequency, of the incoming edges, with weights, 
within the total number of weighted edges), if only those edges count that represent 
exactly k citations, where k = 1, 2, 5. The distribution strongly depends on how many 
citations are needed to form an edge. With k increasing, the in-degree distribution 
transforms from unimodal to close-to-exponential.

That this finding is valid through the studied two years is demonstrated in Fig.  3. 
The in-degree distribution of the subnetwork with edges representing exactly 1 cita-
tion (Fig. 3a) is close to Poissonian for all the eight quarter-years. Recall that, while the 
degree distribution of an Erdős-Rényi random graph is Poissonian, that of a scale-free 
network follows the power-law [8]. This suggests that citing a patent from another cat-
egory only once can be just random, resulting in the Erdős-Rényi option. However, when 
the edges represent several (at least ca. 5 citations; see Fig. 3b), then the pattern is more 
reminiscent to that generated by the power-law. A logical explanation for this is that, 
if a category cites another one via at least five patents, then the principle of preferen-
tial attachment [8] is more detectable and the influence of the cited category increases 
according to this bias. The “preferential attachment” can be translated for our case as: 
the probability of citing a category is proportional with the number of citations that this 
category already has. It has been proven [8], that this mechanism leads to the linear pat-
tern on the log–log scale shown by Fig. 1, towards which the exponential distribution 
shown in Fig. 3b is an intermediate step.

For each quarter-year, we calculated the Bray–Curtis dissimilarities between the cat-
egory-pairs, thus creating the DBC(qi) = [dBC(qi)] dissimilarity matrices as a function of 
the quarter-years and their differences with the ΔdBC(qi) entries:

Fig. 3 In-degree-distribution of the categories (nodes) for all the eight quarter-years (q1-q8). Only those 
edges were considered, which represent (a) exactly one citation; (b) exactly five citations. The dotted lines 
represent the (a) Poisson- (b) exponential distribution, each with a mean-representing parameter that was 
estimated by the average of the respective dataset
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For demonstration, Fig.  4. shows the movement of two contracting subgroups, with 
two and three members respectively. The movement is projected onto a two-dimen-
sional Gower-space. The dynamics of the points can be followed in 3D, too, on Addi-
tional file 1, as a time-lapse simulation.

Figures 1, 2 and 3 showed that the degree distribution of our network follow con-
sistent patterns through 2018-19. However, this does not mean that the network is 
stationary. In fact, it hides significant internal dynamics as Fig. 5 shows. It suggests 

(3)�dBC(qi) = dBC(qi) − dBC(qi−1) (i = 2 . . . 8)

Fig. 4 The internal dynamics of five categories, when their dissimilarity is quantified by the Bray–
Curtis measure, during the studied period (8 quarter-years). The Bray–Curtis space is projected onto a 
two-dimensional, Euclidian, Gower-space

Fig. 5 Log-probability, or log(relative frequency), histogram of the ΔdBC changes in dissimilarities between 
categories in the patent database from the q1 to the q2 quarter-years. The figure shows that the further 
away two categories are in the BC-space, the more probable that they move closer to each other. So far 
this is expectable, but the linearity between the logarithm of the relative frequency of a change in the 
BC-dissimilarity and the BC-distance itself is surprising
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that, in a quarter-year, the log-probability of a category getting closer to / further 
from another category by a given ΔdBC-measure is a linear function of that measure. 
The more intriguing this is because the BC-transformation is non-linear, and the 
BC-measure does not qualify for a distance concept.

It is an open question, answer to which is out of the scope of this paper, whether 
there is a mechanistic explanation behind the observed linear pattern. What we 
established was that the “significant” connections (i.e., edges representing at least 
five references) generated a close-to scale-free network through the 8 quarter-
years, presumably driven by the mechanism of preferential attachment. The internal 
dynamics however is far from stationary and for all the seven histograms of the tran-
sitions made between the eight quarter-years showed the log-linear pattern of Fig. 5.

Discussion
Intellectual achievements are being built on each other, and we took the US Patent & 
Trademark Office database to analyse these interactions. Two critical simplifications 
were made when analysing the data: A/We only considered the first level of categorisa-
tion. B/We did not differentiate between the times of patent filing and patenting. These 
simplifications may affect the findings, but here our focus was the methodology rather 
than higher resolution analysis.

We constructed a weighted, directed network of categories where the weighted edges 
represent references between the patents belonging to the categories. For each node 
(category), an “influence vector” was assigned, composition of which characterising how 
other categories affect that node. The temporal changes in the (dis)similarity of the com-
position of these influence vectors were used to identify the dynamics of the constructed 
network, representing this way a sort-of evolving intellectual ecology.

A critical concept here is the measure of dissimilarity between categories. For this, we 
chose a non-metric dissimilarity measure, that of Bray–Curtis [6], which is commonly 
used in numerical ecology.

The developed methodology could be used for example to describe the emergence of 
new technological developments, or to support decisions on research and development 
resource allocation [9].
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A method for this could start with identifying contracting subnetworks, as demon-
strated in the 2D Gower-space in Fig. 4. To that end, the categories H05 (“Electric tech-
niques not otherwise provided for”) and B25 (“Hand-held tools; Portable, power-driven 
tools; Handles for hand implements; Workshop equipment; Manipulators”) were fur-
ther explored using a multi-step filtering method. We searched for the categories they 
referred to, then for patents within the search results that could explain the observed 
convergence over the two-year-long observation time.

We found that the categories G05 (controlling, regulating) and G06 (computing, cal-
culating, counting) had a significant impact on their H05 and B25 citing categories. 
For both cited categories (G05, G06), the BC dissimilarity measure from H05 and B25 
showed a steady decrease during the studied period (Fig. 6). This trend my be expectable 
by an expert; however, the role of quantitative modelling is not only to find new patterns 
but also rank various scenarios, thus give an objective tool to technologically less experi-
enced managers, who nonetheless may be responsible for making decisions, for example 
about investing in new areas.

When exploring the patent database, the linear pattern demonstrated by Fig.  5 is 
probably the most surprising finding. Intrigued, we downloaded the data of Microsoft 
Academic Graph containing—among others—scientific publication records, citation 
relationships and fields of study. We carried out the same analysis as in case of patent 
data, but no linear pattern was observed for the analogous distribution shown in 5. 
Therefore, our observation is not due to some properties of the BC-dissimilarity meas-
ure. The reason might be the way how the patents were categorised, though it is not 
clear why.

Nonetheless, as an application, the observed linearity could be a reference for other 
categorisation methods. However, while the preferential attachment principle [8] is an 
elegant explanation for the scale-free pattern shown by some of the previous results, 
analogous mechanistic reason for this last one seems neither straightforward nor intui-
tively predictable.
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