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Method: The methodological framework presented in this paper elaborates

on the incorporation of both the sine-cosine method and the convolution method
into the realm of neutrosophic statistics. It also introduces algorithms engineered
to produce random variables adhering to the neutrosophic normal distribution.

Results: Moreover, the study furnishes practical tables that encompass neutrosophic
random normal variables generated via the sine—cosine method, as well as tables
exhibiting neutrosophic random standard normal variables generated using the con-
volution method.

Conclusion: The analysis undertaken in this study conclusively establishes

that the proposed sine—cosine and convolution simulation methods yield outcomes
presented in the form of intervals. Furthermore, the study’s conclusion emphasizes
that the extent of indeterminacy significantly influences the characteristics of the ran-
dom variates.

Keywords: Classical method of simulation, Uncertainty, Neutrosophy, Normal
distribution, Simulation

Introduction

Random numbers hold significant importance across various domains, including experi-
mental design, statistical analysis, cryptography, and diverse disciplines, as highlighted by
[26]. In earlier times, random numbers were derived through methods such as coin flipping
and other simulation techniques. However, with the advent of high-speed computing, con-
temporary approaches employ computer-based generators to produce random variations
efficiently. These generators are tailored to the specific problems at hand and involve algo-
rithmic designs aimed at generating random variables for a range of applications. Among
various simulation methodologies, the sine—cosine simulation method and the convolution
simulation method have gained substantial traction, particularly in the generation of stand-
ard normal variates. These techniques involve the creation of continuous uniform numbers
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sourced from the continuous uniform distribution. Subsequently, these numbers are lev-
eraged to generate standard normal variates. The sine—cosine method was introduced by
[8]. Applied [13] the sine—cosine algorithm in solving the issues in machine scheduling
problems [11]. used sine—cosine transformation in developing the probability distribution
[18]. Discussed the algorithm to generate random variate from the normal distribution
[7]. Applied both the sine—cosine and convolution methods in a neural network applica-
tion [19]. Implemented the sine—cosine algorithms within a wastewater treatment system.
More information on sine—cosine and convolution transformation can be seen in [12, 22]
and [16]. Various studies on generating random numbers can be seen in [4, 14, 21] and [27].

The neutrosophic statistics (NS) introduced by [25] and applied when the observations
in the data are in an interval or have imprecise observations. The NS was found to be more
efficient than classical statistics (CS) in terms of flexibility and information [9, 10]. Pre-
sented a methodology to deal with neutrosophic numbers [20]. Introduced the t-test for the
AR (1) process [2]. Outlined the experimental design within the framework of neutrosophic
statistics [17]. Engaged with the probabilistic methodology employing neutrosophic statis-
tics [1]. Investigated a discrete distribution utilizing neutrosophic statistics [5]. Expanded
the theory of survey sampling through the application of neutrosophic statistics [6]. con-
ducted the research on the neutrosophic statistical test for sequential contingency. The var-
ious applications of NS can be seen in [3, 15] and [23].

The current sine—cosine and convolution simulation techniques within the framework
of classical statistics face limitations in simulating standard normal variates in the context
of uncertainty. A thorough literature review, conducted to the best of the authors’ knowl-
edge, reveals a lack of research on sine—cosine and convolution simulation methods within
the framework of neutrosophic statistics. This paper will introduce the routines and algo-
rithms for both simulation methods. Neutrosophic standard normal tables for both the
sine—cosine and convolution simulation methods will be presented and analyzed in detail.
The significance of this work lies in its pioneering approach to addressing a gap in simula-
tion methods within the realm of uncertainty. By introducing and exploring sine—cosine
and convolution simulation methods under the framework of neutrosophic statistics, this
research contributes to expanding the toolkit available for handling complex and uncertain
data scenarios. As existing methods struggle to simulate standard normal variates accu-
rately in the presence of uncertainty, this work offers a novel solution that has not been
explored before in the literature. The presentation of routines, algorithms, and tables for
both simulation methods not only fills this research gap but also opens new avenues for
statistical analysis in uncertain contexts. Sect. "Preliminaries” provides an introduction to
neutrosophic random variables. In Sect. "The Proposed Sine—Cosine Simulation Method",
the Sine—Cosine Simulation Method is elaborated, followed by the presentation of the Con-
volution Method of Simulation in Sect. "The Proposed Convolution Method". Sect. "Simu-
lation Studies" encompasses the simulation studies, while the final section offers concluding
remarks.

Preliminaries

Suppose that Xne[Xr,Xy] is a neutrosophic random variable follows the neutro-
sophic normal distribution having uncertain in the mean or in standard deviation
or in mean and standard deviation. Let uye€[ur, 7] be mean and oné€[oz, 0y] be the
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standard deviation of the neutrosophic normal distribution. The neutrosophic forms of
Xne€[Xr, Xy is expressed as

XN = Xy + Xuln; InellL, ] (1)
The neutrosophic forms of uye[pr, ] is expressed as

un = pr + pyuln; Inelr, Iy] (2)
The neutrosophic forms of oy €[or, o7/] is expressed as

on =or +oyln; In€e[lL, Iy] (3)

Note that the first values in the above neutrosophic forms denote the values under
classical statistics and the second values denote the determinate part and Iy is the meas-
ure of uncertainty. Note that the neutrosophic forms reduce to determinate values when
I =0.

The neutrosophic probability density function (npdf) of the neutrosophic normal dis-
tribution is given by

_ 1 X —p)?
fxn = — mexp( 207 ) @

The neutrosophic standard normal distribution is expressed by

1 (2)?
ZN) = exp| ——— 5
@) = = p( . > (5)
More details about the neutrosophic normal distribution and its shape can be seen in
[24].

The proposed sine-cosine simulation method

Suppose that Uine[Uir, U] and Uane[Uar, U] are the uniform continuous random
numbers for the same neutrosophic continuous uniform distribution. Note that U; and
Uy are uniform continuous random numbers ranging from 0 to 1. By following [8], two
neutrosophic standard normal random variates zj and zay can be generated as follows

ZIN€ [{\/ —21nL[1Lcos(2n(L12L))}, {\/ —2lnL[1ucos(2n(ngu))H (6)

Zon€ [{\/ —2lnL[1Lsin(271(U2L))}, {\/mSin(Zn(uzu))H (7)

The joint neutrosophic density X1n€[X1r, X117]and Xon€[Xar, Xor/] can be given by
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Pl ) = |4 e @’ 1 @w)?
IN>Z2N) = Nors p D) ,m p ) .

1 2 1 2
{m exp<_(zzz%) ) ez exp<_(Z2§1 ) )H ~J /e
(8)

By following [8], it is concluded that z;n€[z11,z117] and zon€[za1, z217] are independent
random variate from the same neutrosophic standard normal distribution in Eq. (5). The
process for generating neutrosophic standard normal and neutrosophic normal random
variates is elucidated as follows:

Step-1: Generate two neutrosophic continuous uniform random numbers
Uine[Uqr, Uy and Usne[Usr, Uy from O to 1.

Step-2: Generate the neutrosophic standard random variable zjn€([z1r,211/] using
ziv = [{V=2InlUicos2m (Uar)) }, {v/—2Inllycos2m (Unir)) } |

Step-3: Generate the neutrosophic standard random variable zon€([zor,2217] using
aw = [{V=2nlhsin@n (Uar)) }, {V—2nllusin@r (L)}

Step-4: Return z1n€(z11, z11] and zon €221, 221/]

Step-5: x1y = un + 21N X oy and oy = N + 2oN X ON

Step-6: Return x and xon

The operational procedure of the proposed simulation method is also shown in Fig. 1.

Generate
UynelUyg, Uyy) ‘

Uy €[Uszg, Uzyl
from Oto 1

|

Zy1N€[Z11, Z1y]
ZyN€[Zyp, Zoy]

Generate

T = [[JTnUu cos(Zn(Uu))}, {,/ —2InUy cos(Zn(Uzu))}
Zy = [{,/—2 InUy, sin(2n(Uz))}, {y—21n Uy sin(Zn’(Uw))}]

X )

!

Calculate and Collect Values
XIN = MUy +Ziy X Oy
XoN = Hy +Zay X Oy

Yes A No
€ Completed

Fig. 1 Algorithm of sine-cosine method
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Generate Uye|U,, Uyl

—_—
from 0 to 1

Compute
ZyelZy Zy]

Compute
Zyi=Zy+ X Uy;
Zn1€[Z11, Zy1 ), UnelUL, Uyl

|

i<=12 |i++

Fig. 2 Algorithm of the convolution method

The proposed convolution method
This section delves into the convolution method within the framework of neutrosophic
statistics, drawing inspiration from [26]. The presented simulation technique operates as
follows: utilizing a set (Fig. 2) of twelve neutrosophic continuous uniform random num-
bers to produce neutrosophic standard normal variates. The routine for implementing
the proposed convolution method under the domain of neutrosophic statistics is out-
lined as follows:

Step-1: Generate continuous uniform random numbers Une[U], U] from O to 1.

Step-2: Set neutrosophic standard normal variable Zye[Z, Zi/]

Step-3: For i=1 to 12, calculate the sum of 12 continuous uniform random variates
and compute Zy1 = Zn + Y Un; Zn1€[Z11, Zun ), UnelUy, Uyl

Step-4: return Zn1€[Z11, Z171]

Simulation studies

Within this segment, we will generate random normal variates using the sine—cosine
method across a range of specified parameter values. Simultaneously, we will employ the
convolution method to generate standard normal variates. Our approach involves adher-
ing to the prescribed algorithms to generate these random standard normal variates.

Sine-cosine simulation
Tables 1, 2, 3, 4 exhibit the results obtained using the proposed sine—cosine
method, showcasing two random normal variates, denoted as x;x and xyn. These
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tables provide insights across a range of specified parameter values, encompassing
unelpnr, py) and onelor, oyr]. The investigation is extended to account for varying
levels of indeterminacy, represented as Ij;, which influences the generation of random
normal variates. In particular, the values of I;; considered encompass 0, 0.01, 0.02,
0.05, and 0.10, generating pairs of random normal variates. To elaborate, Table 1 is
tailored for up€[10, 12] and one[1, 1.5], whereas Table 2 corresponds to the parameter
ranges iun€[10,12] and on€[3, 5]. Similarly, Table 3 and Table 4 correspond to distinct
parameter combinations, namely une[20,22] and one[1,1.5], and un€[20,22] and
on€[3, 5], respectively. Upon scrutiny of Tables 1, 2, 3, 4, it becomes evident that no
discernible trend exists within the neutrosophic random normal variates as the values
of I; fluctuate between 0 and 0.10. Additionally, the outcomes underscore that the
proposed sine—cosine simulation method yields random normal variates represented
as intervals, rather than determinate values. For instance, consider the case where Ij;
= 0.01, as seen in Table 1. Here, the random normal variate spans from 9.4 to 11
in the cosine simulation approach and from 11.2 to 13.7 using the sine method. It is
important to note that the values in each interval represent the random normal vari-
ate for various degree of indeterminacy.

Table 5 Standard normal variate from convolution method

Sr# In=0 In=0.01 In=0.02 In=0.03 In=0.05 In=0.10

1 [—1.34-1.34] [-0.86,—0.81] [-0.93,-0.83] [1.91,2.15] [-1.04-0.79] [-0.31,0.26]
2 [0.65,0.65] [-0.98,—0.93] [-0.36,—0.24] [1.02,1.23] [0.24,0.55] [1.1,1.81]

3 [-0.63,—0.63] [-0.3,—0.24] [—1.64,—1.56] [149 72] [1.04,1.39] [-1.16,—0.68]
4 [0.18,0.18] [-0.07,—0.01] [-2.26,—2.18] [1.04,1.25] [—034,-006] [-1.07,—0.58]
5 [1.18,1.18] [056063] [—0.06,0.05] [1.08,1.29] [—2.28,—2.1] [-0.43,0.12]
6 [-0.44,—0.44] [-1.16,—1.11] [0.81,0.95] [-039-022] [-057—-029] [— 00905]

7 [0.62,0.62] [-0.7,—0.64] [-0.48,—0.37] [—0.05,0.13] [0.15,0.46] (0.4,1.04]

8 [-0.01,—0.01] [-0.23,-0.18] [—1.14,—1.04] [-05-034] [-1.21,-097] [- 041015]
9 [-0.8,-038] [0.33,0.39] [051,0.64] [-0.69,—-053] [0.92,1.27] [-0.82,—0.3]
10 [1.29,1.29] [-0.74,—0.69] [—0.05,0.07] [—-0.13,0.05] [-0.73,-047]  [-0.2,0.38]
11 [-0.58,—0.58] [0.81,0.88] [3.03,3.21] [-244,—-233] [-036,—-008] [-1.64—1.2]
12 [0.86,0.86] [—05,—044] [0.14,0.26] [-2.1,-1.98]  [-0.14,0.15] [1.63,2.39]
13 [0.48,0.48] [—0.34,—-0.28] [0.36,0.49] [0.37,0.56] [1.07,1.43] [0.39,1.03]
14 [0.42,042] [1.67,1.74] [1.38,1.53] [0.22,041] [-0.85-059] [03,093]

15 [0.08,0.08] [026032] [066079] [-042,—0.25] [-0.26,0.03] [—0.34,0.23]
16 [—1.48,—1.48] [-2.13,-2.09] [0.92,1.06] [0.54,0.73] [-1.74,—153] [0.18,0.8]

17 [0.15,0.15] [0.82,0.89] [-131,—1.22] [1.42,1.64] [-0.37,-009]  [-1.57,—1.13]
18 [0.33,0.33] [-0.18,—0.13] [-0.58,—0.47] [1.51.72] [0.51,0.84] [0.93,1.63]
19 [0.02,0.02] [0.89,0.96] [0.63,0.76] [-0.99,—0.84] [1,1.35] [—1.94,—1.53]
20 [-0.82,—0.82] [0350.42] [—0.06,0.06] [-1.45—-131] [0.28,0.59] [-0.56,—0.02]
21 [0.87,0.87] [—1,-095] [0.3,043] [-043,-0.26] [0.03,0.33] [0.72,1.39]

22 [0.92,0.92] [~ 118—114} [0.99,1.13] [-0.8,—0.65]  [0.1,04] [—1.23,—0.75]
23 [-0.65,—0.65] [0.77,0.83] [1.05,1.19] [-037,-02] [-061,-034] [-0.76,—0.23]
24 [-2.31,-231] [-0.82,—0.77] [0.96,1.1] (061,08] [1.01,1.36] [-0.92,—041]
25 [0.75,0.75] [-0.59,—0.54] [-0.4,—0.29] [-0.44,—0.27] [-0.24,0.05] [-0.02,0.58]
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Convolution Simulation

The results of the convolution method yield random standard normal variates for
varying levels of indeterminacy, with [;; values of 0, 0.01, 0.02, 0.05, and 0.10. The
convolution method’s algorithm is utilized to generate these random standard normal
variates, as per the prescribed approach. The resulting values are compiled in Table 5.
Analyzing Table 5 reveals that the convolution method produces standard normal
variates represented as intervals characterized by indeterminacy. These intervals,
rather than offering precise numerical values, capture the uncertainty inherent in
the process. The proposed simulation approach follows this trend, providing random
standard normal variates presented as intervals. For instance, consider the case where
I;;=0.01; the resulting random standard normal variate spans from -0.86 to -0.81.

Comparative study

This section aims to contrast the techniques for generating random variates
based on neutrosophic statistics and classical statistics. In the proposed simula-
tion methods, a concept of indeterminacy, denoted as Iy, is introduced within the
parameters uy and oy. The neutrosophic expressions for uy and oy take the form
UN = pr + puln; Inell, Iyr] and on = o + oyln; In€[Ir, Ii7]. It is worth noting that
these neutrosophic expressions simplify to the mean and variance of the normal dis-
tribution when I; equals zero. For instance, in the scenario where uy = [10, 12] and
on = [1,1.5], the corresponding neutrosophic forms of mean and standard deviation
will be uny = 10+ 121y and on = 1 + 1.51y, respectively. Setting I; to zero in these
expressions results in the classical statistics’ mean and standard deviation values of 10
and 1, respectively. Tables 1, 2, 3, 4, 5 showcase results for various values of I;. The
initial column in these tables represents the random variable outcomes under classi-
cal statistics. To illustrate, considering the sine—cosine simulation method within the
realm of classical statistics, Table 1 demonstrates that the random normal variate x5
falls within the range of 9.2 to 10.8. However, when I;; equals 0.02, this range shifts
to 10.9 to 13.5. From this comparative analysis, it becomes evident that the degree of
indeterminacy significantly impacts the random variate. Consequently, in situations
involving uncertainty, relying on simulation methods rooted in classical statistics
might lead decision—makers astray.

Concluding remarks

The paper introduced the sine—cosine method for generating random normal vari-
ates and also presented the convolution method for generating random standard nor-
mal variates. Algorithms for both methods were provided as well. Various tables were
presented, showcasing the impact of indeterminacy on mean and standard deviation.
The outcomes of the comparative study underscored that the degree of indetermi-
nacy influences random normal variates. The proposed methods and algorithms offer
practical solutions for simulation in scenarios where precise data recording might be
challenging. These simulation methods find applicability in diverse fields including
reliability analysis, engineering and manufacturing, healthcare, and environmental
modeling. As a potential direction for future research, there is room for an extensive
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investigation into adapting the proposed sine—cosine simulation method and con-
volution method for neutrosophic multivariate normal distributions. This could
enhance the applicability and scope of the method for more complex and multidi-

mensional data scenarios.
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