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Introduction
Biomarker identification is an important goal of cancer research for clinicians and biolo-
gists. How to explore specific biomarkers that can distinguish tumoral from normal tis-
sues, identify treatment-resistant patients, predict patient prognosis and recurrence, etc., 
are routine research tasks. Recently, immunotherapies represented by immune check-
point inhibitors have opened a new era in cancer treatment, significantly improving the 
clinical outcomes of cancer patients [1]. However, only a small fraction of patients can 
generate considerable benefits from immunotherapies [2]. Exploring specific biomarkers 
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that can effectively predict immunotherapeutic efficacy is crucial for preventing under- 
or over-treatment.

With the advancement of bioinformatics techniques, researchers are inclined to 
explore cancer biomarkers using RNA-seq or microarray data [3, 4], and data mining has 
become an essential part of cancer research. However, these works may be difficult and 
inconvenient for clinicians and biologists without computational programming skills. 
Currently, several open-access web servers that allow users to analyze and visualize 
gene expression online directly are emerging, such as GEPIA [5], Xena [6], Expression-
Atlas [7], and HPA [8]. Although these web applications are valuable and broadly uti-
lized, obtaining high confidence results in a specific tumor is difficult because their data 
sources are mainly derived from the TCGA database. Consistent performance across 
multiple independent datasets is the foundation for an excellent biomarker. In addition, 
the deeper exploration of specific biomarkers on underlying mechanisms, tumor micro-
environment, and drug indications are missing in these tools.

To address these unmet needs, we have developed Biomarker Exploration for Solid 
Tumors (BEST), a web-based application for comprehensive biomarker exploration on 
large-scale data in solid tumors and delivering fast and customizable functionalities to 
complement existing tools.

Methods
Data collection

BEST is committed to identifying robust tumor biomarkers through large-scale data. 
Hence, we retrieved cancer datasets with both expression data and important clini-
cal information (e.g., survival, therapy, etc.) as much as possible. Eligible datasets were 
mainly enrolled from five databases, including The Cancer Genome Atlas Program 
(TCGA, https://​portal.​gdc.​cancer.​gov), Gene Expression Omnibus (GEO, https://​www.​
ncbi.​nlm.​nih.​gov/​geo/), International Cancer Genome Consortium (ICGC, https://​dcc.​
icgc.​org), Chinese Glioma Genome Atlas (CGGA, http://​www.​cgga.​org.​cn/), and Array-
Express (https://​www.​ebi.​ac.​uk/​array​expre​ss/). In total, we included more than 50,000 
samples from 64 datasets for 27 cancer types.

Data re‑annotation and pre‑processing

Raw expression data were extracted for subsequent processing (Fig.  1). Data were re-
annotated if the original probe sequences were available based on the GRCh38 patch 
13 sequences reference from GENCODE (https://​www.​genco​degen​es.​org/). For RNA-
seq data, raw count read was converted to transcripts per kilobase million (TPM) and 
further log-2 transformed. The raw microarray data from Affymetrix®, Illumina®, and 
Agilent® were processed using the affy [9], lumi [10], and limma [11] packages, respec-
tively. The normalized matrix files were directly downloaded for microarray data from 
other platforms. Gene expression was further transformed into z-score across patients 
in each dataset. To make it easier for users to interpret and present analysis results, we 
cleaned and unified the clinical traits. Take KRAS mutation as an example, GSE39084 
[12] named it ‘kras.gene.mutation.status’, ‘mutation’ was labeled ‘M’ and ‘wild type’ was 
labeled ‘WT’; whereas GSE143985 [13] named it ‘kras_mutation’, ‘mutation’ was labeled 
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https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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‘Y’ and ‘wild type’ was labeled ‘N’. We uniformly termed it ‘KRAS’, and ‘mutation’ was 
labeled ‘Mut’ and ‘wild type’ was labeled ‘WT’.

Data calculation and storage

A tremendous amount of calculations are involved in BEST analysis, we thus have com-
pleted the time-consuming calculations in advance and used R.data for storage. Users 
can directly call these data, significantly reducing the user’s waiting time and background 
computing pressure. Take colorectal cancer (CRC) as an example, we collected a total 
of 47 datasets. Drug assessment is an analysis module of BEST, which requires fitting 
ridge regression models for individual drugs based on drug responses and expression 
data of cancer cell lines from the Genomics of Drug Sensitivity in Cancer_v1 (GDSC_
v1), Genomics of Drug Sensitivity in Cancer_v2 (GDSC_v2), The Cancer Therapeutics 
Response Portal (CTRP), and Profiling Relative Inhibition Simultaneously in Mixtures 
(PRISM) databases, and then predicting the sensitivity of each drug for CRC samples 
from all collected datasets. Apparently, if these results are not calculated in advance, 
users may have to wait more than 3 days. The pre-calculated content is displayed in 
Fig. 1.

Implementations

BEST is entirely free for users, built by the Shiny app and the HTML5, CSS, and JavaS-
cript libraries for the client-side user interface. The Shiny app (version: 1.7.2) mainly 
executes data processing and analysis. The function of BEST is divided into eight tabs 
(Fig.  1): Clinical association, Survival analysis, Enrichment analysis, Cell infiltra-
tion, Immunomodulator, Immunotherapy, Candidate agents, and Genomic alteration. 

Fig. 1  Overview of the BEST analytical framework
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Analysis results include images and tables, images can be downloaded in portable doc-
ument format (PDF) and portable network graphics (PNG) format, and tables can be 
obtained in comma-separated value (CSV) format.

Results
Quick start

BEST offers a simple interactive interface. Users first select one cancer type and then 
determine the input category—single gene or gene list (Fig. 1). For the single-gene mod-
ule, users can enter a gene symbol or an Ensembl ID in the ‘Enter gene name’ field to 
explore a gene of interest. The gene list module needs users to input a list of genes and 
pick a method to calculate the gene set score for each sample. The embedded methods 
include gene set variation analysis (GSVA) [14], single sample gene set enrichment anal-
ysis (ssGSEA) [15], z-score [16], pathway-level analysis of gene expression (PLAGE) [17], 
and the mean value. Users can customize the name of the gene set score.

Clinical association

In this module, users can explore the associations between the expression or score of 
the input variable and general characteristics (e.g., age, gender, alcohol, smoke, etc.), his-
tological characteristics (e.g., tissue type, tumor site, stage, etc.), molecular characteris-
tics (e.g., TP53 mutation, microsatellite instability, etc.) and treatment responses (e.g., 
chemotherapy and bevacizumab responses, etc.) (Fig. 2A). Whether to use parametric or 
nonparametric statistical tests for group comparisons based on the distribution of input 
variable [18]. For example, users can easily explore the differential expression of the 
input variable between tumor and normal tissues or find the associations between the 
input variable with smoke and alcohol. Our datasets also include abundant treatment 
responses, which might contribute to developing promising biomarkers in clinical set-
tings. Importantly, analysis results tend to be displayed in multiple independent cohorts, 
which provides a reference for the stability power of a variable of interest. For instance, 
Fig. 2B illustrates that CRC tumors process a significantly higher expression of COL1A2 
than normal tissues in most CRC datasets with tissue type information.

Survival analysis

BEST performs survival analysis based on gene expression or gene set score. This module 
allows users to explore the prognostic significance for overall survival (OS), disease-free 
survival (DFS), relapse-free survival (RFS), progression-free survival (PFS), and disease-
specific survival (DSS) (Fig.  2C). BEST generates Kaplan–Meier curves with log-rank 
test and forest plot with cox proportional hazard ratio and the 95% confidence interval 
information for various survival outcomes in multiple independent datasets (Fig. 2C, D). 
Kaplan–Meier analysis requires categorical variables, we thus provide five cutoff options 
for users to choose from, including ‘median’, ‘mean’, ‘quantile’, ‘optimal’, and ‘custom’. For 
example, when investigating gene COL1A2 in survival analysis of CRC, users can obtain 
Kaplan–Meier curves with a specific cutoff approach and a Cox forest plot for five sur-
vival outcomes across all CRC datasets with survival information.
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Enrichment analysis

BEST provides two enrichment frameworks: over-representation analysis (ORA) [19] 
and gene set enrichment analysis (GSEA) [20]. Users can select the top gene (self-defined 
number) most associated with the input variable to perform ORA and apply a ranked 
gene list based on the correlation between all genes and the input variable to carry out 
GSEA (Fig. 3A). Of note, the final correlation coefficient between the input variable and 
each gene is the average correlation of all datasets in specific cancer. The Pearson corre-
lation was calculated between all genes and the input variable. If users input a gene list, 
which will be firstly calculated by one of the four provided algorithms, including gene 

Fig. 2  Modules for clinical association and survival analysis. A Four categories of clinicopathologic 
information are mainly included in the clinical association module. B An example illustrates the differential 
expression of COL1A2 in multiple CRC datasets between the tumor and normal groups. C Five categories 
of survival variables are utilized in the survival analysis module, and examples of five survival variables for 
Kaplan–Meier analysis. D An example displays the cox regression analysis of five survival variables in multiple 
CRC datasets
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set variation analysis (GSVA), single sample gene set enrichment analysis (ssGSEA), 
z-score, pathway-level analysis of gene expression (PLAGE), and the mean value. The 
output forms of ORA are GO and KEGG bar charts (Fig. 3B, C). The ‘Detected Genes’ 
are all top gene most related to the input variable, which are also existed in GO or KEGG 
gene sets. The ‘Enriched Genes’ are the top gene within the specific biological pathway. 
Also, GSEA results are exhibited using GSEA-Plot (Fig.  3D) and Ridge-Plot (Fig.  3E) 
images. The GO, KEGG, and Hallmark gene sets for GSEA are obtained from Molecular 
Signatures Database (MSigDB). Similarly, users could select single gene or gene list as 

Fig. 3  Enrichment analysis module. A Enrichment analysis module includes two enrichment frameworks: 
over-representation analysis (ORA) and gene set enrichment analysis (GSEA). B, C GO (B) and KEGG (C) bar 
charts for the ORA framework. D, E GSEA-Plot (D) and Ridge-Plot (E) examples for the GSEA framework
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input variable. The specific biological term of GO, KEGG, and Hallmark gene set could 
be shown as GSEA-Plot, or a series of biological terms could be displayed as Ridge-Plot.

Cell infiltration and immunomodulator

BEST offers eight prevalent algorithms to estimate immune cell infiltration in the tumor 
microenvironment (TME) (Fig. 4A), including CIBERSORT [21], CIBERSORT ABS [21], 
EPIC [22], ESTIMATE [23], MCP-counter [24], Quantiseq [25], TIMER [26], and xCell 
[27]. To avoid time-consuming calculations for users and save computing resources, 
these eight algorithms have been executed in advance across all datasets, and the result-
ing data have been stored in the website background. Additionally, BEST provides five 
immunomodulator categories: antigen presentation, immunoinhibitors, immunostimu-
lators, chemokines, and receptors (Fig. 4A). Users can generate heatmap and correlation 
scatter plots from these two analysis modules. The heatmaps illustrate the correlations of 

Fig. 4  Modules for cell infiltration and immunomodulator analysis. A BEST offers eight immune infiltration 
assessment algorithms and five categories of immunomodulators. B, C Heatmaps illustrate the correlations 
of the input variable with each immune cell (B) or immunomodulator (C) across all CRC datasets. D, 
E Correlation scatters plots indicate the correlation of the input variable and an immune cell (D) or 
immunomodulator (E) in a specific dataset
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the input variable with each immune cell/immunomodulator across all cohorts (Fig. 4B, 
C), and the correlation scatters plots indicate the correlation of the input variable and an 
immune cell/immunomodulator in a specific dataset (Fig. 4D, E).

Immunotherapy

To further investigate the clinical significance of the input variable in immunothera-
pies, we retrieved 19 immunotherapeutic cohorts with expression data and immuno-
therapy information (e.g., CAR-T, anti-PD-1, anti-CTLA4, etc.) (Fig. 5A). Based on gene 
expression or gene set score in these datasets, users can conduct differential expression 
analysis (DEA) between response and non-response groups (Fig. 5B), receiver operating 

Fig. 5  Immunotherapy analysis module. A Schema describing data details and analysis for the 
immunotherapy module. B Boxplots indicate the differential expression of COL12A between response and 
non-response groups. C Receiver operating characteristic (ROC) curves evaluate the performance of the input 
variable in predicting the immunotherapeutic efficacy. D Kaplan–Meier curves assess the impact of the input 
variable on survival (OS and PFS) in immunotherapeutic cohorts that have undergone immunotherapies
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characteristic (ROC) curve to evaluate the performance of the input variable in predict-
ing the immunotherapeutic efficacy (Fig. 5C), and survival analysis to assess the impact 
of the input variable on survival (OS and PFS) in immunotherapeutic cohorts that have 
undergone immunotherapies (Fig. 5D).

Candidate agents

In this analysis tab, BEST performs drug assessment in bulk samples based on drug 
responses and expression data of cancer cell lines from the GDSC_v1, GDSC_v2, CTRP, 
and PRISM databases (Fig.  6A). Given the inherent differences between bulk samples 

Fig. 6  Candidate agents module. A Overview of BEST performing drug assessment. B Details of obtaining 
drugs that are significantly associated with the input variable. C Heatmaps illustrate the correlations of the 
input variable with each drug across all cohorts. Higher-ranked drugs indicate that high levels of the input 
variable predict drug resistance and vice versa. D Correlation scatters plots indicate the correlation of the 
input variable and a drug in a drug database and a tumor dataset



Page 10 of 14Liu et al. Journal of Big Data          (2023) 10:165 

and cell line cultures, we introduced a correlation of correlations framework [28] to 
retain genes presenting analogical co-expression patterns in bulk samples and cell lines. 
As previously reported [29], the model used for predicting drug response was the 
ridge regression algorithm implemented in the oncoPredict package [30]. This predic-
tive model was trained on transcriptional expression profiles and drug response data of 
cancer cell lines with a satisfied predictive accuracy were evaluated by default 10-fold 
cross-validation, thus allowing the estimation of clinical drug response using only the 
expression data of bulk samples (Fig.  6A). Modeling and prediction works have been 
completed, and drug assessments of all tumor samples based on four databases have 
been stored in the website background. BEST will calculate the correlations between all 
drugs and the input variable in all cohorts. According to the correlation rank of each 
drug across all datasets, we applied the robust rank aggregation (RRA) [31] to determine 
drug importance related to the input variable (Fig. 6B). Users can select the top drugs 
(self-defined number) to display the heatmap that illustrates the correlations of the input 
variable with each drug across all cohorts. Higher-ranked drugs indicate that high levels 
of the input variable predict drug resistance and vice versa. For example, high expres-
sion of COL1A2 might suggest Afatinib resistance and Dasatinib sensitivity based on the 
GDSC_v2 database (Fig. 6C). Also, users can select a drug database, a tumor dataset, and 
a specific drug to generate a correlation scatter plot (Fig. 6D).

Genomic alteration

In this module, BEST has pre-processed mutation and copy number variation data from 
the TCGA database using maftools [32] and GISTIC2.0 [33], respectively. Users can 
obtain a heatmap indicating genomic alterations as the input variable increase. The right 
panel of heatmap also displays the proportion of genomic alteration and statistical differ-
ences between the high and low groups. For example, with the rise in COL1A2 expres-
sion, the genomics landscape of the TCGA-CRC dataset is illustrated in Fig. 7. We found 
that the loss of chromosome segment 1p13.2 was more frequent in the high expression 
group.

Discussion
As an interactive web tool, BEST aims to explore the clinical significance and biologi-
cal functions of cancer biomarkers through large-scale data. Therefore, data richness is 
the foundation of BEST. From data collection, re-annotation, pre-processing, and pre-
calculation to storage, we provide a tidy and uniform pan-cancer database, allowing 
users to call and interpret data quickly. BEST offers prevalent analysis modules to enable 
researchers without computational programming skills to conduct various bioinformat-
ics analyses. Compared with other available tools [5–8, 34–36], BEST has more datasets 
and more diverse analysis options, which complements well with them (Table 1).

In BEST web application, users can identify cancer biomarkers associated with criti-
cal clinical traits (e.g., stage and grade), prognosis, and immunotherapy. Moreover, the 
underlying mechanisms of these biomarkers could be further explored using the enrich-
ment, cell infiltration, and immunomodulator analysis modules. Users can also apply the 
candidate agent analysis tab to investigate high levels of cancer biomarkers that might 
indicate which drugs are resistant and which are sensitive to specific cancer.
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Taken together, BEST provides a curated database and innovative analytical pipelines 
to explore cancer biomarkers at high resolution. It is an easy-to-use and time-saving web 
tool that allows users, especially clinicians and biologists without background knowl-
edge of bioinformatics data mining, to comprehensively and systematically explore the 
clinical significance and biological function of cancer biomarkers. With constant user 
feedback and further improvement, BEST is promising to serve as an integral part of 
routine data analyses for researchers.

Abbreviations
BEST	� Biomarker Exploration for Solid Tumors
CRC​	� Colorectal cancer
PDF	� Portable document format
PNG	� Portable network graphics

Fig. 7  Genomic alteration analysis module
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Table 1  Comparison of BEST with other tools

Tools BEST GEPIA Xena ExpressionAtlas HPA UALCAN PrognoScan PROGgeneV2

Pancancer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multiple datasets ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓
Analytic target

 Single gene ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
 Gene list ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Clinical association

 Tidy data ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗
 General charac-
teristics

✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

 Histological 
characteristics

✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

 Molecular charac-
teristics

✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗

 Treatment 
responses

✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Survival analysis

 Multiple out-
comes

✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓

 Multiple cutoff 
options

✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

 Cox regression 
analysis

✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

 Kaplan-Meier 
analysis

✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Enrichment analysis

 ORA ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
GSEA ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

 Cell infiltration

 CIBERSORT ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
 CIBERSORT_ABS ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
 EPIC ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
 ESTIMATE ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
 MCP-counter ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
 Quantiseq ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
 TIMER ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
 xCell ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Immunomodulator

 Antigen presenta-
tion

✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

 Immunoinhibitor ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
 Immunostimu-
lator

✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

 Chemokine ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
 Receptor ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Immunotherapy

 DEA ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
 ROC analysis ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
 Survival analysis ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Drug analysis ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Genomic analysis ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗
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CSV	� Comma-separated value
TME	� Tumor microenvironment
OS	� Overall survival
DFS	� Disease-free survival
RFS	� Relapse-free survival
PFS	� Progression-free survival
DSS	� Disease-specific survival
GDSC	� Genomics of Drug Sensitivity in Cancer
CTRP	� The Cancer Therapeutics Response Portal
PRISM	� Profiling Relative Inhibition Simultaneously in Mixtures
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