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Abstract 

Keratitis is a major cause of corneal blindness worldwide. Early identification and timely 
treatment of keratitis can deter the disease progression, reaching a better progno-
sis. The diagnosis of keratitis often requires professional ophthalmologists. However, 
ophthalmologists are relatively scarce and unevenly distributed, especially in under-
served and remote regions, making the early diagnosis of keratitis challenging. In this 
study, an object localization method combined with cost-sensitive deep attention 
convolutional neural network (OL-CDACNN) was proposed for the automated diagno-
sis of keratitis. First, the single shot multibox detector (SSD) algorithm was employed 
to automatically locate the region of conjunctiva and cornea (Conj_Cor) on the original 
slit-lamp image. Then, the region of Conj_Cor was classified using a cost-sensitive deep 
attention convolutional network (CDACNN) to identify keratitis, other cornea abnormal-
ities, and normal cornea. A total of 12,407 slit-lamp images collected from four clinical 
institutions were used to develop and evaluate the OL-CDACNN. For detecting keratitis, 
other cornea abnormalities, and normal cornea, the OL-CDACNN model achieved area 
under the receiver operating characteristic curves (AUCs) of 0.998, 0.997, and 1.000, 
respectively, in an internal test dataset. The comparable performance (AUCs ranged 
from 0.981 to 0.998) was observed in three external test datasets, further verifying its 
effectiveness and generalizability. Due to reliable performance, our model has a high 
potential to provide an accurate diagnosis and prompt referral for a patient with kerati-
tis in an automated fashion.

Keywords:  Automatic diagnosis of keratitis, Object localization, Cost-sensitive, Deep 
attention convolutional neural network, Slit-lamp images

Introduction
Corneal blindness that mainly results from keratitis is the fifth leading cause of blindness 
worldwide, affecting more than 4.2 million people [1, 2]. Compared to other blindness 
reasons such as age-related macular degeneration and glaucoma, corneal blindness has 
higher incidence in a relatively young population and thereby putting a heavier burden 
on both the patients and society [3, 4]. Notably, visual impairment due to keratitis can be 
avoidable through early diagnosis and appropriate treatment [5, 6]. Otherwise, keratitis 
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can get worse rapidly, potentially leading to corneal perforation and even permanent 
vision loss [7, 8].

The diagnosis of keratitis is usually performed by professional ophthalmologists 
based on the examination of the morphology and color information of the cornea using 
a slit-lamp microscope [9–11]. However, experienced ophthalmologists are scarce and 
unevenly distributed, especially in underserved and remote regions, where ophthalmol-
ogists cannot meet the increasing demand for ophthalmic patients [12, 13]. In addition, 
ophthalmological diagnosis is a time-consuming and labor-intensive process [11, 14]. 
To cross the chasm of manual diagnosis defects in ophthalmology, it is imperative to 
develop an automatic diagnosis algorithm for the accurate identification of keratitis.

Recently, artificial intelligence (AI) hold tremendous promise for automatically diag-
nosing ophthalmic diseases such as diabetic retinopathy [15, 16], glaucoma [17, 18], cat-
aract [19, 20], age-related macular degeneration [21, 22], and eyelid tumors [23]. In the 
field of diagnosing keratitis, several studies have demonstrated the effectiveness of deep 
learning techniques [24–29]. Kuo et al. [24] utilized DenseNet [30] to distinguish fungal 
keratitis (FK), reporting an area under the curve (AUC) of 0.65 based on 288 corneal 
photographs. Similarly, Gu et  al. [25] achieved exceptional performance in diagnosing 
keratitis using Inception-v3 [31] with an AUC of 0.93 on a dataset of 5,325 ocular surface 
slit-lamp images. Redd et  al. [26] further investigated different CNNs to differentiate 
between bacterial keratitis (BK) and FK, resulting in an improved AUC of 0.86. Ghosh 
et al. [27] employed CNN and ensemble learning techniques for diagnosing both BK and 
FK, achieving an impressive AUC of 0.90 with the analysis of 223 slit-lamp images. In 
addition, Hung et al. [28] also developed a deep learning model based on DenseNet161 
[30], which effectively discriminated BK and FK, with an AUC of 0.85. Tiwari et al. [29] 
employed VGG16 [32] for the automated diagnosis of corneal infections and healed 
scars, attaining remarkable AUCs of 0.947 and 0.973, respectively.

Although the aforementioned studies demonstrate the potential of advanced deep 
learning techniques in the application of keratitis diagnosis, it is important to acknowl-
edge that the complicated characteristics of the keratitis lesions and large amounts of 
noise (e.g., eyelids) in the slit-lamp images often lead to relatively low performance in 
the existing systems. For example, the clinical phenotype of keratitis occurs not only in 
the region of cornea but also in the region of conjunctiva, such as conjunctival injection 
(Fig. 1a) [33]. Therefore, keratitis is sometimes misdiagnosed as conjunctivitis, leading 
to missing the optimal time for treatment initiation. Besides, in slit-lamp images, noises 
such as eyelashes and eyelids are distributed around the cornea. If the original slit-lamp 
image is directly input into deep learning, it will inevitably extract noise features which 
affecting the performance of the classifier. It is necessary to study the object localiza-
tion algorithm to eliminate the noise and prevent it from being transmitted to the clas-
sifier. Moreover, early-stage keratitis often presents atypical lesions on slit-lamp images. 
Indistinguishable lesion characteristics are present between keratitis and other corneal 
abnormalities (Fig. 1b), posing a high challenge for the accurate diagnosis of keratitis in 
an automated fashion.

To address the above-mentioned issues, in this study, we proposed an object locali-
zation method combined with cost-sensitive deep attention convolutional neural net-
work (OL-CDACNN) for automatic diagnosis of keratitis. First, the single shot multibox 
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detector (SSD) [34] was employed to filter out the noises such as eyelashes and eyelids 
around the cornea, and the single region of cornea and the region of conjunctiva and 
cornea (Conj_Cor) were automatically located and cropped, respectively. Second, the 
cost-sensitive deep attention convolutional network (CDACNN) was proposed to enable 
the classification of keratitis, other cornea abnormalities, and normal cornea. Third, we 
explored and compared the impact of different localization strategies (the regions of cor-
nea and Conj_Cor) on the performance of the OL-CDACNN for identifying keratitis, 
other cornea abnormalities, and normal cornea. Furthermore, the developed automated 
diagnosis model can be integrated into slit-lamp cameras to facilitate early detection of 
keratitis in resource-limited settings where ophthalmologists are scarce, enabling timely 
referral for positive cases and preventing the occurrence of corneal blindness caused by 
keratitis.

Methods
Datasets

In this study, 6567 slit-lamp images (2584 × 2000 pixels in JPG format) collected from 
Ningbo Eye Hospital (NEH) between January 2017 and March 2020 were used to 
develop OL-CDACNN. Additional datasets including 5,840 slit-lamp images derived 
from three clinical institutions were utilized to externally evaluate the performance of 
OL-CDACNN. The first one was derived from the outpatient clinics and health screen-
ing center at Jiangdong Eye Hospital (JEH), consisting of 1987 images (5784 × 3456 
pixels in JPG format); the second one was collected from the outpatient clinics and 
inpatient department at Ningbo Ophthalmic Center (NOC), consisting of 2924 images 
(1740 × 1534 pixels in PNG format); the last one was obtained from the outpatient 

Fig. 1  Several representative corneal slit-lamp images. a. images of keratitis. b. images of other cornea 
abnormalities. c. images of normal cornea
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clinics, inpatient department, and dry eye center at Zhejiang Eye Hospital (ZEH), con-
sisting of 929 images (2592 × 1728 pixels in JPG format).

The diagnosis of each image was determined by three experienced ophthalmologists 
based on clinical manifestations, ocular examination (such as fluorescein staining of 
the cornea and corneal confocal microscopy), laboratory tests (such as corneal scraping 
smear examination and the culture of corneal sample), and follow-up visits. All images 
with clear diagnosis were classified into three categories: keratitis, other cornea abnor-
malities, and normal cornea. Two regions of cornea and Conj_Cor were automatically 
localized and copped on each slit-lamp image to fairly compare the effectiveness of dif-
ferent localization strategies. The slit-lamp images derived from the NEH dataset were 
randomly divided (70%:15%:15%) into training (4526), validation (1,055), and internal 
test datasets (986). To prevent leakage and biased assessment of the OL-CDACNN, 
images from the same individual were assigned to only one same dataset. The training 
and validation datasets were employed to develop the OL-CDACNN and the internal 
test dataset was used to evaluate its performance. Detailed information on the datasets 
NEH, JEH, NOC, and ZEH is summarized in Table 1.

Ethical approval

The study was approved by the Institution Review Board of NEH (identifier, 2020-qtky-
017) and adhered to the principles of the Declaration of Helsinki. All anonymous slit-
lamp images were transferred to research investigators for inclusion. Informed consent 
was exempted, due to the retrospective nature of the data acquisition and the use of dei-
dentified images.

Overall framework of OL‑CDACNN

As shown in Fig. 2, the framework of OL-CDACNN for keratitis diagnosis consists of 
two stages: automatic localization for the regions of cornea and Conj_Cor (Fig. 2a) and 
automatic classification of keratitis, other cornea abnormalities, and normal cornea 
(Fig. 2b). Except for the lesion region of cornea, other keratitis-associated signs can also 
present in the region of conjunctiva, such as conjunctival injection. Therefore, both the 
cornea and conjunctiva are regions of interest for the diagnosis of keratitis. In the first 
stage, the SSD was employed to locate and crop the regions of cornea and Conj_Cor 
[34]. In the second stage, the two cropped regions were separately input into CDACNN 
to achieve the classification of keratitis, other cornea abnormalities, and normal cor-
nea. We compared the impact of the two cropped regions on the performance of OL-
CDACNN in detail to determine the optimal localization strategy. Patients detected as 

Table 1  Distributions of slit-lamp images in four clinical institutions

NEH Ningbo Eye Hospital, JEH Jiangdong Eye Hospital, NOC Ningbo Ophthalmic Center, ZEH Zhejiang Eye Hospital

NEH JEH NOC ZEH

Training Validation Test Test Test Test

Keratitis 2185 511 483 1186 839 378

Other cornea abnormalities 585 136 130 236 969 237

Normal cornea 1756 408 373 565 1116 314
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keratitis or other cornea abnormalities are referred to experienced ophthalmologists for 
further confirmation and treatment.

Automatic localization of the regions of cornea and Conj_Cor

To obtain the optimal localization method, eight object localization algorithms are 
examined and compared in this study: five two-stage object localization algorithms and 
three one-stage object localization algorithms. The two-stage object localization algo-
rithms include Faster R-CNN1 [35], Faster R-CNN2, Cascade R-CNN1 [36], Cascade 
R-CNN2, and TridentNet [37], where the feature extraction networks used in R-CNN1 
and R-CNN2 are ResNet50 [38] and ResNet101, respectively, and the feature extraction 
network used for TridentNet is ResNet50. The one-stage object localization algorithms 
include RetinaNet1 [39], RetinaNet2, and SSD [34], where the feature extraction net-
works in RetinaNet1 and RetinaNet2 are ResNet50 and ResNet101, respectively, and the 
feature extraction network of SSD is VGG16 [32].

The two-stage detectors first generate a series of candidate frames using the candidate 
region generation module, then perform classification and regression based on the can-
didate frames to determine the exact region and category. The one-stage detectors per-
form classification and regression directly based on the anchor frame and complete the 
adjustment of the bounding box and category identification in one step.

Automatic diagnosis of keratitis

Compared with the Residual Convolutional Network (ResNet), the Dense Convolutional 
Network (DenseNet) [30] achieves extraordinary performance with fewer computations 
and more effectiveness. In this study, cost-sensitive and deep attention mechanisms are 
applied in the DenseNet to further improve the performance and generalization ability 
of automatic diagnosis of keratitis. Specifically, a deep attention (DA) module in Fig. 2b 
is unfolded to analyze its internal structure and implementation principle, as shown in 
Fig. 3. After 3 × 3 convolution operation, a channel attention sub-module and a spatial 

Fig. 2  The overall framework of automatic diagnosis of keratitis. a. Automatic localization for the regions 
of cornea and Conj_Cor using SSD. b. Automatic diagnosis of keratitis, other cornea abnormalities, and 
normal cornea using CDACNN. SSD single shot multibox detector, CDCNN cost-sensitive deep attention 
convolutional network, Conj_Cor conjunctiva and cornea, DA deep attention
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attention sub-module [40] were adopted to adjust the CDACNN to focus on the lesion 
of keratitis, enhancing the expression of lesion-related features and suppressing the 
expression of noise features around the lesion. Then, the feature maps of the attention 
module and the input module are concatenated and fed into the next attention module. 
After cascading multiple attentions, the deep attention convolutional network is con-
structed. Furthermore, the cost-sensitive is incorporated and optimized in the loss func-
tion to determine appropriate parameters, facilitating the CDACNN to focus more on 
the minority category of other cornea abnormalities.

Channel attention mechanism

The feature map of channel attention is generated by exploiting the inter-channel rela-
tionship of different features. As each channel for a feature map is considered as a fea-
ture detector, channel attention focuses on ‘what’ is meaningful given an input image. To 
compute the channel attention efficiently, we squeeze the spatial dimension of the input 
feature map. Specifically, the input feature map is performed using both average-pooling 
and max-pooling operations in the channel dimension to aggregate two different spatial 
context descriptors: Fc avg and Fc max. The aggregated descriptors are forwarded to 
a multi-layer perceptron (MLP), then the output of the MLP is summed and activated 
by the sigmoid to generate the feature map of channel attention: Mc. The mathematical 
expression for channel attention is shown in Eq. (1).

where σ, AvgPool, MaxPool, F, Fc avg, and Fc max denote the sigmoid function, average-
pooling operation, max-pooling operation, input feature map, average-pooled features, 
and max-pooled features, respectively. W0 and W1 are the weights of MLP.

Spatial attention mechanism

The feature map of spatial attention is generated by utilizing the inter-spatial relationship 
of different features. Compared with channel attention, spatial attention focuses on ‘where’ 
is an informative part, which is complementary to channel attention. To compute the spa-
tial attention, average-pooling and max-pooling operations along the channel axis are 
applied to aggregate channel information to generate two 2D maps (Fs avg and Fs max) 
which denote average-pooled features and max-pooled features. Then, the two 2D maps 

(1)
Mc(F) = σ(MLP(AvgPool(F))+MLP(MaxPool(F)))

= σ

(

W1

(

W0

(

Fcavg

))

+W1

(

W0

(

Fcmax

))

)

Fig. 3  An unfolded form of one deep attention module
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are concatenated and convolved by a standard 7 × 7 convolution layer to produce the fea-
ture map of spatial attention. The mathematical expression for spatial attention is shown in 
Eq. (2).

where σ, f 7×7 , AvgPool, MaxPool, F, Fs avg, and Fs max denote the sigmoid function, a 
convolution operation with the filter size of 7 × 7, average pooling, maximum pooling, 
feature map of the input, average-pooled features, and max-pooled features, respectively.

Cost‑sensitive method and optimization process

In the NEH dataset, the number of keratitis patients (or normal cornea) is far more than 
that of other corneal abnormalities patients. The class imbalance problem is common in 
medical practice. The imbalanced dataset causes the decision boundary of conventional 
classifiers to be biased towards the majority class [19, 20, 41]. Therefore, this study employs 
the cost-sensitive method to adjust the weights of different classes in the softmax loss func-
tion. Specifically, this study discriminatively determines the cost of misclassification of dif-
ferent classes and assigns a larger weight to the other cornea abnormalities class. For one 
iterative training stage, m samples are selected at random to form a training dataset {[x (1), y 
(1)], [x (2), y (2)],…, [x (m), y (m)]}, where x(i)∈ R(l) and y(i) ∈{1,…,k}. Here, x(i) denotes the features 
of the i-th sample, and y(i) is the class label. The cost-sensitive loss function can be com-
puted as shown in Eq. (3).

L(θ) = −
1

m
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where m, n, k, and θ denote the number of training samples, the number of input neu-
rons of the softmax function, the number of classes, and trainable parameters, respec-
tively. I{y(i) = j} denotes the indicator function (I{y(i) is equal to j} = 1 and I{y(i) is not equal 
to j} = 0) while CS{y(i) = other abnormalities} is the cost-sensitive weight function (CS{y(i) 
is the other abnormalities class label} = C and CS{y(i) is not the other abnormalities class 
label} = 1). In this study, the grid search method is employed to determine the effective 
cost-sensitive weight parameter C within the interval [2–4]. Moreover, a weight decay 
term �2

∑k
i=1

∑n
j=1 θ

2
ij is used to penalize the larger trainable weights. Finally, to obtain 

the optimal parameters θ* (see Eq.  (4)), the mini-batch gradient descent (Mini-batch-
GD) is employed to minimize L(θ) as shown in Eq. (5).

(2)
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(

f 7×7([AvgPool(F);MaxPool(F)])
)

= σ

(

f 7×7

([

Fsavg;F
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(4)θ∗ = arg min
θ

L(θ)
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Results
Experimental environment

This study was conducted using the PyTorch deep learning framework (version 1.7.1) 
[42], and all models were trained in parallel with four NVIDIA TITAN RTX GPUs. 
For object localization algorithms, the number of iterations (epochs) was set to 24. For 
classifier algorithms, a mini-batch size of 32 was utilized on each GPU, resulting in the 
processing of 128 images in one iteration. The adaptive moment estimation (ADAM) 
optimizer was employed to optimize the model’s parameters. The specific parameters 
were configured with an initial learning rate of 0.001, β1 of 0.9, β2 of 0.999, and a weight 
decay of 1e-4. The maximum number of iterations for training classifiers was set to 80. 
During the training process, the loss value on the validation dataset was used as a metric 
for model selection. After each iteration, the loss value was calculated based on the vali-
dation dataset. Finally, the model with the lowest loss value was selected as the optimal 
model for testing on the test dataset. To increase the diversity of the NEH dataset and 
prevent overfitting and bias problems during training, data augmentation techniques, 
including random cropping, random rotations around the image center, and horizontal 
and vertical flips, were adopted to enlarge the original training dataset by 6 times (from 
4526 to 27,156).

Evaluation Metrics and statistical analysis

Average precision (AP) for each class and mean average precision (mAP) for all classes 
were used as two primary metrics to evaluate the performance of object localization in 
the regions of cornea and Conj_Cor. AP and mAP are calculated using P (Precision) and 
R (Recall) indicators, as shown in Eqs. (6–9).

where TP (True Positive) is the number of samples in which the region of cornea (or 
Conj_Cor) is predicted correctly; FP (False Positives) indicates the number of samples 
in which the predicted label is the region of cornea (or Conj_Cor), but the true label 

(5)
∇θj L(θ) = −

1

m

m
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TP
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is not; FN (False Negatives) indicates the number of samples in which the true label is 
the region of cornea (or Conj_Cor), but the predicted label is not. FN indicator implies 
region of cornea (or Conj_Cor) is not detected by the model. The AP is a popular met-
ric for evaluating the performance of object detectors by estimating the area under the 
curve of the precision and recall relationship for a specific class, and the mAP is the 
mean AP of all classes.

The evaluation metrics of classification models are accuracy, specificity, sensitivity, 
receiver operating curve (ROC), and area under the ROC (AUC), as shown in Eqs. (10–
12). A larger area under the ROC denotes better performance.

where, TP, FP, TN, and FN denote the numbers of true positives, false positives, true 
negatives, and false negatives in the classification results, respectively.

The performance of the object localization methods and classification models was 
evaluated by utilizing the one-versus-rest strategy. All statistical analyses were con-
ducted using Python 3.7.8 and the package of Scikit-learn. The 95% confidence inter-
vals (CI) for accuracy, specificity, and sensitivity were calculated with the Wilson Score 
Approach, and for AUC, using Empirical Bootstrap with 2000.

Performance comparison of different localization methods

To obtain the optimal localization method, this study compared the performance of 
eight object localization methods in the NEH internal test dataset and three external test 
datasets (JEH, NOC, and ZEH). The statistical results of AP and mAP for the localiza-
tion of the regions of cornea and Conj_Cor are shown in Table 2. It is easy to obtain that 
the performance of one-stage localization methods for the region of cornea in the NEH 
test dataset was slightly better than those of two-stage localization methods, in which 
the SSD method achieved the best AP of 0.9898. It is worth mentioning that all eight 
methods obtained an AP of 1 for the region of Conj_Cor in the NEH test dataset. Over-
all, the SSD method achieved the best mAP of 0.9949.

Experimental results in three external test datasets (JEH, NOC, and ZEH) verified the 
generalization ability of the automatic localization methods. In the JEH dataset, the Reti-
naNet2 method achieved the best AP of 0.9987 for the region of cornea while the Faster 
R-CNN1 achieved the best AP of 0.9986 for the region of Conj_Cor. The RetinaNet2 
achieved the best mAP of 0.9972. In the NOC dataset, the RetinaNet1 method obtained 
the best AP of 0.9983 for the region of cornea. All Faster R-CNN1, Faster R-CN2, Tri-
dentNet, RetinaNet1, and SSD methods accurately localized the region of Conj_Cor 
with an AP of 1. Therefore, the RetinaNet1 obtained the best mAP of 0.9992. In the ZEH 
dataset, both RetinaNet2 and SSD achieved the optimal AP of 0.9999 for the region 

(10)Accuracy =
TP + TN

TP + FP + TN + FN

(11)Specificity =
TN

TN + FP

(12)Sensitivity =
TP

TP + FN
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of cornea. All Faster R-CNN1, TridentNet, and SSD accurately localized the region of 
Conj_Cor with an AP of 1. The SSD method obtained the best mAP of 1. Through the 
above analysis, it is not difficult to see that one-stage methods did not degrade the locali-
zation performance for the regions of cornea and Conj_Cor in the absence of the region 
proposal network (RPN) module. Conversely, the performance of one-stage methods 
was slightly better than or equivalent to that of two-stage methods. To visually observe 
the localization effect of the optimal method SSD, we presented several representative 
localization results for the regions of cornea and Conj_Cor, as shown in Fig. 4.

Efficiency analysis of different localization methods

To determine the best localization method, we further compared their efficiency and 
resource utilization, including the model size, trainable parameters, and running time 
of training and testing. As shown in Table 3, the number of trainable parameters, the 
model size, and the running time of testing of the SDD method were less than those 
of the other methods. Specifically, the SSD method only took 0.049  s to complete the 
localization of one slit-lamp image. In addition, although the training time of the SSD 
method was not minimal, the training could be performed on the local server in advance 
without affecting the efficiency of the model after deployment. Based on the above per-
formance and efficiency analysis, the SSD method had higher diagnostic performance 

Fig. 4  Representative localization examples for the regions of cornea and Conj_Cor. The green rectangle 
represents the predicted boundary by the SSD method and the blue rectangle represents the true boundary 
labeled by the experienced ophthalmologist. Conj_Cor conjunctiva and cornea, SSD single shot multibox 
detector
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and faster detection speed, and was selected as the final detection model for the regions 
of cornea and Conj_Cor.

Effectiveness analysis of deep features of CDACNN and DenseNet

The t-distributed Stochastic Neighbor Embedding (t-SNE) [43] was utilized to visual-
ize the embedding features of each category learned by the deep learning model in a 
two-dimensional space. In the internal test dataset, the t-SNE technique showed that 
the CDACNN had better capability to separate the embedding features of each category 
than that of DenseNet in the regions of cornea and Conj_Cor (Fig. 5). Notably, as shown 
in column 1 of Fig.  5, the features of the region of Conj_Cor extracted by CDACNN 

Table 3  Efficiency comparison of eight object localization methods

Bold values represent the best performance among different methods in the same column. Training time indicates the 
running time of the method in the whole training process. Testing time indicates the average time that the method needs in 
testing every slit-lamp image. MB Mbyte

Methods Size Parameters(M) Training time Testing time

Faster R-CNN1 315.0 MB 4.1e + 07 1.41 h 0.078 s

Faster R-CNN2 460.3 MB 6.0e + 07 1.96 h 0.090 s

Cascade R-CNN1 527.1 MB 6.9e + 07 1.86 h 0.083 s

Cascade R-CNN2 672.4 MB 8.7e + 07 2.35 h 0.101 s

TridentNet 251.4 MB 3.3e + 07 3.89 h 0.068 s

RetinaNet1 276.9 MB 3.6e + 07 0.85 h 0.063 s

RetinaNet2 422.1 MB 5.5e + 07 1.27 h 0.071 s

SSD 187.2 MB 2.5e + 07 2.27 h 0.049 s

Fig. 5  Visualization of the separability for the embedding features learned by the CDACNN and DenseNet 
in the internal test dataset via t-SNE. Different colored point clouds represent the different categories. 
“Normal” indicates normal cornea. “Others” indicates cornea with other abnormalities. Conj_Cor conjunctiva 
and cornea, t-SNE t-distributed stochastic neighbor embedding, CDACNN cost-sensitive deep attention 
convolutional neural network
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completely discriminated normal cornea from cornea abnormalities (including keratitis 
and other cornea abnormalities). In contrast, for the DenseNet method, some normal 
cornea samples were mixed with the keratitis samples, which were not easily discrimi-
nated, as shown by the dotted square in column 1 of Fig. 5. Therefore, the features of 
the region of Conj_Cor extracted by the CDACNN method obtained satisfactory 
separability.

Performance comparison of CDACNN and DenseNet in the internal test dataset

We trained CDACNN and DenseNet methods based on three types of images (original 
slit-lamp image, the region of cornea, and the region of Conj_Cor) to obtain six different 
combinations for the classification of keratitis, other cornea abnormalities, and normal 
cornea. To achieve an optimal diagnosis strategy, we compared the performance of six 
combinations in the internal test dataset, as shown in Table 4, Figs. 6 and 7. Analyzing 
the confusion matrixes in Fig. 6, compared to the original images and the region of cor-
nea, both CDACNN and DenseNet achieved better performance based on the region of 
Conj_Cor. Furthermore, the CDACNN method outperformed the DenseNet method on 
the region of Conj_Cor, in which the CDACNN misclassified only 11 slit-lamp images 
while the DenseNet misclassifies 17 images. It is worth mentioning that the number of 
misclassified keratitis by CDACNN was reduced by half (from 14 to 7) relative to the 
DenseNet method on the region of Conj_Cor, as shown in the first column of Fig.  6. 
Correspondingly, the ROC curves (Fig. 7) of these six combinations demonstrated that 

Table 4  Performance of the CDACNN and DenseNet in the internal test dataset

Normal normal cornea, Others cornea with other abnormalities, CI confidence interval, Conj_Cor conjunctiva and cornea, 
CDACNN cost-sensitive deep attention convolutional neural network

One-vs.-Rest 
Classification

CDACNN DenseNet

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Accuracy (95% 
CI)

Keratitis vs. other + normal

 Conj_Cor 98.6%
(0.975–0.996)

99.2%
(0.984–1.000)

98.9%
(0.982–0.995)

97.1%
(0.956–0.986)

99.8%
(0.994–1.002)

98.5%
(0.977–0.992)

 Cornea 98.3%
(0.972–0.995)

98.2%
(0.971–0994)

98.3%
(0.975–0.991)

98.1%
(0.969–0.993)

96.2%
(0.946–0.979)

97.2%
(0.961–0.982)

 Original 97.7%
(0.964–0.991)

97.2%
(0.958–0.987)

97.5%
(0.965–0.984)

97.9%
(0.967–0.992)

96.4%
(0.948–0.980)

97.2%
(0.961–0982)

Other vs. keratitis + normal

 Conj_Cor 96.9%
(0.940–0.999)

99.2%
(0.986–0.998)

98.9%
(0.982–0.995)

99.2%
(0.977–1.007)

98.1%
(0.972–0.990)

98.3%
(0.975–0.991)

 Cornea 91.5%
(0.868–0.963)

99.1%
(0.984–0.997)

98.1%
(0.972–0.989)

88.5%
(0.830–0.940)

98.7%
(0.980–0.995)

97.4%
(0.964–0.984)

 Original 85.4%
(0.793–0.915)

98.6%
(0.978–0.994)

96.9%
(0.958–0.979)

84.6%
(0.784–0.908)

98.5%
(0.977–0.993)

96.7%
(0.955–0978)

Normal vs. keratitis + other

 Conj_Cor 100%
(1.000–1.000)

100%
(1.000–1.000)

100%
(1.000–1.000)

99.5%
(0.987–1.002)

100%
(1.000–1.000)

99.8%
(0.995–1.001)

 Cornea 100%
(1.000–1.000)

99.7%
(0.992–1.001)

99.8%
(0.995–1.001)

98.1%
(0.967–0.995)

99.8%
(0.995–1.002)

99.2%
(0.986–0.997)

 Original 99.5%
(0.987–1.002)

99.0%
(0.982–0.998)

99.2%
(0.986–0.997)

98.7%
(0.975–0.998)

99.3%
(0.987–1.000)

99.1%
(0.985–0.997)
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the CDACNN had the best performance on the region of Conj_Cor for the classification 
of keratitis, other cornea abnormalities, and normal cornea.

Furthermore, the details on the performance of these six combinations in the internal 
test datasets are displayed in Table 4. Compared to the DenseNet method, the CDACNN 
method obtained the best performance on the region of Conj_Cor for discriminating 
keratitis, other cornea abnormalities, and normal cornea. On the region of Conj_Cor, the 
CDACNN method discriminated keratitis from normal cornea and cornea with other 
abnormalities with an AUC of 0.998 (95% confidence interval CI 0.996–1.000), a sen-
sitivity of 98.6% (95% CI 0.975–0.996), and a specificity of 99.2% (95% CI 0.984–1.000). 
The CDACNN discriminated cornea with other abnormalities from keratitis and nor-
mal cornea with an AUC of 0.997 (95% CI 0.995–0.999), a sensitivity of 96.9% (95% CI 
0.940–0.999), and a specificity of 99.2% (95% CI 0.986–0.998). The CDACNN discrimi-
nated normal cornea from abnormal cornea (including keratitis and other cornea abnor-
malities) with an AUC of 1 (95% CI 1.000–1.000), a sensitivity of 1 (95% CI 1.000–1.000), 
and a specificity of 1(95% CI 1.000–1.000).

Fig. 6  Confusion matrices of CDACNN and DenseNet methods in the internal test dataset. “Normal” indicates 
normal cornea. “Others” indicates cornea with other abnormalities. Conj_Cor conjunctiva and cornea, CDACNN 
cost-sensitive deep attention convolutional neural network

Fig. 7  Receiver operating characteristic curves of CDACNN and DenseNet in the internal test dataset. 
“Normal” indicates normal cornea. “Others” indicates cornea with other abnormalities. Conj_Cor conjunctiva 
and cornea, CDACNN cost-sensitive deep attention convolutional neural network
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Performance comparison of CDACNN and DenseNet in the external test datasets

To explore the generalization ability of the CDACNN method, we performed and com-
pared the performance of the CDACNN and DenseNet on three types of images (origi-
nal images and two regions of cornea and Conj_Cor) in three external test datasets 
(JEH, NOC, and ZEH). The ROC curves of different combination models are shown in 
Fig. 8. Additional file 1: Figs. S1–S6 statistically showed the separability of features via 
the t-SNE technique and the confusion matrixes of CDACNN and DenseNet methods 
in three external test datasets. The details on the classification performance of the two 
methods in the external datasets, including accuracy, specificity, and sensitivity with 95% 
CI, are shown in Additional file 1: Tables S1–S3.

On the region of Conj_Cor in the JEH test dataset, the AUCs of CDACNN for clas-
sification of keratitis, other cornea abnormalities, and normal cornea were 0.996 (95% 
CI 0.994–0.997), 0.985 (95% CI 0.979–0.990), and 0.998 (95% CI 0.997–0.999), respec-
tively, with accuracies of 96% (95% CI 0.952–0.969), 96.1% (95% CI 0.952–0.969), and 
97.5% (95% CI 0.969–0.982), respectively. On the region of Conj_Cor in the NOC data-
set, the AUCs of CDACNN for classification of keratitis, other cornea abnormalities, 
and normal cornea were 0.991 (95% CI 0.988–0.994), 0.981 (95% CI 0.976–0.985), and 
0.988 (95% CI 0.985–0.991), respectively, with accuracies of 95.8% (95% CI 0.951–0.966), 
93.9% (95% CI, 0.930–0.948), and 95.3% (95% CI 0.945–0.960), respectively. On the 
region of Conj_Cor in the ZEH dataset, the AUCs of CDACNN for classification of kera-
titis, other cornea abnormalities, and normal cornea were 0.993 (95% CI 0.989–0.996), 

Fig. 8  Receiver operating characteristic curves of CDACNN and DenseNet in the external test datasets. a. 
Jiangdong Eye Hospital (JEH) dataset. b. Ningbo Ophthalmic Center (NOC) dataset. c. Zhejiang Eye Hospital 
(ZEH) dataset. “Normal” indicates normal cornea. “Others” indicates cornea with other abnormalities. Conj_Cor 
conjunctiva and cornea, CDACNN cost-sensitive deep attention convolutional neural network
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0.994 (95% CI 0.991–0.997), and 0.995 (95% CI 0.992–0.997), respectively, with accu-
racies of 95.3% (95% CI 0.939–0.966), 97% (95% CI 0.959–0.981), and 96.8% (95% CI 
0.956–0.979), respectively. Detailed performance comparisons on three external data-
sets further verified the excellent performance and strong generalization ability of the 
CDACNN method.

Interpretability analysis of CDACNN

To explore the reasonability of the CDACNN method, visual heatmaps were generated 
using the gradient-weighted class activation mapping (Grad-CAM) [44] technique for 
highlighting the disease-related regions on which the diagnosis model focused most. The 
Grad-CAM is an explainable technique for CDACNN, which leveraged the gradients of 
any target concepts flowing into the last layer of the CDACNN to generate a localization 
map highlighting remarkable regions in the image for predicting the concept. Redder 
regions represent more significant features of the CDACNN method. For keratitis and 
cornea with other abnormalities, heatmaps effectively highlighted the region of lesions. 
For normal cornea, the heatmap showed highlighted the region of the cornea. Typical 
examples of the heatmaps for keratitis, cornea with other abnormalities, and normal 
cornea are presented in Fig. 9. Using the Grad-CAM, we illustrated the rationale of the 
CDACNN method for discriminating keratitis, cornea with other abnormalities, and 
normal cornea.

Discussion
In this study, we proposed an object localization method combined with cost-sensitive 
deep attention convolutional neural network (OL-CDACNN) for discriminating kera-
titis, other cornea abnormalities, and normal cornea. The effectiveness and efficiency of 
eight object localization methods for two regions of cornea and Conj_Cor were inves-
tigated in detail to obtain a clinically applicable localization method SSD. The perfor-
mance of six combinable strategies using two classifiers (CDACNN and DenseNet) and 

Fig. 9  Representative heatmaps for keratitis, other cornea abnormalities, and normal cornea. The original 
images (left) and the corresponding heatmaps (right) for each category were shown in pairs



Page 17 of 22Jiang et al. Journal of Big Data          (2023) 10:121 	

three different types of images (original slit-lamp image, the region of cornea, and the 
region of Conj_Cor) were explored for keratitis diagnosis. Qualitative and quantitative 
experiments demonstrated that the CDACNN based on the region of Conj_Cor outper-
formed the other combinable strategies. The internal test dataset and three external test 
datasets comprehensively verified the effectiveness and generalizability ability of the OL-
CDACNN method in automatic localization and classification for keratitis. Moreover, 
the t-SNE and Grad-CAM techniques provided an interpretable path for the diagnosis 
of keratitis.

Recently, several studies for the automated diagnosis of keratitis have been published. 
The detailed comparison of these studies is shown in Table 5. Kuo et al. [24] provided 
a promising tool for identifying early FK at rural area based on slit-lamp images. Redd 
et al. [26] and Ghosh et al. [27] utilized various CNNs to differentiate between BK and 
FK using slit-lamp images. BK and FK are only a subset of keratitis so that these models 
may fail to identify other types of keratitis. Gu et al. [25] developed a hierarchical deep 
learning network with multi-task and multi-label classifiers for distinguishing infectious 
keratitis, non‑infectious keratitis, corneal dystrophy or degeneration, and corneal neo-
plasm. However, the original slit-lamp images used in these existing studies contained 
noisy regions that were irrelevant to keratitis, such as eyelashes and eyelids. These noises 
inevitably introduced redundant features for keratitis, which could potentially affect the 
recognition performance of the final classifier. Therefore, prior to performing keratitis 
classification, an object localization algorithm was employed in our study to effectively 
filter out excessive noise and obtain the region of interest for keratitis lesions. Also, our 
study covered all types of keratitis, including BK, FK, viral keratitis, and other corneal 
abnormalities, enabling the proposed deep learning model to be capable of application 
in more realistic clinical scenarios. For underdeveloped areas with a scarcity of experi-
enced ophthalmologists, the application of the OL-CDACNN enabled timely screening 
of keratitis to ensure appropriate treatment.

When compared to the previous studies, this study introduced several important fea-
tures in the theoretical analysis. First, the one-stage SSD method was employed to effi-
ciently localize the region of Conj_Cor, filtering out most of the noise surrounding the 
keratitis lesion. This localization step improved the performance of the subsequent fea-
ture extraction and classification. Second, the deep dense attention module was incor-
porated in the CDACNN method to extracthighly discriminative features of the lesions 
while suppressing irrelevant features. This attention mechanism enhanced the model’s 
ability to focus on the most relevant information of keratitis. Third, the cost-sensitive 
method was integrated into the loss function of the CDACNN method, fully consid-
ering the minority class to ensure that the classifier achieved high sensitivity of kera-
titis diagnosis in the imbalanced slit-lamp dataset. These advancements in localization 
algorithm, feature extraction technique, and cost-sensitive method collectively contrib-
ute to the overall effectiveness and robustness of the proposed CDACNN method for 
diagnosing keratitis using slit-lamp images. The experimental results demonstrated that 
the OL-CDACNN achieved the best performance for detecting keratitis with an AUC 
of 0.998 (95% CI 0.996–1), a sensitivity of 98.6% (95% CI 0.975–0.996), and an accuracy 
of 98.9% (95% CI 0.982–0.995) in the internal test dataset. Even in external test data-
sets from three different clinical centers, the OL-CDACNN still achieved satisfactory 
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performance for detecting keratitis with AUCs ranging from 0.991 to 0.996, sensitivities 
ranging from 94.5% to 98.1%, and accuracies ranging from 95.3% to 96%, indicating that 
the OL-CDACNN has strong generalization ability.

The efficiency of the SSD was higher than other localization methods. Although it took 
2.27 h to train the SSD method, its average testing time was only 0.049 s. As the training 
procedure could be implemented in advance on the local GPU server, the testing time 
would not increase after the trained model was deployed in ophthalmic clinics. There-
fore, the SSD can be applied to the real-time localization of two regions of cornea and 
Conj_Cor for keratitis diagnosis.

The performance of the CDACNN method was superior to that of the DenseNet 
method. Two mechanisms, channel attention, and spatial attention, were performed to 
enable the CDACNN method to enhance the expression of keratitis-related features. As 
shown in Fig. 5, the t-SNE technique demonstrated that the high features extracted by 
the CDACNN were more separable than those of the DenseNet method. Partially nor-
mal cornea samples and keratitis samples were not easy to distinguish because they were 
mixed in the DenseNet method. Furthermore, the cost-sensitive was adopted to facili-
tate the CDACNN to focus more on the minority category of other cornea abnormali-
ties. For the region of Conj_Cor, compared with the DenseNet method, the total number 
of misclassifications of the CDACNN method is reduced from 18 to 11, especially the 
number of misclassifications for keratitis is reduced by half.

To make the output of the OL-CDACNN interpretable, the Grad-CAM method was 
employed to generate heatmaps to visualize where the OL-CDACNN paid most atten-
tion to the final diagnosis result. Six representative slit-lamp images were presented to 
illustrate the regions contributing to the outcome of the OL-CDACNN. For the kerati-
tis and other cornea abnormalities, the highlighted heatmaps were colocalized with the 
lesion regions of cornea. For the normal cornea, almost the entire cornea region was 
highlighted. This interpretability exploration for the OL-CDACNN could further facili-
tate its application in real-world clinics as ophthalmologists can understand the reason 
for the final diagnosis inferred by the OL-CDACNN.

Our study has several limitations. First, although the OL-CDACNN method provided 
an effective strategy for identifying keratitis with high performance, its efficiency is 
slightly lower than that of conventional CNN methods. Second, this study only explored 
the automatic screening for keratitis, other cornea abnormalities, and normal cornea 
based on slit-lamp images, however, the automatic grading of keratitis was still under-
investigated. As more and more slit-lamp images of keratitis subtypes are collected and 
annotated, we will try to explore and apply the OL-CDACNN method to the grading of 
bacterial keratitis, fungal keratitis, and virus keratitis. Despite the above limitations, this 
study provides a practical strategy for the automatic diagnosis of keratitis with promis-
ing generalization ability verified in the multicenter dataset.

Conclusions
In this paper, we proposed a feasible OL-CDACNN strategy for automatic diagnosis 
of keratitis based on the object localization method combined with cost-sensitive deep 
attention convolutional neural network. Our OL-CDACNN had high effectiveness and 
efficiency for discriminating among keratitis, other cornea abnormalities, and normal 
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cornea in both internal and external test datasets. Qualitative and quantitative experi-
ments verified that the proposed method was superior to other conventional methods. 
The region of Conj_Cor was more suitable for OL-CDACNN to be applied to the auto-
matic diagnosis of keratitis when compared to the region of cornea and the original slit-
lamp image. Interpretability experiments and multicenter validation indicated that the 
OL-CDACNN method had better rationality and generalization ability in clinical appli-
cations. This OL-CDACNN has the high potential to be applied to digital slit-lamp cam-
eras, which would be a cost-effective and convenient procedure for the early detection of 
keratitis in clinics.

Abbreviations
OL-CDACNN	� Object localization method combined with cost-sensitive deep attention convolutional neural network
SSD	� Single shot multibox detector
Conj_Cor	� Conjunctiva and cornea
t-SNE	� T-distributed Stochastic Neighbor Embedding
Grad-CAM	� Gradient-weighted class activation mapping
AI	� Artificial intelligence
AP	� Average precision
mAP	� Mean average precision
ROC	� Receiver operating curve
AUCs	� Area under the receiver operating characteristic curves
CI	� Confidence intervals
NEH	� Ningbo Eye Hospital
JEH	� Jiangdong Eye Hospital
NOC	� Ningbo Ophthalmic Center
ZEH	� Zhejiang Eye Hospital

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40537-​023-​00800-w.

Additional file 1: Figure S1. Visualization of the separability for the embedding features learned by the CDACNN 
and DenseNet in the Jiangdong Eye Hospital (JEH) test dataset via t-SNE. Different colored point clouds represent the 
different categories. “Normal” indicates normal cornea. “Others” indicates cornea with other abnormalities. Conj_Cor, 
conjunctiva and cornea. t-SNE, t-distributed stochastic neighbor embedding. CDACNN, cost-sensitive deep attention 
convolutional neural network. Figure S2. Confusion matrices of CDACNN and DenseNet methods in the Jiangdong 
Eye Hospital (JEH) test dataset. “Normal” indicates normal cornea. “Others” indicates cornea with other abnormalities. 
Conj_Cor, conjunctiva and cornea. CDACNN, cost-sensitive deep attention convolutional neural network. Figure S3. 
Visualization of the separability for the embedding features learned by the CDACNN and DenseNet in the Ningbo 
Ophthalmic Center (NOC) test dataset via t-SNE. Different colored point clouds represent the different categories. 
“Normal” indicates normal cornea. “Others” indicates cornea with other abnormalities. Conj_Cor, conjunctiva and 
cornea. t-SNE, t-distributed stochastic neighbor embedding. CDACNN, cost-sensitive deep attention convolutional 
neural network. Figure S4. Confusion matrices of CDACNN and DenseNet methods in the Ningbo Ophthalmic 
Center (NOC) test dataset. “Normal” indicates normal cornea. “Others” indicates cornea with other abnormalities. 
Conj_Cor, conjunctiva and cornea. CDACNN, cost-sensitive deep attention convolutional neural network. Figure S5. 
Visualization of the separability for the embedding features learned by the CDACNN and DenseNet in the Zhejiang 
Eye Hospital (ZEH) test dataset via t-SNE. Different colored point clouds represent the different categories. “Normal” 
indicates normal cornea. “Others” indicates cornea with other abnormalities. Conj_Cor, conjunctiva and cornea. 
t-SNE, t-distributed stochastic neighbor embedding. CDACNN, cost-sensitive deep attention convolutional neural 
network. Figure S6. Confusion matrices of CDACNN and DenseNet methods in the Zhejiang Eye Hospital (ZEH) test 
dataset. “Normal” indicates normal cornea. “Others” indicates cornea with other abnormalities. Conj_Cor, conjunctiva 
and cornea. CDACNN, cost-sensitive deep attention convolutional neural network. Table S1. Performance of the 
CDACNN and DenseNet in the JEH test dataset. Table S2. Performance of the CDACNN and DenseNet in the NOC 
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