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Abstract 

Background: The recruitment of thermogenic adipocytes in human fat depots mark-
edly improves metabolic disorders such as type 2 diabetes mellitus (T2DM). However, 
identification and quantification of thermogenic cells in human fats, especially in meta-
bolic disorders patients, remains a major challenge. Here, we aim to provide a stringent 
validation of human thermogenic adipocyte signature genes, and construct transcrip-
tome-based models to quantify the browning degree of human fats.

Methods: Evidence from RNA-seq, microarray analyses and experimental approaches 
were integrated to isolate robust human brown-like fat signature genes. Meta-analysis 
was employed to validate the performance of known human brown-like fat marker 
genes. Autoencoder was used to reveal the browning levels of human adipose samples 
for supervised machine learning. Ensemble machine learning was applied to devised 
molecular metrics for quantifying browning degree of human fats. Obesity and T2DM 
datasets were used to validate the performance of the molecular metrics in adipose-
related metabolic disorders.

Results: Human brown-like adipocytes were heterogeneous populations which 
showed distinct transcriptional patterns and biological features. Only DHRS11, REEP6 
and STX11 were robust signature genes that were consistently up-regulated in different 
human brown-like fats, especially in creatine-induced UCP1-independent adipocytes. 
The molecular metrices based on the expression patterns of the three signature genes, 
named human browning capacity index (HBI) and absolute HBI (absHBI), were superior 
to 26 traditional human brown-like fat marker genes and previously reported brown-
ing classifier in prediction of browning levels of human adipocytes and adipose tissues 
as well as primary cell cultures upon various physiological and pharmacological stimuli. 
Notably, these molecular metrics also reflected the insulin sensitivity and glucose-lipid 
metabolic activity of human adipose samples from obesity and T2DM patients.

Conclusions: In summary, this study provides promising signatures and computa-
tional tools for evaluating browning levels of human adipose samples in response 
to physiological and medical intervention. The metrices construction pipeline provides 
an alternative approach for training machine learning models using unlabeled samples.
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Background
Mammals possess two main types of fats, named white and brown adipose tissues [1]. 
White adipose tissue (WAT) is specialized for lipid storage and release, while brown adi-
pose tissue (BAT) expends nutritional energy in the form of heat for non-shivering ther-
mogenesis. Although WAT and BAT are functional different adipose tissues, brown-like, 
thermogenic fat cells can be detected in various WAT depots in response to cold expo-
sure and certain other stimuli [1, 2]. These cells have consequently been termed beige or 
brite (brown-in-white) adipocytes. Importantly, adult humans also possess thermogenic 
adipocytes in the supraclavicular and neck region as well as in multiple WAT depots 
upon exposure to cold stimuli or β-adrenergic receptor agonist [3, 4].

Emerging evidence suggests that promoting the recruitment of brown-like cells in 
WAT depots improves metabolic health in ways far beyond the induction of thermogen-
esis in both rodents and humans [1, 5]. For instance, selective induction of white adipo-
cytes browning improves insulin sensitivity and correct hyperlipidemia [6–8], whereas 
impaired beige fat biogenesis leads to systemic glucose tolerance and insulin resistance 
[9, 10]. Current physiological and medical interventions based on browning induction, 
such as cold stimulation and thiazolidinedione treatment, provide promising therapeutic 
measures to improve metabolic disorders. The efficacy evaluation of these measures is 
highly relied on the accurate estimation of the levels of adipose browning. Thus, a robust 
quantification method for beige fat biogenesis on human WATs would predict clinical 
outcome and lead to the development of therapeutic measures that improve metabolic 
health [4].

However, it remains challenging in the quantification of human brown and beige 
cells. The most likely explanation is that human fat contains only a small fraction of 
thermogenic adipocytes which are scattered in broad regions [11, 12]. Positron emis-
sion tomography-computed tomography (PET-CT) scans have allowed the discovery 
of thermogenic fat cells in supraclavicular and neck region by measuring radiolabeled 
glucose uptake [13, 14], but have a limited sensitivity in the identification of tiny frac-
tions. Besides, the abundance of thermogenic fat regresses during aging, weight gain 
and metabolic disorders in adult humans [12, 14, 15]. Currently, a number of signature 
genes, such as UCP1, PRDM16 and PPARGC1A, have been proposed for identification 
of human adipose browning process [2, 3, 11]. However, these genes only been used 
to make a qualitative distinction, and have not been fully validated in human samples. 
Indeed, some of these genes have been proven to be weak classifiers in distinction of 
human adipose types.

Machine learning provide promising methods for quantifying human adipose brown-
ing. However, to construct a robust supervised learning model, hundreds of labeled 
adipose samples are required to train the algorithm. Unfortunately, neither consider-
able human brown-like fat samples nor well-established detection methods for human 
adipose browning are available. Deep learning methods, such as autoencoders, are able 
to summarize the biology features from unlabeled high-dimensional data, which pro-
vide an alternative way to obtain adequate human brown-like samples for supervised 
machine learning.

In this study, we developed two computational tools, which we call human browning 
capacity index (HBI) and absolute HBI (absHBI), for estimating the degree of browning 
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and quantifying the thermogenic potential of human fats based on high-throughput 
sequencing data. First, we defined robust molecular signatures of human thermogenic 
fats using experimental approaches and publicly available molecular profiles from vari-
ous human brown-like adipocytes and adipose tissues. Next, we analyzed and isolated 
the indicator reflecting browning potential in training cohort using autoencoders. 
Using ensemble machine learning models, we constructed HBI and absHBI based on 
the expression levels and relative expression rankings (RERs) of signature genes, respec-
tively. HBI was designed to predict the degree of browning and thermogenic potential 
in human pre-adipocytes, adipocytes and adipose tissues. absHBI was used to predict 
the adipose browning independent to control samples and without removing the batch 
effects. Importantly, both HBI and absHBI reflected browning degree, insulin sensitivity 
and glucose-lipid metabolic activity of human fats derived from obesity and type 2 dia-
betes mellitus (T2DM) patients.

Methods
Data acquisition

Publicly available microarray and RNA-sequencing cohorts used in this study were listed 
in Additional file 7: Table S1. For each study, batch effects were removed using ComBat 
function, which employs an empirical Bayes framework within the sva (version 3.40.0) 
R package. The gene names were mapped from any other formats to Human Genome 
Organization (HUGO) and eliminated genes without such mapping to ensure compati-
bility. Only protein coding genes were included in this analysis. If multiple probes shared 
the same symbol gene name, we calculated the mean of the expression values of these 
probes as the final expression value of the gene.

Identification of human brown‑like fat signature genes

GSE56633 (BC1, n = 6), GSE57896 (BC2, n = 24), GSE71293 (BC3, n = 12), GSE125331 
(BC4, n = 5), GSE113764 (BT1, n = 30) and GSE122721 (BT2, n = 6) datasets were used 
to identify human brown-like fat signature (HB) genes. Considering the batch effects, 
we performed DEGs analysis to these datasets respectively. For microarray data, DEGs 
analysis was performed by limma (version 3.48.3) R package [16], while DEGs analysis 
for RNA-seq datasets was conducted by DESeq2 (version 1.32.0) R package [17]. Genes 
consistently up-regulated in human brown-like fats in RobustRankAggreg (version 1.2) 
analysis were considered as the candidates of signature genes.

Experimental validation of human brown‑like fat signature genes

Human tissue and cell culture

Human subcutaneous adipose tissues (SATs) from 3 healthy donors were obtained from 
Nanjing Drum Tower Hospital (Nanjing, China) after informed consent was obtained. For 
explant culture, adipose tissues were minced into small fragments (5–10 mg), and placed in 
M199 medium supplemented with 10% fetal bovine serum (FBS), 850 nM insulin and 5 μM 
dexamethasone (Dex) without or with rosiglitazone (1 μM) or creatine (5 mM). After 4 days 
in culture, the tissues were harvested for gene expression analysis. For cell culture, adipose-
derived stem/stromal cells (ADSCs) were isolated from adipose tissue specimens by colla-
genase digestion (5 mg/mL type 1), and placed in MEM-α medium supplemented with 10% 
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FBS. All media were supplemented with 100 U/mL penicillin, 100 μg/mL streptomycin, and 
maintained in a humidified incubator at 37 °C under 5%  CO2.

Primary adipocyte differentiation

To generate human white adipocytes in vitro, ADSCs were seeded at a density of 2 ×  104 
cells per  cm2 and grown to confluency over ~ 5  days. White adipocytes differentiation 
was performed using differentiation medium for 14 days, and maintained in maintenance 
medium for 4 days. To induce human brown-like adipocytes, white adipocytes were treated 
with 1  μM rosiglitazone or 5  mM creatine for 4  days. All media were refreshed every 
2 days. Finally, the adipocytes were harvested for gene expression analysis. The differentia-
tion medium was comprised of DMEM/F-12 supplemented with 10% FBS, 850 nM insu-
lin, 0.5 mM isobutylmethylxanthine (IBMX), 5 μM Dex, and 125 nM indomethacin (Indo), 
1  nM triiodothyronine (T3). The maintenance medium was comprised of DMEM/F-12 
supplemented with 10% FBS, 850 nM insulin and 1 nM T3. All media were supplemented 
with 100 U/mL penicillin, 100 μg/mL streptomycin, and maintained in a humidified incu-
bator at 37 °C under 5%  CO2.

Quantitative real‑time PCR

Total RNA was isolated from adipose tissues or adipocytes using TRIzol reagent (Ther-
moFisher), and cDNA was synthesized using a 5 × All-In-One RT MasterMix (abm, G486) 
kit according to the manufacturer’s instructions. Quantitative real-time PCR (RT-qPCR) 
was performed on a StepOnePlus (Applied Biosystems) using AceQ qPCR SYBR Green 
Master Mix (Vazyme, Q111-02). The expression of the measured genes was normalized to 
the RPLP0 mRNA expression levels. The sequences of the primers used in this study are 
shown in Additional file  8: Table  S2. Statistical analysis was performed using GraphPad 
Prism software (version 8.0). Error bars indicated the Standard Error of Mean (SEM).

Experimental validation of brown‑like fat signature genes in mice

C57BL/6 J mice (6–8 weeks old) were purchased from the Model Animal Research Center 
of the Nanjing University (Nanjing, China) and bred in the animal facilities under spe-
cific pathogen‐free conditions. All mouse procedures and experiments for this study were 
approved by Institutional Animal Care and Use Committee, Nanjing University. Mouse 
white and brown adipose tissues were isolated for gene expression analysis from inguinal 
and interscapular region, respectively. We mapped HB gene IDs to mouse ortholog gene 
IDs to design primers for RT-qPCR analysis. The expression of the measured genes was 
normalized to the Rplp0 mRNA expression levels. Statistical analysis was performed using 
GraphPad Prism software (version 8.0). Error bars indicated the Standard Error of Mean 
(SEM).

Prediction of the browning levels of human adipose samples by ensemble machine 

learning

Unsupervised machine learning

We adopted unsupervised deep learning method to look for the browning potential of 
SATs in GTEx cohort (n = 663). We normalized the raw counts of the RNA-seq samples 
using DESeq2 (version 1.32.0) R package [17] and performed autoencoders analysis by 



Page 5 of 20Wang et al. Journal of Big Data           (2024) 11:29  

keras (version 2.9.0) R package. We used mean squared error (MSE) as the loss function, 
and the optimizer is “adam”. Mean absolute error (MAE) was used to monitor training of 
autoencoders. The training process was run for 30 epochs. Parallelly, the transcription 
factor activities in each sample were inferred by dorothea (version 1.4.1) R package [18]. 
The immune cells infiltration was evaluated via a deconvolution approach using R-based 
version of CIBERSORT [19]. The inflammatory response was estimated by single sample 
gene set enrichment analysis (ssGSEA) algorithm using GSVA (version 1.40.1) R pack-
age [20] with established gene lists of Molecular Signatures Database (version 7.3). The 
feature constructed by encoders which shows strong positive correlation to PPAR family 
transcription factor activities and negative association with proinflammatory immune 
cells infiltration and immune response was used to indicate the browning capacity of 
GTEx SAT samples. Based on the levels of selected encoder feature, we further filtered 
the HB genes which reflect the changes of browning levels using correlation analysis.

Establishment of human browning capacity index

We constructed a computational tool, which we call HBI (human browning capac-
ity index), using ensemble method for quantifying the browning levels of human fats 
(Fig.  4A). SAT samples of GTEx cohort were randomly assigned to training and test-
ing sets with a 7:3 ratio. In training set, we fitted machine learning models using the 
filtered HB genes as the covariates. The models included elastic net (ENET), random 
forest (RF), artificial neural networks (ANNs), and Bayesian regularized neural networks 
(BNNs). ENET is a regularized regression model that uses both L1-norm and L2-norm 
to penalize the coefficients in a regression model. RF is an ensemble algorithm that com-
bines multiple decision trees using bagging method to increase the overall result. ANNs 
is a computational model that uses node layers to translate a data input into a desired 
output. BNNs is a robust machine learning model which reduces the need for cross-
validation and offers principled uncertainty estimates from deep learning architectures. 
Hyperparameters of ENET, RF and ANNs were optimized using tenfold cross-validation 
in the training set to maximize the goodness of fit  (R2). The outputs of RF, ANNs and 
BNNs are stacked together and used as input to a generalized linear model to devise an 
ensemble model. This final estimator is trained through tenfold cross-validation. These 
models were all implemented using caretEnsemble (version 2.0.1) R package.

Validation of human browning capacity index

The performance of HBI in quantifying the browning levels were assessed in testing 
set and external human adipocyte and adipose tissue datasets. Furthermore, we com-
pared the performance of HBI and traditional beige markers in estimating the degree of 
browning by meta-analysis. Random-effects meta-analysis model was used to calculate a 
standard mean difference (SMD). Genes (SMD > 0 & Overall P ≤ 0.05) were considered 
as robust indices for quantifying the degree of browning.

Establishment and validation of absolute human browning capacity index

Absolute quantification tools based on relative expression ordering (REO) of genes have 
been shown to produce robust results in various applications such as cancer classifi-
cation and stemness quantification [21, 22]. Inspired by REO method, we constructed 
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absolute HBI (absHBI) using relative expression ranking (RER) to intuitively evaluate 
the thermogenic potential of human fats (Fig. 6A). Firstly, using autoencoder F72 as an 
indicator of browning potential, we grouped GTEx SAT samples into high browning 
potential (high BP) group and low browning potential (low BP) group. For each sam-
ple, the rankings of DHRS11, REEP6 and STX11 and were obtained by ordering all the 
genes from low to high based on their expression levels. The rankings of the three HB 
genes are highly depended on the “background” genes used in the ordering process. 
Thus, we selected the background genes for ranking the three HB genes, respectively. 
Taking DHRS11 as the example, the pairwise comparisons were performed for the 
expression level between DHRS11 and all the other protein coding genes in all samples. 
Each gene pair  (GDHRS11,  Gother) only has two possible REO outcomes (the gene expres-
sion of  Gother > G DHRS11 or  Gother <  GDHRS11). We obtained the genes with certain REO 
 (Gother <  GDHRS11) in half of the high BP samples but reversed REO  (Gother > G DHRS11) in at 
least half of the low BP samples. Then the correlation between DHRS11 and background 
genes was analysis. Only genes showed negative association with the expression levels of 
DHRS11 were used as background genes. Next, we reordered the signature genes against 
the background genes to obtain RER. The machine learning models were trained using 
the RERs of the signature genes as the covariates. The performances of absHBI in quan-
tifying the browning potential were assessed using white and brown-like adipose sam-
ples in different datasets without removing the batch effects.

Statistical analysis

Statistical analysis was carried out using R (version 4.1.2) unless otherwise indicated. 
Differences were analyzed by unpaired Student’s t test or one-way ANOVA depending 
on experimental conditions. P ≤ 0.05 were considered statistically significant. Plots were 
generated using ggplot2 (version 3.3.5), ggpubr (version 0.4.0), ggtree (version 3.0.2), 
pheatmap (version 1.0.12), factoextra (version 1.0.7) R packages.

Results
Isolation and validation of signature genes for identification of human brown‑like fats

We designed a bioinformatic pipeline which incorporated machine learning, deep learn-
ing and experimental analysis to construct robust metrics for quantifying browning 
degree of human fats (Fig. 1). Firstly, we isolated unbiased signature genes for identify-
ing browning process in human fats. To achieve this goal, we systematically retrieved 
publicly available transcriptomes on differentiated adipocytes and adipose tissues from 
the microarray and RNA-seq studies of GEO databases (Fig. 2A). A total of 24 micro-
array samples and 59 RNA-seq samples, comprised high quality transcriptomic sam-
ples of human white and brown-like fat (Additional file  1: Fig. S1), were selected for 
downstream analysis. It contains a variety of experimental models for obtaining human 
brown-like fat specimens: Kishida et  al. (BC1) induced human beige adipocytes from 
iPSCs or human dermal fibroblasts overexpressed CEBPB and MYC [23]. Moisan et al. 
(BC2) induced human beige adipocytes from human embryonic stem cells [24]. Barquis-
sau et  al. (BC3) and Singh et  al. (BC4) induced human beige adipocytes from human 
mesenchymal stem cells via different induction strategies [25, 26]. Mueez et  al. (BT1) 
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Fig. 1 Flowchart of the present study. A Flowchart showing methodology used to estimate the thermogenic 
potential of human fats. Human brown-like fat transcriptomes, WAT transcriptomes and primary adipocyte 
induction model are integrated to identify human browning signatures. Ensemble machine learning (ML) is 
applied to construct HBI and absHBI for browning detection

Fig. 2 Identification of signature genes of human brown-like fats. A Summary of the datasets used in the 
identification of signature genes of human brown-like fat. The number of samples, brief description and 
study type are indicated. B Semantic similarity between GO terms, the pie charts indicate highly enriched GO 
terms in the up-regulated genes of different datasets, the size of the pie indicates the number of enriched 
genes. C Heatmap showing the significantly up-regulated and down-regulated genes in different datasets. D 
Overall p values of meta-analysis with continuous outcome data using different genes
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isolated thermogenic adipose tissues from supraclavicular region [27]. Lee et al. (BT2) 
induced thermogenic adipose tissues ex vivo from white adipose tissues (WATs) [28].

We performed differential expressed genes (DEGs) analyses to these datasets, respec-
tively. We executed GO and KEGG enrichment analysis, to evaluate the biological simi-
larity of these brown-like fats. The semantic similarity of significantly enriched terms 
was measured based on the annotation statistics of their common ancestor terms. By 
this means, we observed functional difference in these samples (Fig.  2B; Additional 
file  2: Fig. S2). The brown-like fats in BC3, 4 and BT1, 2 exhibited strong lipid meta-
bolic activity. BC1 increased genes of muscle development. BC2 showed higher inflam-
matory response levels. In addition, BT1 exhibited stronger thermogenesis activity than 
the other cohorts, evidenced by enriched cellular respiration and thermogenesis related 
genes. These differences might result from individual and anatomical location difference, 
as well as technical variation, which may affect the performance of browning detection 
methods based on biological process distinctions.

We treated genes consistently up-regulated in brown-like fats from these cohorts as 
candidate genes for detecting browning process. We found 11 genes, including OASL, 
UCP1, IL1B, FAR2, SORL1, CD96, STX11, CA5B, REEP6, DHRS11, BANK, were robustly 
up-regulated in human brown-like fats using robust rank aggregation method (Fig. 2C). 
To evaluate the performance of these candidates in identification of browning process, 
we applied meta-analysis to these genes with previously used brown marker genes, 
including ADIPOQ, CA4, CD36, CIDEA, CITED1, DIO2, ELOVL3, EPSTI1, FABP4, 
HOXC9, IRF4, KCNK3, LHX8, MTUS1, MYF5, PDK4, PLIN1, PPARG , PPARGC1A, 
PRDM16, SHOX2, SLC2A4, TMEM26, TNFRSF9, UCP1 and ZIC1 [26, 29–31]. UCP1 
is a shared gene in both candidate and traditional gene list. We found that 10/11 candi-
date genes, including OASL, UCP1, IL1B, FAR2, SORL1, CD96, STX11, REEP6, DHRS11, 
BANK, were informative in qualitative distinction of browning process, which high-
lighted the applicable of our pipeline in human browning signature selection. However, 
among the pool of 26 conventional markers, only 4 genes (KCNK3, ELOVL3, PRDM16 
and CA4) exhibited a modest level of significance in relation to human brown-like fats 
(Fig.  2D; Additional file  3: Fig. S3). Moreover, the levels of classical markers, such as 
UCP1, was not always associating to the degree of browning (Additional file 3: Fig. S3). 
This result was consistent with previous reports that UCP1 was a weak classifier for ana-
lyzing human brown-like adipose biopsies [11, 32].

Deep learning reveals browning degree and signature genes of human brown‑like adipose 

samples

To qualify the adipose browning degrees, we further selected the signature genes highly 
associated with browning levels of human adipose samples, from the genes which were 
qualified for qualitative distinction of browning process. To achieve this goal and fur-
ther machine learning task, considerable human brown-like adipose samples is required. 
However, human fat contains only a small fraction of thermogenic adipocytes which 
are scattered in broad regions. There are also lack of efficient clinical induction and 
detection methods for human adipose browning. These obstacles limited the sam-
pling of human brown-like fats. Nonetheless, taking advantage of the wealth of data on 
global transcriptomic studies of fat depots published over the last decade, we obtained 
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adequate unlabeled human fat RNA-seq samples from several human studies, such as 
Genotype-Tissue Expression (GTEx) cohort. GTEx cohort provides high-quality WAT 
gene expression information from individuals with different age, gender and health 
status. These discrepancies lead to the alterations of browning levels, which would be 
captured by deep learning models. Thus, we performed dimension reduction using 
autoencoders, which summarized the transcriptional features of GTEx SAT samples 
to 100 features (Fig.  3A). These indices reflected the primary characteristics of GTEx 
SAT samples. By enrichment analysis, we observed that feature 72 (F72) showed posi-
tive association (R = 0.67) with GO term “Thermogenesis” (Fig. 3B, C), suggesting that 
the levels of F72 may reflect the browning capacity of these samples. Considering that 
the browning level of adipose tissues is highly associated to their lipid metabolic activi-
ties [33], we further evaluated the fatty acid (FA) biosynthesis and degradation activity 
by single sample gene set enrichment analysis (ssGSEA) algorithm. The transcriptional 
activities of PPAR family proteins, including PPARα, PPARδ, PPARγ, which dominated 
the lipid metabolism in adipocytes [12], were inferred by an integrative method, called 
DoRothEA [18]. We noted that high F72 was associated with higher activities of FA bio-
synthesis and degradation as well as higher PPARα, PPARδ, PPARγ transcriptional activ-
ities (Fig. 3D).

Furthermore, previous reports demonstrated that the crosstalk between adipocytes 
and immune cells was important to thermogenic activation [2, 12]. For instance, M1-like 
macrophages produce pro-inflammatory cytokines such as TNFα and IL-1β to impair 
the thermogenetic capacity of adipose tissues. Conversely, anti-inflammatory M2-like 
macrophages produce cytokines such as IL-4 and IL-10, which promote brown fat acti-
vation and beige adipose tissue remodeling. Thus, we evaluated immune cell types for 
their relative abundance in adipose tissue microenvironment by CIBERSORT. In addi-
tion to individual immune subpopulation fractions, we also considered the functional 
activation of immune cells by measuring the intensity of inflammatory signaling. The 
results revealed that SATs in high F72 group showed higher score of M2-like mac-
rophages infiltration and lower levels of M1-like macrophages infiltration (Fig. 3F), sug-
gesting that the niche of F72 high WATs supported beige cells biogenesis. Consistent 
with this finding, F72 was negatively correlated to the activities of TNFα (R = − 0.51), 
IFNα (R = -0.5) and IFNγ (R = − 0.52) pathway (Fig. 3E). As a consequence, the levels of 
F72 were informative in human adipose browning prediction.

Using F72 as an indicator of browning capacity, we investigated the expression altera-
tions of the signature genes in white adipose tissues. Notably, we found that only BANK1 
(R = 0.74), DHRS11 (R = 0.49), REEP6 (R = 0.7) and STX11 (R = 0.47) showed strong 
positive correlation with F72 (Fig. 3G), while the expression levels of OASL, UCP1, IL1B, 
FAR2, SORL1 and CD96 exhibited no or negative association to F72 (Additional file 4: 
Fig. S4). Thus, BANK1, STX11, REEP6 and DHRS11 were adopted to quantify browning 
levels of human adipose tissues.

Experimental validation of the signature genes using human and mouse adipose samples

To provide a more stringent validation to BANK1, DHRS11, REEP6 and STX11, we 
validate their availability in experimental analysis (Fig. 4A). We first investigated their 
expressions in primary cell cultures derived from human white adipose tissues. We 
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isolate CD34- CD45- CD44 + CD90 + CD105 + mesenchymal stem/progenitor cell 
(Fig.  4B). The classical white adipocytes browning process was induced by PPARγ 
agonists rosiglitazone as the pipeline showed (Fig. 4A). The expression levels of the 
signature genes were measured by real-time quantitative PCR (RT-qPCR). These 
methods have been widely used in adipose browning detection. The result showed 
that the beige adipocytes significantly up-regulated these signature genes except for 
BANK1 (Fig. 4C). Thus, we excluded BANK1 in further analysis. To simulate to adi-
pose browning process in vivo, we performed ex vivo explant cultures. As expected, 
rosiglitazone also promoted DHRS11, REEP6 and STX11 expression in human adi-
pose tissues (Fig. 4D). Intriguingly, we found the levels of the three signature genes 
also increased in creatine-induced thermogenic cells and tissues (Fig. 4E), suggesting 

Fig. 3 Deep learning reveals browning degree and signature genes of human brown-like fats. A An 
autoencoder model for interpreting human adipose samples. B Heatmap showing the correlation between 
the autoencoder features of GO term “Thermogenesis”. C Correlation between the autoencoder feature 
72 (F72) and GO term “Thermogenesis” (n = 663). D Overviews of the association between biological 
features and F72 (n = 663). Columns represent samples sorted by F72 levels from low to high. Rows 
represent molecular and biological processes associated with F72, including fatty acid (FA) biosynthesis, FA 
degradation, PPARα activity, PPARβ activity and PPARγ activity. E Correlation between F72 levels and z-scored 
ssGSEA scores of inflammation-related pathway activity (n = 663). F Relative abundance of indicated immune 
cell types in F72 high group and low group (n = 663). G Correlation between F72 levels and the expression 
levels of the signature genes (n = 663)
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that these genes were suitable for the identification of UCP1-independent thermo-
genesis. Furthermore, mouse has been the most widely used model animal for adi-
pose biology study, however, recent study highlighted the contrasts between human 
and mouse brown-like adipocytes [29, 34]. Universal markers for browning detec-
tion will increase the interpretability of results from mouse models. Thus, we inves-
tigated the expression changes of the three signature genes in mouse adipose tissues 
using their ortholog genes. Consistent with human samples, the expression levels of 
Dhrs11, Reep6 and Stx11 were markedly up-regulated in mouse brown adipose tissues 
(BATs), suggesting the applicability of these genes in mouse model (Fig. 4F). Together, 
we proposed DHRS11, REEP6 and STX11 as the signature genes for identification and 
quantification of human browning process. Dehydrogenase/reductase member 11 

Fig. 4 Experimental validation of the signature genes in human and mouse samples. A Schematic illustration 
of experimental design. B Cell surface marker identification of human mesenchymal stem/progenitor cells. 
C RT-qPCR validation of the signature genes in white and rosiglitazone (rosi) induced human brown-like 
adipocytes (n = 3 biological replicates). D RT-qPCR validation of the signature genes in human white and 
creatine induced brown-like adipocytes (n = 3 biological replicates). E RT-qPCR validation of the signature 
genes in brown-like adipose tissues from healthy donors (n = 3 biological replicates). F RT-qPCR validation 
of the signature genes in female (upper, n = 12) and male (lower, n = 16) mouse adipose tissues. Differences 
were analyzed by unpaired Student’s t test. Error bars indicated the SEM
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(DHRS11) is a type of 17β-hydroxysteroid dehydrogenase which is involved in steroid 
biosynthetic process. Receptor accessory protein 6 (REEP6) plays a role in regulating 
endoplasmic reticulum (ER) membrane structure. ER is indispensable for brown adi-
pocytes mitochondrial dynamics and function [35]. Syntaxin 11 (STX11) is a member 
of the SNARE protein family, which has been implicated in the lipid metabolism by 
binding to adipose-triglyceride-lipase (ATGL) [36].

Prediction of human adipose browning capacity by machine learning

Take advantage of the expression levels of DHRS11, REEP6 and STX11 and the output of 
autoencoders, we constructed a prediction model for evaluating human adipose brown-
ing processes. The adipose samples of GTEx dataset were randomly assigned to training 
and testing sets with a 7:3 ratio. For model selection, we fitted regression models using 
DHRS11, REEP6 and STX11 as the covariates with the training set (Fig. 5A). These mod-
els included elastic net (ENET), random forest (RF), artificial neural networks (ANNs), 
and Bayesian regularized neural networks (BNNs), as well as an ensemble model stack-
ing the outputs of above-mentioned models using generalized linear model.

The performances of different models were assessed in testing set and independent 
studies. The ensemble model exhibited highest accuracy at evaluating the browning 
degrees of adipose samples from training (R = 0.82) and testing (R = 0.72) sets (Fig. 5B). 
This model also correctly predicted the levels of browning in adipocyte (p = 0.028) and 
adipose tissue (p = 0.035) samples (Fig. 5B). Therefore, we employed the ensemble model 
to calculate human adipose browning index (HBI). To validate the performance of HBI 
in the identification of browning process, we grouped the fat samples into HBI high and 
low group according to the mean of HBI and conducted single sample gene set enrich-
ment analysis (ssGSEA). As shown in Fig.  5C, WAT samples with high HBI exhibited 
brown-like phenotypes, such as increased lipid metabolism, PPAR pathway and AMPK 
pathway activity. Notably, HBI high samples also enriched genes involving in insulin 
pathway activity, indicating that the HBI levels reflected the insulin sensitivity of adi-
pose tissues. Furthermore, we found that HBI was robust to the estimation of brown-
ing potential in human fat datasets and increased across all studies using meta-analysis 
(Fig.  5D, E). In conclusion, HBI was robust to the identification and quantification of 
browning levels in various types of adipose samples.

HBI is highly correlated with adipose browning capacity in obesity and type 2 diabetes 

mellitus patients

Obesity and metabolic disorders such as type 2 diabetes mellitus (T2DM) impair the 
browning capacity of white adipose tissues. We examined adipose samples of obesity 
and T2DM patients to investigate whether the HBI predict browning capacity in these 
adipose tissues. Although modestly decreased, the HBI showed positive correlation to 
the thermogenesis  (Roverweight = 0.49,  Robese = 0.36) and FA degradation  (Roverweight = 0.5, 
 Robese = 0.39) in adipose tissues from overweight and obesity individuals (Fig.  6A). 
Consistently, high HBI levels were strongly associated with higher expressions of lipid 
metabolism related genes, such as FASN, CPT2, COX5A, COX6A1 and PPARG  (Fig. 6B). 
These results were further validated by enrichment analysis, which showed significant 
enrichment of lipid metabolism, thermogenesis and insulin response associated genes 
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in HBI high fats of overweight and obese patients (Fig. 6C). Moreover, we validated the 
performance of HBI in the evaluation of the browning capacity in adipose tissues of 
insulin resistance (IR) patients. As expected, the HBI successfully quantified the degree 
of browning in IR patients (Fig. 6D–F), suggesting that HBI reflected the lipid metabolic 
activity and insulin sensitivity in T2DM patients.

Development of absolute human adipose browning capacity index

Inspired by relative expression ordering (REO) method, we developed an absolute 
HBI (absHBI) for intuitively evaluating the browning degree and potential of human 
fats in response to the various stimuli without the assistance of control groups 

Fig. 5 Prediction of browning capacity using ensemble machine learning model. A Pipeline for the 
prediction of adipose browning capacity using ensemble machine learning model. B Correlation between 
human browning capacity index (HBI) and F72 levels in WAT training cohort (n = 467), WAT testing cohort 
(n = 196), brown-like adipocyte validation cohort (n = 12) and tissue validation cohort (n = 6). C GSEA analysis 
predicting that high HBI is positively correlated with thermogenesis potential in the training cohort. D Forest 
plots showing performance of HBI in the classification of thermogenesis related processes. E Levels of HBI in 
different human brown-like datasets, samples were grouped into white and brown-like adipose groups
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(Fig. 7A). Firstly, we arranged the genes in every single GTEx SAT samples according 
to their expression levels. We observed that the rankings of the three signature genes 
(DHRS11, REEP6 and STX11) exhibited positive correlation to the F72 levels (Fig. 7B), 
indicating that the rankings of the three signature genes in RNA-seq study also 
reflected the browning potential of human fats. Obviously, the rankings of a selected 
genes are highly depended on the “background” genes used in the ordering process. 
To highlight the alterations of the signature genes, we selected the background genes 
which are negatively correlated to the rankings of signature genes, we further filtered 
the genes with certain REOs. Finally, we obtained 132, 335, 274 background genes for 
DHRS11, REEP6 and STX11 respectively. Using these genes as background genes, we 

Fig. 6 Performance of HBI in the quantification of browning potential in obesity and T2DM patients. A 
Correlation between HBI and z-scored ssGSEA scores of Thermogenesis and FA degradation in normal 
(n = 102), overweight (n = 153) and obese (n = 51) individuals. B Volcano plot showing the Pearson 
coefficients between HBI and genome-wide  (ngene = 13,530) gene expression levels in normal (n = 102), 
overweight (n = 153) and obese (n = 51) group. Several lipid metabolism-related genes are annotated on 
the plot. C GO enrichment analysis to the genes that positively correlated to HBI levels in normal, overweight 
and obese individuals. D Correlation between HBI and z-scored ssGSEA scores of Thermogenesis and FA 
degradation in insulin resistance (IR) patients (n = 59). E Volcano plot showing the Pearson coefficients 
between HBI and genome-wide gene expression levels in IR group. Several lipid metabolism-related genes 
are annotated on the plot. F GO enrichment analysis to the genes that positively correlated to HBI levels in IR 
patients
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calculated the relative expression rankings (RERs) of the signature genes (Fig. 7C) and 
fit ensemble machine learning model to obtain absHBI.

To validate the performance of absHBI, we applied this computational model to three 
independent RNA-seq datasets without removing batch effects. As anticipated, we 
found that the absHBI was robust to the classification between white and brown-like 
adipose samples. Notably, we observed that the absHBI levels was perturbed mainly by 
treatment and individual difference instead of batch effects caused by technological and 
experimental variants (Fig. 7D), suggesting that the absHBI was highly robust against the 
batch effects and sample normalization and can be stably applied to independent data-
sets. By correlation and enrichment analysis, we found that high absHBI was positively 
correlated to insulin response and glucose import related genes and processes (Fig. 7E, 
F). Altogether, these results demonstrated that the absHBI can be applied to quantify 
browning potential in T2DM patients derived adipose samples. Last but not least, we 
compared the performance of our computational models and previously reported tool 
ProFAT in predication of the browning capacity in different types of human adipose 

Fig. 7 Development and validation of absolute human browning capacity index. A Pipeline for the 
development of absolute HBI (absHBI) using machine learning. B Correlations between the rankings of 
DHRS11, REEP6 and STX11 and F72 (n = 663). C Normalized relative expression rankings (RERs) of signature 
genes (n = 663). Samples are sorted by F72 levels from low to high. D The absHBI levels of white and 
brown-like fat samples (n = 59). WAT_pertb: WAT samples treated with known small molecules. E Volcano plot 
showing the Pearson coefficients between absHBI and genome-wide gene expression levels in IR group. F 
GO enrichment analysis to the genes that positively correlated to absHBI levels in IR patients
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samples. HBI and absHBI exhibited higher accuracy in adipocyte and adipose tissue 
samples than ProFAT (Fig.  5B; Additional file  6 Fig.  S6A). All the models were more 
informative to distinguish thermogenic fat from WATs (Additional file 6: Fig. S6B).

Discussion
Adipose tissue is an extraordinarily flexible organ, which dramatically alters the cellu-
lar size and composition in response to various stimuli, including nutritional states and 
temperatures [1]. These adaptative remodeling play a central role in the regulation of 
energy homeostasis, body temperature and immune responses [37]. A notable remod-
eling process that has drawn particular attention is the ‘‘browning’’ or ‘‘beiging’’ of white 
adipose tissue (WAT), in which mitochondria-enriched thermogenic fat cells with multi-
locular lipid droplets emerge within WAT. Current studies demonstrate that promoting 
WAT browning and BAT activation improves metabolic health in ways far beyond the 
induction of thermogenesis [5, 12]. For example, Maria et  al. showed that cold expo-
sure significantly increased energy expenditure, whole-body glucose disposal and insu-
lin sensitivity [38]. Brian et  al. used the mirabegron, a β3-adrenergic receptor agonist 
that stimulates beige cells formation in WAT, to improve glucose homeostasis in obese 
humans [39]. Such physiological and medical intervention provides promising therapeu-
tic measures to the treatment of metabolic disorders. A robust quantification method for 
human brown-like fat recruitment therefore would predict clinical outcome and lead to 
the development of therapeutic measures that improve metabolic health. What is note-
worthy is that most of previous studies quantified the degree of browning via PET-CT, 
a method that was commonly used to diagnose and stage cancers by measuring glucose 
uptake. However, PET-CT scans showed limited sensitivity in the identification of some 
adipose fractions. For instance, there is evidence that PET-CT scans failed to detected 
the glucose uptake in subcutaneous and visceral WAT depots after cold acclimation [40], 
while the other experimental study using RT-qPCR revealed that these adipose depots 
exhibited strong browning capacity in response to cold exposure [38, 39]. Thus, it is 
remains challenging in quantifying the browning potential on human fats. In the present 
study, we proposed signature genes and unbiased computational pipeline for evaluating 
the browning capacity of human fats. To the best of our knowledge, this is the first study 
in which human fat samples comprised of pre-adipocytes, adipocytes and adipose tis-
sues have been leveraged to develop classification tools and machine-learning algorithm 
for analysis of human adipocyte browning. Importantly, these molecular metrics can 
evaluate the degree of browning for adipose samples derived from obesity and T2DM 
patients.

Previous studies analyzing gene expression patterns of brown-like adipocytes provided 
a number of signature genes for identification of adipose types [37]. However, most of 
the marker genes showed limited application because of experimental batch effects and 
data normalization biases. For instance, uncoupling protein 1 (UCP1) is a mitochondrial 
inner membrane protein that uncouple respiration and dissipate chemical energy as 
heat. The long-standing notion has been that UCP1 is the key driver of thermogenesis, 
which has been used as the classical marker gene of thermogenic adipocytes [41]. How-
ever, emerging evidence illustrates that UCP1 is insufficient to predict adipocyte types. 
As for human beings, the thermogenic potential of human fat does not always correlate 
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with the recruitment of UCP1-positive cells [11, 32]. Indeed, recent discoveries have 
highlighted several UCP1-independent thermogenic pathways in mammals [3]. Conse-
quently, there are still lack of signature genes for identification of thermogenic adipo-
cytes. In this article, we demonstrated that the three signature genes DHRS11, REEP6 
and STX11 not only predicted the UCP1-dependent thermogenesis, but also exhibited 
powerful capacity in the identification of UCP1-independent thermogenesis. Thus, these 
genes have broad application in the browning characterization, while the generalizability 
of these genes is limited in predicting the heterogeneity of human thermogenic adipo-
cytes. More studies using controlled trials and meta-analysis are needed to solve this 
issue.

T2DM is an expanding global health problem, closely linked to the metabolic disor-
der of adipose tissues [42]. Although the human browning index (HBI) we developed 
was robust to the quantitation of the adipose browning capacity in obesity and T2DM, 
an absolute index still needed to intuitively evaluate the degree of browning of adi-
pose depots in response to the clinical treatment. we therefore developed absolute HBI 
(absHBI) based on the relative expression ordering (REO) which was used to quantify 
stemness [21]. To the best of our knowledge, this is the first study in which REOs have 
been employed to develop classification tools for analysis of human adipocyte brown-
ing. When applying absHBI to the adipose samples derived from insulin resistance indi-
viduals, we found that higher absHBI values were significantly relevant to the increased 
degree of browning in white adipose tissues, which showed the applicability of the 
absHBI in T2DM clinical investigation.

The present study has several strengths. First, our study proposed robust signature 
genes for identifying human thermogenic fats. We provided a stringent validation to the 
candidate genes using experimental approaches and publicly available molecular profiles 
from a spectrum of human adipose-related samples. The three signature genes, DHRS11, 
REEP6 and STX11, turned out to be robust classifiers of human white and brown-like 
fats. Notably, these signature genes were also up-regulated in creatine-induced brown-
like fat samples, which proved the applicability of these genes in UCP1-independent 
thermogenesis. Second, we applied the outcome of deep learning to train the supervised 
models, that provide an alternative way to quantify the thermogenic potential of human 
fats, which could be applied to other regression problem to train the machine learning 
model using unlabeled samples. Another important strength of our study was that we 
employed ensemble method for model construction, which outperformed any other 
separate conventional machine learning models. This method complements properties 
exhibited by single existing models and further augment the generalization capability.

Conclusions
In conclusion, we proposed DHRS11, REEP6 and STX11 as signature genes of human 
brown-like fats. Based on the expression patterns of these genes, we devise com-
putational tools, named HBI and absHBI, for quantifying the browning degree and 
potential of human fats. HBI could be applied to control tests to distinguish human 
brown-like fats from white adipose samples. absHBI is developed to intuitively evalu-
ate the thermogenic potential and enables the integration of adipose RNA-seq sam-
ples from different datasets. The findings based on our metrics may advance the 
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mechanism study for adipose-based targeted therapy for metabolic disorders such 
as T2DM, perhaps leading eventually to new targets that guide clinical diagnosis, or 
improve therapeutic effects.
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