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Abstract 

Distributed database system (DDBS) design is still an open challenge even after dec-
ades of research, especially in a dynamic network setting. Hence, to meet the demands 
of high-speed data gathering and for the management and preservation of huge 
systems, it is important to construct a distributed database for real-time data storage. 
Incidentally, some fragmentation schemes, such as horizontal, vertical, and hybrid, 
are widely used for DDBS design. At the same time, data allocation could not be 
done without first physically fragmenting the data because the fragmentation pro-
cess is the foundation of the DDBS design. Extensive research have been conducted 
to develop effective solutions for DDBS design problems. But the great majority 
of them barely consider the RDDBS’s initial design. Therefore, this work aims at propos-
ing a clustering-based horizontal fragmentation and allocation technique to handle 
both the early and late stages of the DDBS design. To ensure that each operation flows 
into the next without any increase in complexity, fragmentation and allocation are 
done simultaneously. With this approach, the main goals are to minimize communica-
tion expenses, response time, and irrelevant data access. Most importantly, it has been 
observed that the proposed approach may effectively expand RDDBS performance 
by simultaneously fragmenting and assigning various relations. Through simulations 
and experiments on synthetic and real databases, we demonstrate the viability of our 
strategy and how it considerably lowers communication costs for typical access pat-
terns at both the early and late stages of design.

Keywords: Database, Relational DDBS, Fragmentation, Clustering, Replication, 
Allocation

Introduction
Building an effective distributed database is more important than ever as computer 
networks and information technology improve. However, creating a distributed data-
base is a highly challenging undertaking because there are so many geographically 
scattered sites and database relations. Reducing the communication costs and accel-
erating the query responses must also be considered [1, 2]. Particularly speaking, as 
database management technology develops, relational distributed database systems 
(RDDBSs) have become an essential resource for managing the ever-expanding vol-
ume of data. However, due to the massive expansion in data amounts, RDDBS perfor-
mance has recently encountered clear demands on data management. Consequently, 
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in an endeavor to produce the optimal design, the literature keeps presenting DDBS 
architectures. Overall, a distributed database can be created using three main tech-
niques: fragmentation, data allocation, and replication. It is noteworthy that these 
techniques are routinely employed separately and are rarely combined. Various allo-
cation options are employed, regardless of the fragmentation process or replication 
technique. In contrast, some fragmentation approaches do not consider allocation or 
replication procedures [3–5].

In fact, fragmentation is essential to databases because it enables a suitable design in 
distributed environments, which has benefits in terms of the execution costs for read 
and write operations. Technically speaking, fragmentation in a distributed database is 
typically quite advantageous in terms of utilization, dependability, and efficiency. Since 
the distributed database is divided into separate replica partitions, or "fragments," han-
dling fragmented database replication presents administrators with a difficult problem. 
Replication, on the other hand, is one of the methods for managing data because it 
enhances its accessibility and dependability. Nevertheless, the amount of different data 
is growing quickly because technology is generally accessible and inexpensive. The prob-
lem arises when the transactions only function with a portion of the database and not 
the entire database [6].

Despite all of these issues, research on communication costs and response times is still 
a top priority, especially with the current exponential advancements in database and net-
work technologies. There are a number of important factors that may justify this intense 
focus on DDBS design challenges. One of these factors—possibly the most important—
is that response times and communication costs form the basis for DDBS performance, 
and their relationship to performance is completely modifiable. In the sense that DDBS 
performance has increased whenever communication costs and response times have 
decreased [7]. In other words, the performance of DDBS would benefit from the signifi-
cant reduction of these expenditures. If data localization maximization and irrelevant 
remote data access minimization are successful, these costs can be greatly diminished. 
This premise is absolutely satisfied if the most highly correlated, "accessed together," 
tuples or attributes are intelligently aggregated into comparable groups and carefully 
placed in their most in-need sites. In fact, this is the main justification for using the hier-
archical clustering method (HC), which performs better on tuples than attributes. The 
primary function of HC is to serve as the foundation for the efficient fragmentation of 
RDDBS.

One originality of the approach we propose is that, to best of our knowledge, no pre-
vious study utilizing HC has been recognized to fragment the “relational” RDDBS pat-
tern that we have in our work. Our experimental findings show that HC facilitates the 
development of an efficient design by simplifying the allocation of tuples quickly and 
effectively. On both synthetized and real databases, the results demonstrate that HC 
supports the formation of an effective horizontal fragmentation, simplifying the equita-
ble and effective distribution of tuples among network nodes, which is the main objec-
tive of this paper. To put it another way, HC aims to create data fragments through the 
clustering process, which are subsequently assemble together the strongly linked data in 
each fragment, as given in the drawn below example. The following is a list of the paper’s 
contributions in brief:



Page 3 of 43Abdalla et al. Journal of Big Data          (2023) 10:172  

1. Developing a five-step horizontal fragmentation and allocation technique based on 
clustering that doesn’t require dataset statistics, empirical findings, or query fre-
quencies (at least in the early design stages). This characteristic makes the proposed 
approach useful for both the early and/or later stages of DDBS design, especially 
when statistics or even data access patterns are insufficient or unavailable.

2. The effective simultaneous execution of data fragmentation and allocation together 
ensures that processes flow into one another without introducing undue complexity. 
Contrarily, due to the complexity of the total problem and the simultaneous consid-
eration of both difficulties, most previous research attempted to address either frag-
mentation or allocation separately.

3. Introducing a data distribution model that is based on the knapsack method. The 
allocation procedure is done in two phases: the early phase and the later phase. Three 
different scenarios—complete replication, partial replication, and no replication—are 
run for each phase. To discover the most suitable situation for constructing DDBS, 
these scenarios are drawn. The ideal scenario would therefore be included in the lay-
out of the proposed approach.

4. Presenting a straightforward but efficient way to further fragment and allocate 
numerous relations at once, employing the notion of "row group," which is based on 
the established relationships between relations.

5. In closing, a thorough investigation (both internal and external) is made to show the 
practicality of the proposed approach. According to our evaluation of the previous 
studies, no horizontal fragmentation and allocation technique has ever been found 
(mathematically and practically at the same time) as a comprehensive, efficient, 
and dependable solution in RDDBS design. The proposed methodology is there-
fore expected to compete as a promising approach (and all-encompassing), with the 
expectation that it will significantly increase static and dynamic DDBS throughputs 
and productivity.

This paper is structured as follows: In “Related work” section, the earlier works are 
critically explored. “Proposed methodology” section presents the proposed methodol-
ogy, including the technique’s heuristics and architecture, fragmentation and allocation 
cost models, and site clustering. In “Multi-relations fragmentation and allocation” sec-
tion, the proposed method to fragment and allocate multiple relations is introduced. 
“Results and discussion” and “Performance evaluation and discussion” sections sum-
marize the results obtained and provide brief discussions and performance evaluations, 
respectively. Finally, in “Conclusions and prospective” section, the conclusions and pros-
pects are briefly displayed.

Related work
Recent spikes in information demand make it imperative to adopt effective distributed 
database design strategies to boost its performance. In relational databases, strategies 
like data fragmentation, allocation, and replication are frequently employed to promote 
relational DDBS performance. A survey of the literature on these strategies is provided 
in this section. To address such problems of data distribution and partitioning, numer-
ous techniques and algorithms have been developed. These techniques fall into heuristic 
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[6, 8, 9], meta-heuristic [10–16], affinity, or min-term-predicate based [8, 17–20], or 
clustering-based ones [20–25].

For example, to allocate and reproduce fragments optimally, either by optimizing 
access frequency or lowering transmission cost, an enhanced VAM mathematical model 
was created in [9]. By assigning fragments to locations with higher access frequencies, 
the technique aimed to limit fragment migration across the network. Another impor-
tant constraint taken into account here is the storage capacity of the sites. The effective-
ness and ideal behavior of the suggested method were demonstrated using the successful 
retrieval ratio of pieces. It utilized 3 fragments and 4 sites, and the SRR it acquired for 
allocation and replication—0.26 for each—was higher than that of comparable works. 
Replication boosted the retrieval ratio, according to experiments. However, the dataset 
used for evaluation was very small, making this technique unreliable. In the same page, 
database fragmentation was presented in [6], and the results demonstrated that manag-
ing databases with fragmentation would substantially aid a transaction to deal with the 
specified piece of the database rather than the complete database.

Meanwhile, in [17], 83 works on data fragmentation and replication approaches were 
analyzed and categorized. The authors presented an examination of various approaches 
[17] for database fragmentation, allocation, and replication in their paper [18]. The tech-
nique that was chosen in the analysis stage is then adopted by a Web application called 
FRAGMENT (based on a cost model which offered a fragmentation and replication 
method) was applied to a cloud environment. This work illustrated an issue with frag-
mentation methods known as overlapping fragments and offered an algorithm with a 
solution. The predicates produced by this technique define each fragment in a distrib-
uted context. In a follow-up, [19] came to present a new algorithm which was part of a 
strategy to additionally do allocation and replication. The enhancement entailed ranking 
the predicates according to cost and obtaining each predicate in this way while taking 
into account the possibility of fragment overlap. Investigation was made to show that the 
improved approach significantly decreased query response time.

In the same line, a method was presented in [9] for determining the number of copies 
of a fragment (benefit of degree of replication) that should be placed on various loca-
tions. The benefit of replication was continuously growing if there were two to four 
clones. This improved data accessibility, boosted system dependability, lightened the 
burden on the network, and facilitated parallelism. Nevertheless, adding more duplicates 
was proportionately less advantageous. Using evolutionary techniques, on the other 
hand, a new replicated data allocation strategy was proposed in [13]. The suggested 
method was created using simplified biogeography-based optimization (SBBO). The sys-
tem’s overall performance was improved while the total processing cost of a query was 
decreased using an SBBO-based method. The performance of the BBO and GA based 
approaches was compared to the results from the SBBO based approach. Furthermore, 
as a follow-up, Singh et  al. developed a novel method for non-redundant data alloca-
tion in distributed database design [11]. The proposed approach assigned the data based 
on Simplified Biogeography Based Optimization (Simplified-BBO). Simplified-BBO 
based approach performance was compared with GA and BBO based approaches. This 
method assisted in lowering the cost of data communication during query execution, 
which improved the overall functionality of distributed database systems.
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For the purpose of resolving the data allocation problem, Lotfi et al. suggested a novel 
hybrid solution based on the Simulated Annealing Algorithm (SA) and Variable Neigh-
borhood Search (VNS) mechanism [12]. The suggested hybrid technique incorporates 
VNS mechanisms into the SA method to improve performance. Technically, this method 
(VNSA) explored the search space via SA employed neighborhood search mecha-
nisms in order to uncover more promising sections of the search space. Furthermore, 
both approaches traversed the search space more quickly than population-based ones 
because they are single solution-based. The outcomes showed that VNSA outperformed 
its rivals in the majority of test difficulties. In order to tackle fragmented database repli-
cation, the study in [14] suggested a novel algorithm called Binary Vote Assignment on 
Grid Quorum with Association Rule (BVAGQ-AR). The BVAGQ-AR algorithm was able 
to divide the database into separate chunks.

In order to accomplish both horizontal and vertical fragmentation, Ahmed et al. intro-
duced a hybrid data fragmentation model using an advanced optimization-based cluster-
ing methodology [15]. The Killer Whale Optimization (KWO) and Genetic Algorithms 
(GA) were combined with the common subspace clustering technique to create the pro-
posed model, known as Genetic Killer Whale Optimization based Clustering (GKW, OC). 
The tuples and attributes were fragmented using an optimization-based hybrid fragmen-
tation model. In the same page, using clustering algorithms, one of the best methods for 
horizontal fragmentation was constructed in [8]. Fragmentation, allocation, and clustering 
were all artfully merged into a single efficient technique, resulting in a significant answer 
for the improvement of DDBS production. The results of the experiments were almost 
exclusively noted as being in favor of DDBS performance. According to tuple and attrib-
ute patterns, this approach [24, 25] generated data fragments using subspace clustering 
algorithm, which was then used to group together strongly associated data. Comparing 
this clustering-based approach to the fragments selected at design time using pre-known 
statistics showed that it was beneficial in cutting down database access time.

In order to reduce the overall transmission costs of each site-fragment dependency 
and each inner-fragment dependency, the study in [26] provided a greedy method. 
Utilizing some DAP problems, an experimental research was conducted to gauge the 
effectiveness of the suggested strategy. According to author’s findings, the proposed 
approach had improved quality in terms of execution time and overall cost. In the same 
vein, our work, therefore, comes to enrich the RDDBS literature with a novel strategy 
that explores both factors (communication costs and response time) in a single work. 
The proposed approach seeks to effectively address problems at both the early and late 
stages of design, as well as enhance the performance of both dynamic and static RDDBS, 
according to experimental findings and performance evaluation.

Proposed methodology
Motivations

Several methods have been developed to promote RDDBS performance through per-
fecting the RDDBS’s design. Among the most popular and successful techniques are 
data fragmentation, data allocation and replication, and site clustering; otherwise, DDBS 
design and rendering would be prohibitively expensive. Therefore, incorporating all of 
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these strategies into a single work will undoubtedly result in a considerable boost to the 
DDBS’s influence. As a result, all of these aspects are combined in our work as a whole.

Furthermore, based on our investigation of the majority of previous works, a difficulty 
has been observed to analyze data patterns and features in large databases with these 
works as their fragmentation strategies are essentially dependent on query frequency 
and other data statistics, especially at the beginning of RDDBS building. Therefore, the 
goal of this study is to add to the body of DDBS literature with a fresh, adaptable design 
that would guard against data loss and inappropriate grouping of large datasets (at least 
during the first design phase). Without requiring dataset statistics, empirical findings, 
or even query frequency in the initial stage, this study’s five-step horizontal fragmenta-
tion and allocation approach is developed based on clustering. Specifically, this aspect 
makes the method we propose viable for use at both the initial and/or later stages of 
DDBS design where statistics or even data access patterns were insufficient or unavail-
able. However, at later stages of design, query frequency has proven essential for carry-
ing out the appropriate re-allocation operation. Finally, it is important to note that we 
reviewed a good number of the recently proposed methods in “Related work” section, 
and our work has been greatly influenced by and compared to [8, 9, 19].

Heuristics

In the DDBS, it is well-known that before executing data allocation and fragmentation, 
the designer must first gather all necessary information. The number of network sites, 
communication expenses, and database information essentially represented in rela-
tions’ metadata. The quantity of attributes, attribute cardinalities, attribute sizes, tuple 
sizes, predicates used in queries for each relation, the frequencies of queries, attribute 
usage, and predicate usage at subsequent design stages are only a few examples of such 
information. DDBS horizontal fragmentation and allocation can then be achieved with 
sophistication using this information.

The fragmentation heuristics composes of five steps that make up the fragmentation 
process, and they are as follows:

Stage (1): Locating and removing the list of potential query predicates. If there are 
no duplicate predicate sets, the predicate set identification will be simple. However, 
this replicated set would be eliminated if any cluster discovered the replication for 
the predicate set. This step helps prevent fragment redundancy when fragments pro-
duced in the subsequent stage (disjoint-ness properly maintained).
Stage (2): Based on the currently filtered list of predicates, the query clustering pro-
cedure is initiated. Based on the idea of the least difference value (LDV) for each 
query pair inside the target cluster, a new centroid is chosen for each cluster at each 
loop. The complexity and execution time of the proposed technique has been signifi-
cantly reduced by closely adhering to this step. It’s important to note that query Qi 
will set up a new cluster as the cluster’s centroid on its own if it has the same LDV 
with more than one centroid during the clustering process.
Stage (3): Producing all possible predicate set combinations individually for each 
cluster.
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Stage (4): Generating the fragments (Fs) based on the predicate combinations cre-
ated in stage 3. Generating the fragment (Fs) under the condition that neither the 
predicate set nor its opposite set is exist in the same cluster. This step eliminates 
the emptiness of the fragments (the lossless-ness property is maintained).
Stage (5): Produce the ‘Else F’ fragment, R/Fs., "the final fragment". All the 
excluded information in those currently formed fragments is set to be in the "else 
F" (Fs). In other words, R/Fs, where R represents the entire relation, could be used 
to mathematically express Else F. This action favors keeping the minimal predicate 
set property. Finally, Fig. 1 depicts the entire data fragmentation process.

Fig. 1 Five-step data fragmentation process
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Fragmentation procedure: problem formulation

Provided that we have a set of “A” attributes A = {A1,  A2, …,  An} required by set of que-
ries Q = {Q1,  Q2, …,  Qq}. ∀  Qi, ∃ predicates P = {P1,  P2, …,  Pm} ∈ attribute  Aj. ∀ Predi-
cate pair  Pi and  Pj, ∋  Ah, where h = {1, …, n}, and both predicates are identified in one 
of three states. ∀Pi ⊃  PJ as  Pi ∈  Pj, or  PI ⊃  Pi as  Pj ∈  Pi. The final state is, ∀ P,  Fk is defined 
independently, where k = {1, …,  f }, and f is the number of fragments. Using the filter-
ing procedure, all  Phs are drawn to be fed into HC. These predicates are fed into HC to 
be grouped into  Cc clusters {C1,  C2….,  Cc}. Then, the HC algorithm would work on the 
predicate clusters. These clusters would represent the non-overlapping final data frag-
ments, Fs = {F1,  F2, …,  Ff}.

Hierarchical clustering (HC)

A single, exhaustive cluster is located at the top, and singleton clusters of distinct items 
are found at the bottom using the predicate sets P = {P1,  P2, …,  Pm}. The next move is to 
merge each cluster pair in each middle level from the grade below or splitting the cluster 
from the grade above. The following steps are performed in this order: (1) calculate the 
similarity (using Euclidean distance) between all pairs of predicates, i.e., create a similar-
ity matrix whose IJth leaf in the clustering tree represents the similarity between the Ith 
and Jth predicates; (2) incorporate those that are most similar (closest) predicates; (3) 
update the similarity matrix in each clustering incrementally to include the new pairwise 
similarity between the fresh predicates and the original ones; and (4) repeat steps (2) 
and (3) until the desired clusters are found (see Tables 14, 15). The final fragments are 
produced using these clusters (see Table  16). Figure  2 simply depicts the HC steps in 
high-level abstract.

Algorithm 1 The High-Level Abstract of Hierarchical Clustering Algorithm

Allocation and replication heuristics

The knapsack algorithm is used to maximize each site’s capacity (and thus each clus-
ter). The allocation of data fragments must be done by rows rather than by attributes 
to ensure that each fragment is placed in the best possible location, which reduces the 
allocation process’s time.
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Full replication‑based allocation scenario

Phase 1: As fragment replication is implemented in the first phase, each fragment 
would be assigned to every cluster. The goal of this replication is to make data more 
local, which will significantly reduce response times and transmission costs when 
dealing with distributed queries.

Non‑replication‑based allocation scenario

Phase 1: Each fragment is assigned to the cluster with the highest access cost. Frag-
ments are distributed among clusters according to the total access cost of each site’s 
cluster (TCPM). As the distributed query is processed, such allocation process is cer-
tain to reduce the communication costs.

Fig. 2 Data allocation process
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Phase (2): Both full replication and non-replication scenarios: The allocation 
criterion is the net cost of each site,  Sj, to access all of the fragment  Fi’s attributes. 
Therefore, it is necessary to exactly compute the total access cost  (TSFMij) for each 
site to access all of these attributes. The SPM and CSM matrices are used to create the 
TSFM matrix (see Eq. 13). The site with the highest access value for a particular frag-
ment is chosen as the prime candidate storage site for this pertinent fragment (see 
TSFM matrix),

Partial replication‑based allocation scenario

Each fragment is assigned to a site in accordance with the pre-determined threshold. In 
turn, the threshold (in Eq. 1) is determined by averaging the costs associated with allo-
cating resources across all network sites.

Network clusters and sites will engage in fierce rivalry for the fragment allocation 
after each fragment has reached its threshold. Each Fi in this competition is assigned to 
the cluster or site whose access cost exceeds the set threshold. Furthermore, even if the 
intended site still has access costs above the threshold, the number of allocation times 
for each fragment shouldn’t be greater than |M/2|, where M is the total number of sites.

Since priority is given to clusters/sites of most benefit (to store the relative fragment) 
based on the Knapsack algorithm mechanism, sites are configured to fiercely compete 
for the site with the maximum cost, which is the most likely place to store the targeted 
fragment. It is worth emphasizing that, for all scenarios, the allocation process is done 
while the sites’ (clusters’) constraints are maintained. If one or more constraints are vio-
lated under any circumstances, the underlying fragment is automatically assigned to the 
site whose cost value is the next. The whole process of data allocation is drawn in Fig. 2.

Fragmentation and allocation cost models

Table 1 presents all the notations used in this work.

Objective function

The objective function is configured to implicitly describe the number of disc accesses 
(i.e., transmission costs), which would be the key performance indicator for the pro-
posed strategy.

Fragmentation and allocation cost functions

Based on the considered queries and the results of the predicate filtering process (i.e., 
Table 17), a matrix of query predicate usage (QPUM) is drawn (i.e., Table 18). Each 

(1)
Thv(Fi) =(Cots of allocation Fi(S1)+ Cots of allocation Fi(S2)

+ · · · + Cots of allocation Fi(Sm))/M

(2)TC = Min





q
�

k=1

m
�

j=1

QFMkf ∗ XFkj ∗ COMsiSj ∗
�

Sel(Qk) ∗ size(Fk)
�




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 QPUMij indicates whether query  Qk is approaching the predicate  Pi. Moreover, sup-
pose that the QUM is given by the database administrator (DBA) so that each  QUMij 
refers to whether each query is released from its relevant site. Thus, the horizontal 
fragmentation and (initial and post) allocation are made based on these requirements 
using the following cost functions:

(3)P(Qk) =

q
∑

k=1

pr
∑

i=1

QPUMki

Table 1 Notation used

nf The total number of fragments

m The number of sites

Q The number of queries under consideration

pr The number of predicates

CN The number of clusters of sites

CQ The number of clusters of queries

i Fragment index, I = {1,…, n}

j Site index, j = {1,…, m}

K Query index, h = {1,…, k}

cni Sites’ cluster index  Cni = {1, …, cn}

cnq Query’s cluster index  Cnq = {1, …, cq}

Ci Storage capacity of site  Si

V The attribute size

Size (Fk) Size of the kth fragment

Sel  (Qk) The percentage rate of rows returned by the kth query

QFMij The frequency of the ith query over site  Sj

CCMij The communication cost unit between cluster  Ci and cluster  Cj

CMSij The communication cost unit between site  Si and site  Sj, measured in “ms/byte” 
units, and bandwidths fall in; 64 kbps, 128 kbps and 512 kbps

COMij CMSij cost, if  Si and  Sj are at the same cluster; otherwise,  CCMij cost

LNF The lowest number of fragments allowed at each site

UNF Upper number of fragments allowed at each site

TC The total cost of data transmission as distributed query processed

XFkj 1, if fragment  Fk is placed in  Sj; 0, otherwise

ACvalue ACvalue is a piled-up value that refers to the total access cost produced by each 
query to access its relative fragment

FPM Matrix in which each  FPMij is 1,  Fi contains  Pj; 0, else

FSM Matrix in which each  FSMij is ACvalue,  Sj requires queries of  Fi; 0, otherwise

SPM Site Predicate Matrix

TSPM The total cost of SPM which is grouped based on the container clusters of sites

TCCM Matrix of Total costs of communication between clusters

TCSM Matrix of Total costs of communication between sites

QUM Query Usage Matrix; 1,  Qi required by  Sj; 0, otherwise

QDM Query Difference Matrix, so each  QDMij is the difference value between  Qi and  Qj
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where P(Q) means the numerical pattern drawn as per the contained predicates in each 
query.

The QDM matrix is fed into the AHC algorithm to generate the required fragments 
(i.e., Tables 27, 28, 29, 30, 31). Bearing in mind that the difference of  (Qi,  Qi+1) is kept 
at a minimum. Then, using FPM and QUM matrices (i.e., Tables 34, 35), the allocation 
process would begin as follows;

For fragmentation, Eq.  (3) represents the numerical pattern of each query in terms of 
rows of (0, 1) based on the filtering process’s results, allowing patterns to be drawn pre-
cisely in the QPUM matrix. Most importantly, Eq.  (4) is used to calculate the similarity 
between each pair of patterns. Finally, Eq.  (5) is used to find the intended similarity in 
order for the clustering process to begin. It is worth stressing that Eqs. (4) and (5) are per-
formed simultaneously to produce a query difference matrix (QDM) matrix.

For initial allocation

The FSM matrix is built based on the QUM matrix with the help of the outcomes of the 
filtering process’s predicates. Each FSM value points to the number of times each site 
 Sj accesses  Fi based on the constituent queries of each fragment (tacitly counted based 
on the refined predicates). While Eq.  (6) produces the site-predicate matrix (SPM) in 
which each site provided its actual access for each predicate, Eq. (7) calculates the total 
communication costs that each site had to incur to approach the queries remotely. The 
matrix of the total costs of each cluster to access the relative predicate, on the other 
hand, is determined by adding the access costs of that cluster (in terms of its contained 
sites) using SPM [tacitly expressed by the query in Eq. (8)]. Finally, the total communica-
tion costs each cluster incurred to remotely access queries are calculated using Eq. (9).

(4)Similarity (Qk1,Qk2) =

q
∑

k1=1

q
∑

k2=1

(1-dif(P((Qk1), P(Qk2)),

(5)QDMk1k2 =

q
∑

k1=1

q
∑

k2=1

Hamming-distance (Qk1,Qk2)

(6)SPM =

p
∑

i=1

m
∑

j=1

FPMij ∗ FSMjk

(7)TSFM =

pr
∑

i=1

m
∑

j=1

m
∑

k=1

SPMprk ∗ CSMkj

(8)CPM =

cn
∑

cni=1

pr
∑

i=1

m
∑

j=1

accumulate (SPMji)

(9)TCPM =

pr
∑

i=1

cn
∑

cni=1

cn
∑

k=1

CPMprk ∗ CCMkj
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For post allocation

Given that the FSM is created using the Query Frequency Matrix (QFM) rather than the 
Query Utility Matrix (QUM), all Eqs. (5–8) are employed. DBA allegedly provided QFM 
at a later stage in the design process. Finally, it is necessary to maintain the following 
restrictions throughout the data allocation process:

Constraint (11) ensures that the overall amount of fragments assigned to one site 
would not be greater than that site’s disc capacity, as shown in Table 2. By this restric-
tion, it is stated that the number of fragments assigned was between LNF and UNF (11). 
The final restriction is the binary constraint on the decision variable (12). The limitations 
for each site are shown in Table 2, along with their capacity (in Mbytes) and the mini-
mum and maximum number of fragments that can be kept there.

Site clustering

Sites under consideration are clustered using hierarchical clustering. In the event that any site 
has the same cost with more than one cluster, the deciding factor utilized to move a site (let’s 
say,  Sj) to its appropriate cluster is the average of communication costs over each site. On the 
other hand, the first two clusters are consistently created by choosing a pair of sites at random 
when their transmission costs are the highest [28, 29]. This step is taken as a result of running 
numerous site grouping trials and discovering that many pairs would qualify as clusters on 
their own at the initial stage, which would contribute to maintaining the cluster number at a 
minimum. The rest of the clusters are grouped using the agglomerative hierarchical cluster-
ing. It goes without saying that the fragment allocation procedure must consider the commu-
nication costs inside and across clusters, especially in the non-replication situation.

It is also worth noting that during experiments, site clustering is carefully done so that 
the actual Transmission Cost (TC) is accurately reflected. In turn, TC has been observed 
to be gradually increasing as the traffic load and data exchange within the network 
increased aggressively. So, it was assumed that each cluster (CS) had a centroid (rep-
resentative) that served to approach each other cluster when distributed queries were 
being handled. This assumption is made to reflect the actual communication between 
clusters of sites. As a result, two types of communication costs were anticipated: (1) 

(10)
cq
∑

k=1

Size(Fk) ≤ Capacity
(

Sj
)

, ∀j = 1, . . . ,m.

(11)LNFi ≤

n
∑

i=1

Xij ≤ UNFi, ∀j = 1, . . . ,m.

(12)Xij ∈ (0, 1),

Table 2 Site constraints

Site S1 S2 S3 S4 S5 S6

Capacity (MB) 28,500 42,000 26,000 39,000 45,000 33,000

LNF 1 1 1 1 1 1

UNF 12 14 11 7 10 14
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Inside (CS): Any site that can reach out to remote clusters via its owner’s centroid incurs 
extra communication costs from that site to centroid. Consequently, a precise math-
ematical method to minimize these costs is strongly recommended. (2) Outside (CS): 
Each CS is able to communicate with its peers directly through a representative.

Multi‑relations fragmentation and allocation
formulation

Given a table set T = {  T1,  T2,…,  Tn} as a relational database. One table,  Ti is assumed to 
be defined (by DBA) as a primary table (PT), and the others are defined as its follower 
tables (FT).  Ti is set to be fragmented horizontally using our proposed approach into {F1i, 
 F2i,  F3i, …,  Ffi}. ∀  Fki is allocated (and may be replicated) into several sites  (S1,  S2, …,  Sm). ∀ 
 Fki, ∋  Fhw where h ∈ {T/PT} and w ∈ {T/FT}. ∀ Tuple  t1,  t2, …,  tb ∈  Fik, ∃  t1,  t2, …,  th ∈ FT. The 
task is to place all tuples ∈ FT with their relative in  Fik in the same site where  Fik is already 
allocated. In other words, the task is to fragment FT and place fragments into sites in 
which their relatives in  Fik of PT are already exist. Algorithm  2 provides the proposed 
algorithm used to fragment multi relations based on the primary relations.

To further demonstrate the problem, suppose we have Emp, Dept, and Proj tables, 
with Emp defined as the primary table (PT) and Dept and Proj defined as their follower 
tables (FT). PT is fragmented into  emp1,  emp2,…,  empf. ∀  empf, ∃  t1,  t2, …,  tb ∈  empf. ∀ 
 ti ∈  empf, ∃  t1,  t2, …,  tb ∈ Dept and  t1,  t2, …,  tb ∈ Proj. The task is to extract these tuples in 
Dept and Proj that have PK and FK relationships with Emp tuples so that each F ∈ emp is 
placed in Sj along with its Dept and Proj follower tuples.

Fig. 3 Relational database diagram
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The proposed multi‑relations fragmentation algorithm

Algorithm 
Input: Primary Fragments List (PT); Follower Relations (FT); Relationships (PK- FKs)
Output: Primary Fragments List (PT); Follower Fragments List (F List)

Algorithm 2 Primary Relation‑Based Follower Relations FragmentationIllustrative 

example

Suppose we have the diagram given in Fig. 3. The diagram exhibits the database consists 
of three relations. The Dept. relation (Table 3) has been identified as the primary rela-
tion and Employee (Table 4) and Project are defined as follower relations for Dept. The 

Table 3 Dept dataset

Dept‑Id Dept‑name

1 A

2 B

3 C

4 D

Table 4 Employee dataset

Emp‑ID Emp‑Name Emp.Salary Emp.Dept

300 Ali 1600 1

306 Bush 1600 1

113 Ali 2900 2

118 Jasmine 3200 2

202 Coddy 1300 1

200 Beng 2500 3

109 Brad 2500 4

188 Obama 2900 4

278 Bush 1300 1

367 Jasmine 2700 2

121 Coddy 1200 –

122 Bin 2100 –
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department ID defines the relationship between a department and its followers, and the 
employee ID defines the relationship between an employee and a project. Supposedly, 
DBS decides to appoint Dept as PT, so it is being split using the procedure drawn out 
in this paper. Employee and Project, as followers, are split using the proposed algorithm 
along with the help of defined relationships as drawn in Fig. 4 and the next example.

Assuming that each employee was appointed to one department and one or several 
projects. Similarly, each department was assigned to one or more projects. While it is 
the DBA’s responsibility to specify which tables are PT and which are FT, Fig. 4 shows 
that Dept is the PT for both the Emp and Proj tables, and Emp is also the PT for the Proj 
table. Suppose we had the next queries running against both tables (Dept and Emp):

Q1: Select * from emp, dept where F-emp.id = dept.id and dept.name in (‘A’, ‘B’) and 
emp.salary > 2000;
Q2: Select * from emp, dept where F-emp.id = dept.id and and emp.salary > 1500;
Q3: Select * from emp, dept where F-emp.id = dept.id and Emp.name in (‘Ali, ‘Jas-
mine’);
Q4: Select * from emp, dept where F-emp.id = dept.id and dept-id in (3, 4);

Fig. 4 Fragmentation results (RDDBS)

Table 5 Dept-Fragment (1)

Dept‑Id Dept‑name

1 A

2 B

Table 6 Dept-Fragment (2)

Dept‑Id Dept‑name

3 C

4 D
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Moreover, data in both Tables (Dept and Emp) were given as follows;
Table 4 also included the employee dataset as a follower (FT) for the department table 

(PT) (Tables 5, 6).
On the other hand, regarding the FT fragmentation, on Depth-Fragment (1), Employee 

fragmentation was made simple by using relationship connection keys in "row groups," 
as shown in Tables 7, 8 and 9. For each PT. fragment, its follower tuples in each FT were 
being transferred to the same site. Moreover, if PT was replicated, its followers were 
also replicated in a number equal to the number of PT replicas. In fact, this is the major 
problem the RDDBS system has been suffering from. However, the proposed mecha-
nism to tackle this issue is already given in “Multi-relations fragmentation and alloca-
tion” section.

However, if Dept-Fragment (1) was replicated in two sites, for example, Emp-Fragment 
(1) would be replicated in both sites as well.

Table 7 Emp-Fragment (1)–On Dept-Fragment (1)

Emp‑ID Emp‑Name Emp.Salary Emp.Dept

113 Ali 2900 2

118 Jasmine 3200 2

367 Jasmine 2700 2

300 Ali 1600 1

306 Bush 1600 1

113 Ali 2900 2

118 Jasmine 3200 2

202 Coddy 1300 1

278 Bush 1300 1

367 Jasmine 2700 2

Table 8 Emp-Fragment (2)–On Dept-Fragment (2)

Emp‑ID Emp‑Name Emp.Salary Emp.Dept

200 Obama 2900 3

109 Bush 1300 4

188 Jasmine 2700 4

Table 9 Company database description

Attributes Attribute’s ID Type Length 
(bytes)

Value range

Personnel-ID A1 Numerical 19 Integer values

Personnel-Name A2 Categorical 40 Alphabet Letters

Personnel-Salary A3 Categorical 6 1000–7000

Personnel-Rank A4 Nominal 8 Manager—clerk—employee

Personnel-Sex A5 Numerical 2 (0) or (1)

Personnel-Dept. A6 Categorical 6 (10–20–30–40–50)
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Results and discussion
A C#-programmed software application is created to test the overall performance of 
the anticipated RDDBS and examine the behavior of the proposed approach. A 3.75 
GHz Intel (R) Dual Core (TM) i5 CPU, 4 GB of main memory, and a 500 GB hard drive 
runs this application. With a six-site network, only the queries under consideration are 
needed, as was previously stated. A company dataset has been proposed (Table 10) in 
accordance with the description in Table 9 to conduct the illustrative experiments. Just 
for the first experiment which was limited to the retrieval-type queries against the six-
attribute company dataset. The dataset was filled out with 30 records just for illustration 
purposes. For ease of computation and understanding, the attributes are given IDs as 
given in Table 9.

For the first problem, we considered eight queries as the most active and making up 
40%–80% of all database requests against the company database.

Q1: Select  A1,  A2,  A5,  A6 from company where  A6 < 10 and  A3 > 4000;

Table 10 Company dataset tuples

A1 A2 A3 A4 A5 A6

111 Ali Mohammed 3500 Clerk 1 5

112 Hassan Mustaf 4000 Clerk 1 10

113 Adel Ahmed 2000 Employee 1 5

114 Jasmin Yaser 2200 Clerk 0 15

115 Salma Mohammed 1700 Employee 0 15

116 Jhon Bush 1250 Employee 1 20

117 Burney Mich 6000 Manager 1 5

118 Lilly Eriks 1800 Employee 0 10

119 Ali Ali 2100 Clerk 1 10

120 Yaser Twfik 2000 Employee 1 15

121 Nehmi Ahmed 1570 Employee 1 15

122 Mohsen Saleh 3200 Employee 1 20

123 Ebtesam Ismail 4500 Manager 0 10

124 Ibrahem Mohammed 4100 Clerk 1 15

125 Ibrahem Ali 1100 Employee 1 20

126 Ahmed Adel 2000 Employee 1 20

127 Mustafa Adel 1800 Employee 1 20

128 Robin Shobes 6600 Manger 0 15

129 Ted Mosbey 5100 Clerk 1 25

130 Don Michel 1500 Employee 1 25

131 Nasem Yasen 2200 Clerk 1 25

132 Asma Ahmed 2200 Clerk 0 30

133 Jasmin Saleh 1750 Employee 0 30

134 Salam Salam 1800 Employee 0 30

135 Natalia ali 2000 Employee 0 25

136 Tamer Hassan 4600 Manager 1 20

137 Faten Salem 3200 Clerk 0 25

138 Salem Ali 7000 Manager 1 25

139 Yaser Hussien 3000 Clerk 1 30

140 Hussien Ahmed 7000 Manager 1 30
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Q2: Select  A3,  A5 from company where  A6 < 20 and  A3 > 4000;
Q3: Select  A2,  A4,  A5 from company where  A6 > 20;
Q4: Select  A1,  A3,  A6 from company where 50 > A6 > 30 and A3 > 4000;
Q5: Select  A1,  A2,  A5 from company where A6 ≤ 15 and A3 < 4000;
Q6: Select  A3,  A4,  A6 from company where A6 > 40 and A3 = 4000;
Q7: Select  A2,  A6 from company where A3 < 4000 and A6 < 10;
Q8: Select  A1,  A3,  A5,  A6 from company where A3 < 4000 and A6 > 20;

Table 11 Query predicates set

Predicate number Predicate content

P1 A6 < 10

P2 A6 < 20

P3 A6 > 20

P4 50 > A6 > 30

P5 A6 ≤ 15

P6 A6 > 40

P7 A3 > 4000

P8 A3 < 4000

P9 A3 = 4000

Table 12 Predicates distribution over original queries

Query number Predicate content

Q1 P1 and P7

Q2 P2 and P7

Q3 P3

Q4 P4 and P7

Q5 P5 and P8 and P9

Q6 P6 and P9

Q7 P8 and P1

Q8 P8 and P1

Fig. 5 A6’s attribute predicates filtering
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Now, employing the considered queries, their predicates are defined in Table  11. 
Table  12 shows the distribution of predicates based on Table  11 and their owner 
queries.

Predicate filtering process

The filtering was done for the  A6 attribute according to the line number that was orig-
inally drawn to compare with all of A’s predicates (Fig.  5). In order to concurrently 
produce and combine as many of A’s predicates as possible into individual predicates, 
the comparison was carefully made, resulting in a significantly smaller number of 
predicates. This action was taken to effectively remove the unnecessary predicates. It 
was clear when  A6’s (Fig. 5) was addressed, the next actions were resulted: (1)  P2 com-
prised  P1 and  P5, therefore  P1 and  P5 were incorporated into  P2 to form one predicate; 
and (2)  P3,  P6, and  P4 were combined.

For the  A3 attribute (Fig.  6), the line number was also drawn to clarify the com-
parison process, which used as many  A3 predicates as possible to fuse into a single 
predicate.

Fig. 6 A3’s attribute predicates filtering

Table 13 Filtered predicate set

Predicate number Predicate content

P1 A6 < 20

P2 A6 > 20

P3 A3 ≥ 4000

P4 A3 < 4000

Table 14 QPUM

Query/predicate P1 P2 P3 P4

Q1 1 0 1 0

Q2 1 0 1 0

Q3 0 1 0 0

Q4 0 1 1 0

Q5 1 0 0 1

Q6 0 1 1 0

Q7 1 0 0 1

Q8 0 1 0 1
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From Fig. 6, it was manifestly clear that  P7 and  P9 could be integrated into one pred-
icate while  P8 remained uncombined. The final results of this process are proven to be 
highly beneficial, so that predicates were substantially reduced. In this example, out 
of nine predicates, just four predicates were finally considered to perform fragmenta-
tion; eliminating almost 60% of the original space of predicates. Such a reduction rate 
attests the undeniable quality of the proposed filtering process. Table 13 pointed out 
the newly-formed predicates.

Hierarchical clustering process

Based on Table 13, along with Eq. (11), Query Predicate Usage Matrix (QPUM) was 
formed. This matrix basically replaced the original predicates with their contained 
queries to form the numerical pattern of queries, as shown in Table  14. Then, sec-
ondly, using QPUM along with Eq. (14), Query Difference Matrix was constructed as 
presented in Table 15.

Every element  (mqdij) indicates the difference between  Qi and  Qj. The agglomer-
ative hierarchical process was then initiated with QDM as initial values. The query 
pairs that shared the most predicates were grouped together in one cluster. By strictly 
following this process, the optimal fragmentation was bound to be achieved. The final 
results of the clustering process are shown in Table 16.

(13)QPUMij =

{

1, Qicontain Pj
0, otherwise

(14)QDMij =

{

Value, Dif (Qi,Qj)

0, otherwise

Table 15 QDM

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q1 0 0 3 2 2 2 2 4

Q2 0 0 3 2 2 2 2 4

Q3 3 3 0 1 3 1 3 1

Q4 2 2 1 0 4 0 4 2

Q5 2 2 3 4 0 4 2 2

Q6 2 2 1 0 4 0 4 2

Q7 2 2 3 4 2 4 0 2

Q8 4 4 1 2 2 2 2 0

Table 16 QDM’s final results

Query Q1257 Q3468

Q1257 0 2

Q3468 2 0
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Table 17 Final distribution of predicates over fragments

Fragment Query contained Predicate contained Data derivation

F1 Q1 and Q2 P1 and P3 A6 < 20 and A3 ≥ 4000

F2 Q5 and Q7 P1 and P4 A6 < 20 and A3 < 4000

F3 Q6 and Q3 P2 and P3 A6 > 20 and A3 ≥ 4000

F4 Q8 and Q4 P2 and P4 A6 > 20 and A3 < 4000

F5 Else – A6 = 20

Table 18 Final fragments

A1 A2 A3 A4 A5 A6

F1

 112 Hassan Mustaf 4000 Clerk 1 10

 117 Burney Mich 6000 Manager 1 5

 123 Ebtesam Ismail 4500 Manager 0 10

 124 Ibrahem Mohammed 4100 Clerk 1 15

 128 Robin Shobes 6600 Manger 0 15

F2

 111 Ali Mohammed 3500 Clerk 1 5

 113 Adel Ahmed 2000 Employee 1 5

 114 Jasmin Yaser 2200 Clerk 0 15

 115 Salma Mohammed 1700 Employee 0 15

 118 Lilly Eriks 1800 Employee 0 10

 119 Ali Ali 2100 Clerk 1 10

 120 Yaser Twfik 2000 Employee 1 15

 121 Nehmi Ahmed 1570 Employee 1 15

F3

 129 Ted Mosbey 5100 Clerk 1 25

 138 Salem Ali 7000 Manager 1 25

 140 Hussien Ahmed 7000 Manager 1 30

F4

 130 Don Michel 1500 Employee 1 25

 131 Nasem Yasen 2200 Clerk 1 25

 132 Asma Ahmed 2200 Clerk 0 30

 133 Jasmin Saleh 1750 Employee 0 30

 134 Salam Salam 1800 Employee 0 30

 135 Natalia ali 2000 Employee 0 25

 137 Faten Salem 3200 Clerk 0 25

 139 Yaser Hussien 3000 Clerk 1 30

F5

 116 Jhon Bush 1250 Employee 1 20

 122 Mohsen Saleh 3200 Employee 1 20

 125 Ibrahem Ali 1100 Employee 1 20

 126 Ahmed Adel 2000 Employee 1 20

 127 Mustafa Adel 1800 Employee 1 20

 136 Tamer Hassan 4600 Manager 1 20
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Fragment generation process

The relative predicates in the newly created clusters were determined for each clus-
ter in Table 16 by comparing the predicates of the original queries with the filtered 
predicates in Table 13. The overlap checker, which was involved in the predicates fil-
tering, would then sort predicates in a way that entirely avoided data overlapping as 
fragments formed after these defining predicates. In an effort to drastically reduce the 
production of empty fragments, no conflicting predicates were expected to be united 
in the same group of predicates. Table  17 clearly expressed the final distribution of 
predicates over fragments (14).

Given that we have examined [8], it is important to mention that the results 
obtained are comparable to Amer’s results. But our proposed approach demon-
strated its superiority by producing the identical outcomes at the initial stage of 
RDDBS design without even mentioning query frequencies. Additionally, the adjust-
ment method suggested in [8] is no longer needed, which has significantly reduced 
the process’ complexity. This contribution has been done by the automatic fragment 

Table 19 Data fragments’ statistics

FID Fname Cardinality Size (byte) Selectivity in regard 
with company dataset 
(%)

1 F1 5 405 16.67

2 F2 8 648 26.67

3 F3 3 243 10.00

4 F4 8 648 26.67

5 F5 6 486 20.00

Total 5 30 2430 100

Table 20 FPM

Predicate/fragment F1 F2 F3 F4

P1 1 1 0 0

P2 0 0 1 1

P3 1 0 1 0

P4 0 1 0 1

Table 21 QUM

Query/site S1 S2 S3 S4 S5 S6

Q1 1 1 0 0 0 0

Q2 0 0 1 1 1 0

Q3 0 1 1 1 0 0

Q4 1 0 0 1 1 0

Q5 1 0 0 0 1 1

Q6 0 1 1 0 0 1

Q7 0 0 0 0 1 1

Q8 1 0 1 0 0 0
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generation after completing the clustering procedure. The obtained fragments are 
finally depicted in Table 18.

When the fragmentation process completed, some statistics for data fragments 
recorded (Table 19) to be used for data allocation and performance evaluation.

Table 22 FSM

Site/fragment F1 F2 F3 F4

S1 1 1 0 2

S2 1 0 2 0

S3 1 0 2 1

S4 1 0 1 1

S5 1 2 0 1

S6 0 2 1 0

Table 23 SPM

Site/predicate P1 P2 P3 P4

S1 2 2 1 3

S2 1 2 3 0

S3 1 3 3 1

S4 1 2 2 1

S5 3 1 1 3

S6 2 1 1 2

Table 24 TSPM

Site/predicate P1 P2 P3 P4

S1 51 63 75 39

S2 70 62 50 82

S3 57 51 47 61

S4 69 68 72 65

S5 64 81 82 63

S6 59 62 64 57

Table 25 TSFM

Site/fragment F1 F2 F3 F4

S1 126 90 139 102

S2 120 152 112 144

S3 104 118 98 112

S4 141 134 140 133

S5 146 127 163 144

S6 123 116 126 119
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Allocation process

First of all, Fragment Predicate Matrix (FPM) was built based on the outcomes of fil-
tering process of predicates and final generated fragments. FPM (Table 20) is a matrix 

Table 26 CPM

Cluster/predicate P1 P2 P3 P4

C1 5 3 2 6

C2 2 5 6 1

C3 3 3 3 3

Table 27 TCPM

Cluster/predicate P1 P2 P3 P4

C1 16 31 36 11

C2 37 27 22 42

C3 18 26 28 16

Table 28 TCFM

Cluster/fragment F1 F2 F3 F4

C1 52 27 67 47

C2 59 79 49 64

C3 46 34 54 44

THV 52.3 46.67 56.67 51.67

Table 29 Fragment’s distribution over clusters, and their sites

Scenario/fragment F1 F2 F3 F4

Full replication All All All All

Partial replication C2(S2) C2(S2) C1(S5) C2(S2)

Non-replication C2(S2) C2(S2) C1(S5) C2(S2)

Table 30 Query frequency matrix (QFM)

Query/site S1 S2 S3 S4 S5 S6 TQF

Q1 2 0 0 0 1 3 6

Q2 2 2 0 0 3 0 7

Q3 0 0 3 3 0 0 6

Q4 0 0 0 1 0 3 4

Q5 0 2 0 0 0 2 4

Q6 0 1 1 3 0 0 5

Q7 2 0 0 1 0 0 3

Q8 0 1 1 0 2 1 5
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of predicate usage over fragments according to Table 17. In the Initial allocation, we 
assume that the DBA provided the Query Usage Matrix (Table 21) so that each point 
showed whether  Qi was released from  Sj or not.

Since each fragment was essentially represented (accessible) by its original queries/
predicates, a fragment site matrix (FSM, Table 22) was generated using QUM with the 
aid of FPM. Table 23 was created to produce the site-predicate matrix using Eq. (6) and 
the FPM and FSM matrices.

Then, SPM and CSM were combined using Eq. (7) to create TSPM in Table 24. After 
that, using Table 13 and TSPM, TSFM was depicted in Table 25. Contrarily, SPM was 

Table 31 FSM

Fragment/site S1 S2 S3 S4 S5 S6

F1 4 2 0 0 4 3

F2 2 2 0 1 0 2

F3 0 1 4 6 0 0

F4 0 1 1 1 2 4

Table 32 Site predicate matrix (SPM)

Predicate/site S1 S2 S3 S4 S5 S6

P1 6 4 0 1 4 5

P2 0 2 5 7 2 4

P3 4 3 4 6 4 3

P4 2 3 1 2 2 6

Table 33 TSPM

Site/predicate P1 P2 P3 P4

S1 94 111 126 79

S2 136 105 156 85

S3 123 111 135 99

S4 131 109 137 103

S5 154 161 175 140

S6 83 121 142 62

Table 34 TSFM

Site/fragment F1 F2 F3 F4

S1 220 173 237 190

S2 292 221 261 190

S3 258 222 246 210

S4 268 234 246 212

S5 329 294 336 301

S6 225 145 263 183



Page 27 of 43Abdalla et al. Journal of Big Data          (2023) 10:172  

combined using Eq.  (8) to create CPM (Table  26). Last but not least, CPM and CCM 
were combined using Eq. (9) to create TCPM, as shown in Table 27.

Finally, TCFM was identified in Table 28 utilizing TCPM and Table 13 together. The 
final allocation decision was made using TCFM, and it is shown in Table 29.

Post allocation process

If  Si targets fragment  Fj using queries  Qk and  Qh,  Si would target fragment (k + h) 
times given QFM in Table 30.  S1 would access  F1 five times, for instance, if  Q1 and  Q2 

Table 35 CPM, TCPM, TCFM

Cluster/predicate (CPM) P1 P2 P3 P4

C1 10 2 8 4

C2 4 7 7 4

C3 6 11 9 8

Cluster/predicate (TCPM) P1 P2 P3 P4

C1 32 57 53 36

C2 74 54 76 52

C3 36 32 44 24

Cluster/fragment (TCFM) F1 F2 F3 F4

C1 85 68 110 93

C2 150 126 130 106

C3 80 60 76 56

Table 36 TTSFM and TTCFM

Site/fragment (TTSFM) F1 F2 F3 F4

S1 89,100 112,104 57,591 123,120

S2 118,260 143,208 63,423 123,120

S3 104,490 143,856 59,778 136,080

S4 108,540 151,632 59,778 137,376

S5 133,245 190,512 81,648 195,048

S6 91,125 93,960 63,909 118,584

Cluster/fragment (TTCFM) F1 F2 F3 F4

C1 34,425 44,064 26,730 60,264

C2 60,750 81,648 31,590 68,688

C3 32,400 38,880 18,468 36,288

THV 42,525 54,864 25,596 55,080

Table 37 Fragment’s Distribution over Clusters of Sites, and their Sites

Scenario/fragment F1 F2 F3 F4

Full replication All All All All

No replication C2(S2) C2 (S3) C2(S2) C2(S3)

Partial replication C2(S2) C2(S3) C1(S5), C2(S2) C1(S5), C2(S3)
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are released with 2 and 3 access, respectively. Based on this hypothetical situation, the 
TQF values—which stand for the total frequency of each query—are defined.

Instead of utilizing QUM at the initial stage of design, QFM would be used to com-
pute the total access cost of all sites and their pertinent fragments as shown in the 
fragment site matrix (FSM, Table 31). A QFM matrix would serve as the foundation 
for the FSM. Then, Table 32’s SPM was produced using FSM. The same process would 
be used to create TSPM and TSFM (Tables 33, 34).

The same procedure was also followed in the same pattern to find TCFM (Table 35) 
based on CPM and TCPM.

Table 38 problem addressed statistics

Problem Queries# Retrieval queries in percentage 
(%)

Update queries in 
percentage (%)

P1 8 88 12

P2 24 78 22

P3 48 68 32

P4 120 48 52

P5 240 30 70

Table 39 Fragments and relation distribution over all clusters of sites

Cluster Site F1 F2 F3 F4 Whole relation

Full replication allocation scenario (imposed clustering)

 C1 S1

S5 1 1 1 1

 C2 S2 1 1

S3 1 1

 C3 S4 1 1

S6 1 1

Non-replication allocation scenario (imposed clustering)

 C1 S1

S5

 C2 S2 1 1

S3 1 1

 C3 S4

S6

Partial replication allocation scenario (imposed clustering)

 C1 S1

S5 1 1

 C2 S2 1 1

S3 1 1

 C3 S4

S6

Whole relation allocation scenario (for both imposed/relaxed clustering)

 C3 Site

S6 1
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The fragment size list was then multiplied by TSFM to obtain the TTSFM’s real trans-
mission costs (Table  36). The final fragment allocation decision is shown in Table  37 
after TCFM (Table 36) multiplied by the fragment size list to obtain the actual transmis-
sion costs over the clusters shown in TTCFM (Table 36).

Performance evaluation and discussion
This work is painstakingly designed to intelligently fragment data and assign the frag-
mented data into the sites where they are intensively required. Consequently, com-
munication expenses and response time—two important performance indicators—are 
sharply decreased. To verify that, a thorough evaluation has been conducted to verify 
this claim. Five problems are addressed with queries: 8, 24, 48, 120, and 240, which run 
on the same "company" dataset with 1000, 2000, 5000, and 25,000 records, respectively. 
The retrieval queries make up the majority of the considered queries in the second and 
third problems. However, the update queries have a higher percentage in the final two 
problems. These problems and their basic statistics are drawn in Table 38. The distribu-
tion of the already-obtained fragments as per four data allocation scenarios (using which 
the evaluation is affected) is also given in Table 39.

Fig. 7 Relationship between predicates and resulted fragments

Fig. 8 Predicate filtering optimization
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Many performance-related factors are considered during the evaluation process. 
Among these factors are, the number of data clusters (fragments) generated for each 
problem, the reduction rate recorded in predicates resulted from the proposed filtering 
process, and the transmission costs incurred due to running the queries against the dis-
tributed fragments. Figure 7 shows that when the predicates space increased, the query 
clusters (fragments) would negligibly grew. In other words, fragments number was sig-
nificantly lower than predicates in all problems. This contribution is met because the ini-
tial predicates were subjected to the filtering process, which greatly contributed to this 
reduction. The final version of predicates was thus always observed to be much lower 
than the initial ones. Consequently, the final predicates result in a small number of data 
fragments, as shown in Fig. 8. Therefore, the filtering process can be a drastic solution 
capable of minimizing the number of predicates (out of hundreds or even thousands) by 
which the final fragments are set to be found. Indeed, the smaller the number of frag-
ments, the better the DDBS performance, because the distributed queries are severely 
limited to being handled in a smaller number of sites/clusters.

Figure 9 also showed the impact of the predicate filtering process on the fragmentation 
process. The axis represented the percentage of data fragments obtained compared with 
the number of predicates used. In problem (1), for example, there were nearly ten predi-
cates; however, using the proposed filtering process, nearly 40% of the predicates were 
reduced, resulting in only 60% used to generate half of the predicate-driven fragments.

The ultimate goal has been to minimize the transmission costs (TC) which is success-
fully accomplished. According to the objective function (Eq. 1), the minimization of (TC) 
for each problem is recorded. Every query, among those under consideration, was run 
upon the company dataset in accordance with five scenarios of data allocation: (1) the 
optimal allocation scenario (in which it was supposed that the query and the vast major-
ity of data, if not all, were placed in the same place so the query is locally processed), (2) 
full replication-based allocation (each fragment was replicated in all clusters); (3) partial 
replication-based allocation (some fragments were replicated while others were not), (4) 

Fig. 9 TC reduction in percentage over all scenarios—Problem 1
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non-replication-based allocation (each fragment was only placed into the cluster with 
the highest access costs); and (5) the whole relation-based allocation. The best scenario, 
which came the closest to the optimal results for each scenario, was then chosen to be 
integrated into technique design after the results of each scenario compared to those 
of an optimal scenario (used as a baseline scenario). As shown in the following discus-
sion and graphs, several trials were carried out to conclude which fragmentation and 
allocation scenario best suited DDBS performance (Figs.  9, 10, 11). It is worth point-
ing out that, during discussion, the term "performance" means the percentage of over-
all transmission costs (including communication costs between sites/clusters) that were 
recorded to be incurred as distributed queries were handled. Figures 9 and 10 illustrate 
the results obtained for problem 1.

According to Fig. 9, when scenarios taken individually, the non-replication-based sce-
nario had the best reduction in TC in all queries except for  Q8. The full and partial repli-
cation, on the other hand, were observed to have almost the same reduction rate. Except 
for  Q1, the entire relation scenario was the worst scenario in all queries. However, when 

Fig. 10 Performance in percentage over all scenarios—Problem 1

Fig. 11 TC reduction in percentage over all scenarios—all Problems
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these findings were aggregated across all queries (for this case), the leader in TC reduc-
tion was the full replication with 1% higher score than non-replication. The relation-
based scenario as a whole came in the second rank, followed by the partial replication. 
Additionally, the data depicted in Fig.  10 support the conclusions on Fig.  9. In terms 
of performance rate, the full replication scenario is 11% closer to the optimal scenario, 
followed by non-replication at 12% and non-replication at 27%. However, the whole 
relation scenario is observed to have the worst performance ever, with a performance 
deterioration rate of 40%.

It was unsurprising that the fully replicated scenario outperformed all others. That is 
because, in the full replication-based scenario, the retrieval queries were higher than 
update queries, and the replication was the crucial factor in supporting this scenario 
[33]. This scenario, on one hand, affected the RDDBS’s performance badly as the number 
of update queries were growing among the original considered queries. The non-repli-
cation allocation scenarios, however, showed a significantly lower TC as update queries 
took up more space. Partial replication, however, was observed to deservedly outper-
form all other scenarios in both cases of retrieval or update queries being larger. This 
scenario reduced TC by 88% when compared to scenarios (2) with 70% and scenario (3) 
with 84% combined (77%). This claim is proven to be totally correct in Figs. 11 and 12, 
where all problems addressed saw heightened DDBS performance when partial replica-
tion considered. The forth scenario of whole relation allocation was the worst ever.

As problem P1 was handled, it was evident from Figs. 10 and 11 that both full replica-
tion and non-replication-based scenarios had the upper hand over all other possibili-
ties. The complete replication-based scenario in P2 had similar trend. Partial replication, 
however, began to take the lead over the rival situations, followed by the non-replication 
scenario when update queries were progressively increasing in problems (P3–P5). On 
the other hand, the whole relation-based scenario still produces the worst outcomes ever 
for all problems. The findings depicted in Fig. 12 further confirmed these assertions.

In summary, regardless of whether retrieval or update queries occupy the majority 
of the space among all queries under consideration, the partial replication has signifi-
cantly minimized the communication costs. Four further trials, with: 24, 48, 120, and 

Fig. 12 TC reduction in percentage over all scenarios—all Problems
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240 queries, have been conducted for further proof. Figure 12 shows that the replica-
tion-based scenario is the best choice because the retrieval queries occupied a large por-
tion, as with P1, P2, and P3. However, the scenario of non-replication was by far the 
best option when update queries constituted the large percentage, P4 and P5. The partial 
replication scenario was also by far better than those two former scenarios, neglecting 
the portion of retrieval or update queries among all considered queries, as presented in 
all problems. Moreover, from Fig. 13, it is shown that the partial replication scenario has 
been so close to the optimal allocation scenario. As a general rule, the data replication 
scenario accompanied by negative effects on the communication cost reduction due to 
the larger update queries.

Finally, Figs. 13 and 14 show the performance improvement before and after imple-
menting the proposed approach. Before fragmentation, performance was dropping 
steeply. After fragmentation, however, performance had fallen gradually as the number 
of queries was growing steadily. Furthermore, the number of the site clusters and frag-
ments were seen to have a significant impact on the DDBS performance. In short, the 

Fig. 13 Performance after applying proposed approach

Fig. 14 Performance before and after fragmentation
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larger the query size, site clusters, and data fragments, the small deterioration of DDBS 
performance recorded using our proposed approach.

External evaluation

Our proposed approach has been externally compared with [8, 9, 19]. Three problems 
(P1–P3) are generated to execute the final three tests on the Adult and bank market-
ing datasets. They both dataset are retrieved from the machine learning repository in 
order to verify the proposed approach’s competence on real datasets. The Adult data-
base has 48,842 records with 14 attributes, is 3.8 MB in size, and has a publicly available 

Fig. 15 Scenario 1—Rate of TC reduction—adult DS

Fig. 16 Scenario 2—Rate of TC reduction—adult DS
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description.1 The Bank Marketing has 45,211 records with 16 attributes, is 3.8 MB in 
size, and has a publicly available description.2

With 50, 70, and 80 queries used in each of the three trials, the query set (200 queries) 
for the Adult dataset is constructed in the same manner of the first experiment’s queries 
in the result section. The select-type queries are represented by 75% (150 queries), and 
25% are updates (insert and delete, 50 queries). However, according to [27], not all que-
ries across all experiments should use all features; instead, 60% of queries used 9 attrib-
utes, while 40% used only 6. In both scenarios, the TC results are accumulated across all 
three experiments and averaged in the same way that the given-above company data-
set’s results evaluated for all three works under consideration [8, 9, 19]. Two scenarios 
are examined. In the first case, the fragmented database is used with partial replication 
(which has five fragments, F1–F5). In the second scenario, non-replication was used for 
the whole DB and for all works. Figures 15 and 16 depict the findings for both scenarios, 
which demonstrate that our proposed approach continues to outperform [9, 19], with 
[19] being superior to [9], and comparable to [8]. However, the whole DB before frag-
mentation had the poorest performance. It is worth referring that the DS in all following 
figures stand for the dataset. Our proposed approach and [8] both performed similarly 
in the first scenario (Fig. 15), with the proposed approach outperforming [8] slightly, as 
the TC minimization average reached 72% in the average, while it was 68% in [8], 56% in 
[19], and 36% in [9], respectively. This is due to the update queries that had a detrimental 
impact on RDDBS performance as each update query had to be multiplied by the quan-
tity of the sites where the query in question was executed. Both works (our approach and 
[8]) were comparable in the first scenario. The proposed work, however, demonstrated 
significant TC minimization as the query set expanded. The proposed work has the lead 
over its rivals in the averaged results, and is a superior to the whole DB. The whole DB 
and [9] had the worst performance in TC minimization, with 36% and 25%, respectively.

Fig. 17 Scenario 1—Rate of TC reduction—bank DS

1 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Adult.
2 https:// archi ve. ics. uci. edu/ datas et/ 222/ bank+ marke ting.

http://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/dataset/222/bank+marketing


Page 36 of 43Abdalla et al. Journal of Big Data          (2023) 10:172 

Overall, our proposed approach performed significantly better than [8] and was far 
superior to [9] in the second scenario (Fig. 12), and the initial TC minimization aver-
age was 83%, 78%, and 78%, respectively. Castro-Medina et al. [19]’s approach achieved 
78%, 77%, and 69%, respectively, making its performance closely equivalent to our pro-
posed one. The main factor that accounts for the comparable performance of our pro-
posed approach and that of [19] is that, unlike in scenario 1, no replication scenario was 
used. So, the update queries that adversely affected RDDBS performance were not mul-
tiplied by the number of sites. The averaged findings from all three experiments dem-
onstrated that our proposed work and [19] were both appreciably better than [8, 9] and 
the whole DB. In turn, the whole DB performed the worst with only 29% in TC minimi-
zation, which is identical to scenario 1. As our proposed approach increased from 54% 
in the first scenario to 59.70% in the second scenario, the approach has a substantial 
improvement with a very perceptible difference in its behavior in both scenarios. Lastly, 
it is noted that all approaches perform significantly better in scenario 2 than scenario 1.

Following the same examination procedure applied on the Adult dataset, we find 
the results on the Bank Marketing datasets attest the competitiveness of our proposed 
approach as well. Both Figs. 17 and 18 depict the findings for both scenarios. Similarly, 
the whole DB before fragmentation had the poorest performance. In the first scenario, 
both works [8, 19] performed nearly equally well (see Fig. 15), with [8] slightly outper-
forming [19] since its average TC reduction rate reached 58% while it is 55% in [19]. With 
an averaged TC of 61%, our proposed approach significantly surpassed all of these other 
approaches. In the first problem, both works [8, 19] were comparable. But when the 
query set grew, the proposed work showed significant TC minimization. The proposed 
approach outperforms the whole DB and its competitors in the averaged results. With 
28% and 20%, respectively, the performance of the whole DB and [9] was the poorest in 
TC minimization. Similar to what happened in Adult, the update queries were to blame 
for the poor overall performance of RDDBS. Our proposed work still demonstrates its 

Fig. 18 Scenario 2—Rate of TC reduction—bank DS
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superiority in the second scenario, attaining 71% in for averaged TC, compared to 66% 
and 62% in [8, 19], respectively. Both works [8, 19] were equivalent to scenario 1, with [8] 
marginally outperforming [19]. With 34% and 24%, respectively, the performance of the 
whole DB and [9] was the poorest in TC minimization. Overall, all works performed bet-
ter in scenario 2 than in scenario 1.

To conclude, compared to that of the adults, all approaches’ performance on Bank 
Marketing dataset is noticeably worse. We think this is due to using an increasing num-
ber of attributes. With the Bank Marketing, we employed 11 attributes as opposed to the 
adult, where we only used 9. This may lead to the conclusion that the more attributes 
used, the higher the deterioration the DDBS performance may suffer.

A brief ablation study

We have continued by contrasting our recent findings with [33], whose author employed 
the k-means for vertical fragmentation. Additionally, in our second variation of the 

Fig. 19 Partial replication—adult DS

Fig. 20 Full replication—adult DS
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study, we used the identical allocation process but switched to the k-means clustering 
approach rather than the hierarchical one. To put it another way, we divided the target 
datasets using the hierarchical and k-means clustering algorithms. Therefore, we com-
pared the vertical fragmentation with that based on hierarchical clustering. The commu-
nication and processing costs for all works were compared while modifying the number 
of sites or clusters, the replication scenario (partial and full), and the kind of queries 
(update/retrieval). We employed two situations (partial replication and full replication) 
and the same inspection process that was used with the Adult and Bank datasets in the 
previous sub-section.  150 queries were run on each dataset, totaling 300. The queries 
were built in the same way as those from the result section of the previous experiments. 
Sixty percent (90 queries) of the total are select-type queries, and forty percent (60 que-
ries each for insert and delete). In contrast to the Bank dataset, which used 11 attrib-
utes, the adult dataset only included 9 attributes. In the first scenario, the fragmented 

Fig. 21 Partial replication—bank DS

Fig. 22 Full replication—bank DS
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database—which also has five fragments, F1–F5—was used with partial replication. Full 
replication was applied to the second scenario.

Figures 19 and 20 show the results for both situations, showing how well the VF-
based approach we propose outperforms both [33] and our HC-based strategy in the 
partial replication scenario (Fig. 19). In particular, the robust greedy-based allocation 
process of the proposed study, which differs significantly from that of [33], makes our 
proposed strategy the best with VF. We believe that besides the increasing number 
of attributes used, the update queries, which had a negative effect on RDDBS perfor-
mance because each update query had to be multiplied by the number of sites where 
the query in question was conducted, are to blame for the retrogress of our HC-based 
strategy. In the second scenario, our proposed HC-based approach outperforms 
both [33] and our VF-based strategy (Fig.  20). With full replication, the request on 
the instances (tuples) would heavily impact the TC costs, making the horizontal frag-
mentation more suitable for DDBS design. Surprisingly, the same results on Adult are 
secured with the bank dataset, yet with lower percentage for all works (Figs. 21, 22). 
But as the query set grew, the proposed work showed a significant average TC mini-
mization, chiefly in the second scenario. Overall, it has been found that the VF-based 
fragmentation us much better than the horizontal one using the partial replication, 
and vice versa.

Overall, the results can directly imply that, in the partial replication situation, it would 
be desirable to construct the DDBS with vertical fragmentation. Otherwise, the best 
fragmentation is horizontally based.

Features of proposed approach

The following characteristics feature our proposed approach: (1) It yields the same ini-
tial results (at the initial stage of RDDBS design) as the partition algorithm proposed 
in [8] without the need for any statistics pertaining to the database log, (2) It uses the 
hamming distance instead of the predicate affinity process to cluster predicates and then 
find fragments, (3) It takes into account the restricted-type queries, (4) It addresses the 
fragment allocation problem without the need for additional complexity. The proposed 
approach also enjoys offering a method for data filtering, combining site grouping and 
fragmentation processes using clustering, utilizing the Knapsack algorithm for alloca-
tion and replication, and, finally, testing against some competitors both internally and 
externally in accordance with four allocation scenarios.

Approach complexity

For the purpose of satisfying an efficient data fragmentation and allocation approach, 
many algorithms have been combined. As a result, the time complexity of the included 
(complex) components limits the complexity of the proposed approach. The following 
formula is drawn to calculate each component’s temporal complexity, as follows:

1. The difficulty of defining and filtering predicates is O(NP2), Where NP is the total 
number of predicates to be considered.
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2. The complexity of the query/predicate clustering procedure is O(N2 *  log2
n), where N 

is the total number of queries.
3. The complexity of clustering sites is O((M2)*log2

m), where M is the total number of 
sites taken into consideration by the DDBS.

4. In both scenarios, the complexity of knapsack-based allocation is 
O(CN*m*fn) + O(m2 *fn).

Accordingly, the time complexity of this approach is constrained by (O(NP2) + O((M2) 
*  log2

m) + O(N2 *  log2
n) + (O(CN*m*fn) + O(m2 *fn)) at the worst case and by O(m2 *fn) 

at the best case based on complexity computations of the included entities. On the other 
hand, this complexity is viewed as being unmatched for such a comprehensive heuristic 
algorithm-combining approach.

Work limitation

The domain of relational databases is the exclusive focus of this research. Furthermore, 
this research did not clearly address the response time and the bandwidth. As a result, in 
the future, rather of implicitly incorporating such measures with the objective function 
(see Eq. 1), it will be expressed explicitly using a newly proposed equation.

Conclusions and prospective
This paper presents a well-tuned heuristic approach for horizontal fragmentation and 
allocation. All DDBS design strategies (e.g., fragmentation, allocation, replication, site 
clustering, etc.) have been carefully combined into a single approach. It includes all 
heuristics, procedures, algorithms, and demonstrative examples. In the fragmentation 
process, the database was divided into smaller partitions using the proposed predicate-
based hierarchical clustering process. The query predicates were first identified, and 
then filtered to be used for acquiring the query clusters (data fragments). The proposed 
technique’s ability to effectively and greatly reduce the predicates space of each prob-
lem to the minimum final fragments has been one of its most distinguishing features. 
On the other hand, the data allocation mechanism is schemed based on the Knapsack 
algorithm-driven cost model, which utilized the capacities of the sites while drasti-
cally reducing network traffic. Two allocation phases and four replication scenarios, 
were carefully examined, and the best-fit scenario was then incorporated into the final 
RDDBS architecture. According to our findings, irrespective of retrieval or update que-
ries that occupy the space of all queries under consideration, the partial replication has 
significantly lessened the communication costs, making it the optimal scenario.

To verify the proposed approach’s competitiveness and to draw the best design for 
RDDBS, a good number of trials were carried out in completely unrelated circum-
stances. It is important to note that these efforts are intended to produce a thoughtful 
solution for both the initial and advanced stages of RDDBS design. Most importantly, an 
internal and external evaluation of the proposed approach have been made against the 
closely-relevant state-of-the-art competitors. The results demonstrated our approach’s 
superiority and effectiveness over both synthetized and real datasets. It is important to 
note that we have made every effort to test our methods in many settings without favor-
ing the proposed approach. To demonstrate the effectiveness of the proposed method, 
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we conducted a thorough experimental study using multiple experiments. We have 
considered various numbers of sites and clusters, a large number of data fragments in 
each experiment, varying the query space between retrieval and update ones, taking 
into account the fragmentation of multi-relational relationships, addressing two alloca-
tion phases and four replication scenarios, and finally using communication costs and 
response time as performance test indicators. To demonstrate the competitiveness and 
general applicability of the proposed approach, each of these settings in each experiment 
is carefully investigated. Furthermore, we can say that all of the experimental study’s set-
tings show that our approach performs favorably. As a result, its performance is viewed 
as promising, reflecting the fact that the proposed approach can effectively generalize to 
any new dataset. Finally, the results of our quick ablation investigation directly suggest 
that it would be preferable to build the DDBS with vertical fragmentation in the partial 
replication scenario. Otherwise, horizontally based fragmentation is the best.

In conclusion, it is important to note that this approach has been developed with the 
goal of allowing it to process variety of relations at once, while taking RDDBS scalability 
into consideration. In reality, the extension of a single site is always subject to a predeter-
mined restriction for every database. With scalable DDBS, databases can be dynamically 
expanded beyond a single site, so adding or removing sites makes it easier to respond to 
the needs of the targeted DDBS. In future work, as follow-up work, the issue of DDBS 
scalability and concurrency control [28, 29], as well as the network bandwidth [30] will 
be addressed. Moreover, one of our future goals is to test the methodology utilizing the 
lookup and query execution [31, 32] framework.
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