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Sunglyunkwan-o, Jongno-gu, in South Korea, JFK.and MDW airport in the United States, capturing flight informa-
Seoul 03063, Republic of Korea tion at six different time intervals (2, 4, 8, 16, 24, and 48 h) prior to flight departure. The
datasets comprise 1,569,879 instances for ICN, 773,347 for JFK, and 404,507 for MDW,
respectively. We employed a range of machine learning and deep learning approaches,
including Decision Tree, Random Forest, Support Vector Machine, K-nearest neighbors,
Logistic Regression, Extreme Gradient Boosting, and Long Short-Term Memory, to pre-
dict flight delays. Our models achieved accuracy rates of 0.749 for ICN airport, 0.852
for JFK airport, and 0.785 for MDW airport in 2-h predictions. Furthermore, for 48-h
predictions, our models achieved accuracy rates of 0.748 for ICN airport, 0.846 for JFK
airport, and 0.772 for MDW airport based on our experimental results. Consequently,
we have successfully validated the accuracy of flight delay predictions for longer time
frames. The implications and future research directions derived from these findings are
also discussed.
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Introduction

With the increasing demand for air travel, the number of air passengers has significantly
increased. The global air passenger transport market doubles every 15 years [1]. For
example, as of February 2023, the revenue passenger kilometer in Asia Pacific and North
America has increased by 105.4% and 25.1% relative to that in 2022, respectively. Despite
a temporary decline in passenger traffic during the Covid-19 pandemic, the number of
air passengers has steadily increased over the past few decades [2].

. ©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
@ Sprlnger O pen use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
— author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00867-5&domain=pdf

Kim and Park Journal of Big Data (2024) 11:11

Table 1 Number of eligible passengers for compensation versus the number of total passengers

Year Number of passenger in Rate of Number of eligible Evolution
Europe (millions) compensation (%) passengers (millions) (2017/2016)
(%)
2017 1020 1.58 16 14.20
2016 970 1.46 14 15.60
2015 918 133 12 16.10

Table 2 Different types of delays

Delay type Portion (%) Mean and standard
deviation of delay time
(min)

CarrierDelay 35.30 42.08 (64.98)

WeatherDelay 3.86 69.81(100.79)

NASDelay 3818 3140 (41.93)

SecurityDelay 040 3040 (40.68)

LateAircraftDelay 2227 51.27 (58.03)

Bold valuesindicate the greatest results

Meeting the increasing demand for air travel and ensuring efficient supply chain
operations require the development of aviation infrastructure. This includes expanding
airport facilities, updating airline fleets, and implementing effective air schedule man-
agement. Addressing these issues is crucial to provide a seamless and reliable travel
experience for passengers. However, a significant challenge in delivering satisfactory ser-
vices is the frequent occurrence of unexpected flight delays and cancellations [3].

According to Tileagd and Oprisan [4], the number of compensation cases due to
delayed flight schedules is increasing steadily. Table 1 shows that the number of com-
pensation recipients for air delays and cancellations is steeply increasing every year.
Flight delays have significant economic consequences for both airlines and passengers,
rendering it a notable issue within the aviation industry.

Table 2 show the types and proportion of delays from 2010 to 2021 at the John F. Ken-
nedy International Airport (JFK). It reveals that weather-related delays account for a
small proportion of delays (3.86%). However, weather-related delays were longer than
other types of delays, with an average delay time of 69.81 min and a standard deviation
of 100.79 min [5].

The frequency of abnormal weather phenomena that are known to contribute to an
increase in flight delays [6] is on the rise worldwide. In addition, the regional climate
determined by geographical location plays a significant role in flight operations [7]. For
example, in South Korea, the total rainfall period is concentrated from July to Septem-
ber each year, with approximately 42.5% rainfall in July, 27.4% in August, and 12.8% in
September. In addition, the region is directly affected by typhoons at the end of August
through early September every year.

While previous studies on flight delay prediction have often incorporated weather
information [8—10], the majority of these studies have centered around predicting delays
within relatively short timeframes, typically within thresholds of 15 min or up to 4 h,

primarily tailored to airline services. However, the unique context of international flights
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covering vast distances across continents and oceans, with flight durations spanning
from as little as 10 h to as long as 20 h, underscores the necessity for delay prediction
over more extended timeframes.

Therefore, this study aims to predict flight delays over more extended timeframes (2
to 48 h) based on weather data. We focus on three well-known international airports:
Incheon International Airport in South Korea (ICN), John F. Kennedy International Air-
port (JFK), and Chicago Midway International Airport (MDW) in the United States. In
addition, we use weather information from the meteorological agencies located at each
airport. “Background and related work” section reviews previous research in this area,
whereas “Methodology” section presents the machine learning and deep learning mod-
els along with the evaluation methods utilized in the study. The experimental procedures
and the comparison of the results across the models are presented in “Implementation
and result” section. “Discussion and concluding remarks” section concludes this paper
by presenting the interpretation of the results, noteworthy findings, limitations, and sug-
gestions for future research.

Background and related work

Several studies have been conducted to forecast flight departure delays using various
statistical methods, machine learning, and deep learning techniques. Table 3 provides a
summary of prior flight delay detection research based on machine learning and neural
network approaches.

Researchers [9, 11, 12] have utilized Bayesian modeling, clustering, classification, and
regression with diverse datasets from different regions. The time span of the data varied,
ranging from 1 month to 5 years, and the airports under investigation differed as well.
Khaksar and Sheikholeslami [9] identified parameters that enable effective estimation of
delays. They used Bayesian modeling, decision tree, cluster classification, random forest,
and hybrid methods. They used 2,825,647 data for US airlines and 15,428 data for Ira-
nian airlines. They realized an accuracy of approximately 70%.

Al-Tabbakh et al. [11] analyzed the flight delay patterns using four decision tree clas-
sifiers, including Decisionstump, J48, Random Forest, and REPTree. They utilized 512
data from a brief duration of 1 month, i.e., January 2018. The findings revealed that
among the classifiers evaluated for the Egypt Airline dataset, REPTree attained the high-
est accuracy score of 80.3%.

Ye et al. and Atlioglu et al. [12, 13] conducted flight delay prediction via supervised
learning methods, whereas [12] employed multiple linear regression, a support vec-
tor machine, extremely randomized trees, and LightGBM. They used 105,993 data and
reported the highest accuracy of 86.53%.

Atlioglu et al. [13] studied 11 machine learning models using data obtained follow-
ing feature selection and transformation. They used 8086 data and achieved F1-scores of
approximately 81%.

Certain researchers predict airline delay using neural networks and hybrid models [8,
10, 14]. Kim et al. [8] investigated the effectiveness of deep learning models in predict-
ing air traffic delays. Daily sequences of departure and arrival flight delays for individual
airports were modeled using the long short-term memory (LSTM) and recurrent neural
network (RNN) architecture. The accuracy of RNN improves with deeper architectures,
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exhibiting the highest performance with an accuracy of 90.95% on the Atlanta air traffic
data.

Qu et al. [10] analyzed and predicted flight delays using a convolutional neural net-
work (CNN) and RNN models that are well-suited for classification problems in the
field of deep learning. They improved the CondenseNet network by incorporating
CBAM modules within the CNN-based CondenseNet algorithm to develop CBAMCon-
denseNet. Additionally, they constructed a CNN-MLSTM network based on the CNN
model and injected the SimAM module to enhance the attention of flight chain data.
They used 36,287 data of China and achieved the highest accuracy score of 91.36%.

Yazdi et al. [14] designed the proposed model to output optimized results by incorpo-
rating a technique based on stack denoising autoencoder to account for the noisy flight
delay data. They constructed SAE-LM based on an autoencoder and LM algorithm. The
stacked denoising autoencoder is based on only denoising autoencoder. They utilized
a comprehensive dataset spanning 5 years of US flight operations, comprising a total
of 3,601,679 data points. The results demonstrated that the proposed model exhibited
enhanced accuracy compared with the RNN model, highlighting its effectiveness in pre-
dicting flight delays. While numerous researchers have utilized state-of-the-art machine
learning and deep learning techniques to study weather-related takeoff delays from vari-
ous angles, the majority of studies have focused on predicting delays within a time cri-
terion of approximately 15 min. There has been limited exploration and prediction of
flight delays exceeding 2 h.

By employing established research methodologies, it is feasible to aggregate the out-
comes of short-term predictions to generate long-term forecasts. Nevertheless, it’s vital
to recognize that repeated predictions may introduce inaccuracies. When assessing the
practical utility of such models, the ability to predict aviation delays over extended time
intervals based on input data widens the scope of possibilities for long-haul flights and
diverse flight schedules. This expanded capability offers benefits not only from the per-
spective of airport resource management but also in various other aspects. Therefore,
there is a pressing need for research that focuses on machine learning and neural net-
work models capable of forecasting the distant future using authentic long-term differ-
ential data. Hence, in this study, our objective is to specifically address and forecast flight
delays of more than 2 h.

Methodology

Classification models

We used the following machine learning models and LSTM neural network to predict
flight takeoft delays. The LSTM model boasts the advantage of effectively managing
time-series data, but it comes with the drawback of requiring considerably more com-
plex and powerful hardware. From this standpoint, machine learning (ML) models allow
predictions at the individual time-unit level and are notably more computationally effi-
cient when compared to the LSTM model.

+ Decision Tree (DT): DT is a type of supervised learning model that classifies or
regresses data by applying a set of classification rules. The resulting model has a tree-
like structure, hence the name ‘Decision Tree! Pruning techniques can be applied
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to enhance the model’s generalization performance and prevent overfitting, ensuring
that it performs effectively on unknown data. Grid search can be used to find the
optimal parameter values for the DT model, optimizing its performance [15]. It does
not necessitate data preprocessing, such as normalization or handling missing values
and outliers. It also has the capability to simultaneously handle both numerical and
categorical variables. However, it has the limitation of considering only one variable
at a time, which can make it challenging to capture interactions between variables.
Moreover, the shape of the resulting decision tree can exhibit significant variations
with minor differences in the data [16, 17].

+ Random Forest (RF): RF is an ensemble algorithm that trains multiple DT models
and combines their results to make predictions. The method entails the random
selection of a subset of features from the complete feature set to build one decision
tree, followed by the selection of another random feature subset to create additional
decision trees. Multiple decision trees are generated using this process. The final
prediction is made by choosing the most frequently occurring prediction from these
multiple decision trees [18]. This approach is versatile as it can be applied to both
classification and regression problems. It is particularly effective in handling large-
scale data and mitigates the issue of overfitting by reducing model noise, ultimately
improving model accuracy [19, 20].

+ Support Vector Machine (SVM): SVM is a powerful supervised learning model that
can be used for various tasks such as classification, regression, and anomaly detec-
tion. It aims to find a decision boundary that maximizes the separation between two
classes while satisfying certain conditions. SVM can handle both linear and non-lin-
ear classification problems by using different kernel functions [21]. It determines the
side of the decision boundary to which a data point belongs, allowing it to effectively
classify data. Although it may be slower and less interpretable due to the require-
ment for multiple combination tests, it offers the advantage of being applicable to
both categorical and numerical prediction problems, with minimal vulnerability to
outlier data. Additionally, it is less susceptible to overfitting and more user-friendly
compared to neural networks [22, 23].

+ K-Nearest Neighbors (KNN): KNN is a classification algorithm that operates based
on the principle of similarity. It assigns a class label to a given data point by consider-
ing the labels of its “k” nearest neighbors in the feature space. The distance between
data points is typically calculated using the Euclidean distance measurement method
[24]. It offers several advantages, such as high accuracy and the ability to exclude
outlier data from consideration by using only the top k closest data points. Further-
more, it does not rely on assumptions about the data since it is based on existing
data. However, it has the disadvantage of increased processing time as the dataset
size grows, as it needs to compare with all existing data points, and it may require
significant memory usage for large datasets [22, 25].

+ Logistic Regression (LR): LR is one of the simplest classification models. It predicts
the probability of data belonging to a certain category as a value between 0 and 1 and
classifies it into the category with a higher probability [26]. It has the advantage of
being less complex and faster due to linear combinations, making it easy to interpret
the results. However, it may suffer a reduction in learning ability when dealing with
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non-linear relationships and can be sensitive to outliers and anomalies, which are its
disadvantages [27, 28].

+ Extreme Gradient Boosting (XGB): XGB is an algorithm implemented using the
boosting technique. It supports both regression and classification problems and
exhibits suitable performance and resource efficiency. It is characterized by strong
durability with its built-in overfitting regularization function [29, 30].

+ Long Short-Term Memory (LSTM): LSTM networks are a type of RNN that can
learn the order dependence in sequence prediction problems. RNNs are modified
by adding a memory cell that can store information for an extended period. LSTM
was proposed as a solution to address the issue of vanishing gradients in RNN when
processing long sequential data [31]. However, it has the drawback of being compu-
tationally intensive and having a complex model structure due to the incorporation
of forget gates, input gates, and output gates [32-34].

Evaluation methods

To evaluate the performance of each classifier, we calculated the confusion matrix
and measured the accuracy, precision, recall, and F-score. Table 4 is the confusion
matrix, a 2 x 2 matrix representation of classification results. The number of correctly
classified instances is the sum of the diagonals of the matrix, while all other instances
are incorrectly classified. Each item in the confusion matrix includes the following
four indicators.

The first indicator is True Positive (TP), which signifies that the predicted value
is positive when the actual value is positive. The second indicator is True Negative
(TN), indicating that the predicted value is negative when the actual value is negative.
The third indicator is False Positive (FP), denoting that the predicted value is positive
when the actual value is negative. Lastly, the fourth indicator is False Negative (FN),
showing that the predicted value is negative when the actual value is positive [35].

Accuracy serves as “a metric for assessing the overall performance of each model by
computing the ratio of correctly classified samples to the total number of samples” [36].
However, in situations with a significant imbalance between positive and negative
samples, accuracy may not provide a suitable evaluation measure. Precision presents
“the proportion of true positive cases among all predicted positive cases” [37], while
recall computes “the ratio of correctly predicted positive samples to the total number
of true positive samples” [38]. F1-score represents “a balanced measure that combines
both precision and recall” [39].

Table 4 Confusion matrix

Classified as delayed Classified as not delayed

Actual delayed True positive (TP) False negative (FN)
Actual not delayed False positive (FP) True negative (TN)
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Implementation and result

Data description and analysis

We collected three datasets including flight and weather information of Incheon Inter-
national Airport in South Korea (ICN) [40], John F. Kennedy International Airport (JFK)
[41], and Chicago Midway International Airport (MDW) [42] in the United States.

The flight information [43, 44] is organized by all flight-related features, including
scheduled departure time, actual departure time, and delay type. The weather infor-
mation is the officially introduced regional weather feature. The flight information
scheduled from 2010 to 2021 was examined, spanning a total of 11 years. The weather
information corresponding to the same period was also collected. For the experiment,
weather and flight information were merged with a time difference for data preproc-
essing to predict flights based on weather conditions. The merged datasets include the
attributes listed in Tables 5 and 6. Among these attributes, the airline, flight number, and
destination were not used in the actual model training. Additionally, since the features
wind direction (e.g., NW, WNW) and condition (e.g., Cloudy, Windy) are categorical
data, they were transformed into one-hot encoding before being included in the training
dataset.

Data processing

ICN dataset

In situations where the scheduled departure time differs by more than 1 h, we classify
the data as delayed. The ICN dataset comprises 1,562,029 instances of normal flights and

Table 5 Incheon International Airport’s attributes list

Attribute name Description Mean (Std) Min Max

Time (year) 2010-2021 (e.g. 2020) - - -

Airline Unique carrier [e.g. KE (Korean Air)] - - -

Flight number Flight number (e.g. KE831) - - -

Destination Destination (e.g. Asiana Airlines) - - -

Planned departure time Planned departure time (e.g. 10:30) - - -

Actual departure time Actual departure time (e.g. 11:30) - - -

Result status Takeoff intime or delay status (e.g. cancel- - - -
lation)

Delay type Delay type (e.g. weather-snow) - - -

Wind direction (deg) Wind direction (deg) (e.g. 10) 204.3 (109.7) 0 360

Wind velocity (KT) Wind velocity (KT) (e.g. 5) 74 (44) 0 49

Meteorological range Visible distance (e.g. 10,000) 8311 (26994) 0 11000

Cloud cover Cloud cover (e.g. 3) 29(1.8) 1 9

Cloud form Cloud form (e.g. 5) - - -

The height of the cloud ceiling (FT) The height of the cloud ceiling (FT) (e.g. 7390.2 (6950.7) 0O 24000
15,000)

Temperature (celcius) Temperature (celcius) (e.g. —7) 12.5(10.49) —172 366

Dew point temperature (celcius) Dew point temperature (celcius) (e.g. 56(11.4) —284 265
—18.8)

Sea-level pressure (hPA) The pressure of the atmosphere at the 1016.6 (8.4) 981.3 10404
sea level (e.g. 1023.8)

Station pressure (hPa) Station pressure (hPa) (e.g. 1022.8) 10158 (84) 980.6  1039.5

Rainfall (mm) Rainfall (mm) (e.g. 0.3) 03(14) 0 66




Kim and Park Journal of Big Data (2024) 11:11 Page 9 of 25

Table 6 John F. Kennedy International Airport, and Chicago Midway International Airport’s
attributes list

Attribute mame Description Mean (Std) Min Max
Time (year) 2010-2021 (e.g. 2020) - - -
Airline Unique carrier [e.g. AA (American Airlines)] - - -
Flight number Flight number (e.g. AA2000) - - -
Destination Destination (e.g. JFK) - - -
Planned departure time Planned departure time (e.g. 1622) - - -
Actual departure time Actual departure time (e.g. 1634) - - -
Result status Takeoff intime or delay status (e.g. 1) - - -
Delay type Delay type (e.g. WeatherDelay) - - -
Wind direction Wind direction (e.g. NW, WNW) - - -
Wind speed Wind speed (e.g. 3) 10.5 (5.3) 0 51
Wind gust Wind gust (e.g. 24) 5.3(109) 0 75
Temperature (celcius) Temperature (celcius) (e.g. 34) 51.5(20.5) —21 103
Dew point temperature (celcius) ~ Dew point temperature (celcius) (e.g. 31) 39.9(19.5) —-32 79
Humidity Humidity (e.g. 92) 67.7 (17.2) 0 100
Pressure (hPa) Pressure (hPa) (e.g. 29.96) 29.3(0.3) 0 30.2
Precipitation (mm) Precipitation (mm) (e.g. 0.1) 0.006 (0.046) 0 2
Condition Condition (e.g. Cloudy, Windy) - - -

7850 instances of delayed flights caused by weather conditions. To achieve a balanced
distribution between normal and delayed cases, we randomly sampled an equal number
of normal and delayed flight instances. To address the absence of certain features in the
cases, we utilized a data interpolation method that was previously validated in a research
study [45]. Due to the hourly-based nature of the ICN weather information, there were
instances of missing features. To fill these gaps, we employed a linear interpolation tech-
nique to estimate the values for the unmeasured time periods. The interpolated data
comprises 953 data points, which accounts for 0.9% of the total 105,192 data points. Fur-
thermore, we included flight takeoff results with time differences as additional features.
To fulfill the objectives of the present study, we implemented a time difference criterion
and utilized combined flight and weather cases. The time differences were categorized
into intervals of 2, 4, 8, 16, 24, and 48 h.

JFK dataset and MDW dataset

Similar to the ICN dataset, we created delayed flight instances for the JFK and MDW
datasets based on the time difference between the scheduled and actual departure times.
The JFK dataset consisted of 763,930 normal cases and 9417 delayed cases attributed to
weather conditions, while the MDW dataset comprised 398,945 normal cases and 5562
delayed flight instances. Similar to the approach followed for the ICN dataset, we con-
ducted down-sampling procedures to achieve a 1:1 ratio of normal and delayed cases.

In both the JFK and MDW datasets, the weather information consists of several cat-
egorical features, such as wind direction and condition details. To incorporate these
features into our data-driven approaches for machine learning and neural network
frameworks, we employed a one-hot encoding technique. This encoding method allows
us to represent the categorical variables as binary vectors, facilitating their utilization
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Table 7 Summary of the employed datasets in training, validation, and test sessions

Airport Train Validation Test Total

ICN 10551 (67.2%) 2009 (12.8%) 3140 (20.0%) 15700 (100%)
JFK 12756 (68.7%) 2041 (11.0%) 3767 (20.3%) 18564 (100%)
MDW 7476 (68.6%) 1196 (11.0%) 2225 (20.4%) 10897 (100%)

in the models. Additionally, we included flight takeoff results with time differences as
one of the features in the dataset. Subsequently, both the JFK and MDW datasets with
weather information were merged.

Experiment

Figure 1 shows the flow chart of our overall approach. For machine learning models, we
input the data sampled following the process as mentioned above, while we stack the
sampled data to create time-series data and input them to the LSTM model.

To begin, we partitioned the dataset into subdata and testing subsets in an 80:20 ratio.
Subsequently, we further divided the subdata into training and validation subsets in an
80:20 ratio, resulting in a distribution of the training, validation, and test datasets with
a ratio of 67:13:20. Table 7 presents the number of datasets used for training, validation,
and testing.
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Table 8 Tested parameters in DT

Parameters Value

Max depth 2,4,6,8,10,12,14,16, 18,20
Min impurity decrease 0.0001, 0.0005, 0.001, 0.005, 0.01
Min samples split 2,3,4,5

Min samples leaf 1,2,3,4,5

Table 9 Tested parameters in LSTM model

Parameters Value

Layer 1,2,3

Learning rate 0.0001, 0.0003, 0.0005, 0.001, 0.005
Epoch 300, 400, 500, 600, 700

Time series 2h,3h,4h,5h,6h

All experiments were conducted on a single GeForce RTX 3080 Ti 10GB GPU and
implemented using Python 3.6 as the programming language. We performed a grid
search to determine the optimal hyperparameters, including learning rates, number of
epochs, number of layers, and number of stacked time-series data. We selected the most
optimal parameters for the best performance. Tables 8 and 9 show the list of hyperpa-
rameters for DT and LSTM used in the grid search. In the case of the LSTM model, the
training parameters varied for each airport dataset. The ICN dataset had 2,385 param-
eters, while the JFK and MDW datasets had 2,833 parameters.

Results

Flight delay prediction

Tables 10, 11 and 12 show the prediction results of flight departure delays based on
weather data using various models. The results were obtained corresponding to a total of
six different time differences (2, 4, 8, 16, 24, and 48 h).

Table 10 summarizes the results of the ICN dataset. The RF model reported the high-
est accuracy score of 0.749 with a time difference of 2 h. Except for the DT model that
showed the best recall performance of 0.700, the RF model displayed superior perfor-
mance in other metrics.

For the JFK airport dataset with a time difference of 2 h, the LSTM model achieved the
highest accuracy score of 0.852 (Table 11). In terms of recall for predicting flight delays,
the DT model outperformed all other models (0.826), whereas in terms of precision
of prediction of on-time flights, the RF model outperformed all other models (0.835).
Nonetheless, the LSTM model demonstrated superior performance in other evaluation
metrics.

The result corresponding to the MDW airport dataset for a time difference of 2 h is
presented in Table 12. The LSTM model achieved the highest accuracy score of 0.785.
Although the DT model exhibited the best performance in terms of recall (0.759), the
LSTM model outperformed the other models in all other evaluation metrics.
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Flight delay prediction (1 to 24 h, hourly)

Tables 13, 14 and 15 provide an hourly breakdown of model accuracy from 1 h to 24 h,
utilizing the same three datasets for ICN, JFK, and MDW airports, along with average
training and testing times. The hyperparameters that yielded the best performance in
the prior experiments were applied. Across all three airport datasets, the highest accu-
racy was observed at a 1-h time difference, with a declining trend in performance as the
time difference increased. The magnitude of performance decline from 1 h to 24 h for
each model is detailed in Table 16. Notably, the Random Forest model exhibited the least
performance degradation, with a decrease of only — 3.6%, while the SVM model showed
the most significant performance decline, with an average decrease of — 16.1%. Machine
learning models completed their training in just a few seconds, while LSTM required
several 100 s, indicating it was approximately 100 times more time-consuming. In terms

of testing time, it ranged from as low as 1 ms to a maximum of around 1.3 ms.

Ablation study

We conducted training on the ICN dataset with identical parameters and training strate-
gies, except for the exclusion of linear interpolation, while examining a time difference of
2 h. The results, as depicted in Table 17, reveal a slight reduction in overall performance,
ranging from 1 to 2%, when interpolation was omitted. It is noteworthy that the interpo-
lated data constitutes only 0.9% (953 out of 105,192) of the entire dataset, which lends
credibility to the decision to incorporate linear interpolation in our research.

Feature importance

To determine the features with a substantial impact on our models, we conducted fea-
ture importance analysis. We chose the Random Forest and LSTM models, which dem-
onstrated the best performance. For the Random Forest model, we made use of the
built-in feature importance function, whereas for the LSTM model, we employed exter-
nal algorithms using loss data. Consequently, in the case of Random Forest, higher val-
ues correspond to greater feature importance, whereas for LSTM, lower values signify
reduced importance. Considering the results of the ICN airport dataset, Random Forest
attributed the highest importance to temperature, dew point, and weather phenomena
in that order, while LSTM assigned the highest importance to temperature, wind speed,
weather phenomena, and local pressure. Notably, temperature was identified as the most
crucial feature in both models (Table 18).

For the JFK airport dataset, Random Forest identified pressure, temperature, and dew
point as the most important features, while LSTM emphasized pressure, precipitation,
and wind speed as the top influential factors. Notably, pressure was recognized as the
most crucial feature in both models for this dataset (Table 19).

In the case of the MDW airport dataset, Random Forest indicated that pressure,
humidity, and temperature were the top features in terms of importance, while LSTM
emphasized pressure, precipitation, and wind speed as the most influential factors.
Notably, pressure was consistently identified as the most important feature in both mod-
els for this dataset (Table 20).
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Comparison with prior approaches

We conducted a performance comparison between our models and a prior research
model [8]. Using the same JFK airport dataset, we compared our research’s Random
Forest and LSTM models with the prior research model’s LSTM model. Our Random
Forest model achieved an accuracy of 84.3% with a 2-h time difference and 84.6%
with a 48-h time difference. In contrast, the LSTM model in our research achieved
an accuracy of 85.2% with a 2-h time difference and 73.6% with a 48-h time differ-
ence. It’s worth noting that the previous model exhibited a performance of 86.51% at
a short time interval of 15 min.

Discussion and concluding remarks

For predicting flight takeoff delays using weather information for the airports of ICN,
JEK, and MDW, machine learning and LSTM models were employed. Based on the pre-
diction results for the three regions, the RF model demonstrated the highest perfor-
mance for the ICN airport, while the LSTM model exhibited the highest performance
for JFK and MDW airports, with a minimum time difference of 2 h. The accuracy scores
were 0.749 for ICN, 0.852 for JFK, and 0.785 for MDW airports. Moreover, the RF model
also displayed the best performance with high accuracy for all three airports, with a
maximum time difference of 48 h; the accuracy scores were 0.748 for ICN, 0.846 for
JEK, and 0.772 for MDW airports. Moreover, when assessing test times, all of the mod-
els require less than 2 ms, which makes them suitable for real-time predictions. These
findings confirm the feasibility of predicting flight takeoff delays using weather data col-
lected 2 h prior to the scheduled departure time.

Our analysis incorporated datasets spanning from 2011 to 2021, encompassing a long time
period. This extensive dataset allowed us to leverage both actual flight operation data and
weather information for our analysis. By utilizing these comprehensive datasets, our pro-
posed models exhibited outstanding performance in predicting delayed flights across three
different datasets. The utilization of a long-term dataset facilitated robust predictions and
enhanced the reliability of our models. Furthermore, the approaches we developed can be
applied to various other transportation-related domains, including ocean vessel delays, vehi-
cle operation restrictions, and outdoor construction work stoppages. In these application
areas, early-stage warnings play a crucial role in mitigating potential risks to human safety
and property damage. By leveraging our proposed models, it becomes feasible to anticipate
and prepare for potential disruptions, enabling proactive measures to be taken in advance.
This can significantly contribute to minimizing the adverse impacts associated with delays
and restrictions in these transportation-related sectors. The presented implications not-
withstanding, it is important to acknowledge the presence of notable limitations. One such
limitation is the significant influence of national and regional factors on weather conditions,
rendering it challenging to generalize the results to other locations. The generalization of
findings beyond the specific context may not be straightforward owing to these variations.
Furthermore, the performance of the ICN airport dataset was relatively lower compared
with the JFK and MDW airport datasets. This discrepancy in performance could be attrib-
uted to several factors, including the presence of missing features in the dataset. The absence
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Table 16 Comparison of accuracy levels between 1.and 24 h

Algorithm ICN (%) JFK (%) MDW (%) Average (%)
DT —-17 —63 —69 —50
RF —-09 —51 —4.7 —36
SVM —-72 —228 —184 —16.1
KNN —2.7 —100 —89 —7.2
LR —182 —204 — 145 —177
XGB —40 —94 —83 -72
LSTM —68 —83 —-90 —10.1

Table 17 Ablation study on linear interpolation in the ICN dataset with a time difference of 2 h

Algorithm With linear interpolation Without linear interpolation
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

DT Normal 0.688 0.704 0676 0.690 0.680 0.695 0672 0.683
Delayed 0.671 0.700 0.685 0.665 0.688 0.677

RF Normal  0.749 0.729 0.814 0.769 0.740 0.724 0.800 0.760
Delayed 0.776 0.680 0.725 0.762 0.678 0.718

SVM  Normal 0651 0631 0.774 0.695 0.600 0.597 0.684 0638
Delayed 0.686 0.522 0.593 0.605 0.511 0.554

KNN  Normal  0.641 0.655 0.637 0.646 0.635 0.643 0.653 0.648
Delayed 0.628 0.646 0.637 0627 0616 0.622

LR Normal  0.595 0.600 0.635 0617 0.545 0.553 0.590 0.571
Delayed 0.589 0.552 0.570 0.534 0496 0.514

XGB  Normal 0.721 0.715 0.759 0.736 0.688 0.681 0.737 0.708
Delayed 0.728 0.680 0.703 0.696 0.635 0.664

Table 18 Feature importance of ICN airport

Feature Wind Visibility Weather Temperature Dew point Sea-level Local

importance  speed phenomena pressure pressure

RF 0.062 0.057 0.073 0.076 0.071 0.069

LSTM 20.718 20.724 20.721 20.715 21.006 20.932 20.721

Bold valuesindicate the greatest results

Table 19 Feature importance of JFK airport

Feature Temperature Dew point Humidity Windspeed Wind gust Pressure Precipitation
importance

RF 0.183 0.167 0.155 0.037 0.184 0.005

LSTM 68.161 22531 43.579 10.509 35.987 8.548 9.584

Bold valuesindicate the greatest results

of these features may have impacted the overall performance of the models. Future research
endeavors should focus on addressing these limitations by exploring more comprehensive
datasets and improving data collection methods to minimize missing features. This would
enhance the generalizability and accuracy of the models in predicting flight delays.
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Table 20 Feature importance of MDW airport

Feature Temperature Dew point Humidity Wind speed Wind gust Pressure Precipitation
importance

RF 0.165 0.158 0.170 0.109 0.029 0.176 0.004

LSTM 36.448 30.777 26.572 13.893 78.303 11.887 11.957

Bold valuesindicate the greatest results

In future research, our aim is to develop a more robust model that incorporates geo-
graphic information, enabling its application to other airports beyond the specific data-
sets analyzed in this study.
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