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Abstract 

In recent years, the widespread utilization of biological data processing technology 
has been driven by its cost-effectiveness. Consequently, next-generation sequencing 
(NGS) has become an integral component of biological research. NGS technologies 
enable the sequencing of billions of nucleotides in the entire genome, transcriptome, 
or specific target regions. This sequencing generates vast data matrices. Consequently, 
there is a growing demand for deep learning (DL) approaches, which employ multi-
layer artificial neural networks and systems capable of extracting meaningful informa-
tion from these extensive data structures. In this study, the aim was to obtain optimized 
parameters and assess the prediction performance of deep learning and machine 
learning (ML) algorithms for binary classification in real and simulated whole genome 
data using a cloud-based system. The ART-simulated data and paired-end NGS 
(whole genome) data of Ch22, which includes ethnicity information, were evaluated 
using XGBoost, LightGBM, and DL algorithms. When the learning rate was set to 0.01 
and 0.001, and the epoch values were updated to 500, 1000, and 2000 in the deep 
learning model for the ART simulated dataset, the median accuracy values of the ART 
models were as follows: 0.6320, 0.6800, and 0.7340 for epoch 0.01; and 0.6920, 0.7220, 
and 0.8020 for epoch 0.001, respectively. In comparison, the median accuracy values 
of the XGBoost and LightGBM models were 0.6990 and 0.6250 respectively. When 
the same process is repeated for Chr 22, the results are as follows: the median accuracy 
values of the DL models were 0.5290, 0.5420 and 0.5820 for epoch 0.01; and 0.5510, 
0.5830 and 0.6040 for epoch 0.001, respectively. Additionally, the median accuracy val-
ues of the XGBoost and LightGBM models were 0.5760 and 0.5250, respectively. While 
the best classification estimates were obtained at 2000 epochs and a learning rate 
(LR) value of 0.001 for both real and simulated data, the XGBoost algorithm showed 
higher performance when the epoch value was 500 and the LR was 0.01. When dealing 
with class imbalance, the DL algorithm yielded similar and high Recall and Precision 
values. Conclusively, this study serves as a timely resource for genomic scientists, pro-
viding guidance on why, when, and how to effectively utilize deep learning/machine 
learning methods for the analysis of human genomic data.
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Introduction
With the widespread use of biological data processing technology and the rapid advance-
ment in high-throughput sequencing (HTS) technologies, especially Illumina systems, 
next-generation sequencing (NGS) technology has become an indispensable part of 
biological research in many areas [1]. Next-generation sequencing technologies enable 
the sequencing of billions of nucleotides in the entire genome, transcriptome or smaller 
target regions. Therefore, the growth in data volume gives rise to extremely large data 
matrices. Systems that detect meaningful information from very large data structures 
have increased the need for deep learning (DL) approach which uses multilayer artificial 
neural networks (ANN). This situation has led researchers to utilize advanced statistical 
methods instead of classical statistical approaches in their studies.

The quality of machine learning (ML) approaches depends on selecting the appropri-
ate features [2]. Various preprocessing, dimensionality reduction, and feature selection 
techniques are employed to uncover these features. To reduce computation time and 
increase accuracy, it is essential to reduce dependence on specific features at this stage. 
Deep learning algorithms aim to classify and describe data by extracting features that 
can provide more information from individually less informative variables. Unlike tradi-
tional machine learning methods, DL methods provide a significant advantage in solv-
ing problems in high-dimensional data matrices and analyzing such data [3]. Performing 
hyperparameter optimization is crucial for creating an effective model and determining 
the optimal architecture and parameters [4–6].

Next-generation sequencing (NGS) methods have been at the center of numerous 
biological and medical research and have become very popular topics in recent years 
with deep learning algorithms [1]. Especially since feature extraction is not possible in 
genetic data analysis, the application of deep learning techniques in this field is impor-
tant for researchers to obtain more accurate results. In the existing literature, no studies 
have been identified that specifically investigate the optimized parameter evaluation of 
algorithms in NGS data. Therefore, it is necessary to obtain optimized values of hyper-
parameters, such as epoch, the number of layers, learning rate, and batch size, in NGS 
data analysis. In the literature, there are a limited number of studies that have performed 
diagnosis or classification using machine learning or deep learning techniques on vari-
ous types of genetic data, including exome, metagenomic, and omics data. The convo-
lutional neural network method (CNN) was utilized for the identification of clathrin 
proteins, the deficiency of which in the human body leads to significant neurodegen-
erative diseases such as Alzheimer’s [6]. Deep Neural Network (DNN) and XGBoost 
algorithms were used to classify variants into two classes which are somatic and ger-
mline, for a given whole exome sequencing (WES) data [7]. Performance comparisons 
were conducted between ML and DL algorithms to predict the effects of non-coding 
mutations on gene expression and DNA [8]. By utilizing TCGA data as input, a deep 
learning algorithm was used for the model of the association between genes and their 
corresponding proteins in relation to survival prognosis [9].

Deep learning techniques have recently emerged as powerful tools for various biomed-
ical applications, notably in the realm of Next-Generation Sequencing. The exponential 
growth in genomic data produced by NGS platforms has presented both challenges and 
opportunities. Traditional bioinformatics methods often struggle to efficiently process 
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and interpret the vast quantities of data generated. In contrast, deep neural networks 
(DNNs) have shown significant promise in detecting complex patterns, predicting phe-
notypes, and classifying genomic variants, among other tasks (Fig. 1) [10].

The Deep Neural Network (DNN) is a subfield of machine learning algorithms that 
models the workings of the biological nervous system. In a DNN model, there are mul-
tiple layers, including input and output layers, as well as more than two hidden layers, 
each containing neurons (processing nodes). These hidden layers are crucial components 
of the DNN model and actively participate in the learning process. While using more 
hidden layers during training can enhance the model’s performance, it can also intro-
duce significant challenges such as model complexity, computational cost, and overfit-
ting. One of the remarkable capabilities of the DNN model is its ability to automatically 
extract relevant features from unlabeled or unstructured datasets using standard learn-
ing procedures. Several researchers have reported that DNN models outperform tradi-
tional learning methods in various complex classification problems. Therefore, in various 
domains, DNN models can achieve highly accurate prediction performance, especially 
in classification problems involving intricate relationships [11].

Recurrent Neural Networks (RNNs) are a type of artificial neural network designed 
to process sequential or time series data. Unlike conventional neural networks, which 
assume independence between inputs and outputs, RNNs operate on sequences, per-
forming a similar task for each element in the sequence while taking into account pre-
vious outputs. However, the widespread utilization of RNNs in DNA sequencing data, 
where the order of bases holds crucial significance, has been limited [10]. Maraziotis 
et al. pioneered the implementation of RNNs in genomics, utilizing microarray exper-
imental data and employing a recurrent neuro-fuzzy protocol to infer complex causal 
relationships among genes by predicting time series gene expression patterns. Although 
most RNN applications in genomics are combined with other algorithms like Convolu-
tional Neural Networks (CNNs), CNNs excel in capturing local DNA sequence patterns, 
whereas RNN derivatives are more adept at capturing long-range dependencies within 
sequence datasets [12].

Fig. 1  Timeline of implementing deep learning algorithms in Genomics [10]
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A convolutional neural network (CNN) is a deep learning algorithm characterized by 
a deep feedforward architecture comprising various building blocks, including convolu-
tion layers, pooling layers, and fully connected layers. It can be visualized as a fully con-
nected network, where each node in a single layer is connected to every node in the next 
layer. In CNN layers, convolution units process input data from units in the previous 
layer, collectively contributing to making predictions. The fundamental principle behind 
this deep architecture is to enable extensive processing and connection features, allow-
ing the network to capture complex nonlinear associations between inputs and outputs. 
Due to these features that effectively define linear relationships, CNNs have found appli-
cations in a wide range of fields, including medicine, genetics, engineering, and econom-
ics [13].

Deep Reinforcement learning (DRL) is a machine learning technique in which a com-
puter agent learns to perform a task through repeated trial-and-error interactions with 
a dynamic environment. This learning approach empowers the agent to make a series of 
decisions aimed at maximizing a reward metric for the task, all without human interven-
tion and without being explicitly programmed to achieve the task. Studies of RL in the 
field of genetics are quite limited, and the first applications seem to be aimed at solving 
DNA sequence alignment using the Markov decision process (MDP) [14].

As the scale of genetic data expands, there will be an increase in costs and time associ-
ated with data processing. This situation leads to an increase in demands such as data 
analysis and fast delivery of findings at low costs.

Furthermore, it is important to present the optimized parameters obtained from 
methods such as ML and DL applied to different types of genetic data to practitioners 
in the field. This allows for performance evaluations and ensures the maximum informa-
tion can be obtained from the data.

In this study we have used GPU based model training but there are several computa-
tional environment options for deep learning applications. For instance: SPARK, High 
Performance Computing (HPC), Field-Programmable Gate Array (FPGA). Khan S. et al. 
and Xueqi L. et al. reported that there are limitations on high I/O latency, distributed 
compute memory maximization, optimization of configurable parameters and main-
taince of the clusters [15, 16].

The goal of this study was to obtain optimized parameters and evaluate the prediction 
performance of deep learning and machine learning (ML) algorithms for binary clas-
sification in both real and simulated whole-genome data using a cloud-based system. In 
this study we explored the following question: “Is GPU infrastructure based algorithm 
(DL) performs better than CPU based ML algorithms in terms of accuracy, time and 
repeatability?”.

Next‑generation sequencing

The human genome (Deoxyribonucleic Acid, DNA) consists of around 3 million nucle-
otides. There are four nucleotides in DNA: Adenine (A), Cytosine (C), Guanine (G), 
and Thymine (T). Only about 2% of DNA encode proteins. These DNA fragments that 
encode proteins are called exons, and the combination of all exons within the genome is 
known as the exome. The remaining parts of DNA are expressed as intergenic regions 
(introns) that do not encode protein.
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Damage to DNA can result in various consequences such as malformations, cancer, 
aging, genetic alterations, and cell death [17]. Therefore, the early detection of DNA 
damage plays anincreasingly important role in diagnosis, treatment, and the quality of 
life for patients.

It has been determined that most of the mutations that lead to the formation of dis-
eases occur in the exon regions of DNA [18].

Next-generation sequencing (NGS) is a method that is based on the simultaneous and 
parallel processing of each part of a DNA molecule obtained from a single sample, which 
is divided into millions of parts. In other words, NGS is the process of determining the 
order of nucleotide bases in an individual’s DNA molecule. NGS technology can detect 
genetic variants in an individual’s DNA that may be associated with a disease. However, 
technical limitations may cause false negative results as they affect the diagnostic pro-
cess of diseases [19]. In addition, the lack of sequence depth also changes the reliabil-
ity of the detected variants. Although whole exome sequencing is a powerful method 
for diagnosis, it should not be considered the best approach for all clinical indications. 
However, it is the most important step in establishing the necessary associations for the 
detection of clinical findings and the resulting phenotype variants [20].

ART: a next‑generation sequencing read simulator

The ART simulator is a group of methods that can generate data exactly the same as Illu-
mina technology, including erroneous reads that may occur in real genomes. ART soft-
ware was primarily developed for simulation studies helping to design data collection 
modalities for the 1000 Genomes Project. ART simulates sequencing reads by mimick-
ing real sequencing processes with empirical error models or quality profiles summa-
rized from large recalibrated sequencing data. Moreover, ART can simulate reads using 
the user’s own read error model or quality profiles [21, 22].

Whole genome data of human chromosome 22

In this research, the second dataset used was real data (whole genome) of chromosome 
22, which includes ethnicity information. This dataset was prepared by the Microsoft 
Genomics team and made publicly available for use.

The individuals in this dataset consist of five different populations, which are as fol-
lows: British from England and Scotland (91 individuals), Finnish from Finland (99 
individuals), Colombian from Medellin (94 individuals), Chinese (103 individuals), and 
individuals with African ancestry from the Southwest USA (61 individuals). The data 
from these countries were categorized into 190 individuals of European ancestry and 
258 individuals of non-European ancestry by expert geneticists. The dataset consists of 
448 FASTQ files, with each file containing individual variants on chromosome 22 of the 
human genome. VCF data was generated based on the Human Genome 38 (GRCh38) 
reference genome from the raw FASTQ data [23].

Cloud computing

Studies based on large sequencing datasets are growing rapidly, and public archives 
for raw sequencing data are periodically doubled. Researchers need to use large-scale 
computational resources to use this data. Cloud computing, a model where users rent 
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computers and storage from large data centers, is an attractive solution for genome 
research. Particularly in genetic research, conducting analyses directly on the stored 
data not only saves time but also reduces costs associated with data transfer across plat-
forms [24]. We have implemented our pipeline on Microsoft Azure cloud VMs and Jupy-
ter notebooks.

Methods
In this section, we introduce the proposed best practice pipeline for the classification 
of Next Generation Sequencing data. Firstly, we constructed a dataset to simulate the 
entire Human Genome.

Secondly, we obtained the VCF data by aligning the real Chr 22 whole genome FASTQ 
data shared by Microsoft Genomics Team with the reference genome using the BWA-
GATK tool, which the Broad Institute defines as the best practice.

Datasets

ART simulation data set

The distributions of the number of variants for two different continental groups (Euro-
pean and Others), as reported by the 1000 Genomes Project, were used to generate the 
variant types in the simulation. This approach ensured that the simulated data closely 
resembled real individuals.

In this study, NGS reads based on synthetic human genomes were derived using one 
of the most commonly used methods in genetic data simulation: a next-generation 
sequencing read simulator (ART) [21]. As a result, this study produced "500 data for 
group 0" and "500 data for group 1". The distinction between the groups was achieved by 
changing the f and m parameters.  The average simulation time for generating a whole 
genome FASTQ paired-end data took approximately 4 h and 12 min using the virtual 
computer configurations employed in this study. The simulations were made in batches 
of 100 on 10 different virtual machines [25]. The following are the codes used to generate 
the simulated data:

•	 art_illumina.exe -ss HS25 -i./testSeq.fa -o./paired_end_com -l 150 -f 5 -p -m 250 -s 
10 (for group 0)

•	 art_illumina.exe -ss HS25 -i./testSeq.fa -o./paired_end_com -l 150 -f 10 -p -m 500 -s 
10 (for group 1)

Chromosome 22 WGS data set

In the study, NC24, one of the NC series virtual machines supported by NVIDIA Tesla 
K80 Card and Intel Xeon E5-2690 V3 processor, was used. The analyses were conducted 
using Python programming language. The paired-end Next Generation Sequencing 
(NGS) data of Chromosome 22 (Ch22) in FastQ format was obtained using Illumina 
NextSeq 500. After performing quality control, the data was aligned to the reference 
genome (GRCh38) using the Burrows-Wheeler Aligner (BWA) method, which is part 
of the Broad Institute’s best practices analysis pipeline. By applying the Genome Ana-
lyzer Tool Kit (GATK) method, which is the most frequently used pipeline for Variant 
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Calling, to the aligned data, Variant Calling Format (VCF) data describing the variants 
were obtained (Fig. 2, Additional file 1: Table S1) [26].

Secondary analysis

This section involves that the process where the produced reads of the individual’s 
exome or genome are aligned to the reference genome and variant calls are generated. 
The first of the limitations at this stage is the lack of available human reference genomes 
and the lack of consensus on which optimal reference genome to use. Several software 
has been developed to realize this reading process. Various platforms such as BWA, 
Novalign, Stampy, SOAP2, LifeScope, and Bowtie are frequently used. As a result of this 
process, a BAM file is created as output (Fig. 3).

FASTQ

FASTQ is a text-based file format that contains nucleotide sequence reads and quality 
scores for each nucleotide read [27]. A typical FASTQ file contains 4 lines: The first line 
starts with the ’@’ character and specifies the identity of the sequence. The second line 
contains the raw sequence data, represented by a font. The third line starts with symbol 
plus "+" and can be optionally blank, or optionally followed by the sequence identifier 
which in the first line is written. In the fourth line, the quality value of the sequence 
is displayed in ASCII format. The quality value shows the probability of the sequence 
misreading during reading. Higher quality scores indicate a smaller probability of error 

Fig. 2  Standard BWA/GATK flow chart

Fig. 3  Pipeline [28]
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(perror). The phred-scaled quality score (Q) is converted to probability with the formula 
as Q = − 10log10*perror.

Variant calling&GATK

Variant calling stage entails identifying single nucleotide polymorphisms (SNPs), mul-
tiple nucleotide polymorphisms (MNPs), small insertions and deletions (InDels, they 
are usually less than 50 bp) from next generation sequencing data [29]. In this process, 
between 20,000 and 100,000, variants are discovered per exome, and approximately 3–4 
million variants for whole genome sequencing.

The Variant Call Format (VCF) is a text file that contains information about the vari-
ants found between the reference genome and the sample genome. The VCF format was 
developed for the 1000 Genomes Project. A VCF file consists of 8 fixed and mandatory 
columns, which are as follows: # chromosome (CHROM), a 1-based position of the start 
of the variant (POS), unique identifiers of the variant (ID), the reference allele (REF), 
a comma-separated list of alternate non-reference alleles (ALT), a phred-scaled qual-
ity score (QUAL), site filtering information (FILTER), and a semicolon-separated list of 
additional, user-extensible annotations (INFO) [30].

Experience has shown that software developed based on Bayesian statistical prob-
ability methods, such as SAMtools and the Genome Analysis Toolkit (GATK) (https://​
gatk.​broad​insti​tute.​org/​hc/​en-​us), are frequently preferred for their ability to reduce 
sequencing errors [31]. In this study, GATK, which was developed by the Broad Insti-
tute, was used for variant discovery following alignment with BWA.

Burrows‑Wheeler Aligner, BWA

Alignment tool (Burrows-Wheler Aligner, BWA) is a software package for mapping low-
divergent sequences against a large reference genome, such as the human genome. It 
consists of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. BWA-back-
track algorithm is designed for Illumina sequence reads up to 100 bp, while BWA-MEM 
and BWA-SW for longer sequences ranged from 70 bp to 1Mbp. BWA-MEM and BWA-
SW have similar characteristics such as long-read support and split alignment. However, 
the BWA-MEM algorithm is faster and it provides more accurate results for high-quality 
queries. BWA-MEM also has a better algorithm than BWA-backtrack for 70–100  bp 
Illumina reads. In this study, the BWA-MEM algorithm was used for alignment [32].

Tertiary analysis

This is the third and final step of the NGS analysis workflow. After merging the VCF 
data of individuals (Joint VCF), a matrix is created with individuals in rows and vari-
ants in columns. At the final stage, techniques such as machine learning, deep learning, 
and clustering are applied to this VCF matrix. Generally, this step includes the annota-
tion of genes, mutations and transcripts. But it is focused to obtain the prediction per-
formance and optimized parameters of deep learning and machine learning algorithms 
for the “Binary Classification” in real and simulated whole genome data using a cloud-
based system in this study. Because the most important problems in genetic data are the 
storage, organization and modeling of this data. Therefore, it does not include a process 
related to "annotation" (Fig. 3).

https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us


Page 9 of 21Özgür and Orman ﻿Journal of Big Data          (2023) 10:160 	

Machine learning methods

XGBoost

XGBoost (eXtreme Gradient Boosting) algorithm is a high-performance version of the 
Gradient Boosting algorithm optimized with various arrangements. It was introduced 
by Tianqi Chen and Carlos Guestrin in the article “XGBoost: A Scalable Tree Boosting 
System” published in 2016. The most important characteristics of the algorithm are its 
high predictive power, preventing over-learning, handling missing data and at the same 
time performing these operations quickly. According to Tianqi, XGBoost runs 10 times 
faster than other popular algorithms. It is shown as the best of the decision tree-based 
algorithms (Table 1) [33].

LightGBM

LightGBM is a high-performance gradient boosting algorithm using a tree-based learn-
ing algorithm designed by Microsoft Research Asia in the Distributed Machine Learning 
Toolkit (DMTK) project in 2017 (https://​light​gbm.​readt​hedocs.​io/​en/​latest). This algo-
rithm has some advantages over boosting algorithms. These advantages are; solving pre-
diction problems related to big data more effectively, using fewer resources (RAM), high 
prediction performance, and parallel learning [33]. It is very fast, therefore it is defined 
by the expression "Light". In the article (A Highly Efficient Gradient Boosting Decision 
Tree), LightGBM was found to be 20 times faster than other algorithms [34].

In the LightGBM algorithm, optimizing the learning rate, max dept, num leaves, min 
data in leaf parameters to prevent overlearning and feature fraction, bagging fraction 
and num iteration parameters to accelerate the learning time increases the performance 
of the model (Table 1, Fig. 4).

XGBoost utilizes a level-wise tree construction strategy, building the tree in a level-
by-level manner. In contrast, LightGBM adopts a leaf-wise tree construction strategy, 
where the tree is grown by continuously splitting the leaf with the highest gain. This 
leaf-wise strategy in LightGBM often results in faster training times. It is noteworthy 
that although XGBoost and LightGBM share similar concepts and objectives as gradient 
boosting frameworks, the variations in their implementations contribute to differences 
in performance, speed, and memory efficiency between the two algorithms [35].

Deep learning

Deep learning is a subset of artificial intelligence and machine learning that uses multi-
layer artificial neural networks to make predictions with high sensitivity and accuracy 
in areas such as image processing, object detection, and natural language processing. 
With the widespread use of biological data processing technology, NGS technology has 
become an indispensable part of biological research in many fields. It has been reported 
that there will be 100 million NGS data in the estimates made for 2025 (Fig. 5) [36].

It is not possible to extract features from these structures with classical approaches. 
For this reason, systems that evaluate many layers at the same time and detect meaning-
ful information from large data structures have increased the need for a deep learning 
approach using multi-layer artificial neural networks.

https://lightgbm.readthedocs.io/en/latest
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Deep learning requires the use of many hidden neurons and layers with new training 
models. The use of large numbers of neurons allows for a comprehensive representa-
tion of the raw data available. Adding more hidden layers to the neural network allows 
the hidden layers to capture nonlinear relationships. Thus, when the neural network is 
optimally weighted, high-level representations of the obtained raw data or images are 
provided [37].

In the tertiary analysis phase, Convolutional Neural Networks (CNN), one of the deep 
learning architectures, were used. CNNs are applied in various fields such as image rec-
ognition, video recognition, natural language processing, and computational biology. 
CNN is a variant of multi-layer perceptron (MLP) (Fig. 6).

Deep learning in next‑generation sequencing

Genomics is advancing towards a data-driven scientific approach. With the emergence 
of high-throughput data generation technologies in human genomics, we are confronted 
with vast amounts of genomic data. Multiple genomic disciplines, such as variant calling 
and annotation, disease variant prediction, gene expression and regulation, epigenom-
ics, and pharmacogenomics, benefit from the generation of high-throughput data and 
the utilization of deep learning algorithms to enable sophisticated predictions. Deep 
learning utilizes a wide range of parameters, which can be optimized through training 
on labeled data, particularly in the context of genetic datasets. Deep learning has the 
advantage of effectively modeling a large number of differentially expressed genes. There 
are still a limited number of studies in the literature evaluating NGS data with the deep 
learning method [38].

Using TCGA data as input, Wong et al. utilized deep learning to model the relation-
ship between genes and their corresponding proteins in relation to survival prognosis 
[9]. They presented a model which identifies different genes associated with glioblas-
toma survival, glioblastoma cancer cell migration, or glioblastoma stem cells. In another 
study, Young et al. used a deep learning algorithm to classify glioblastomas into six sub-
types in patient survival [39].

Fig. 4  LightBGM and XGBoost
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When considering such examples, new possibilities may arise for the early diagnosis of 
diseases as the use of deep learning in complex data structures, such as Next-Generation 
Sequencing (NGS), increases.

Deep learning hyperparameters

Batch size

Processing big data sets at once takes a long time and leads to memory problems. The 
data set is divided into small samples to prevent wasting time and memory problems, 
and the learning process is performed from these small pieces. The batch size defines the 
number of samples that will be propagated through the network [40].

Learning rate

Learning rate (LR) or step size is defined as the amount that the weights are updated 
during training. This learning structure can be realized in different ways. The LR param-
eter used during this process can be selected as a fixed value or as an incremental value. 
For example, it can be done by taking 0.001 until a certain learning step of the algorithm 
and taking 0.01 after this step. If this parameter is selected too small, the learning rate 
will also be slow. The larger the value of the parameter, the greater the impact of the 

Fig. 5  Sequenced and estimated genomes

Fig. 6  Convolutional neural network structure [1]
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data on the algorithm. For this reason, it is recommended to keep this value high at the 
beginning of the process and to decrease it after a certain epoch [41].

Epoch

Deep learning is used to make predictions in big data structures. Due to the large size of 
the matrices, data is divided into smaller parts and processed in parts rather than train-
ing the entire dataset at once. The number of epochs is a hyperparameter that deter-
mines the number of times the learning algorithm will iterate over the entire training 
dataset (If you have a training dataset with 1000 examples and set a batch size of 10, it 
will take 100 iterations to complete one epoch.). This comprises one instance of a forward 
pass and backpropagation. As the number of epochs increases, the network’s accuracy 
increases. Performance improvements in terms of accuracy tend to diminish or plateau 
after a certain number of epochs. When the training reaches the desired level (the error 
value, the point where the accuracy value is optimal), it can be terminated [42].

Number of layers

One of the most important features that distinguishes the deep learning algorithm from 
other artificial neural network algorithms is the number of layers, which enables it to 
successfully handle complex problems (Fig. 7). Increasing the number of layers improves 
the learning performance of the model. Thus, during the process of weight updates 

Table 1  Parameters used in ML and DL for ART simulation data and Chr 22 WGS data sets

Parameters ART simulation data Chr 22 WGS data

Drop-out 0.2 (800 train set/200 test set) 0.2 (360 train set/88 test set)

Deep learning

Batch size 160 60

Epoch 500; 1000; 2000 500; 1000; 2000

Number of iterations for each epoch 
in the model

5 6

Iteration 10,000 12,000

Learning rate (LR) 0.01; 0.001 0.01; 0.001

LightGBM

Min data in leaf 100 100

Max depth 7 5

Num leaves 128 32

Num iterations 100 100

Learning rate (LR) 0.01 0.001

Bagging fraction 0.5 0.5

XGBoost

Eta 0.01 0.015

Min child weight 1.4 1

Max depth 5 3

Gamma 0.1 0.1

Alpha 0.001 0.001

Lambda 1 1

Subsample 0.8 0.8
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through backpropagation, the effect of these updates on the first layers will be reduced 
[43].

The parameters used in the algorithm are presented in Table 1.

Performance evaluation

The evaluation criteria used to measure the predictive performance of models; recall, 
accuracy, precision, AUC-ROC, F criteria [37].

•	 Precision = TP/(TP + FP)
•	 Recall = TP/(TP + FN)
•	 F-Measure = (2 × Precision × Recall)/(Precision + Recall)
•	 Accuracy = (TN + TP) (TN + FP + TP + FN)

TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative.

Results
The study presents the findings of the ART simulated data, which consider the distri-
butions of the variant numbers for two different continental groups (European and 
Non-European) as reported by the 1000 Genomes Project. These findings are sum-
marized below.

When the learning rate was set to 0.01 and the epoch was updated with values 
of 500, 1000, and 2000 in the deep learning model for the ART simulated data, the 
mean accuracy values of the models were 0.6319 ± 0.0065, 0.6804 ± 0.0090, and 
0.7333 ± 0.0167, respectively. The median accuracy values of the models were 0.6320 
[0.6210–0.6430], 0.6800 [0.6650–0.6960], and 0.7340 [0.7060–0.7630], respectively. 
As the epoch value increased, the average accuracy value of the model also increased 
(Table 2, Additional file 1: Table S2, and Fig. 7) (Table 2, Additional file 1: Table S2, 
Fig. S1).

Fig. 7  Deep neural network
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Secondly, the learning rate was decreased to 0.001, and the effect of epoch value 
on the model was investigated. When the epoch values were updated with 500, 1000, 
and 2000 in the deep learning models, the mean accuracy values of the models were 
0.6922 ± 0.0168, 0.7214 ± 0.0182, and 0.8014 ± 0.0386, respectively. The median accu-
racy values of the models were 0.6920 [0.6640–0.7210], 0.7220 [0.6910–0.7530], and 
0.8020 [0.7360–0.8690], respectively. As the epoch value increased, the accuracy of 
the model increased. It was found that the accuracy performance of the deep learn-
ing model increased as the learning rate decreased and the epoch value increased 
(Table 2, Additional file 1: Table S2 and Fig. S1).

The table presents the performance of XGBoost and LightGBM model parameters. 
The average accuracy value of the XGBoost model was 0.6987 ± 0.0081, and the median 
was 0.6990 [0.6850–0.7120]. On the other hand, the average accuracy value of the Light-
GBM model was 0.6258 ± 0.0096, and the median was 0.6250 [0.6100–0.6430]. It can be 
observed that XGBoost has a higher accuracy compared to LightGBM (Table 2, Addi-
tional file 1: Table S2 and Fig. 7).

Increasing the epoch values resulted in higher accuracy performances when using DL 
algorithms with low LR values, compared to machine learning algorithms. The perfor-
mance of DL algorithms improved with high LR and epoch values, while lower accu-
racy values were observed with DL algorithms with low epoch values, in comparison to 
machine learning algorithms. In particular, results with the XGBoost algorithm showed 
a performance close to the performances obtained with the DL algorithm at high epoch 
and LR values (Table 3, Additional file 1: Table S3 & Fig. S2).

When the LR was set to 0.01 and the epoch was updated with values of 500, 1000, 
and 2000 in the deep learning model for Chr 22 WGS data, the mean accuracy values 
of the models were 0.5289 ± 0.0106, 0.5421 ± 0.0059, and 0.5820 ± 0.0089, respectively. 
The median accuracy values of the models were 0.5290 [0.5110–0.5470], 0.5420 [0.5320–
0.5520], and 0.5820 [0.5670–0.5980], respectively (Table  3, Additional file  1: Table  S3 
and Fig. S2).

On the other hand, when the learning rate of the deep learning model was set to 0.001 
and the epoch value was updated to 500, 1000, and 2000, the mean accuracy values of 
the models were 0.5508 ± 0.0074, 0.5841 ± 0.0079, and 0.6045 ± 0.0044, respectively. 
The median accuracy values were 0.5510 [0.5380–0.5640], 0.5830 [0.5710–0.5980], and 
0.6040 [0.5970–0.6120], respectively (Table 3, Additional file 1: Table S3 and Fig. S2).

When evaluating the performances of machine learning algorithms for Chr 22 WGS 
data, the mean and median accuracy values of the XGBoost model were determined as 
0.5760 ± 0.0081 and 0.5760 [0.5730–0.5790], respectively. On the other hand, the mean 
and median accuracy values of the LightGBM algorithm were 0.5250 ± 0.0029 and 
0.5250 [0.5200–0.5300], respectively. The performance of the XGBoost algorithm was 
higher than that of the LightGBM algorithm (Table 3, Additional file 1: Table S3 and Fig. 
S2).

Discussion
In this study, the prediction performance of deep learning and machine learning algo-
rithms was demonstrated for ART simulation data and Chr 22 whole genome data, spe-
cifically focusing on "bivariate classification." The experiments were conducted using a 
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cloud-based system, and optimized parameters were obtained. The storage, organization, 
and modeling of genetic data are among the most critical problems. The use of cloud 
systems accelerates researchers in these stages. The research demonstrated the impact 
of hyperparameter changes in deep learning models. Furthermore, the performance of 
deep learning models was compared with popular machine learning algorithms such as 
XGBoost and LightGBM. Additionally, this study represents an innovative approach in 
terms of parameter optimization and performance evaluation on whole genome data 
using a cloud-based system.

Le et al. [6] utilized the deep learning method to identify clathrin proteins, the defi-
ciency of which in the human body leads to significant neurodegenerative diseases like 
Alzheimer’s. They employed the convolutional neural network method (CNN) and 
selected hyperparameters as follows: epoch = 80, LR = 0.001, batch size = 10, drop-
out = 0.2. The model’s performance was evaluated using both machine learning and deep 
learning methods. The model exhibited a sensitivity of 92.2%, specificity of 91.2%, accu-
racy of 91.8%, and Matthews’s correlation coefficient of 0.83 on the independent dataset. 
While our study yielded similar findings to Le et  al., we additionally presented model 
performances at different epoch values (500–2000) and LR values (0.01–0.001). Conse-
quently, we demonstrated that the deep learning method can achieve significantly higher 
performance levels than machine learning algorithms, particularly at higher epoch val-
ues [6].

Akker et al. [42] have developed a machine learning model that determines the accu-
racy of variant calls in captured-based next-generation sequencing. The model was 
tuned to eliminate false positives, which are variants identified by NGS but not con-
firmed by Sanger sequencing. They achieved an exceptionally high accuracy rate of 
99.4%. In this study, it has been shown that NGS data has relevant properties to dis-
tinguish variables with low and high confidence using a machine learning-based model. 
Researchers did not focus on hyperparameter optimization in this study. Moreover, pro-
viding high discrimination in low coverage NGS data, which is smaller than the whole 
genome sequencing data, by using a machine learning algorithm is aligned with the find-
ings of our study [42].

Marceddu et  al. used a dataset of 7976 NGS calls validated as true or false positive 
by Sanger sequencing to train and test different ML approaches. While gradient boost-
ing classifier (GBC), random forest (RF), and decision tree (DT) algorithms were less 
affected by the imbalance in the dataset, the prediction performance of linear support 
vector machine (LSVM), nearest neighbor (NN), and linear regression (LR) were sig-
nificantly more affected. It has also been shown that for medium-small datasets, the best 
algorithms that can be used from ML methods were DT, GBC, and RF. This demon-
strates the potential to reduce diagnosis time and costs when integrating machine learn-
ing with NGS data. The high performance of the boosting algorithm, which is one of the 
popular algorithms of the last period, even in the case of data imbalance, is similar to 
that of our study [43].

Sun et  al. proposed the genome deep learning (GDL) method to examine the rela-
tionship between genomic variations and traits based on deep neural networks. They 
analyzed WES mutation data from 6083 samples from 12 cancer types from The Can-
cer Genome Atlas (TCGA) and WES data from 1991 healthy samples from the 1000 
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Genomes project. They created 12 different models to distinguish specific cancer types 
from healthy tissues, a general model that can identify healthy and cancerous tissues, 
and a mixed model to differentiate all 12 cancer types based on GDL. The accuracy of 
the different, mixed and total models was found to be 97.47%, 70.08% and 94.70% for 
cancer diagnosis, respectively. Thus, they reported that an effective method based on 
genomic information was developed in the diagnosis of cancer. While the accuracy value 
of the mixed model was determined at the performance level of the models in our study, 
in the models where high performances were obtained, it was observed that no informa-
tion about the model parameters was presented. Although very high performance values 
were obtained in the study, parameter optimization was not mentioned [44].

Maruf FA et  al. [7] designed a novel ensemble model using Deep Neural Network 
(DNN) and XGBoost to classify variants into two classes: somatic and germline, for a 
given Whole Exome Sequencing (WES) data. The XGBoost algorithm was used to 
extract features from the results of variant callers, and these features were then fed into 
the DNN model as input. They noted that the DNN-Boost classification model outper-
formed the benchmark method in classifying somatic mutations from paired tumor-
normal exome data and tumor-only exome data. Although very high performance values 
were obtained in the study, parameter optimization was not mentioned [7].

Miotto et al. [8] reported that deep learning outperforms machine learning methods 
in predicting the effects of non-coding mutations in gene expression and DNA similar to 
our study [8].

The performance of the machine learning models obtained from the studies was found 
to be similar to the deep and machine learning performance of the real dataset in our 
study. Additionally, higher performances were achieved in our simulated data compared 
to the summarized studies. The findings of the study show that when genetic data is 
evaluated with appropriate models, the outputs are important in terms of time and sup-
porting clinicians.

The recall and precision results of "0 and 1" or "European/non-European ethnicity" 
predicted in our study were found to be close to each other. This means that both groups 
achieve a balanced prediction performance in sample class (label) prediction for both 
deep and machine learning. This result is important in terms of obtaining acceptable 
models, especially in population-based or rare disease studies. Furthermore, studies in 
the literature have shown that the deep learning method also shows high performance 
in imbalanced classification. From this perspective, it can be concluded that the deep 
learning method’s performance in diagnosis-specific models yields reliable results in 
both detecting patients and distinguishing healthy individuals. The analysis systems 
(cloud-based & local) in which secondary and tertiary analysis will be performed and the 
machine features used directly affect the performance of DL models. Especially when 
modeling big data matrices such as the whole genome, the availability of such infrastruc-
ture allows for iterative processes and enables the attainment of maximum performance 
from the model through hyperparameter optimization.

Conclusion
Scope of this study, the problem of data storage in big data was eliminated by using the 
cloud system and it became easier to focus on the modeling of the data.
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We identified optimized parameters for deep learning and machine learning models.
In this regard, we have provided researchers with a comprehensive guide that utilizes 

the entirety of genetic information to enable them to obtain fast and highly accurate 
results.

The data stored and edited in cloud systems are modeled using GPU computing tools 
within the same environment. In this respect, the study has revealed the advantages 
of cloud systems throughout the entire research process. Researchers will be able to 
observe the effect of cloud systems for the highest benefit that can be obtained from 
genetic data, especially in population-oriented public health studies. A researcher who 
well-defined his/her hypotheses in the research can achieve both high performance 
and reliable results in data analysis by saving labor and time by taking into account the 
parameter optimizations and secondary and tertiary analysis processes specified in our 
study.
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