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Abstract 

In this paper, we modify the proof methods of some previously weakly consistent vari-
ants of random forest into strongly consistent proof methods, and improve the data 
utilization of these variants in order to obtain better theoretical properties and experi-
mental performance. In addition, we propose the Data-driven Multinomial Random 
Forest (DMRF) algorithm, which has the same complexity with BreimanRF (proposed 
by Breiman) while satisfying strong consistency with probability 1. It has better perfor-
mance in classification and regression tasks than previous RF variants that only satisfy 
weak consistency, and in most cases even surpasses BreimanRF in classification tasks. 
To the best of our knowledge, DMRF is currently a low-complexity and high-perform-
ing variation of random forest that achieves strong consistency with probability 1.

Keywords: Random forest, Strong consistency, Classification, Regression, Machine 
learning

Introduction
Random Forest (RF, also called standard RF or BreimanRF) [1] is an ensemble learning 
algorithm that makes classification or regression predictions by taking the majority vote 
or average of the results of multiple decision trees. Due to its simple and easy-to-under-
stand nature, rapid training, and good performance, it is widely used in many fields, such 
as data mining [2–4], computer vision [5–7], ecology [8, 9], and bioinformatics [10].

Although the RF has excellent performance in practical problems, analyzing its theo-
retical properties is quite difficult due to its highly data-dependent tree-building pro-
cess. These theoretical properties include consistency, which can be weak or strong. 
Weak consistency refers to the expectation of the algorithm’s loss function converges to 
the minimum value as the data size tends to infinity, while strong consistency refers to 
the algorithm’s loss function  converges to the minimum value as the data size tends to 
infinity [11]. Consistency is an important criterion for evaluating whether an algorithm 
is excellent, especially in the era of big data.

Many researchers have made important contributions to the discussion of consist-
ency-related issues in RF, proposing many variants of RF with weak consistency, such 
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as Denil14 (also called Poisson RF) [12], Bernoulli RF (BRF) [13], and Multinomial RF 
(MRF) [14]. However, the common feature of these algorithms is that the selection of 
split points  (a split point consists of a splitting feature and a splitting value) and the 
determination of the final leaf node labels during the tree-building process are inde-
pendent, i.e., using a part of the training set samples to train the split points and the 
remaining part to determine the leaf node labels, which to a large extent causes insuf-
ficient growth of decision trees. In addition, the introduction of random distributions 
such as Poisson distribution, Bernoulli distribution, and multinomial distribution in 
these algorithms can enhance their robustness but also have a certain impact on their 
performance.

In this paper, we propose a new variant of random forest called the Data-driven Multi-
nomial Random Forest (DMRF) which has strong consistency, based on the foundation 
of MRF and BRF with weak consistency. The term "Data-driven" in this context does not 
mean that other variants of RF are not depend on data, but rather indicates that DMRF 
can make more effective use of data compared to the aforementioned variants with weak 
consistency. In DMRF, we incorporate a new bootstrapping (slightly different from the 
standard bootstrapping in BreimanRF) that was not included in the previous variants, 
and introduce a Bernoulli distribution when splitting nodes. This Bernoulli distribu-
tion determines whether using optimal splitting criterion to obtain the splitting point 
or sampling the splitting point using two multinomial distributions based on impurity 
reduction. The reason for introducing the multinomial distribution is that it can perform 
random sampling of the optimal splitting feature and feature value with maximum prob-
ability [14].

Related work
BreimanRF [1] is an ensemble algorithm based on the prediction results of multiple 
decision trees, proposed by Breiman. It has shown satisfactory performance in practi-
cal applications. The basic process of BreimanRF can be divided into three steps: first, 
use bootstrapping to resample the dataset for the same number of times as the size of 
the dataset to obtain the training set for the base tree; second, randomly sample a fea-
ture subspace of size 

√
D without replacement from the entire feature space of size D , 

and evaluate the importance of each feature and feature value in the subspace based on 
the reduction in impurity (e.g., Information entropy or Gini index) to obtain the optimal 
splitting point. Recursively repeat this process until the stopping condition is met, and 
a decision tree is obtained. Finally, repeat the above process to train multiple decision 
trees, and take the majority vote (for classification problems) or average (for regression 
problems) of the results of multiple decision trees to obtain the final prediction result.

Since the proposal of the RF model, many variants have been developed, such as 
Rotation Forest [15], Quantile RF [16], Skewed RF [17], Deep Forest [18], and Neural 
RF [19]. These variants are proposed to further enhance the interpretability, perfor-
mance, and efficiency of the random forest. Although the practical research on RF has 
developed rapidly, the progress of its theoretical exploration is slightly lagging behind. 
Breiman proved that the performance of BreimanRF is jointly determined by the cor-
relation between decision trees and the performance of decision trees, i.e., the greater 
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the diversity and the better the performance of trees, the better the performance of RF 
[1].

The important breakthrough in the study of consistency of RF was proposed by Biau 
et  al. [20]. Biau proposed two simplified algorithms of BreimanRF: Purely Random 
Forest and Scale-Invariant Random Forest. Purely Random Forest randomly selects 
a feature and its feature value as the splitting feature and splitting value at each node. 
Scale-Invariant Random Forest also randomly selects a feature as the splitting feature 
at each node and randomly divides the samples into two parts according to the order of 
the feature values of that feature. Biau proved that both of these simplified versions have 
consistency.

Biau [21] proved another simplified RF model that is closer to BreimanRF and has 
weak consistency: randomly selecting a feature subspace at each node, and for each can-
didate feature, selecting the midpoint as the splitting value. When selecting among can-
didate features, the splitting feature and splitting value with the maximum reduction in 
impurity are selected to grow the tree.

Denil et al. [12] proposed a new RF variant, Denil14. Denil14 divide the training set 
into structural part and estimation part. The structural part is used only for training the 
split points, and the estimation part is used only to determine the labels of the leaf nodes. 
In addition, at each node, the size of the feature subspace is selected based on the Pois-
son distribution, and the optimal splitting feature and splitting value are searched from 
m structural part samples that have been pre-selected. This variant has been proven to 
have weak consistency. Denil14 can be used for classification.

Inspired by the Denil14 model, Yisen Wang et al. [13] proposed a new Bernoulli RF 
(BRF) based on the Bernoulli distribution. Similar to Denil14, BRF divides the dataset 
into structural part and estimation part, trains the splitting points using the structural 
part, and determines the leaf node labels using the estimation part. However, BRF intro-
duces two Bernoulli distributions at each node: one to determine whether the feature 
subspace size is 1 or 

√
D , and the other to determine whether the splitting value of each 

candidate feature is randomly selected or using the optimal splitting criterion. Finally, 
they proved that BRF also has weak consistency, but it is closer to BreimanRF and has 
better performance than previous RF variants with weak consistency. BRF can be used 
for both classification and regression.

Jiawang Bai et al. [14] transformed the reduction of each feature and its impurity value 
into probabilities through the softmax function, proposing a Multinomial Random For-
est (MRF). MRF also divides the dataset into structural and estimation parts, using the 
structural part to train the splitting points and the estimation part to determine the leaf 
node labels. Training the splitting point primarily involves two steps: first, calculating 
the maximum impurity reduction for each feature at each node and converting it into 
a probability, which is then considered the probability of the multinomial distribution 
from which the splitting feature is randomly selected; second, when selecting the split-
ting value, converting the impurity reduction of each feature value of the split feature 
obtained in the previous step into a probability and regarding it as the probability of the 
multinomial distribution from which the splitting value is randomly selected. Regarding 
determining the leaf node labels, MRF views the proportion of each class of estimation 
part samples in the leaf node as a probability and randomly selects a class as the label 
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from the multinomial distribution. MRF has more purposeful random selection of split-
ting features and values, with more reasonable probability allocations. It currently has 
the best performance among the consistent variants of RF, even surpassing BreimanRF. 
The disadvantage is its high computational complexity, it can cause large computational 
cost. MRF is only used for classification.

Due to the fact that Denil14, BRF, and MRF all chose to make the training of split 
points and leaf node labels independent to achieve weak consistency, this inevitably 
affects the performance of the base trees and reduces the overall performance of the 
algorithm. Based on this, we propose the Data-driven Multinomial Random Forest 
(DMRF) algorithm that can be used for both classification and regression problems.
DMRF can directly select the sample for the training of the splitting point to determine 
the leaf node labels and introduce bootstrapping to increase the diversity between trees. 
Moreover, we enhance the weak consistency to strong consistency by modifying the con-
ditions of the variants mentioned above. We found that although the theoretical basis is 
different, the proof methods are quite same as before. This means that the method for 
proving weak consistency can be strengthened to the method for proving strong consist-
ency, resulting in a strong conclusion.

The arrangement of this paper is approximately as follows: Sect. 3 provides a detailed 
introduction to the classification and regression DMRF algorithm and proves its strong 
consistency; Sect. 4 provides some explanations of the experiments; Sect. 5 presents the 
experimental results and analysis; Sect. 6 concludes the paper and provides a future out-
look on the work.

The proposed DMRF algorithm
Classification DMRF

Let Dn = {(X1,Y1), (X2,Y2), ..., (Xn,Yn)} denotes a dataset where Xi ∈ RD indicates D
-dimensional features, Yi ∈ {1, 2, ..., c} indicates the label, i ∈ {1, 2, ..., n} , we are preparing 
to build M trees.

Training sample sampling

In the DMRF, we use a slightly different bootstrapping than the standard one to sam-
ple the training set D(j)

n ,  j ∈ {1, 2, ...,M} for the j-th tree. Specifically, during sampling, 
we do not resample all samples, but instead sample each sample with a probability of 
q (which may be related to n , in this paper, we choose a constant value in (0,1]). That is, 
the sampling of each sample follows a binomial distribution B(1, q) , and the probabilities 
q among different samples are independent. If the sampled training set is empty, we resa-
mple again.

Split point training process

First, let’s introduce a very important function: the softmax function.

Definition 3.1: Given a n-dimensional vector v = (v1, v2, ..., vn) , the softmax function 
is defined as follows:
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where e is the base of the natural logarithm. Obviously, after the transformation by soft-
max function, the elements of the vector are all numbers between 0 and 1, and their sum 
is equal to 1. Therefore, they can be seen as probabilities.
Reviewing the growth process of a classification tree in BreimanRF: In the node D,   √
D features are randomly selected to form a feature subspace, which denote as 

{A1,A2, ...,A√
D}(Without loss of generality, we assume that 

√
D is an integer. Otherwise, 

we can round it down to the nearest integer). These selected features are also referred 
to as candidate split features. Let V = {vij} denotes all possible split points for the node 
D, vij representing the Aj ’s i-th feature value (i.e., threshold) in the feature subspace, 
i ∈ {1, 2, ...,mj}, j ∈ {1, 2, ...,

√
D}, mj indicates the number of feature values for Aj . Let Iij 

denote the impurity reduction obtained by the split point vij at that node,

where T (D) denote impurity criteria of node D , such as Gini index or Information 
entropy (in this paper, we use the Gini index), are used for measuring impurity, and Dl 
and Dr respectively represent the left and right child nodes obtained by the split at that 
node.
The impurity reduction obtained by calculating different feature values of feature Aj as 
split values forms a vector I (j) = (I1,j , I2,j , ..., Imj ,j),  j ∈ {1, 2, ...,

√
D}.

The maximum impurity reduction for each feature forms a vector

For a classification tree in BreimanRF, the splitting point is determined by the feature 
and feature value corresponding to the maximum impurity reduction, i.e., the splitting 
feature is the j-th feature,  j = arg max{I1, I2, ..., I√D} and the splitting feature value is the 
i-th feature value of feature Aj, i = arg max I (j) . After splitting the root node into left and 
right child nodes, the above process is repeated in each child node until the stopping 
condition is met, the tree stops growing.
The construction of DMRF tree is different from the above tree construction process. 
The following parameters will be introduced: p is a probability, kn is the minimum sam-
ple number in a node, B1 , B2 are two positive finite parameters.
DMRF first randomly samples 

√
D features from full feature space, then conducts a Ber-

noulli experiment B with probability p when splitting nodes, B ∼ B(1, p):
If B = 1 , the split feature and split value at this node are obtained according to the opti-
mal split criterion.
If B = 0 , the split feature and split value at this node can be obtained by the following 
steps:

softmax(v) = (ev1 , ev2 . . . , evn)/

n
∑

i=1

evi ,

(1)Iij = I(D, vij) = T (D)− |Dl |
|D| T (Dl)− |Dr |

|D| T (Dr),

I = (I1, I2, ..., I√D) = (max I (1), max I (2), ..., max I (
√
D)).
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① Split feature selection

 I. Normalize I = (I1, I2, ..., I√D) = (max I (1), max I (2), ..., max I (
√
D)) as 

Ĩ = (I1 −min I , I2 −min I , ..., I√D −min I)/(max I −min I);
 II. Compute the probablities α = softmax(B1 Ĩ) , where B1 ≥ 0;
 III. Randomly select a splitting feature according to the multinomial distribution 

M(α).

② Split feature selection:
 Assuming Aj is the split feature which is selected from the previous step.

 I. Normalize I (j) = (I1,j , I2,j , ..., Imj ,j) as 
Ĩ (j) = (I1,j −min I (j), I2,j −min I (j), ..., Imj ,j −min I (j))/(max I (j) −min I (j));

 II. Compute the probablities β = softmax(B2 Ĩ
(j)) , where B2 ≥ 0;

 III. Randomly select a splitting value according to the multinomial distribution M(β).

Continue repeating the above steps until a stopping condition is met, i.e. the number of 
samples within a node is less than kn.

Leaf node label determination

When an unlabeled sample x is given and the prediction is made on it, x will fall on a 
leaf node of the tree according to the algorithm. In the tree, the probability that the x is 
predicted to be class k is

where I(·) is 1 if · is true and is 0 if · is false; N (x) is the leaf node where x falls 
into, N (N (x)) is the sample number of node N (x) . According to the majority voting 
principle, the prediction of sample x under this tree is

The prediction of DMRF is the result of majority voting in the base tree, i.e

where ŷ(i)(x) is the predicted value of sample x in the i-th decision tree. If there are mul-
tiple categories with the same number of votes, we randomly select one of them as the 
final prediction class. The pseudo-code of DMRF algorithm and decision tree construc-
tion is as follows:

(2)γ (k)(x) = 1

N (N (x))

∑

(X ,Y )∈N (x)

I(Y = k), k = 1, 2, ..., c,

ŷ(x) = arg max
k

{γ (k)(x)}.

(3)y(x) = arg max
k

M
∑

i=1

I(ŷ(i)(x) = k),
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Algorithm 1 DMRF classification tree construction process: Tree()
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Algorithm 2 DMRF classification algorithm

Strong consistency proof of classification DMRF

In this section, we prove the strong consistency of the classification DMRF algorithm, 
and the detailed proof process is in the appendix.

First, we talk about the consistency definition of classifier. For a classifier sequence 
{gn} , the classifier gn is obtained by training the data set Dn = {(X1,Y1), ...,

(Xn,Yn)} which satisfying the distribution (X ,Y ) , and the error rate is

where C is the randomness introduced in the training.

Definition 3.2 Given the training set Dn which contain n i.i.d observations, for a cer-
tain distribution (X ,Y ) , call classifier gn is weakly consistent if gn satisfying 

where L∗ denotes the Bayes risk and C is the randomness introduced in the training. 
Besides, call gn is strongly consistent if gn satisfying 

  

Definition 3.3 A sequence of classifiers {gn} is called weakly (strongly) universally con-
sistent if it is weakly(strongly) consistent for all distributions.

Obviously, the condition of strong consistency is stronger than weak consistency, so 
strong consistency can derive weak consistency, but vice versa is not necessarily true.

Here are some important lemmas that will be used in the proof.

Ln = L(gn) = P(gn(X ,C ,Dn) �= Y |Dn),

lim
n→∞

ELn = lim
n→∞

P(gn(X ,C ,Dn) �= Y ) = L∗,

P( lim
n→∞

Ln = L∗) = 1.
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Lemma 3.1 Assume that the classifier sequence {gn} is (universally) strongly consistent, 
then the majority voting classifier g (M)

n   (for any positive integer M ) is also (universally) 
strongly consistent.

Lemma 3.2 Assume that the classifier sequence {gn} is strongly consistent, the bagging 
majority voting classifier gMn   (for any positive integer M ) is also strongly consistent if 
lim
n→∞

nq = ∞.

Lemma 3.2 is quoted from Theorem 6 [20]. Refer to [20] for more details.
Lemma 3.1 shows that to prove an ensemble classifier with strong consistency, we only 

need to prove that its base classifier has strong consistency. The universal strong consist-
ency of ensemble classifiers is obtained from the universal strong consistency of base 
classifiers. Lemma 3.2 can be regarded as a corollary of Lemma 3.1, which shows that 
the use of bootstrapping does not affect the consistency of the ensemble algorithm. It 
is worth noting that Lemma 3.1 alone (without bootstrapping) is sufficient to prove the 
strong consistency of the DMRF. However, using the whole dataset as the training set 
to build trees will lead to excessive computational costs and high costs with large sam-
ple sizes. Moreover, the similarity among the trees will significantly affect the perfor-
mance of the algorithm. Therefore, we introduce Lemma 3.2, which adds bootstrapping 
to reduce the training cost while reducing the similarity between trees.

The strong consistency of a single tree is proved below.

Lemma 3.3 Let gn be a binary tree classifier (that is, a parent node has only two child 
nodes) obtained by the n - sample partitioning rule πn , whose each region contains at least 
kn points, and kn/ log n → ∞(n → ∞) , An(x) is the unique cell where the sample x falls 
into, µ(·) is the Lebesgue measure of · . For all balls Sr with radius r centered at the origin 
and for all γ > 0 , with probability 1 for all distributions satisfying

then gn corresponding to πn satisfies

with probability one. In other words, gn is universally strongly consistent.
Lemma 3.3 is quoted from Theorem 21.2 and Theorem 21.8 [11], refer to [11] for more 

details. Lemma 3.3 shows that to prove strong consistency of a tree, we only need to 
prove that any leaf node is small enough, but the sample size in leaf node is large enough.

Based on the above lemmas, the strong consistency theorem of DMRF algorithm can 
be obtained:

Theorem 3.1 Assume that X is supported on [0, 1] D and has non-zero density almost 
everywhere, the cumulative distribution function (CDF) of the splitting points is left-con-
tinuous at 1 and right-continuous at 0. If B1, B2 both positive and finite, DMRF is strongly 
consistent with probability 1 when kn/ log n → ∞ and kn/n → 0 as n → ∞.

lim
n→∞

µ({x : diam(An(x) ∩ Sr) > γ }) = 0,

lim
n→∞

L(gn) = L∗
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Regression DMRF

In the last section we discussed the DMRF algorithm for classification, in this section we 
will discuss the DMRF algorithm for regression.

Regression DMRF Algorithm

In classification problems, we choose the Gini index to compute the impurity reduction, 
while in regression problems, we choose mean squared error (MSE) reduction as the 
metric for measuring the importance of features and feature values.

Denote the MSE of node D as

where Y = 1
N (D)

∑

(X ,Y )∈D
Y  , i.e., the mean of the samples in this node; N (D) is the sample 

size of node D. Similar to the classification, when the split point is vij , the MSE reduction 
is

where Dl , Dr denote the left and right child node of D splitted by vij.
When making prediction, the predicted value of the tree is the sample mean of the leaf 

node An(x) (where sample x resides), in other words,

where N (An(x)) denotes the sample size of An(x) . The prediction of the forest is the 
mean of trees, that is

where M denotes the tree number of the forest, ŷ(i)(x) is the prediction of i-th tree 
towards x.

The difference between the regression DMRF and the classification DMRF lies only in the 
difference in the splitting criteria for the splitting point and the prediction method. To obtain 
the regression DMRF, we only need to change the impurity reduction criterion to MSE 
reduction and the majority voting prediction to mean prediction in the classification DMRF.

Strong consistency proof of regression DMRF

For a regressor sequence {fn} , the regressor fn is obtained by training the data set 
Dn = {(X1,Y1), (X2,Y2), ..., (Xn,Yn)} which satisfying the distribution (X ,Y ) , the MSE of 
the fn is

where C is the randomness introduced in the training.

(4)MSE(D) = 1

N (D)

∑

(X ,Y )∈D
(Y − Y )2,

(5)Iij = I(D, vij) = MSE(D)−MSE(Dl)−MSE(Dr),

(6)ŷ(x) =
∑n

i=1 YiI(Xi ∈ An(x))
∑n

i=1 I(Xi ∈ An(x))
= 1

N (An(x))

∑

(X ,Y )∈An(x)

Y ,

(7)ŷ = 1

M

M
∑

i=1

ŷ(i)(x),

(8)R(fn|Dn) = E[(fn(X ,C ,Dn)− f (X))2|Dn],
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Similar to the classification case, let’s first define the strong consistency of a regression 
problem.

Definition 3.4 Given the training set Dn which contain n i.i.d observations, for a cer-
tain distribution (X ,Y ) , a sequence of regressors {fn} is called weakly consistent if fn 
satisfying.

where f (X) = E[Y |X] and C is the randomness introduced in the training. {fn} is called 
strongly consistent if fn satisfying

with probability one.

Definition 3.5 A sequence of regressors {fn} is called weakly (strongly) universally con-
sistent if it is weakly (strongly) consistent for all distributions of (X ,Y ) with EY 2 < ∞.

Lemma 3.4 Assume that the regressor sequence {fn} is (universally) strongly consistent, 
then the averaged regressor f (M)

n  (for any positive integer M ) is also (universally) strongly 
consistent.

Lemma 3.5 Assume that the regressor sequence {fn} is strongly consistent, the bagging 
averaged regressor f

(M)

n   (for any positive integer M ) is also strongly consistent if 
lim
n→∞

nq = ∞.

Lemma 3.4 states that if we want to prove a regression ensemble has strong consist-
ency, we only need to prove that its base regressors have strong consistency. Lemma 
3.5 is a corollary of Lemma 3.4 and is similar to the classification case. Bootstrapping 
is not theoretically necessary but is introduced to reduce computational costs and 
improve algorithm performance. To prove the consistency of the regression, Lemma 3.4 
is sufficient.

Lemma 3.6 Let Pn = {An,1,An,2, ...} be a partition of Rd and for each x ∈ Rd let An(x) 
denote the cell of Pn containing x . Assume for any sphere S centered at the origin.

and

lim
n→∞

E[R(fn|Dn)] = lim
n→∞

E[(fn(X ,C ,Dn)− f (X))2] = 0,

lim
n→∞

R(fn|Dn) = lim
n→∞

E[(fn(X ,C ,Dn)− f (X))2|Dn] = 0

lim
n→∞

max
An,j∩S �=∅

diam(An,j) = 0

lim
n→∞

|{j : An,j ∩ S �= ∅}| log n
n

= 0,
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then the regressor

is strongly universally consistent.
Lemma 3.6 is quoted from Theorem 23.2 [11], one can refer to [11] for more details.

Theorem 3.2 Assume that X is supported on [0, 1]D and has non-zero density almost 
everywhere, the cumulative distribution function (CDF) of the split points is left-contin-
uous at 1 and right-continuous at 0. If B1, B2 both positive and finite, DMRF is strongly 
consistent with probability 1 when kn/ log n → ∞ and kn/n → 0 as n → ∞.

Experiment
For the sake of convenience in narration, we use "(SE)" to indicate that the algorithm is 
from the original paper, like Denil14(SE), BRF(SE) and MRF(SE). We use "(b)" to indicate 
the algorithm which use the bootstrapping defined in this paper and without separating 
the structural part and the estimation part, like Denil14(b), BRF(b), MRF(b).

The experiments are divided into three parts: performance test, standard deviation 
analysis and parameter test. Performance test evaluates the performance of DMRF in 
classification and regression problems and compares it with three other consistent RF 
variants (both weakly and strongly consistent), as well as BreimanRF, to demonstrate 
DMRF’s performance. Standard deviation analysis section evaluates the standard devia-
tion of RF variants in classification and regression problems to measure the randomness 
of different RFs. Parameter test discusses the impact of hyper-parameters p, q, B1, B2 on 
the performance of DMRF and provides some recommendations for selecting optimal 
parameters.

Dataset selection

Our data sets are all from UCI database. Tables 1 and 2 contain the sample number and 
feature number of classification and regression data sets respectively, and the classifica-
tion data set also contains the number of class. In the two tables, we sort the data sets 
according to the sample number and test the datasets which cover wide range of sample 
size and feature dimensions in order to show the performance of DMRF. In addition, 
refer to [14], for missing values of all data sets, we use “-1” padding operation, and no 
other preprocessing was performed.

Baselines

We choose three proposed RF variants with weak consistency, Denil14(SE), BRF(SE) and 
MRF(SE), as the comparison model of DMRF. Their common feature is that the dataset 
is divided into the structure part and the estimation part according to the hyper-param-
eter Ratio , the structure part is used for split points training and the estimation part for 
leaf node labels determination.

m′
n =











�n
i=1 YiI(Xi ∈ An(x))

�n
i=1 I(Xi ∈ An(x))

,
�n

i=1
I(Xi ∈ An(x)) > log n

0, otherwise
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1) Denil14(SE) randomly selects m points of the structure part at each node, then 
selects the feature subspace with the size of min(1+ Poisson(�),D) without replac-
ing, searches for the optimal splitting point within the range defined by the m points 
preselected (not the entire number of data points).

2) BRF(SE) introduces the first Bernoulli distribution when selecting feature subspace, 
that means, a feature is randomly selected from the feature set with the probability of 
p1 as the split feature, or 

√
D features are randomly selected from the feature set with 

the probability of 1− p1 as the candidate feature. The second Bernoulli distribution 
is introduced in the selection of split values, that means, a value is randomly selected 
as the split value from the split features with the probability of p2 , or the value with 
the probability of 1− p2 is selected from the split features with the largest impurity 
reduction.

3) MRF(SE) normalize the vector composed of the maximum impurity reduction of 
each feature when selecting the splitting feature, and convert it into probabilities 
using softmax function, which is used as multinomial distribution to randomly select 
the splitting feature. The impurity reduction form a vector corresponding to each 
value of the obtained splitting feature, normalize and convert this vector into prob-

Table 1 The description of benchmark classification datasets

Data sets Samples Features Classes

Blogger 100 6 2

Bone marrow 187 39 2

Algerian forest fires 244 12 2

Vertebral 310 6 3

Chronic kidney disease 400 25 2

Cvr 435 16 2

House-votes 453 16 2

Wdbc 569 39 2

Breast original 699 10 2

Balance scale 625 4 3

Raisin 900 8 2

Vehicle 946 18 4

Tic-tac-toe 958 9 2

HCV 1385 28 4

Winequality (red) 1599 11 7

Wireless 2000 7 4

Obesity 2111 17 7

Ad 3279 1558 2

Spambase 4601 57 2

Winequality (white) 4898 11 7

Page blocks 5473 10 5

MFCCs 7195 22 4

Mushroom 8124 22 7

Ai4i 10000 14 3

Letter 20000 16 26

Adult 48842 14 2

Connect-4 67557 42 3
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abilities by softmax function, which is used as multinomial distribution to randomly 
select the splitting value.

According to our method, we can abandon the separation of the structural part and 
the estimation part in the three models mentioned above. At the same time, we can add 
the bootstrapping method defined earlier, they can be Denil14(b), BRF(b) and MRF(b). 
The experiments will examine the performance of these three models in improving data 
utilization.

Performance test experimental settings

In the performance experiment, in the above three models, i.e. Denil14(SE), BRF(SE) and 
MRF(SE), we set Ratio = 0.5 uniformly. Besides, we set kn = 5 and M = 100 according to 
[14] (The purpose of setting kn = 5 uniformly in this context is to promote extensive tree 
growth. As long as different algorithms use the same value of kn for a given data set, it 
ensures comparability). In Denil14, we set m = 100, � = 10 according to [14]. Following 
[13], we set p1 = p2 = 0.05 . As [14] suggested, in MRF, B1 = B2 = 5 (It should be noted 
that in this paper, we use B1 and B2 to compute probabilities, while in [14], the authors 
use B1/2 and B2/2 , they recommend 10 for both B1 and B2 , so we set B1 = B2 = 5 ). In 
DMRF, we choose q = 1− 1/e , p = 0.5 , B1 = B2 = 5.

Table 2 The description of benchmark regression datasets

Due to the large value of the CSM, Facebook and SeoulBikeData datasets, the labels are log-transformed

Datasets Samples Features

ALE 107 6

Alcohol 125 8

Servo 167 4

CSM 217 12

Real estate 414 7

Facebook 500 19

Las Vegas Strip 504 20

Forest fire 517 13

ISTANBUL STOCK 536 8

Qsar fish toxicity 908 7

Concrete 1030 9

Qsar BCF Kow 1056 7

Flare 1389 10

Communities 1994 128

Skillcraft 3395 20

Winequality (white) 4898 11

Parkinsons 5875 26

SeoulBikeData 8760 14

Insurance 9000 86

Combined 9568 4

Cbm 11934 16



Page 15 of 32Chen et al. Journal of Big Data           (2024) 11:34  

Standard deviation analysis

The parameters used in the analysis of standard deviation is the same as those used in 
performance experiment.

Parameter test experimental settings

In the parameter testing experiment, we explore the influence of hyper-parameters on 
DMRF. We focus on p, q, B1, B2 . For p and q , the test range we take is [0.05, 0.95] with 
step size 0.1. For B1, B2 the test range is the integer in [1, 10] . In terms of dataset size, 
we define datasets with less than 500 samples as small, datasets with 500–1000 samples 
as medium, and datasets with more than 1000 samples as large. For classification prob-
lems, accuracy is used as the evaluation metric. For regression problems, negative mean 
squared error (NMSE) is used as the evaluation metric for ease of observation.

Results and discussion
Performance analysis

In the RF variants, the best performing result in the table is highlighted in bold. To 
compare the performance of DMRF and BreimanRF, we use "*" to indicate that which is 
better.

Classification

The evaluation standard of classification problem is accuracy.
From Table 3, the following conclusions can be drawn:

• In the majority of cases, the (b)-type models show higher accuracy compared to their 
corresponding (SE)-type models (for example, MRF(b) achieves a 9% higher accu-
racy than MRF(SE) on the Winequality (white) dataset). This suggests that when the 
splitting criterion and leaf node label determination process are independent, a sig-
nificant amount of information may be lost. Determining the leaf node labels based 
on the samples used to compute the splitting point helps reduce information loss.

• In all datasets, DMRF generally outperforms other RF variations, and the advantage 
of DMRF over MRF(b) is particularly evident with an improvement of 1% observed 
on some datasets (such as Obesity and Ai4i).

• In most cases, the accuracy of DMRF is higher than BreimanRF. This can be attrib-
uted to the use of the multinomial distribution for randomly sampling splitting values 
can be seen as a weakened version of optimal splitting, which enhances robustness. It 
indicates that introducing some randomness in classification tasks can enhance per-
formance.

Regression

The evaluation criterion of regression problem is mean square error.
From Table 4, the following conclusions can be drawn:

• Similar to the classification case, in the majority of cases, the (b)-type models out-
perform their corresponding (SE)-type models (for example, there is an 48% reduc-
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tion in MSE on the Real estate dataset). This suggests that determining the leaf node 
labels based on the samples used to compute the splitting point can better utilize 
information compared to the independent processes.

• In all datasets, DMRF generally shows the best performance among RF variations, 
but the advantage of DMRF over MRF(b) is not significant.

• In most cases, the MSE of DMRF is larger than that of BreimanRF. This is because 
MSE amplifies the impact of noise, and the randomness introduced by the multi-
nomial distribution makes DMRF perform worse in regression compared to Brei-
manRF. In contrast, DMRF is better suited for classification tasks.

Standard deviation analysis

Given the inherent randomness in the models used for the experiments, it is essential to 
compare their levels of randomness. In this case, we will evaluate the randomness using 
the standard deviation as a metric.

Table 5 shows the standard deviations of 10-fold cross-validation results computed 10 
times for 8 classification datasets and 8 regression datasets. It can be observed that, in 

Table 3 Accuracy (%) of different RFs on benchmark datasets

Datasets DMRF MRF(SE) MRF(b) BRF(SE) BRF(b) Denil14(SE) Denil14(b) BreimanRF

Blogger 81.8* 76.2 79.9 78.3 81.2 75.8 80.5 81.4

Bone marrow 93.96* 93.56 93.71 93.53 93.86 93.92 93.45 93.42

Algerian Forest Fires 93.03* 92.25 92.16 92.71 93.71 92.45 92.46 93

Vertebral 84.39 83.19 83.58 83.74 84.35 82.74 82.74 84.64*

Chronic kidney 
disease

98.80* 98.13 98.6 98.23 98.65 98.23 98.48 98.77

Cvr 96.19* 95.49 95.61 95.91 96.16 95.63 95.74 95.84

House-votes 96.17* 95.67 95.49 95.58 95.89 95.66 95.67 95.87

Wdbc 96.25* 95.58 96.22 95.12 95.96 95.55 96.08 94.18

Breast original 95.88 95.29 95.48 95.48 95.72 94.45 94.69 96.71*

Balance scale 83.45 80.58 77.64 81.83 83.46 80.15 77.02 86.19*

Raisin 86.22* 85.47 85.94 85.60 86.02 86.16 85.53 84.98

Vehicle 75.63* 73.24 75.60 72.79 74.44 73.04 74.55 74.46

Tic-tac-toe 98.27* 98.47 98.85 98.18 98.08 97.82 98.38 94.37

HCV 23.84 23.55 23.66 23.25 23.28 23.28 23.22 24.88*

Winequality (red) 69.83* 62.47 69.57 62.48 69.75 62.08 69.49 64.70

Wireless 98.36* 98.28 98.33 98.2 98.18 97.78 97.97 98.33

Obesity 78.54 24.41 77.34 71.35 78.51 73.28 77.20 94.42*

Ad 97.66* 96.76 97.95 94.43 97.46 94.16 96.98 97.02

Spambase 95.18* 93.6 95.01 93.93 95.02 91.48 95.1 91.82

Winequality (white) 69.21* 59.93 69.20 60.65 69.44 60.07 68.71 64.02

Page blocks 97.59* 97.44 97.56 97.17 97.45 97.28 97.44 97.06

MFCCs 98.53* 98.02 98.5 98.02 98.47 97.83 98.36 63.57

Mushroom 57.24* 59.98 47.42 62.10 58.67 58.99 48.54 47.28

Ai4i 59.96* 59.5 57.01 59.4 59.95 59.6 56.66 56.15

Letter 89.79 89.55 89.58 83.05 89.00 81.78 87.50 96.32*

Adult 86.45* 86.28 86.13 57.57 86.44 86.19 85.57 85.98

Connect-4 82.18* 81.96 84.08 78.86 80.77 81.28 83.44 81.46
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Table 4 Mean square error(%) of different RFs on benchmark datasets

Datasets DMRF MRF(SE) MRF(b) BRF(SE) BRF(b) Denil14(SE) Denil14(b) BreimanRF

ALE 0.0474 0.0758 0.0494 0.0921 0.4890 0.0931 0.0516 0.0423*

Alcohol 0.0023* 0.0068 0.0025 0.0049 0.0025 0.0033 0.0024 0.0028

Servo 0.3644 0.4248 0.2543 0.6864 0.4247 0.7832 0.2538 0.3114*

CSM 0.0204* 0.0711 0.0206 0.1681 0.0209 0.0495 0.0244 0.0239

Real estate 55.060 106.919 55.628 118.417 61.783 110.264 93.836 53.699*

Facebook 0.0510 0.7594 0.0637 1.0288 0.0546 0.8786 0.0546 0.0465*

Las Vegas Strip 0.9942 1.001 1.016 1.015 1.014 1.167 1.072 0.9826*

Forest fire 2.073* 2.159 2.191 2.166 2.164 2.166 2.156 2.232

ISTANBUL 
STOCK

2.14E-04* 3.88E-04 2.21E-04 4.15E-04 4.14E-04 4.40E-04 3.33E-04 2.20E-04

Qsar fish 
toxicity

0.7794* 1.047 0.7592 2.0185 0.9218 1.9508 0.9441 1.241

Concrete 40.080 128.167 27.749 256.478 36.889 259.715 42.966 23.869*

Qsar BCF Kow 0.7401 1.5096 0.7695 1.4094 0.7514 1.4111 1.1961 0.5152*

Flare 0.5219* 0.5222 0.5937 0.5426 0.5227 0.5684 0.6013 0.5981

Communities 0.0203 0.0372 0.0205 0.0521 0.2049 0.0499 0.0244 0.0182*

Skillcraft 4.37E-08 6.54E-08 4.39E-08 6.95E-08 5.34E-08 7.02E-08 5.64E-08 4.23E-08*

Winequality 
(white)

0.3562* 0.6177 0.3601 0.7749 0.3815 0.7311 0.3949 0.3640

Parkinsons 0.0013* 0.0029 0.0014 0.0078 0.0016 0.0045 0.0016 0.0013*

SeoulBikeData 0.2059 0.6722 0.207 1.4543 0.3664 1.2996 0.8322 0.1782*

Insurance 0.0585 0.0559 0.0596 0.0561 0.0549 0.0561 0.0601 0.0554*

Combined 11.700 15.371 11.716 48.995 12.445 26.054 14.445 10.819*

Cbm 1.00E-06 8.00E-06 1.00E-06 5.55E-05 1.50E-05 5.61E-05 2.00E-06 7.95E-07*

Table 5 Standard deviation of different RFs on classification and regression datasets

Task Datasets DMRF MRF(SE) MRF(b) BRF(SE) BRF(b) Denil14(SE) Denil14(b) BreimanRF

Classifi-
cation

Blogger 0.9189 1.4757 2.0789 2.3593 2.0439 1.3984 2.0138 2.1832

Algerian 
Forest 
Fires

0.2907 0.4842 0.7431 0.5495 0.4650 0.3465 0.8440 0.5922

Wdbc 0.2153 0.3031 0.3751 0.4283 0.3108 0.1860 0.2476 0.4878

Tic-tac-toe 0.1494 0.1980 0.2642 0.1492 0.3619 0.1690 0.2748 0.2433

Winequal-
ity (Red)

0.3718 0.4873 0.6304 0.5572 0.4748 0.4111 0.5347 0.4871

Wireless 0.1054 0.0919 0.1061 0.0422 0.1752 0.0577 0.1414 0.1006

Winequal-
ity (white)

0.3107 0.2374 0.2595 0.3072 0.2987 0.1558 0.2839 0.2856

Connect-4 0.0629 0.0349 0.0627 0.0594 0.0591 0.0262 0.0745 0.0556

Regres-
sion

ALE 0.002513 0.002303 0.002802 0.002485 0.002053 0.001867 0.003254 0.002637

Servo 0.0477 0.0158 0.0200 0.0568 0.0846 0.0201 0.0790 0.0601

Las Vegas 
Strip

0.0094 0.0038 0.0162 0.0021 0.3846 0.0011 0.0333 0.0173

Qsar fish 
toxicity

0.0105 0.0117 0.0081 0.0116 0.0205 0.0087 0.0131  0.0247

Flare 0.003023 0.004029 0.011366 0.001570 0.004659 0.000626 0.0101 0.005616

Winequal-
ity (white)

0.003234 0.002213 0.003777 0.001211 0.002729 0.001602 0.005282 0.003536

Insurance 1.91E-04 1.64E-04 2.27E-04 9.17E-06 1.18E-04 7.57E-06 4.22E-04 1.85E-04

Combined 0.0738 0.0353 0.0595 0.4213 0.0636 0.1011 0.0709 0.0689
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both classification and regression task, in most cases, the (b)-type models show larger 
standard deviations compared to their corresponding (SE)-type models (for example, 
MRF(b) has a larger standard deviation than MRF(SE) on the Blogger and ALE data-
sets). This indicates that, under similar conditions, using bootstrapping to get training 
sets introduces greater randomness compared to divide the dataset into structure part 
and estimation part.

Furthermore, whether in classification or regression, in cases with small and medium 
sample sizes, DMRF tends to be more stable than MRF(b) and BreimanRF (for example, 
on the Wdbc and Las Vegas Strip datasets). However, with large sample sizes, DMRF 
exhibits higher randomness compared to MRF(b) and BreimanRF (for example, on the 
Connect-4 and Combined datasets). This can be attributed to the introduction of Ber-
noulli and multinomial distributions in the process of finding splitting points in DMRF, 
which results in higher levels of randomness compared to MRF(b) and BreimanRF. 
Under small sample size cases, adding appropriate randomness helps increase the 
robustness of the model. However, in large sample size cases, the difference in random-
ness is amplified, leading to higher standard deviations for DMRF compared to MRF(b) 
and BreimanRF.

Parameter analysis

In this section, we explore the influence of hyper-parameters on DMRF.

The effect of p , q

We investigate p, q under B1 = B2 = 5 as [14] recommended.

Classification Figure 1 shows the performance of DMRF on three classification data-
sets with small, medium, and large sample sizes under B1 = B2 = 5 . It can be observed 
that for the same p , the accuracy of three datasets at q = 0.63 has two situations: close 
to maximum and stable, or decreasing. Through analysis, it is known that when q is too 
small, the sampling probability of each sample is too low, resulting in insufficient train-
ing of trees; as q increases, the number of sampled samples increases, and the training 
of trees gradually becomes sufficient, resulting in the performance of DMRF increasing; 
However, when the number of samples reaches a certain value, the performance improve-
ment slows down, and there will be a situation where the accuracy tends to be stable or 
even starts to decrease. The reason for the decrease is that the number of samples taken 
exceeds an appropriate value, resulting in high similarity between the training sets of 
trees, which affects the overall performance. Since the optimal value of q is around 0.63, 

Fig. 1 Accuracy (%) of the DMRF under different p, q values
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we set q = 1− 1/e(≈ 0.6322) to reduce computational burden while obtaining the opti-
mal parameter.

It is worth noting that the bootstrapping used in this paper can be seen as a general 
form of the non-repeated resampling standard bootstrapping in the case of large samples. 
In fact, if we take n non-repeated samples of an n-sample dataset with equal probability, 
the probability of each sample being selected is 1− (1− 1/n)n → 1− 1/e(n → ∞) . This 
is also one of the reasons why we chose the q = 1− 1/e.

Under the same q , it can be observed that the accuracy increases initially with an 
increase in p and then decreases, reaching an optimal value around p = 0.5 . In DMRF, if 
p = 0 , the selection of splitting points at each node depends on the random selection of 
two multinomial distributions. If p = 1 , DMRF selects the optimal split point from the 
feature subspace, which is similar to BreimanRF. It can be seen that introducing some 
randomness when selecting split points in the feature subspace can enhance perfor-
mance. Additionally, we can conclude that the algorithm is more sensitive to the param-
eter q compared to p , indicating that the number of training samples is more important 
than the method of split point selection.

Regression Figure 2 shows the performance of DMRF on three regression datasets with 
small, medium, and large sample sizes under B1 = B2 = 5 . It can be observed that the 
regression situation is similar to the classification: under the same p , the NMSE increases 
with the increase of q and reaches its maximum at around 0.63 before stabilizing or begin-
ning to decrease. Under the same q , the NMSE initially increases with the increase of p , 
then decreases or stabilizes after reaching a certain point. Therefore, the optimal q is con-
sidered to be 1− 1/e and the optimal p value is considered to be 0.5. Additionally, it’s still 
observed that the DMRF algorithm is more sensitive to parameter q than to parameter p.

The effect of B1 , B2
Classification Figure 3 shows the impact of B1 and B2 on the DMRF algorithm under 
q = 1− 1/e and p = 0.5 for three classification datasets with small, medium, and large 
sample sizes. Under the same B2 , the accuracy increases slightly as B1 increases from 1, 
reaching a stable or top point at around B1 = 5 . Under the same B1 , the accuracy starts to 
increase as B2 increases from 1 and stabilizes or be the top at around B2 = 5 . The reason 
is that when B1 is close to 1, the probabilities of each feature are not significantly different 
from each other, making it difficult to sample the optimal features. As B1 grows, the differ-
ences in probabilities between features become larger, and more important features tend 
to be selected, improving the DMRF’s performance. However, when B1 grows to a certain 

Fig. 2 Negative mean square error of the DMRF under different p, q values
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extent, the selection of features becomes similar to selecting the optimal feature, leading 
to the similarity between base decision trees being too high and causing a decrease in 
performance. The situation for B2 is similar to that of B1.

It can also be seen from the figure that the DMRF is not sensitive to B2 but is more 
sensitive to B1 . Since B1 affects the selection of splitting features and B2 affects the selec-
tion of split values, this can indicate that the impact of the splitting feature is greater. 
This also makes sense because the splitting value is obtained based on the splitting fea-
ture, so in general, the influence of the splitting feature is larger compared to the split-
ting value.

Regression Figure  4 shows the impact of B1 and B2 on the DMRF algorithm under 
q = 1− 1/e and p = 0.5 for three regression datasets with small, medium, and large 
sample sizes. Unlike the classification case, under the same B2 , the NMSE increases as B1 
decreases from 10 in general. After reaching around B1 = 5 , NMSE stabilizes or starts to 
decrease. Under the same B1 , NMSE starts to increase as B2 increases from 1 and stabi-
lizes or slightly decreases at around B2 = 5 . The reason is that when B1 is too large, the 
probability of selecting the optimal feature is much higher than that of other features, 
resulting in high similarity between trees and poor performance. As B1 decreases, more 
randomness is introduced, preserving the high performance of trees while increasing 
diversity, improving the algorithm’s performance. When B1 is close to 1, the probabilities 
of each feature are not significantly different from each other, making it difficult to sample 
optimal features, leading to the poor performance of trees and the algorithm.

The situation for B2 is similar to that of B1 . Futhermore, it can be observed from the 
Fig. 4. that DMRF is more sensitive to B1 than B2 , which is similar to that of the classifi-
cation. Since B1 affects the selection of splitting features and B2 affects the selection of 
split values, it can be concluded that the impact of the splitting feature is greater.

Fig. 3 Accuracy (%) of the DMRF under different  B1,  B2 values

Fig. 4 Negative mean square error of the DMRF under different  B1,  B2 values
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The effect of Μ
The left side of Fig.  5. Shows the performance trends of the Blogger, Tic-tac-toe, and 
Winequality (white) datasets in terms of accuracy as the number of trees (i.e.M ) 
increases in classification. The right side shows the performance trends of the Real 
estate, Concrete, and Combined datasets in terms of mean squared error (MSE) as M 
increases in regression.

In the classification case, it can be observed that as M increases, DMRF shows an 
upward trend in accuracy for all three datasets and gradually converges after reaching 
100 trees. Similarly, in the regression case, as M increases, DMRF shows a downward 
trend in MSE for all three datasets and gradually converges after reaching 100 trees.

This demonstrates that DMRF, as a method of Bagging, improves its performance 
gradually with an increasing number of base learners until convergence.

The effect of kn
Figure 6 shows the impact of kn on the DMRF under q = 1− 1/e ,  p = 0.5 , B1 = B2 = 5 
for three classification datasets (the top three plots) and three regression datasets (the 
bottom three plots). r in the Fig. 6 represents the proportion of samples in the selected 
dataset to enter training. For example, the sample size of Letter is 20000, and the sample 
size of training is 6000 when r = 0.3.

It can be easily proven that 
√
n− (log n)2 is an increasing function with respect to 

n , and 
√
n > (log n)2 when n > 5600 . Therefore, the performance of DMRF under 

kn = √
n will be better than DMRF under kn = (log n)2 when n > 5600 . This can also 

be observed from Fig. 6, for example, in the Letter, kn = (log n)2 outperforms kn = √
n 

starting from r = 0.3 (At this point, the number of samples involved in the training is 
6000), and in the Cbm kn = (log n)2 , performs better than kn = √

n starting from r = 0.5 
(At this point, the number of samples involved in the training is 5967). This demon-
strates that as  kn decreases, the performance of DMRF improves. Since kn represents the 
minimum sample size of leaf nodes, a smaller kn indicates more sufficient tree growth, 
which theoretically leads to better performance. The experimental results are consistent 
with the theoretical derivation.

Fig. 5 Performance of DMRF under different number of trees
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Cross‑validation

In this section, we use cross validation to determine the optimal parameters for DMRF, 
MRF(b), BRF(b), and Denil14(b) on various classification and regression datasets. For all 
models, set q ∈ {0.2, 0.4, 1− 1/e, 0.8} . For DMRF and MRF(b), set B1 , B2 ∈ {2, 5, 8, 10}
,p ∈ {0.1, 0.3, 0.5, 0.8} . For BRF(b), set p1, p2 ∈ {0.01, 0.05, 0.35, 0.65} . For Denil14(b), set 
� ∈ {1, 5, 10, 15} , m ∈ {50, 100, 200, 500}.

In both classification and regression, comparing the performance of DMRF with 
MRF(b), BRF(b), and Denil14(b) under the optimal parameters, it can be seen from the 
Table  6 (The bold fonts in Table  6 show the models that work best)  that DMRF out-
performs the other models. Compared to the MRF(b), DMRF shows improvements in 
performance. The reason can be analyzed as follows: Although MRF(b) uses the soft-
max function to convert features and feature importance into probabilities and samples 
splitting points using a multinomial distribution, it considers the entire feature space. 
The higher the importance of a feature or feature value, the higher its probability. Addi-
tionally, the softmax function amplifies the differences between features or feature val-
ues. Therefore, the probability of sampling the optimal feature and optimal feature value 
remains the highest. This can be considered as a weakened version of optimal splits in 
the full feature space. Although this approach improves performance, it reduces the 
diversity among trees.

Table 6 Results of cross-validation of different RFs

Task Dataset Algorithm Performance Optimal parameters

Classification Blogger DMRF 84.8 B1 = 5, B2 = 8, p = 0.3, q = 0.8

MRF(b) 84 B1 = 8, B2 = 5, q = 0.8

BRF(b) 84.2 p1 = 0.05, p2 = 0.35, q = 0.8

Denil14(b) 83.2 � = 10,m = 500, q = 0.8

Vertebral DMRF 84.76 B1 = 2, B2 = 2, p = 0.5, q = 0.8

MRF(b) 84.58 B1 = 2, B2 = 10, q = 1− 1/e

BRF(b) 84.6 p1 = 0.05, p2 = 0.35, q = 1− 1/e

Denil14(b) 84.45 � = 10,m = 200, q = 0.4

House votes DMRF 96.26 B1 = 2, B2 = 8, p = 0.3, q = 0.8

MRF(b) 96.16 B1 = 2, B2 = 2, q = 0.4

BRF(b) 96.14 p1 = 0.05, p2 = 0.65, q = 1− 1/e

Denil14(b) 95.85 � = 10,m = 50, q = 0.4

Regression ALE DMRF 0.0436 B1 = 8, B2 = 10, p = 0.5, q = 0.4

MRF(b) 0.0443 B1 = 8, B2 = 2, q = 1− 1/e

BRF(b) 0.0451 p1 = 0.01, p2 = 0.01, q = 0.4

Denil14(b) 0.0443 � = 5,m = 50, q = 0.4

Real estate DMRF 51.54 B1 = 5, B2 = 2, p = 0.3, q = 0.8

MRF(b) 52.83 B1 = 5, B2 = 2, q = 0.8

BRF(b) 52.49 p1 = 0.01, p2 = 0.65, q = 0.8

Denil14(b) 58.56 � = 1,m = 50, q = 0.8

Flare DMRF 0.5099 B1 = 5, B2 = 5, p = 0.5, q = 0.2

MRF(b) 0.5227 B1 = 2, B2 = 2, q = 0.2

BRF(b) 0.5102 p1 = 0.01, p2 = 0.01, qn = 0.2

Denil14(b) 0.5156 � = 1,m = 100, q = 0.2
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On the other hand, DMRF selects optimal splits in the feature subspace based on prob-
abilities and performs multinomial distribution sampling, which increases the diversity 
among trees and thus improves performance (Table 7).

Computational complexity analysis

Assume that the data set has n samples and D features, we prepare to build M trees. The 
complexity of random sampling is not considered below.

The best case for tree construction is complete balanced growth, in this case, the depth 
of the tree is O(log n) . All samples of each layer of DMRF are involved in the calculation, 
and the number of features calculated is 

√
D . Therefore, the complexity of building a 

DMRF tree is O(
√
Dn log n) , so the complexity of DMRF is O

(√
DnM log n

)

.

In the same way, the complexity of BreimanRF is O(
√
DnM log n) . The fea-

ture subspace size of Denil14 is min(1+ Poisson(�),D) , and the optimal split point 
is searched in the pre-selected samples of m(m < n) samples, so its complexity is 
O(min(1+ Poisson(�),D) ·mM log n) . BRF introduces two Bernoulli distributions 
when choosing split points, the average number of features calculated at each layer 
is p1 + (1− p1)

√
D , and the average number of samples calculated at each layer is 

(1− p2)n , so the complexity is O((p1 + (1− p1)
√
D)(1− p2)nM log n) . MRF introduces 

two multinomial distributions when selecting split points, and all features and samples 
at each node are involved in the calculation, so the complexity is O(DnM log n).

From Table  5, it can be seen that MRF(b) has the highest complexity, followed by 
DMRF and BreimanRF. Due to the sampling process involved in selecting split points, 
DMRF will generally take slightly longer than BreimanRF in most cases. Due to the gen-
erally small values of p1, p2 , in most cases, the complexity of BRF is slightly lower than 
that of DMRF and BreimanRF. As for Denil14(b), the complexity ranking is determined 
by the values of � , m.

Figure  7 shows the running time of one iteration of cross-validation for three clas-
sification datasets (Tic-tac-toe, Winequality(white), Connect-4) and three regression 
datasets (Alcohol, Flare, Insurance) under parameters mentioned in Sect. 4.3. It can be 
observed that BRF(b) has shorter runtime in both classification and regression tasks, 
while MRF(b) has longer runtime in both tasks. As we analyzed earlier, in most cases, 
BreimanRF has shorter runtime compared to DMRF.

It is worth noting that in Connect-4, a big dataset for classification, Denil14(b) has 
longer runtime compared to DMRF, BRF(b), and BreimanRF, while in Insurance, a big 
dataset for regression,Denil14(b) has shorter runtime compared to DMRF, BRF(b), 
and BreimanRF. This is because Connect-4 has 42 features, and the average size of 

Table 7 Computational complexity of RFs

RF variants Complexity

BreimanRF O(

√
DnM log n)

BRF O((p1 + (1− p1)
√
D)(1− p2)nM log n)

DMRF O(

√
DnM log n

Denil14 O(min(1+ Poisson(�),D) ·mM log n)

MRF O(DnM log n)
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Denil14(b)’s feature subspace is 11, while the average size of feature subspaces for DMRF, 
BRF(b), and BreimanRF is 6. Although Denil14(b) only selects 100 points to compute 
split points, the experimental results indicate that the impact of feature subspace size on 
runtime in Connect-4 is greater than calculating splitting points for 100 samples each 
time.

In Insurance, the number of features is 86, and the average size of Denil14(b)’s fea-
ture subspace is 11, while the average size of feature subspaces for DMRF, BRF(b), and 
BreimanRF is 9, which is not significantly different. However, because Denil14(b) only 
selects 100 points to compute splitting points, it has a faster speed.

Conclusions and future works
The main contributions of this paper are as follows:
① By modifying the condition for the number of samples in leaf nodes, the weak con-

sistency proofs in previous RF variants have been improved to strong consistency proofs. 
The previously proposed weak consistency models, such as Denil14(SE), BRF(SE), and 
MRF(SE), have been enhanced to models with strong consistency in probability, namely 
Denil14(b), BRF(b), and MRF(b).
② We introduces a novel algorithm called DMRF, which combines Bernoulli and mul-

tinomial distributions. DMRF utilizes a modified bootstrapping to obtain training sets 
for base trees and uses the combination of Bernoulli and multinomial distributions to 
determine the splitting points during tree construction. This approach increases diver-
sity while maintaining high-performance. Besides, We discuss the parameters involved 
in DMRF and validated their impact on DMRF through experiments. We also provide 
recommend values for these parameters based on our findings.
③The experiments indicate that DMRF outperforms MRF(b) and BreimanRF in clas-

sification tasks. However, in regression tasks, DMRF performs better than MRF(b) but 
the difference is not significant. In most cases, DMRF’s performance is not as good as 
BreimanRF, suggesting that DMRF is more suitable for classification tasks.

Fig. 7 Running time in one iteration of cross-validation for different models
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④In terms of standard deviation, DMRF has lower standard deviation than MRF(b) 
and BreimanRF on small and medium-sized datasets. However, on large datasets, DMRF 
is more likely to have a higher standard deviation compared to MRF(b) and BreimanRF. 
In terms of time complexity, DMRF has the same complexity as BreimanRF. The com-
plexity of BRF(b) and Denil14(b) is determined by the parameter settings, while MRF(b) 
has the highest complexity.

The main advantages of DMRF lie in its strong theoretical properties, excellent perfor-
mance, and lower complexity(same as BreimanRF). It shows clear advantages on small 
sample datasets. However, one limitation is that DMRF shows higher randomness than 
BreimanRF on large dataset. Future research can focus on addressing this limitation of 
increased randomness in DMRF for large sample cases.

Appendix

The proof of Lemma 3.1
Denote g∗(x) as the Bayes classifier, then the Bayes risk is

Denote.

Then

so it is sufficient to prove that the limit of the latter term is 0 for all k ∈ B.
For ∀k ∈ B,

L∗ = P(g∗(x) �= Y ).

A = {k|γ (k)(x) = max{γ (k)(x)}},

B = {k|γ (k)(x) < max{γ (k)(x)}}.

P(g (M)
n (x,C ,Dn)  = Y |Dn)

=
∑

k

P(g (M)

n (x,C ,Dn) = k|Dn) · P(Y �= k|Dn) ≤ L∗ ·
∑

k∈A
P(g (M)

n (x,C ,Dn) = k|Dn)

+
∑

k∈B
P(g (M)

n (x,C ,Dn) = k|Dn),

P(g (M)
n (x,C ,Dn) = c|Dn) = P(

M
∑

i=1

I(gn(x,C
(i),Dn) = k) > max

l �=k
{
M
∑

i=1

I(gn(x,C
(i),Dn) = l)}|Dn)

≤ P(

M
∑

i=1

I(gn(x,C
(i),Dn) = k) ≥ 1|Dn)
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The proof of Lemma 3.4
Every base tree is strongly consistent, i.e.,

lim
n→∞

R(fn|Dn) = lim
n→∞

E[(fn(X ,C(i),Dn)− f (X))2|Dn] = 0, i ∈ {1, 2, ...,M}.
Then

where C(i) is the randomness introduced in i-th tree building, (c) uses Cauchy inequality.

The proof of Theorem 3.1
First, we proof the number of samples in each leaf node of DMRF tree has at least kn 
with probability 1 when n → ∞.

Due to the randomness of the split point selection, the final selected split point can be 
regarded as a random variable W  , which follows the uniform distribution on [0,1], and 
its cumulative distribution function is.

For ∀m ∈ N+, ε > 0 and a certain 0 < η < 1 , the smallest child node after the root 
node splits according to a splitting feature is denoted as M1 = min(W , 1−W ) , then we 
have

Without loss of generality, we can normalize the value of all attributes to range [0,1] 
for each node. If the feature is continuously split m times (i.e. the tree grows to the m-th 
layer), the probability that the smallest child node in m-th layer has the size at least η is

≤ E(

M
∑

i=1

I(gn(x,C
(i),Dn) = k)|Dn)

= M·P(gn(x,C ,Dn) = k)|Dn) → 0(n → ∞).

R(f
(M)

n |Dn)

= E[( 1
M

M
∑

i=1

fn(X ,C
(i),Dn)− f (X))2|Dn]

(c)
≤ 1

M

M
∑

i=1

E[(fn(X ,C(i),Dn)− f (X))2|Dn] → 0(n → ∞).

FW (x) = x, x ∈ [0, 1].

P(M1 ≥ η1/m) = P(η1/m ≤ W ≤ 1− η1/m)

= FW (1− η1/m)− FW (η1/m)

= 1− η1/m − η1/m

= 1− 2η1/m.
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In this case, if 0 < η < { 12 [1− (1− ε)
1
K ]}K  , then

The above results are based on the fact that the same feature is selected for each split. 
In fact, if different features are split at different layers, P(Mm ≥ η) will be greater, we still 
have

This indicates that the size of each node is η in m-th layer with the probability at least 
1− ε.

Since X has a non-zero density function, each node in the m-th layer of the tree has a 
positive metric with respect to µX . Define.

ζ > 0 because the measure of each leaf node is positive and the number of leaf nodes 
is finite.

The number of samples in the training set is n , and the number of samples in the leaf 
node N  follows B(n, ζ ) , then

(a) is based on the fact that kn/n → 0 as n → ∞ , so kn − nζ < 0 if n → ∞. (b) uses 
Chebyshev’s inequality. This suggests that the probability of reaching the stop condi-
tion will converge to 0 as n → ∞ , which means that can split infinitely many times with 
probability 1.

It is sufficient to show that it satisfies the conditions of Lemma 3.3 with probability 1. 
Obviously, we just need to prove that diam(An(x)) → 0 as n → ∞ with probability 1. Let 
V (i) denote the size of the i-th feature of An(x) , we only need to show that E[V (i)] → 0 
for all i ∈ {1, 2, ...,D}.

Without loss of generality, at each node, we will scale each feature to [0, 1].
First, we define the following events: E1 ={i-th feature is a candidate feature}, E2 ={use 

optimal split criterion to get splitting point}, E3 ={i-th feature is a splitting feature}. For 
a given i , denote the largest size among its child nodes as V ∗(i).

Let Wi be the position of the splitting point, then Wi|E3 ∼ U(0, 1) and.

P(Mm ≥ η) = (1− 2η1/m)m.

P(Mm ≥ η) = (1− 2η1/m)m > 1− ε.

P(Mm ≥ η) > 1− ε.

ζ = min
N : a leaf at m−th level

µX [N ],

P(N (N ) < kn) = P(N (N )− nζ < kn − nζ )

(a)= P(|N (N )− nζ | > |kn − nζ |)

(b)
≤ nζ(1− ζ )

|kn − nζ |2

= ζ(1− ζ )

n| knn − ζ |2
→ 0(n → ∞).
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so we have

When E2 happens, during the process of selecting the splitting feature, the normalized 
vector of impurity reduction (denoted as Î , which is an n-dimensional vector) is con-
sidered. When the i-th element of Î is 0 and all other elements are 1, the probability of 
selecting the i-th feature as the splitting feature is minimized. Therefore,

and

So,

Thus, it can be inferred that

V ∗(i)|E3 = max(Wi|E3, 1− (Wi|E3)) ∼ U [1
2
, 1],

E[V ∗(i)|E3] =
3

4
.

P(E3|E2) ≥
1

1+ (
√
D − 1)·eB1

�= p1,

P(E3) = P(E2)·P(E3|E2)+ P(E2)·P(E3|E2) ≥ P(E2)·P(E3|E2) ≥ (1− p)p1.

E[V (i)|E1] ≤ P(E3|E1) · E[V (i)|E1,E3] + P(E3|E1)·E[V (i)|E1,E3]

= P(E3)·E[V (i)|E3] + (1− P(E3)) · 1

≤ P(E3) · E[V ∗(i)|E3] + 1− P(E3)

= P(E3) ·
3

4
+ 1− P(E3)

= 1− 1

4
P(E3)

≤ 1− (1− p)p1

4
.

E[V (i)] ≤ P(E1) · E[V (i)|E1] + P(E1) · E[V (i)|E1]

=
√
D

D
· E[V (i)|E1] + (1−

√
D

D
) · 1

≤ 1√
D

· (1− (1− p)p1

4
)+ 1− 1√

D
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The above process is the result of one time split. If the i-th feature is splited m times, 
the following formula can be obtained by iterating the above formula continuously:

We have proven that m → ∞(n → ∞) with probability 1, so the strong consistency of 
DMRF can be obtained with probability 1.

In summary, diam(An(x)) → 0(n → ∞) with probability 1, DMRF tree is strongly 
consistent with probability 1. By lemma 3.2, DMRF algorithm has strong consistency 
with probability 1.

The proof of Theorem 3.2
By lemma 3.4, the strong consistency of DMRF in regression problem is based on the 
strong consistency of trees.The following proves the strong consistency of the base 
regression tree.

By lemma 3.6, if we prove

and

then the strong consistency of

is obtained. Since the sample number of each cell is at least kn , i.e.,

From kn/ log n → ∞(n → ∞) , when n is sufficiently large,

In this case

= 1− (1− p)p1

4
√
D

�= A

(

denoteA = 1− (1− p)p1

4
√
D

)

.

E[V (i)] ≤ Am.

lim
n→∞

diam(An(x)) → 0

lim
n→∞

|{j : An,j ∩ S �= ∅}| log n
n

= 0,

m′
n =











�n
i=1 YiI(Xi ∈ An(x))

�n
i=1 I(Xi ∈ An(x))

,
�n

i=1
I(Xi ∈ An(x)) > log n

0, otherwise

N (An(x)) =
∑n

i=1
I(Xi ∈ An(x)) ≥ kn.

∑n

i=1
I(Xi ∈ An(x)) ≥ kn > log n.

m′
n = ŷ(x) =

∑n
i=1 YiI(Xi ∈ An(x))

∑n
i=1 I(Xi ∈ An(x))

= 1

N (An(x))

∑

(X ,Y )∈An(x)

Y .



Page 31 of 32Chen et al. Journal of Big Data           (2024) 11:34  

That is, the base regression tree is universally strongly consistent. Therefore, we only 
need to prove that the conditions of the above two limits are true. The former condition 
has been proved in the consistency proof of classification DMRF algorithm, so only the 
latter is needed to prove.

For the base tree with n training samples, there is at most n
kn

 split regions,

The latter is true. Therefore, the strong consistency of the regression DMRF algorithm 
is obtained.
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