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Abstract 

In this study, we utilize data-driven approaches to predict flight departure delays. 
The growing demand for air travel is outpacing the capacity and infrastructure avail-
able to support it. In addition, abnormal weather patterns caused by climate change 
contribute to the frequent occurrence of flight delays. In light of the extensive net-
work of international flights covering vast distances across continents and oceans, 
the importance of forecasting flight delays over extended time periods becomes 
increasingly evident. Existing research has predominantly concentrated on short-term 
predictions, prompting our study to specifically address this aspect. We collected 
datasets spanning over 10 years from three different airports such as ICN airport 
in South Korea, JFK and MDW airport in the United States, capturing flight informa-
tion at six different time intervals (2, 4, 8, 16, 24, and 48 h) prior to flight departure. The 
datasets comprise 1,569,879 instances for ICN, 773,347 for JFK, and 404,507 for MDW, 
respectively. We employed a range of machine learning and deep learning approaches, 
including Decision Tree, Random Forest, Support Vector Machine, K-nearest neighbors, 
Logistic Regression, Extreme Gradient Boosting, and Long Short-Term Memory, to pre-
dict flight delays. Our models achieved accuracy rates of 0.749 for ICN airport, 0.852 
for JFK airport, and 0.785 for MDW airport in 2-h predictions. Furthermore, for 48-h 
predictions, our models achieved accuracy rates of 0.748 for ICN airport, 0.846 for JFK 
airport, and 0.772 for MDW airport based on our experimental results. Consequently, 
we have successfully validated the accuracy of flight delay predictions for longer time 
frames. The implications and future research directions derived from these findings are 
also discussed.
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Introduction
With the increasing demand for air travel, the number of air passengers has significantly 
increased. The global air passenger transport market doubles every 15 years [1]. For 
example, as of February 2023, the revenue passenger kilometer in Asia Pacific and North 
America has increased by 105.4% and 25.1% relative to that in 2022, respectively. Despite 
a temporary decline in passenger traffic during the Covid-19 pandemic, the number of 
air passengers has steadily increased over the past few decades [2].
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Meeting the increasing demand for air travel and ensuring efficient supply chain 
operations require the development of aviation infrastructure. This includes expanding 
airport facilities, updating airline fleets, and implementing effective air schedule man-
agement. Addressing these issues is crucial to provide a seamless and reliable travel 
experience for passengers. However, a significant challenge in delivering satisfactory ser-
vices is the frequent occurrence of unexpected flight delays and cancellations [3].

According to Tileagă and Oprisan [4], the number of compensation cases due to 
delayed flight schedules is increasing steadily. Table 1 shows that the number of com-
pensation recipients for air delays and cancellations is steeply increasing every year. 
Flight delays have significant economic consequences for both airlines and passengers, 
rendering it a notable issue within the aviation industry.

Table 2 show the types and proportion of delays from 2010 to 2021 at the John F. Ken-
nedy International Airport (JFK). It reveals that weather-related delays account for a 
small proportion of delays (3.86%). However, weather-related delays were longer than 
other types of delays, with an average delay time of 69.81 min and a standard deviation 
of 100.79 min [5].

The frequency of abnormal weather phenomena that are known to contribute to an 
increase in flight delays [6] is on the rise worldwide. In addition, the regional climate 
determined by geographical location plays a significant role in flight operations [7]. For 
example, in South Korea, the total rainfall period is concentrated from July to Septem-
ber each year, with approximately 42.5% rainfall in July, 27.4% in August, and 12.8% in 
September. In addition, the region is directly affected by typhoons at the end of August 
through early September every year.

While previous studies on flight delay prediction have often incorporated weather 
information [8–10], the majority of these studies have centered around predicting delays 
within relatively short timeframes, typically within thresholds of 15  min or up to 4 h, 
primarily tailored to airline services. However, the unique context of international flights 

Table 1 Number of eligible passengers for compensation versus the number of total passengers

Year Number of passenger in 
Europe (millions)

Rate of 
compensation (%)

Number of eligible 
passengers (millions)

Evolution 
(2017/2016) 
(%)

2017 1020 1.58 16 14.20

2016 970 1.46 14 15.60

2015 918 1.33 12 16.10

Table 2 Different types of delays

Bold valuesindicate the greatest results

Delay type Portion (%) Mean and standard 
deviation of delay time 
(min)

CarrierDelay 35.30 42.08 (64.98)

WeatherDelay 3.86 69.81 (100.79)
NASDelay 38.18 31.40 (41.93)

SecurityDelay 0.40 30.40 (40.68)

LateAircraftDelay 22.27 51.27 (58.03)
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covering vast distances across continents and oceans, with flight durations spanning 
from as little as 10 h to as long as 20 h, underscores the necessity for delay prediction 
over more extended timeframes.

Therefore, this study aims to predict flight delays over more extended timeframes (2 
to 48 h) based on weather data. We focus on three well-known international airports: 
Incheon International Airport in South Korea (ICN), John F. Kennedy International Air-
port (JFK), and Chicago Midway International Airport (MDW) in the United States. In 
addition, we use weather information from the meteorological agencies located at each 
airport. “Background and related work” section reviews previous research in this area, 
whereas “Methodology” section presents the machine learning and deep learning mod-
els along with the evaluation methods utilized in the study. The experimental procedures 
and the comparison of the results across the models are presented in “Implementation 
and result” section. “Discussion and concluding remarks” section concludes this paper 
by presenting the interpretation of the results, noteworthy findings, limitations, and sug-
gestions for future research.

Background and related work
Several studies have been conducted to forecast flight departure delays using various 
statistical methods, machine learning, and deep learning techniques. Table 3 provides a 
summary of prior flight delay detection research based on machine learning and neural 
network approaches.

Researchers [9, 11, 12] have utilized Bayesian modeling, clustering, classification, and 
regression with diverse datasets from different regions. The time span of the data varied, 
ranging from 1 month to 5 years, and the airports under investigation differed as well. 
Khaksar and Sheikholeslami [9] identified parameters that enable effective estimation of 
delays. They used Bayesian modeling, decision tree, cluster classification, random forest, 
and hybrid methods. They used 2,825,647 data for US airlines and 15,428 data for Ira-
nian airlines. They realized an accuracy of approximately 70%.

Al-Tabbakh et al. [11] analyzed the flight delay patterns using four decision tree clas-
sifiers, including Decisionstump, J48, Random Forest, and REPTree. They utilized 512 
data from a brief duration of 1 month, i.e., January 2018. The findings revealed that 
among the classifiers evaluated for the Egypt Airline dataset, REPTree attained the high-
est accuracy score of 80.3%.

Ye et  al. and Atlioğlu et  al. [12, 13] conducted flight delay prediction via supervised 
learning methods, whereas [12] employed multiple linear regression, a support vec-
tor machine, extremely randomized trees, and LightGBM. They used 105,993 data and 
reported the highest accuracy of 86.53%.

Atlioğlu et  al. [13] studied 11 machine learning models using data obtained follow-
ing feature selection and transformation. They used 8086 data and achieved F1-scores of 
approximately 81%.

Certain researchers predict airline delay using neural networks and hybrid models [8, 
10, 14]. Kim et al. [8] investigated the effectiveness of deep learning models in predict-
ing air traffic delays. Daily sequences of departure and arrival flight delays for individual 
airports were modeled using the long short-term memory (LSTM) and recurrent neural 
network (RNN) architecture. The accuracy of RNN improves with deeper architectures, 
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exhibiting the highest performance with an accuracy of 90.95% on the Atlanta air traffic 
data.

Qu et al. [10] analyzed and predicted flight delays using a convolutional neural net-
work (CNN) and RNN models that are well-suited for classification problems in the 
field of deep learning. They improved the CondenseNet network by incorporating 
CBAM modules within the CNN-based CondenseNet algorithm to develop CBAMCon-
denseNet. Additionally, they constructed a CNN-MLSTM network based on the CNN 
model and injected the SimAM module to enhance the attention of flight chain data. 
They used 36,287 data of China and achieved the highest accuracy score of 91.36%.

Yazdi et al. [14] designed the proposed model to output optimized results by incorpo-
rating a technique based on stack denoising autoencoder to account for the noisy flight 
delay data. They constructed SAE-LM based on an autoencoder and LM algorithm. The 
stacked denoising autoencoder is based on only denoising autoencoder. They utilized 
a comprehensive dataset spanning 5 years of US flight operations, comprising a total 
of 3,601,679 data points. The results demonstrated that the proposed model exhibited 
enhanced accuracy compared with the RNN model, highlighting its effectiveness in pre-
dicting flight delays. While numerous researchers have utilized state-of-the-art machine 
learning and deep learning techniques to study weather-related takeoff delays from vari-
ous angles, the majority of studies have focused on predicting delays within a time cri-
terion of approximately 15 min. There has been limited exploration and prediction of 
flight delays exceeding 2 h.

By employing established research methodologies, it is feasible to aggregate the out-
comes of short-term predictions to generate long-term forecasts. Nevertheless, it’s vital 
to recognize that repeated predictions may introduce inaccuracies. When assessing the 
practical utility of such models, the ability to predict aviation delays over extended time 
intervals based on input data widens the scope of possibilities for long-haul flights and 
diverse flight schedules. This expanded capability offers benefits not only from the per-
spective of airport resource management but also in various other aspects. Therefore, 
there is a pressing need for research that focuses on machine learning and neural net-
work models capable of forecasting the distant future using authentic long-term differ-
ential data. Hence, in this study, our objective is to specifically address and forecast flight 
delays of more than 2 h.

Methodology
Classification models

We used the following machine learning models and LSTM neural network to predict 
flight takeoff delays. The LSTM model boasts the advantage of effectively managing 
time-series data, but it comes with the drawback of requiring considerably more com-
plex and powerful hardware. From this standpoint, machine learning (ML) models allow 
predictions at the individual time-unit level and are notably more computationally effi-
cient when compared to the LSTM model.

• Decision Tree (DT): DT is a type of supervised learning model that classifies or 
regresses data by applying a set of classification rules. The resulting model has a tree-
like structure, hence the name ‘Decision Tree.’ Pruning techniques can be applied 
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to enhance the model’s generalization performance and prevent overfitting, ensuring 
that it performs effectively on unknown data. Grid search can be used to find the 
optimal parameter values for the DT model, optimizing its performance [15]. It does 
not necessitate data preprocessing, such as normalization or handling missing values 
and outliers. It also has the capability to simultaneously handle both numerical and 
categorical variables. However, it has the limitation of considering only one variable 
at a time, which can make it challenging to capture interactions between variables. 
Moreover, the shape of the resulting decision tree can exhibit significant variations 
with minor differences in the data [16, 17].

• Random Forest (RF): RF is an ensemble algorithm that trains multiple DT models 
and combines their results to make predictions. The method entails the random 
selection of a subset of features from the complete feature set to build one decision 
tree, followed by the selection of another random feature subset to create additional 
decision trees. Multiple decision trees are generated using this process. The final 
prediction is made by choosing the most frequently occurring prediction from these 
multiple decision trees [18]. This approach is versatile as it can be applied to both 
classification and regression problems. It is particularly effective in handling large-
scale data and mitigates the issue of overfitting by reducing model noise, ultimately 
improving model accuracy [19, 20].

• Support Vector Machine (SVM): SVM is a powerful supervised learning model that 
can be used for various tasks such as classification, regression, and anomaly detec-
tion. It aims to find a decision boundary that maximizes the separation between two 
classes while satisfying certain conditions. SVM can handle both linear and non-lin-
ear classification problems by using different kernel functions [21]. It determines the 
side of the decision boundary to which a data point belongs, allowing it to effectively 
classify data. Although it may be slower and less interpretable due to the require-
ment for multiple combination tests, it offers the advantage of being applicable to 
both categorical and numerical prediction problems, with minimal vulnerability to 
outlier data. Additionally, it is less susceptible to overfitting and more user-friendly 
compared to neural networks [22, 23].

• K-Nearest Neighbors (KNN): KNN is a classification algorithm that operates based 
on the principle of similarity. It assigns a class label to a given data point by consider-
ing the labels of its “k” nearest neighbors in the feature space. The distance between 
data points is typically calculated using the Euclidean distance measurement method 
[24]. It offers several advantages, such as high accuracy and the ability to exclude 
outlier data from consideration by using only the top k closest data points. Further-
more, it does not rely on assumptions about the data since it is based on existing 
data. However, it has the disadvantage of increased processing time as the dataset 
size grows, as it needs to compare with all existing data points, and it may require 
significant memory usage for large datasets [22, 25].

• Logistic Regression (LR): LR is one of the simplest classification models. It predicts 
the probability of data belonging to a certain category as a value between 0 and 1 and 
classifies it into the category with a higher probability [26]. It has the advantage of 
being less complex and faster due to linear combinations, making it easy to interpret 
the results. However, it may suffer a reduction in learning ability when dealing with 
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non-linear relationships and can be sensitive to outliers and anomalies, which are its 
disadvantages [27, 28].

• Extreme Gradient Boosting (XGB): XGB is an algorithm implemented using the 
boosting technique. It supports both regression and classification problems and 
exhibits suitable performance and resource efficiency. It is characterized by strong 
durability with its built-in overfitting regularization function [29, 30].

• Long Short-Term Memory (LSTM): LSTM networks are a type of RNN that can 
learn the order dependence in sequence prediction problems. RNNs are modified 
by adding a memory cell that can store information for an extended period. LSTM 
was proposed as a solution to address the issue of vanishing gradients in RNN when 
processing long sequential data [31]. However, it has the drawback of being compu-
tationally intensive and having a complex model structure due to the incorporation 
of forget gates, input gates, and output gates [32–34].

Evaluation methods

To evaluate the performance of each classifier, we calculated the confusion matrix 
and measured the accuracy, precision, recall, and F-score. Table  4 is the confusion 
matrix, a 2 × 2 matrix representation of classification results. The number of correctly 
classified instances is the sum of the diagonals of the matrix, while all other instances 
are incorrectly classified. Each item in the confusion matrix includes the following 
four indicators.

The first indicator is True Positive (TP), which signifies that the predicted value 
is positive when the actual value is positive. The second indicator is True Negative 
(TN), indicating that the predicted value is negative when the actual value is negative. 
The third indicator is False Positive (FP), denoting that the predicted value is positive 
when the actual value is negative. Lastly, the fourth indicator is False Negative (FN), 
showing that the predicted value is negative when the actual value is positive [35].

Accuracy serves as “a metric for assessing the overall performance of each model by 
computing the ratio of correctly classified samples to the total number of samples” [36]. 
However, in  situations with a significant imbalance between positive and negative 
samples, accuracy may not provide a suitable evaluation measure. Precision presents 
“the proportion of true positive cases among all predicted positive cases” [37], while 
recall computes “the ratio of correctly predicted positive samples to the total number 
of true positive samples” [38]. F1-score represents “a balanced measure that combines 
both precision and recall” [39].

Table 4 Confusion matrix

Classified as delayed Classified as not delayed

Actual delayed True positive (TP) False negative (FN)

Actual not delayed False positive (FP) True negative (TN)
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Implementation and result
Data description and analysis

We collected three datasets including flight and weather information of Incheon Inter-
national Airport in South Korea (ICN) [40], John F. Kennedy International Airport (JFK) 
[41], and Chicago Midway International Airport (MDW) [42] in the United States.

The flight information [43, 44] is organized by all flight-related features, including 
scheduled departure time, actual departure time, and delay type. The weather infor-
mation is the officially introduced regional weather feature. The flight information 
scheduled from 2010 to 2021 was examined, spanning a total of 11 years. The weather 
information corresponding to the same period was also collected. For the experiment, 
weather and flight information were merged with a time difference for data preproc-
essing to predict flights based on weather conditions. The merged datasets include the 
attributes listed in Tables 5 and 6. Among these attributes, the airline, flight number, and 
destination were not used in the actual model training. Additionally, since the features 
wind direction (e.g., NW, WNW) and condition (e.g., Cloudy, Windy) are categorical 
data, they were transformed into one-hot encoding before being included in the training 
dataset.

Data processing

ICN dataset

In situations where the scheduled departure time differs by more than 1 h, we classify 
the data as delayed. The ICN dataset comprises 1,562,029 instances of normal flights and 

Table 5 Incheon International Airport’s attributes list

Attribute name Description Mean (Std) Min Max

Time (year) 2010–2021 (e.g. 2020) – – –

Airline Unique carrier [e.g. KE (Korean Air)] – – –

Flight number Flight number (e.g. KE831) – – –

Destination Destination (e.g. Asiana Airlines) – – –

Planned departure time Planned departure time (e.g. 10:30) – – –

Actual departure time Actual departure time (e.g. 11:30) – – –

Result status Takeoff intime or delay status (e.g. cancel-
lation)

– – –

Delay type Delay type (e.g. weather-snow) – – –

Wind direction (deg) Wind direction (deg) (e.g. 10) 204.3 (109.7) 0 360

Wind velocity (KT) Wind velocity (KT) (e.g. 5) 7.4 (4.4) 0 49

Meteorological range Visible distance (e.g. 10,000) 8311 (2699.4) 0 11000

Cloud cover Cloud cover (e.g. 3) 2.9 (1.8) 1 9

Cloud form Cloud form (e.g. 5) – – –

The height of the cloud ceiling (FT) The height of the cloud ceiling (FT) (e.g. 
15,000)

7390.2 (6950.7) 0 24000

Temperature (celcius) Temperature (celcius) (e.g. − 7) 12.5 (10.49) − 17.2 36.6

Dew point temperature (celcius) Dew point temperature (celcius) (e.g. 
− 18.8)

5.6 (11.4) − 28.4 26.5

Sea-level pressure (hPA) The pressure of the atmosphere at the 
sea level (e.g. 1023.8)

1016.6 (8.4) 981.3 1040.4

Station pressure (hPa) Station pressure (hPa) (e.g. 1022.8) 1015.8 (8.4) 980.6 1039.5

Rainfall (mm) Rainfall (mm) (e.g. 0.3) 0.3 (1.4) 0 66
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7850 instances of delayed flights caused by weather conditions. To achieve a balanced 
distribution between normal and delayed cases, we randomly sampled an equal number 
of normal and delayed flight instances. To address the absence of certain features in the 
cases, we utilized a data interpolation method that was previously validated in a research 
study [45]. Due to the hourly-based nature of the ICN weather information, there were 
instances of missing features. To fill these gaps, we employed a linear interpolation tech-
nique to estimate the values for the unmeasured time periods. The interpolated data 
comprises 953 data points, which accounts for 0.9% of the total 105,192 data points. Fur-
thermore, we included flight takeoff results with time differences as additional features. 
To fulfill the objectives of the present study, we implemented a time difference criterion 
and utilized combined flight and weather cases. The time differences were categorized 
into intervals of 2, 4, 8, 16, 24, and 48 h.

JFK dataset and MDW dataset

Similar to the ICN dataset, we created delayed flight instances for the JFK and MDW 
datasets based on the time difference between the scheduled and actual departure times. 
The JFK dataset consisted of 763,930 normal cases and 9417 delayed cases attributed to 
weather conditions, while the MDW dataset comprised 398,945 normal cases and 5562 
delayed flight instances. Similar to the approach followed for the ICN dataset, we con-
ducted down-sampling procedures to achieve a 1:1 ratio of normal and delayed cases.

In both the JFK and MDW datasets, the weather information consists of several cat-
egorical features, such as wind direction and condition details. To incorporate these 
features into our data-driven approaches for machine learning and neural network 
frameworks, we employed a one-hot encoding technique. This encoding method allows 
us to represent the categorical variables as binary vectors, facilitating their utilization 

Table 6 John F. Kennedy International Airport, and Chicago Midway International Airport’s 
attributes list

Attribute mame Description Mean (Std) Min Max

Time (year) 2010–2021 (e.g. 2020) – – –

Airline Unique carrier [e.g. AA (American Airlines)] – – –

Flight number Flight number (e.g. AA2000) – – –

Destination Destination (e.g. JFK) – – –

Planned departure time Planned departure time (e.g. 1622) – – –

Actual departure time Actual departure time (e.g. 1634) – – –

Result status Takeoff intime or delay status (e.g. 1) – – –

Delay type Delay type (e.g. WeatherDelay) – – –

Wind direction Wind direction (e.g. NW, WNW) – – –

Wind speed Wind speed (e.g. 3) 10.5 (5.3) 0 51

Wind gust Wind gust (e.g. 24) 5.3 (10.9) 0 75

Temperature (celcius) Temperature (celcius) (e.g. 34) 51.5 (20.5) − 21 103

Dew point temperature (celcius) Dew point temperature (celcius) (e.g. 31) 39.9 (19.5) − 32 79

Humidity Humidity (e.g. 92) 67.7 (17.2) 0 100

Pressure (hPa) Pressure (hPa) (e.g. 29.96) 29.3 (0.3) 0 30.2

Precipitation (mm) Precipitation (mm) (e.g. 0.1) 0.006 (0.046) 0 2

Condition Condition (e.g. Cloudy, Windy) – – –
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in the models. Additionally, we included flight takeoff results with time differences as 
one of the features in the dataset. Subsequently, both the JFK and MDW datasets with 
weather information were merged.

Experiment

Figure 1 shows the flow chart of our overall approach. For machine learning models, we 
input the data sampled following the process as mentioned above, while we stack the 
sampled data to create time-series data and input them to the LSTM model.

To begin, we partitioned the dataset into subdata and testing subsets in an 80:20 ratio. 
Subsequently, we further divided the subdata into training and validation subsets in an 
80:20 ratio, resulting in a distribution of the training, validation, and test datasets with 
a ratio of 67:13:20. Table 7 presents the number of datasets used for training, validation, 
and testing.

Fig. 1 Flow charts for a machine learning, and b LSTM models

Table 7 Summary of the employed datasets in training, validation, and test sessions

Airport Train Validation Test Total

ICN 10551 (67.2%) 2009 (12.8%) 3140 (20.0%) 15700 (100%)

JFK 12756 (68.7%) 2041 (11.0%) 3767 (20.3%) 18564 (100%)

MDW 7476 (68.6%) 1196 (11.0%) 2225 (20.4%) 10897 (100%)
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All experiments were conducted on a single GeForce RTX 3080 Ti 10GB GPU and 
implemented using Python 3.6 as the programming language. We performed a grid 
search to determine the optimal hyperparameters, including learning rates, number of 
epochs, number of layers, and number of stacked time-series data. We selected the most 
optimal parameters for the best performance. Tables 8 and 9 show the list of hyperpa-
rameters for DT and LSTM used in the grid search. In the case of the LSTM model, the 
training parameters varied for each airport dataset. The ICN dataset had 2,385 param-
eters, while the JFK and MDW datasets had 2,833 parameters.

Results

Flight delay prediction

Tables  10, 11 and  12 show the prediction results of flight departure delays based on 
weather data using various models. The results were obtained corresponding to a total of 
six different time differences (2, 4, 8, 16, 24, and 48 h).

Table 10 summarizes the results of the ICN dataset. The RF model reported the high-
est accuracy score of 0.749 with a time difference of 2 h. Except for the DT model that 
showed the best recall performance of 0.700, the RF model displayed superior perfor-
mance in other metrics.

For the JFK airport dataset with a time difference of 2 h, the LSTM model achieved the 
highest accuracy score of 0.852 (Table 11). In terms of recall for predicting flight delays, 
the DT model outperformed all other models (0.826), whereas in terms of precision 
of prediction of on-time flights, the RF model outperformed all other models (0.835). 
Nonetheless, the LSTM model demonstrated superior performance in other evaluation 
metrics.

The result corresponding to the MDW airport dataset for a time difference of 2 h is 
presented in Table 12. The LSTM model achieved the highest accuracy score of 0.785. 
Although the DT model exhibited the best performance in terms of recall (0.759), the 
LSTM model outperformed the other models in all other evaluation metrics.

Table 8 Tested parameters in DT

Parameters Value

Max depth 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Min impurity decrease 0.0001, 0.0005, 0.001, 0.005, 0.01

Min samples split 2, 3, 4, 5

Min samples leaf 1, 2, 3, 4, 5

Table 9 Tested parameters in LSTM model

Parameters Value

Layer 1, 2, 3

Learning rate 0.0001, 0.0003, 0.0005, 0.001, 0.005

Epoch 300, 400, 500, 600, 700

Time series 2 h, 3 h, 4 h, 5 h, 6 h



Page 12 of 25Kim and Park  Journal of Big Data           (2024) 11:11 

Ta
bl

e 
10

 R
es

ul
ts

 o
f I

C
N

 a
irp

or
t

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 2

 h
Ti

m
e 

di
ffe

re
nc

e:
 4

 h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

D
T

N
or

m
al

0.
68

8
0.

70
4

0.
67

6
0.

69
0

0.
11

2
0.

31
8

0.
68

1
0.

69
3

0.
68

1
0.

68
7

0.
09

9
0.

31
8

D
el

ay
ed

0.
67

1
0.

70
0

0.
68

5
0.

66
9

0.
68

1
0.

67
5

RF
N

or
m

al
0.

74
9

0.
72

9
0.

81
4

0.
76

9
2.

25
4

16
.2

42
0.

73
5

0.
71

7
0.

80
2

0.
75

7
2.

23
1

16
.2

42

D
el

ay
ed

0.
77

6
0.

68
0

0.
72

5
0.

76
0

0.
66

5
0.

71
0

SV
M

N
or

m
al

0.
65

1
0.

63
1

0.
77

4
0.

69
5

3.
62

5
45

8.
28

0
0.

64
6

0.
62

9
0.

75
6

0.
68

7
3.

45
2

47
4.

52
2

D
el

ay
ed

0.
68

6
0.

52
2

0.
59

3
0.

67
2

0.
52

9
0.

59
2

KN
N

N
or

m
al

0.
64

1
0.

65
5

0.
63

7
0.

64
6

0.
00

3
60

.5
10

0.
65

2
0.

66
2

0.
66

1
0.

66
1

0.
00

4
31

.8
47

D
el

ay
ed

0.
62

8
0.

64
6

0.
63

7
0.

64
2

0.
64

3
0.

64
3

LR
N

or
m

al
0.

59
5

0.
60

0
0.

63
5

0.
61

7
0.

08
5

0.
31

8
0.

58
3

0.
59

1
0.

61
3

0.
60

2
0.

09
4

0.
63

7

D
el

ay
ed

0.
58

9
0.

55
2

0.
57

0
0.

57
5

0.
55

3
0.

56
3

XG
B

N
or

m
al

0.
72

1
0.

71
5

0.
75

9
0.

73
6

0.
15

0
1.

27
4

0.
70

7
0.

70
0

0.
75

3
0.

72
5

0.
12

5
1.

27
4

D
el

ay
ed

0.
72

8
0.

68
0

0.
70

3
0.

71
6

0.
65

9
0.

68
6

LS
TM

N
or

m
al

0.
64

4
0.

62
0

0.
77

6
0.

68
9

49
0.

4
3.

50
3

0.
60

9
0.

60
2

0.
67

9
0.

63
8

49
0.

8
0.

31
8

D
el

ay
ed

0.
68

7
0.

50
9

0.
58

4
0.

61
8

0.
53

7
0.

57
5

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 8

 h
Ti

m
e 

di
ffe

re
nc

e:
 1

6 
h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

D
T

N
or

m
al

0.
67

8
0.

69
1

0.
67

5
0.

68
3

0.
09

5
0.

31
8

0.
68

7
0.

70
2

0.
67

8
0.

69
0

0.
09

1
0.

31
8

D
el

ay
ed

0.
66

5
0.

68
1

0.
67

3
0.

67
2

0.
69

6
0.

68
4

RF
N

or
m

al
0.

74
4

0.
72

6
0.

80
6

0.
76

4
2.

18
7

16
.2

42
0.

74
5

0.
71

9
0.

82
6

0.
76

9
2.

13
6

16
.2

42

D
el

ay
ed

0.
76

8
0.

67
9

0.
72

1
0.

78
2

0.
65

9
0.

71
5

SV
M

N
or

m
al

0.
64

1
0.

62
5

0.
75

0
0.

68
2

3.
59

1
53

0.
25

5
0.

64
1

0.
62

6
0.

74
9

0.
68

2
3.

59
5

54
5.

54
1

D
el

ay
ed

0.
66

6
0.

52
5

0.
58

7
0.

66
6

0.
52

8
0.

58
9

KN
N

N
or

m
al

0.
66

2
0.

67
3

0.
66

6
0.

66
9

0.
00

3
30

.8
92

0.
64

9
0.

66
3

0.
64

3
0.

65
3

0.
00

4
32

.8
03

D
el

ay
ed

0.
65

1
0.

65
8

0.
65

5
0.

63
5

0.
65

6
0.

64
5

LR
N

or
m

al
0.

59
8

0.
61

2
0.

59
1

0.
60

1
0.

09
5

0.
31

8
0.

52
5

0.
53

5
0.

57
4

0.
55

4
0.

06
9

0.
63

7

D
el

ay
ed

0.
58

3
0.

60
5

0.
59

4
0.

51
2

0.
47

2
0.

49
1



Page 13 of 25Kim and Park  Journal of Big Data           (2024) 11:11  

Ta
bl

e 
10

 (
co

nt
in

ue
d)

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 8

 h
Ti

m
e 

di
ffe

re
nc

e:
 1

6 
h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

XG
B

N
or

m
al

0.
72

7
0.

71
4

0.
78

4
0.

74
7

0.
12

3
0.

95
5

0.
71

4
0.

70
6

0.
75

9
0.

73
2

0.
12

3
1.

27
4

D
el

ay
ed

0.
74

5
0.

66
8

0.
70

4
0.

72
4

0.
66

5
0.

69
3

LS
TM

N
or

m
al

0.
58

7
0.

58
1

0.
66

9
0.

62
2

48
8.

4
0.

31
8

0.
54

0
0.

53
1

0.
79

7
0.

63
7

49
0.

1
3.

50
3

D
el

ay
ed

0.
59

5
0.

50
2

0.
54

5
0.

56
6

0.
27

4
0.

36
9

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 2

4 
h

Ti
m

e 
di

ffe
re

nc
e:

 4
8 

h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

D
T

N
or

m
al

0.
67

6
0.

70
4

0.
67

2
0.

68
8

0.
09

3
0.

63
7

0.
76

80
0.

69
2

0.
67

9
0.

68
5

0.
10

2
0.

63
7

D
el

ay
ed

0.
67

0
0.

70
2

0.
68

5
0.

66
8

0.
68

1
0.

67
4

RF
N

or
m

al
0.

74
3

0.
72

4
0.

80
8

0.
76

4
2.

23
0

16
.5

61
0.

74
8

0.
72

1
0.

83
0

0.
77

2
2.

46
5

19
.4

27

D
el

ay
ed

0.
76

9
0.

67
4

0.
71

8
0.

78
6

0.
66

1
0.

71
8

SV
M

N
or

m
al

0.
64

7
0.

62
5

0.
78

4
0.

69
5

3.
92

2
57

2.
93

0
0.

63
1

0.
61

9
0.

73
2

0.
67

1
3.

84
6

59
2.

35
7

D
el

ay
ed

0.
68

8
0.

50
2

0.
58

1
0.

65
0

0.
52

5
0.

58
0

KN
N

N
or

m
al

0.
65

1
0.

65
2

0.
65

1
0.

00
5

31
.5

29
0.

64
8

0.
66

0
0.

65
0

0.
65

5
0.

00
4

35
.0

32
0.

64
1

D
el

ay
ed

0.
63

2
0.

63
0

0.
63

1
0.

63
6

0.
64

6
0.

64
1

LR
N

or
m

al
0.

54
7

0.
56

4
0.

52
8

0.
54

5
0.

08
9

0.
63

7
0.

55
4

0.
56

5
0.

57
4

0.
56

9
0.

09
8

0.
63

7

D
el

ay
ed

0.
53

3
0.

56
8

0.
55

0
0.

54
2

0.
53

2
0.

53
7

XG
B

N
or

m
al

0.
70

5
0.

70
2

0.
73

9
0.

72
0

0.
15

0
1.

27
4

0.
70

3
0.

69
3

0.
75

8
0.

72
4

0.
13

8
1.

27
4

D
el

ay
ed

0.
70

8
0.

66
9

0.
68

8
0.

71
6

0.
64

6
0.

67
9

LS
TM

N
or

m
al

0.
58

0
0.

58
6

0.
59

1
0.

58
8

49
3.

3
3.

18
5

0.
55

1
0.

54
8

0.
66

6
0.

60
1

49
4.

4
3.

50
3

D
el

ay
ed

0.
57

4
0.

56
9

0.
57

2
0.

55
6

0.
43

3
0.

48
7

Bo
ld

 v
al

ue
si

nd
ic

at
e 

th
e 

gr
ea

te
st

 re
su

lts



Page 14 of 25Kim and Park  Journal of Big Data           (2024) 11:11 

Ta
bl

e 
11

 R
es

ul
ts

 o
f J

FK
 a

irp
or

t

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 2

 h
Ti

m
e 

di
ffe

re
nc

e:
 4

 h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

D
T

N
or

m
al

0.
78

7
0.

81
9

0.
75

1
0.

78
3

0.
05

5
0.

63
7

0.
79

0
0.

82
7

0.
74

5
0.

78
4

0.
04

9
0.

63
7

D
el

ay
ed

0.
75

9
0.

82
6

0.
79

1
0.

75
8

0.
83

7
0.

79
5

RF
N

or
m

al
0.

84
3

0.
83

5
0.

86
4

0.
84

9
0.

99
3

21
.0

19
0.

85
0

0.
83

8
0.

87
7

0.
85

7
1.

05
8

20
.0

64

D
el

ay
ed

0.
85

2
0.

82
1

0.
83

6
0.

86
4

0.
82

2
0.

84
2

SV
M

N
or

m
al

0.
65

0
0.

64
3

0.
70

9
0.

67
5

5.
25

3
61

8.
15

3
0.

63
8

0.
64

6
0.

65
0

0.
64

8
4.

91
4

63
2.

16
6

D
el

ay
ed

0.
65

8
0.

58
8

0.
62

1
0.

63
0

0.
62

6
0.

62
8

KN
N

N
or

m
al

0.
71

2
0.

74
9

0.
65

9
0.

70
1

0.
00

8
70

.3
82

0.
72

2
0.

76
1

0.
66

7
0.

71
1

0.
00

5
40

.0
45

D
el

ay
ed

0.
68

2
0.

76
8

0.
72

2
0.

69
1

0.
78

0
0.

73
2

LR
N

or
m

al
0.

58
1

0.
59

7
0.

56
0

0.
57

8
0.

10
7

0.
63

7
0.

57
3

0.
59

4
0.

52
7

0.
55

8
0.

11
8

0.
63

7

D
el

ay
ed

0.
56

6
0.

60
3

0.
58

4
0.

55
6

0.
62

2
0.

58
7

XG
B

N
or

m
al

0.
77

9
0.

78
3

0.
78

5
0.

78
4

0.
16

4
2.

54
8

0.
76

9
0.

77
2

0.
77

8
0.

77
5

0.
12

7
2.

54
8

D
el

ay
ed

0.
77

4
0.

77
2

0.
77

3
0.

76
5

0.
76

0
0.

76
2

LS
TM

N
or

m
al

0.
85

2
0.

83
1

0.
88

2
0.

85
6

56
0.

0
4.

14
0

0.
82

9
0.

82
6

0.
83

3
0.

82
9

56
4.

4
4.

14
0

D
el

ay
ed

0.
87

6
0.

82
2

0.
84

8
0.

83
3

0.
82

6
0.

83
0

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 8

 h
Ti

m
e 

di
ffe

re
nc

e:
 1

6 
h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

D
T

N
or

m
al

0.
79

6
0.

82
6

0.
76

4
0.

79
3

0.
04

9
0.

63
7

0.
80

0
0.

82
7

0.
77

0
0.

79
8

0.
05

1
0.

63
7

D
el

ay
ed

0.
77

0
0.

83
1

0.
79

9
0.

77
5

0.
83

1
0.

80
2

RF
N

or
m

al
0.

84
3

0.
83

5
0.

86
5

0.
85

0
1.

01
8

20
.3

82
0.

84
0

0.
83

2
0.

86
3

0.
84

7
1.

09
1

20
.0

64

D
el

ay
ed

0.
85

3
0.

82
0

0.
83

6
0.

85
0

0.
81

7
0.

83
3

SV
M

N
or

m
al

0.
64

3
0.

65
6

0.
63

5
0.

64
6

5.
50

3
76

6.
24

2
0.

64
2

0.
66

1
0.

61
8

0.
63

9
6.

14
8

80
2.

54
8

D
el

ay
ed

0.
63

0
0.

65
1

0.
64

0
0.

62
5

0.
66

7
0.

64
5

KN
N

N
or

m
al

0.
72

4
0.

76
3

0.
66

9
0.

71
3

0.
01

1
48

.7
26

0.
72

5
0.

75
8

0.
68

1
0.

71
7

0.
00

8
48

.7
26

D
el

ay
ed

0.
69

2
0.

78
2

0.
73

5
0.

69
7

0.
77

1
0.

73
3

LR
N

or
m

al
0.

59
4

0.
61

7
0.

54
5

0.
57

9
0.

11
2

0.
63

7
0.

58
2

0.
60

5
0.

52
9

0.
56

4
0.

12
4

0.
63

7

D
el

ay
ed

0.
57

5
0.

64
5

0.
60

8
0.

56
3

0.
63

8
0.

59
8



Page 15 of 25Kim and Park  Journal of Big Data           (2024) 11:11  

Ta
bl

e 
11

 (
co

nt
in

ue
d)

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 8

 h
Ti

m
e 

di
ffe

re
nc

e:
 1

6 
h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

XG
B

N
or

m
al

0.
77

6
0.

78
5

0.
77

6
0.

78
0

0.
13

2
2.

54
8

0.
77

8
0.

78
3

0.
78

2
0.

78
3

0.
12

1
2.

54
8

D
el

ay
ed

0.
76

7
0.

77
7

0.
77

2
0.

77
2

0.
77

3
0.

77
2

LS
TM

N
or

m
al

0.
81

4
0.

82
9

0.
79

0
0.

80
9

56
5.

3
4.

14
0

0.
79

9
0.

77
3

0.
84

3
0.

80
7

56
5.

1
4.

14
0

D
el

ay
ed

0.
80

2
0.

83
8

0.
82

0
0.

82
9

0.
75

6
0.

79
1

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 2

4 
h

Ti
m

e 
di

ffe
re

nc
e 

48
 h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

D
T

N
or

m
al

0.
77

9
0.

81
6

0.
73

3
0.

77
2

0.
05

6
0.

63
7

0.
78

4
0.

82
1

0.
74

0
0.

77
9

0.
05

1
0.

95
5

D
el

ay
ed

0.
74

7
0.

82
6

0.
78

5
0.

75
3

0.
83

1
0.

79
0

RF
N

or
m

al
0.

83
7

0.
82

2
0.

86
9

0.
84

5
1.

08
1

21
.9

75
0.

84
6

0.
83

0
0.

88
0

0.
85

4
1.

06
7

20
.0

64

D
el

ay
ed

0.
85

4
0.

80
3

0.
82

7
0.

86
5

0.
81

1
0.

83
7

SV
M

N
or

m
al

0.
61

8
0.

63
7

0.
58

9
0.

61
2

6.
03

3
82

4.
84

1
0.

62
5

0.
64

1
0.

60
8

0.
62

4
6.

40
3

89
0.

12
7

D
el

ay
ed

0.
60

1
0.

64
9

0.
62

4
0.

61
0

0.
64

4
0.

62
6

KN
N

N
or

m
al

0.
72

3
0.

75
5

0.
67

8
0.

71
4

0.
00

8
51

.9
11

0.
72

1
0.

75
2

0.
68

1
0.

71
4

0.
01

1
43

.9
49

D
el

ay
ed

0.
69

5
0.

77
0

0.
73

0
0.

69
5

0.
76

4
0.

72
8

LR
N

or
m

al
0.

56
2

0.
59

3
0.

46
3

0.
52

0
0.

12
5

0.
63

7
0.

56
5

0.
58

8
0.

50
4

0.
54

3
0.

11
2

0.
63

7

D
el

ay
ed

0.
54

2
0.

66
6

0.
59

8
0.

54
7

0.
62

9
0.

58
5

XG
B

N
or

m
al

0.
77

8
0.

78
7

0.
77

7
0.

78
2

0.
12

1
2.

22
9

0.
77

3
0.

77
7

0.
78

2
0.

77
9

0.
12

3
2.

54
8

D
el

ay
ed

0.
76

9
0.

77
9

0.
77

4
0.

77
0

0.
76

4
0.

76
7

LS
TM

N
or

m
al

0.
77

8
0.

78
0

0.
77

1
0.

77
6

56
8.

2
4.

14
0

0.
73

6
0.

72
4

0.
76

1
0.

74
2

56
9.

4
4.

14
0

D
el

ay
ed

0.
77

6
0.

78
5

0.
78

0
0.

74
8

0.
71

0
0.

72
9

Bo
ld

 v
al

ue
si

nd
ic

at
e 

th
e 

gr
ea

te
st

 re
su

lts



Page 16 of 25Kim and Park  Journal of Big Data           (2024) 11:11 

Ta
bl

e 
12

 R
es

ul
ts

 o
f M

D
W

 a
irp

or
t

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 2

 h
Ti

m
e 

di
ffe

re
nc

e:
 4

 h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

D
T

N
or

m
al

0.
73

1
0.

74
1

0.
70

2
0.

72
1

0.
07

3
0.

95
5

0.
72

2
0.

75
0

0.
65

9
0.

70
2

0.
04

5
0.

95
5

D
el

ay
ed

0.
72

1
0.

75
9

0.
74

0
0.

70
1

0.
78

4
0.

74
0

RF
N

or
m

al
0.

76
2

0.
74

8
0.

78
4

0.
76

6
0.

99
7

17
.8

34
0.

76
6

0.
75

0
0.

79
2

0.
77

1
1.

01
1

17
.1

97

D
el

ay
ed

0.
77

7
0.

74
1

0.
75

9
0.

78
4

0.
74

1
0.

76
2

SV
M

N
or

m
al

0.
58

7
0.

58
8

0.
55

8
0.

57
3

3.
71

6
54

2.
99

4
0.

60
0

0.
59

6
0.

59
9

0.
59

8
3.

71
5

56
4.

96
8

D
el

ay
ed

0.
58

6
0.

61
5

0.
60

0
0.

60
4

0.
60

1
0.

60
2

KN
N

N
or

m
al

0.
64

2
0.

64
5

0.
62

0
0.

63
2

0.
00

7
73

.2
48

0.
64

6
0.

64
9

0.
62

3
0.

63
6

0.
00

9
29

.9
36

D
el

ay
ed

0.
64

0
0.

66
4

0.
65

2
0.

64
3

0.
66

8
0.

65
6

LR
N

or
m

al
0.

57
1

0.
57

0
0.

54
8

0.
55

8
0.

07
9

0.
63

7
0.

58
1

0.
57

9
0.

56
7

0.
57

3
0.

07
6

0.
95

5

D
el

ay
ed

0.
59

4
0.

58
2

0.
58

3
0.

59
5

0.
58

9
0.

57
8

XG
B

N
or

m
al

0.
71

6
0.

71
8

0.
70

3
0.

71
0

0.
17

8
2.

86
6

0.
71

5
0.

71
7

0.
70

2
0.

70
9

0.
14

2
3.

18
5

D
el

ay
ed

0.
71

4
0.

72
8

0.
72

1
0.

71
3

0.
72

8
0.

72
0

LS
TM

N
or

m
al

0.
78

5
0.

75
5

0.
84

9
0.

79
9

40
4.

2
2.

54
8

0.
75

6
0.

74
4

0.
78

6
0.

76
5

41
1.

7
2.

54
8

D
el

ay
ed

0.
82

4
0.

71
9

0.
76

8
0.

76
9

0.
72

5
0.

74
6

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 8

 h
Ti

m
e 

di
ffe

re
nc

e:
 1

6 
h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

D
T

N
or

m
al

0.
71

6
0.

73
1

0.
67

7
0.

70
3

0.
04

2
0.

95
5

0.
72

6
0.

75
2

0.
66

7
0.

70
7

0.
04

6
1.

27
4

D
el

ay
ed

0.
70

4
0.

75
5

0.
72

9
0.

70
5

0.
78

3
0.

74
2

RF
N

or
m

al
0.

76
7

0.
75

0.
77

5
0.

76
7

1.
07

0
17

.8
34

0.
77

4
0.

75
2

0.
81

2
0.

78
1

1.
33

1
17

.5
16

D
el

ay
ed

0.
77

4
0.

75
8

0.
76

6
0.

80
0

0.
73

7
0.

76
7

SV
M

N
or

m
al

0.
61

3
0.

61
9

0.
57

4
0.

59
5

4.
17

2
61

2.
10

2
0.

61
5

0.
61

9
0.

58
4

0.
60

1
3.

86
2

63
7.

89
8

D
el

ay
ed

0.
60

9
0.

65
2

0.
63

0
0.

61
2

0.
64

6
0.

62
9

KN
N

N
or

m
al

0.
64

3
0.

65
7

0.
58

5
0.

61
9

0.
00

6
27

.3
89

0.
66

7
0.

67
7

0.
62

9
0.

65
2

0.
00

6
29

.6
18

D
el

ay
ed

0.
63

2
0.

70
1

0.
66

4
0.

65
9

0.
70

5
0.

68
1



Page 17 of 25Kim and Park  Journal of Big Data           (2024) 11:11  

Ta
bl

e 
12

 (
co

nt
in

ue
d)

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 8

 h
Ti

m
e 

di
ffe

re
nc

e:
 1

6 
h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

LR
N

or
m

al
0.

57
8

0.
57

7
0.

55
4

0.
56

5
0.

07
1

1.
91

1
0.

60
5

0.
60

5
0.

58
7

0.
59

6
0.

08
0

0.
63

7

D
el

ay
ed

0.
57

2
0.

60
1

0.
58

9
0.

60
6

0.
62

4
0.

61
5

XG
B

N
or

m
al

0.
71

4
0.

72
3

0.
68

7
0.

70
4

0.
14

0
3.

18
5

0.
72

6
0.

73
1

0.
70

6
0.

71
9

0.
15

0
3.

18
5

D
el

ay
ed

0.
70

7
0.

74
1

0.
72

3
0.

72
1

0.
74

5
0.

73
3

LS
TM

N
or

m
al

0.
74

1
0.

73
6

0.
75

9
0.

74
7

40
9.

3
2.

54
8

0.
71

8
0.

70
1

0.
77

2
0.

73
5

41
0.

8
2.

54
8

D
el

ay
ed

0.
74

6
0.

72
3

0.
73

5
0.

74
1

0.
66

4
0.

70
0

A
lg

or
ith

m
Ti

m
e 

di
ffe

re
nc

e:
 2

4 
h

Ti
m

e 
di

ffe
re

nc
e:

 4
8 

h

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

A
cc

ur
ac

y
Pr

ec
is

io
n

Re
ca

ll
F1

-s
co

re
Tr

ai
n 

(s
)

Te
st

 (u
s)

D
T

N
or

m
al

0.
70

3
0.

74
7

0.
68

3
0.

71
3

0.
04

5
0.

95
5

0.
72

7
0.

74
4

0.
68

4
0.

71
3

0.
04

9
0.

95
5

D
el

ay
ed

0.
71

2
0.

77
3

0.
74

1
0.

71
2

0.
76

9
0.

74
0

RF
N

or
m

al
0.

77
3

0.
76

2
0.

78
7

0.
77

4
1.

08
1

18
.1

53
0.

77
2

0.
75

9
0.

79
0

0.
77

4
1.

12
8

16
.8

79

D
el

ay
ed

0.
78

4
0.

75
8

0.
77

1
0.

78
5

0.
75

4
0.

76
9

SV
M

N
or

m
al

0.
60

0
0.

61
1

0.
52

8
0.

56
6

3.
97

4
59

5.
22

3
0.

61
4

0.
61

9
0.

57
7

0.
59

7
4.

37
7

63
0.

57
3

D
el

ay
ed

0.
59

1
0.

67
0

0.
62

8
0.

61
0

0.
65

2
0.

63
0

KN
N

N
or

m
al

0.
66

3
0.

66
7

0.
64

1
0.

65
4

0.
00

6
27

.3
89

0.
66

4
0.

67
9

0.
60

9
0.

64
2

0.
00

8
26

.4
33

D
el

ay
ed

0.
66

0
0.

68
5

0.
67

2
0.

65
1

0.
71

7
0.

68
3

LR
N

or
m

al
0.

59
7

0.
60

1
0.

55
8

0.
57

9
0.

08
4

0.
95

5
0.

59
6

0.
59

8
0.

56
3

0.
58

0
0.

09
6

0.
63

7

D
el

ay
ed

0.
59

4
0.

63
5

0.
61

4
0.

59
4

0.
62

8
0.

61
1

XG
B

N
or

m
al

0.
73

1
0.

73
7

0.
71

0
0.

72
3

0.
13

4
3.

50
3

0.
72

5
0.

73
2

0.
70

3
0.

71
7

0.
15

2
3.

50
3

D
el

ay
ed

0.
72

5
0.

75
1

0.
73

8
0.

71
9

0.
74

7
0.

73
3

LS
TM

N
or

m
al

0.
71

4
0.

69
7

0.
76

8
0.

73
1

41
5.

2
2.

54
8

0.
71

2
0.

71
9

0.
70

2
0.

71
0

41
6.

1
2.

54
8

D
el

ay
ed

0.
73

6
0.

65
9

0.
69

6
0.

70
5

0.
72

2
0.

71
3

Bo
ld

 v
al

ue
si

nd
ic

at
e 

th
e 

gr
ea

te
st

 re
su

lts



Page 18 of 25Kim and Park  Journal of Big Data           (2024) 11:11 

Flight delay prediction (1 to 24 h, hourly)

Tables 13, 14 and 15 provide an hourly breakdown of model accuracy from 1 h to 24 h, 
utilizing the same three datasets for ICN, JFK, and MDW airports, along with average 
training and testing times. The hyperparameters that yielded the best performance in 
the prior experiments were applied. Across all three airport datasets, the highest accu-
racy was observed at a 1-h time difference, with a declining trend in performance as the 
time difference increased. The magnitude of performance decline from 1 h to 24 h for 
each model is detailed in Table 16. Notably, the Random Forest model exhibited the least 
performance degradation, with a decrease of only − 3.6%, while the SVM model showed 
the most significant performance decline, with an average decrease of − 16.1%. Machine 
learning models completed their training in just a few seconds, while LSTM required 
several 100 s, indicating it was approximately 100 times more time-consuming. In terms 
of testing time, it ranged from as low as 1 ms to a maximum of around 1.3 ms.

Ablation study

We conducted training on the ICN dataset with identical parameters and training strate-
gies, except for the exclusion of linear interpolation, while examining a time difference of 
2 h. The results, as depicted in Table 17, reveal a slight reduction in overall performance, 
ranging from 1 to 2%, when interpolation was omitted. It is noteworthy that the interpo-
lated data constitutes only 0.9% (953 out of 105,192) of the entire dataset, which lends 
credibility to the decision to incorporate linear interpolation in our research.

Feature importance

To determine the features with a substantial impact on our models, we conducted fea-
ture importance analysis. We chose the Random Forest and LSTM models, which dem-
onstrated the best performance. For the Random Forest model, we made use of the 
built-in feature importance function, whereas for the LSTM model, we employed exter-
nal algorithms using loss data. Consequently, in the case of Random Forest, higher val-
ues correspond to greater feature importance, whereas for LSTM, lower values signify 
reduced importance. Considering the results of the ICN airport dataset, Random Forest 
attributed the highest importance to temperature, dew point, and weather phenomena 
in that order, while LSTM assigned the highest importance to temperature, wind speed, 
weather phenomena, and local pressure. Notably, temperature was identified as the most 
crucial feature in both models (Table 18).

For the JFK airport dataset, Random Forest identified pressure, temperature, and dew 
point as the most important features, while LSTM emphasized pressure, precipitation, 
and wind speed as the top influential factors. Notably, pressure was recognized as the 
most crucial feature in both models for this dataset (Table 19).

In the case of the MDW airport dataset, Random Forest indicated that pressure, 
humidity, and temperature were the top features in terms of importance, while LSTM 
emphasized pressure, precipitation, and wind speed as the most influential factors. 
Notably, pressure was consistently identified as the most important feature in both mod-
els for this dataset (Table 20).
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Comparison with prior approaches

We conducted a performance comparison between our models and a prior research 
model [8]. Using the same JFK airport dataset, we compared our research’s Random 
Forest and LSTM models with the prior research model’s LSTM model. Our Random 
Forest model achieved an accuracy of 84.3% with a 2-h time difference and 84.6% 
with a 48-h time difference. In contrast, the LSTM model in our research achieved 
an accuracy of 85.2% with a 2-h time difference and 73.6% with a 48-h time differ-
ence. It’s worth noting that the previous model exhibited a performance of 86.51% at 
a short time interval of 15 min.

Discussion and concluding remarks
For predicting flight takeoff delays using weather information for the airports of ICN, 
JFK, and MDW, machine learning and LSTM models were employed. Based on the pre-
diction results for the three regions, the RF model demonstrated the highest perfor-
mance for the ICN airport, while the LSTM model exhibited the highest performance 
for JFK and MDW airports, with a minimum time difference of 2 h. The accuracy scores 
were 0.749 for ICN, 0.852 for JFK, and 0.785 for MDW airports. Moreover, the RF model 
also displayed the best performance with high accuracy for all three airports, with a 
maximum time difference of 48  h; the accuracy scores were 0.748 for ICN, 0.846 for 
JFK, and 0.772 for MDW airports. Moreover, when assessing test times, all of the mod-
els require less than 2 ms, which makes them suitable for real-time predictions. These 
findings confirm the feasibility of predicting flight takeoff delays using weather data col-
lected 2 h prior to the scheduled departure time.

Our analysis incorporated datasets spanning from 2011 to 2021, encompassing a long time 
period. This extensive dataset allowed us to leverage both actual flight operation data and 
weather information for our analysis. By utilizing these comprehensive datasets, our pro-
posed models exhibited outstanding performance in predicting delayed flights across three 
different datasets. The utilization of a long-term dataset facilitated robust predictions and 
enhanced the reliability of our models. Furthermore, the approaches we developed can be 
applied to various other transportation-related domains, including ocean vessel delays, vehi-
cle operation restrictions, and outdoor construction work stoppages. In these application 
areas, early-stage warnings play a crucial role in mitigating potential risks to human safety 
and property damage. By leveraging our proposed models, it becomes feasible to anticipate 
and prepare for potential disruptions, enabling proactive measures to be taken in advance. 
This can significantly contribute to minimizing the adverse impacts associated with delays 
and restrictions in these transportation-related sectors. The presented implications not-
withstanding, it is important to acknowledge the presence of notable limitations. One such 
limitation is the significant influence of national and regional factors on weather conditions, 
rendering it challenging to generalize the results to other locations. The generalization of 
findings beyond the specific context may not be straightforward owing to these variations. 
Furthermore, the performance of the ICN airport dataset was relatively lower compared 
with the JFK and MDW airport datasets. This discrepancy in performance could be attrib-
uted to several factors, including the presence of missing features in the dataset. The absence 
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of these features may have impacted the overall performance of the models. Future research 
endeavors should focus on addressing these limitations by exploring more comprehensive 
datasets and improving data collection methods to minimize missing features. This would 
enhance the generalizability and accuracy of the models in predicting flight delays.

Table 16 Comparison of accuracy levels between 1 and 24 h

Algorithm ICN (%) JFK (%) MDW (%) Average (%)

DT − 1.7 − 6.3 − 6.9 − 5.0

RF − 0.9 − 5.1 − 4.7 − 3.6

SVM − 7.2 − 22.8 − 18.4 − 16.1

KNN − 2.7 − 10.0 − 8.9 − 7.2

LR − 18.2 − 20.4 − 14.5 − 17.7

XGB − 4.0 − 9.4 − 8.3 − 7.2

LSTM − 6.8 − 8.3 − 9.0 − 10.1

Table 17 Ablation study on linear interpolation in the ICN dataset with a time difference of 2 h

Algorithm With linear interpolation Without linear interpolation

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

DT Normal 0.688 0.704 0.676 0.690 0.680 0.695 0.672 0.683

Delayed 0.671 0.700 0.685 0.665 0.688 0.677

RF Normal 0.749 0.729 0.814 0.769 0.740 0.724 0.800 0.760

Delayed 0.776 0.680 0.725 0.762 0.678 0.718

SVM Normal 0.651 0.631 0.774 0.695 0.600 0.597 0.684 0.638

Delayed 0.686 0.522 0.593 0.605 0.511 0.554

KNN Normal 0.641 0.655 0.637 0.646 0.635 0.643 0.653 0.648

Delayed 0.628 0.646 0.637 0.627 0.616 0.622

LR Normal 0.595 0.600 0.635 0.617 0.545 0.553 0.590 0.571

Delayed 0.589 0.552 0.570 0.534 0.496 0.514

XGB Normal 0.721 0.715 0.759 0.736 0.688 0.681 0.737 0.708

Delayed 0.728 0.680 0.703 0.696 0.635 0.664

Table 18 Feature importance of ICN airport

Bold valuesindicate the greatest results

Feature 
importance

Wind 
speed

Visibility Weather 
phenomena

Temperature Dew point Sea-level 
pressure

Local 
pressure

RF 0.062 0.057 0.073 0.078 0.076 0.071 0.069

LSTM 20.718 20.724 20.721 20.715 21.006 20.932 20.721

Table 19 Feature importance of JFK airport

Bold valuesindicate the greatest results

Feature 
importance

Temperature Dew point Humidity Wind speed Wind gust Pressure Precipitation

RF 0.183 0.167 0.155 0.109 0.037 0.184 0.005

LSTM 68.161 22.531 43.579 10.509 35.987 8.548 9.584
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In future research, our aim is to develop a more robust model that incorporates geo-
graphic information, enabling its application to other airports beyond the specific data-
sets analyzed in this study.
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