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Abstract 

Mobility data of a moving object, called trajectory data, are continuously generated 
by vessel navigation systems, wearable devices, and drones, to name a few. Trajec-
tory data consist of samples that include temporal, spatial, and other descriptive 
features of object movements. One of the main challenges in trajectory data analysis 
is to divide trajectory data into meaningful segments based on certain criteria. Most 
of the available segmentation algorithms are limited to processing data offline, i.e., they 
cannot segment a stream of trajectory samples. In this work, we propose an approach 
called Reactive Buffering Window - Trajectory Segmentation (RBW-TS), which partitions 
trajectory data into segments while receiving a stream of trajectory samples. Another 
novelty compared to existing work is that the proposed algorithm is based on multi-
dimensional features of trajectories, and it can incorporate as many relevant features 
of the underlying trajectory as needed. This makes RBW-TS general and applicable 
to numerous domains by simply selecting trajectory features relevant for segmentation 
purposes. The proposed online algorithm incurs lower computational and memory 
requirements. Furthermore, it is robust to noisy samples and outliers. We validate 
RBW-TS on three use cases: (a) segmenting human-movement trajectories in different 
modes of transportation, (b) segmenting trajectories generated by vessels in the mari-
time domain, and (c) segmenting human-movement trajectories in a commercial 
shopping center. The numerical results detailed in the paper demonstrate that (i) 
RBW-TS is capable of detecting the true breakpoints of segments in all three usecases 
while processing a stream of trajectory points; (ii) despite low memory and com-
putational requirements, the performance in terms of the harmonic mean of purity 
and coverage is comparable to that of state-of-the-art batch and online algorithms; 
(iii) RBW-TS achieves different levels of accuracy depending on the various internal 
parameter estimation methods used; and (iv) RBW-TS can tackle real-world trajectory 
data for segmentation purposes.

Keywords:  Online trajectory segmentation, Mobility data, Trajectory features, 
Multidimensional time series, Streaming data

Introduction
Vessel navigation systems, mobile and wearable devices, and several IoT devices con-
tinuously generate high-velocity trajectory data streams. These trajectory data streams 
contain useful information that can be leveraged to assist in various decision-making 
tasks. For instance, in the maritime domain, automatic identification system (AIS)-based 
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trajectory data can be exploited to improve the safety and efficiency of vessels by assist-
ing in tasks including route planning, collision avoidance, and search and rescue mis-
sions [1–3].

Trajectory data mining deals with processing mobility data collected via sensors that 
transmit a stream of features stamped with time and location [4, 5]. One of the main pre-
processing tasks for trajectory mining is trajectory segmentation, in which trajectory data 
are divided into multiple non-overlapping segments. Many existing trajectory segmen-
tation approaches mostly focus on location information [6–11]. However, in numerous 
applications, other more suitable trajectory features exist that can be efficacious for seg-
mentation. For instance, to compute the fuel consumption of a vessel for energy optimiza-
tion purposes, one can partition the trajectory based on speed, and then by computing 
the average speed in all trajectory segments, estimate the fuel consumed [12]. Therefore, 
trajectory segmentation algorithms that can consider multiple trajectory features simul-
taneously, including the speed and direction, can be useful in numerous other scenarios.

Furthermore, in many real-world applications (e.g., maritime domain and e-health 
monitoring systems), data are streaming and certain decisions depending on segmen-
tation need to be made in real-time. However, existing batch algorithms are not appli-
cable in streaming scenarios, as the entire data set is not available at once, or because 
of higher computational complexity, as a batch algorithm would be required to be run 
again when a new data sample has arrived. Therefore, an online trajectory segmenta-
tion algorithm is required, which not only relies on spatiotemporal information, but 
can also incorporate other relevant trajectory features according to the requirements of 
the target application. To this end, we propose an online segmentation algorithm called 
reactive buffering window-trajectory segmentation (RBW-TS), which considers the vari-
ations in trajectory features during segmentation. Note that the RBW-TS algorithm does 
not depend directly on time and location. Therefore, it is imperative to select relevant 
features according to the target application requirements. For instance, the location and 
direction may be of interest to segment the trajectory in one application, whereas speed 
and acceleration could be potential features for making a decision about segmenting the 
trajectory in another application.

The contributions of the paper are as follows:

•	 An online segmentation algorithm for multidimensional time series is proposed for 
a streaming data scenario. The algorithm can include multiple appropriate trajectory 
features required for a specific application. This attribute makes the algorithm gen-
eral and enables it to be applied in many domains and applications.

•	 The proposed online algorithm requires less computational resources compared to 
batch algorithms since it does not process the whole data at once and does not make 
multiple iterations over the whole data. Moreover, the proposed algorithm requires 
low memory resources because it does not store the trajectory points but only the 
estimated parameters.

•	 We apply the proposed algorithm on three real-world data sets, and compare its 
performance with the state-of-the-art batch and online trajectory segmentation 
approaches. The numerical results show that the proposed online segmentation 
algorithm can extract segments from streaming data. The validation results further 
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show that RBW-TS achieves a competitive level of performance in terms of the three 
metrics (purity, coverage, and harmonic mean of purity and coverage) compared to 
state-of-the-art algorithms. Moreover, it is observed that the selection of different 
sets of trajectory features leads to various levels of performance of the algorithm.

The rest of the paper is organized as follows. Section Related work discusses the related 
trajectory segmentation algorithms available in the literature. Section  Definitions and 
terminology details the definitions that are helpful to describe the proposed segmen-
tation algorithm. In Sect.  Time series segmentation, the problem of multidimensional 
time series segmentation is formulated, and the proposed algorithm is presented. Sec-
tion  Experimental evaluation deals with the performance evaluation of the proposed 
algorithm and comparison with other methods using real-world data sets. The numerical 
results are reported and discussed. Finally, the conclusions and future work are detailed 
in Sect. Conclusions and future work.

Related work
In this section, we introduce several important and relevant state-of-the-art trajectory 
segmentation approaches. We also present a discussion on the strengths and limitations 
of these approaches.

Stay Point Detection (SPD), proposed in [6], is one of the first algorithms proposed 
to segment a trajectory based on the two states of Stay and Move. The SPD uses two 
parameters, time t and distance d, to identify whether a moving object is stationary 
in the vicinity or in a moving state. The trajectory of the moving object is segmented 
according to the boundaries of the transition between its states after detecting the state 
of the moving object. An improvement in the SPD algorithm is the inclusion of speed 
and bearing in the determination of the state of a moving object. The speed point feature 
is used in conjunction with an adjusted density-based spatial clustering of applications 
with noise (DB-SCAN) algorithm called clustering based stops and moves of trajectories 
(CB-SMOT) in [7]. In a very similar approach, [8] presented direction-based stops and 
moves of trajectories (DB-SMOT), which uses the bearing feature to detect the state of 
the movement. Using an optimization-based approach, [9] proposed an algorithm called 
greedy randomized adaptive search procedure for unsupervised trajectory segmenta-
tion (GRASP-UTS) to benefit from the point features of a trajectory in a greedy algo-
rithm. The GRASP-UTS considers semantic features such as distance to shore, which 
boosted the performance of the method; however, the iterative approach based on ker-
nel optimization in this algorithm makes it computationally more complex than other 
trajectory segmentation algorithms. Octal window segmentation (OWS) and sliding 
window segmentation (SWS) are proposed in [10, 11] to detect partitioning points based 
on identification changes in the behavior of a moving object. These approaches assume 
that semantic features and environmental conditions can affect the trajectories of mov-
ing objects indirectly, and processing the trajectory itself must be sufficient to partition 
trajectories precisely. For example, movement in a traffic jam causes a moving object 
to have a low speed. By processing a sliding window, these algorithms limit the amount 
of data to be processed, which results in the ability to segment trajectories in a stream 
fashion and less memory and computation resources. Their limitation is the assumption 



Page 4 of 22Zaman et al. Journal of Big Data          (2023) 10:123 

of having access to high-resolution trajectories with sufficient and frequent trajectory 
samples on the route; hence, a sparse or noisy trajectory would result in performance 
degradation. On the other hand, since RBW-TS does not process directly the time and 
location information, a high-resolution trajectory is not required.

Various approaches have been used to address the problem of multidimensional time-
series segmentation. One of these approaches is called greedy Gaussian segmentation 
(GGS), proposed in [13], in which the data in each segment are considered to follow a 
multivariate Gaussian distribution. The proposed method computes the breakpoints of 
the segments and then estimates the parameters of each segment. For the combinato-
rial optimization problem of searching over the possible breakpoints in [13], a dynamic 
programming-based approach is proposed. A similar approach is presented in [14], 
where each segment (cluster) is characterized by a correlation network (specifically, the 
Markov random field (MRF)). The algorithm learns both the breakpoints of segments 
and the MRF parameters of each segment. The proposed algorithm is called Toeplitz 
inverse covariance-based clustering (TICC). The main optimization problem is based on 
a likelihood function, the sparsity of the inverse covariance matrix, and temporal con-
sistency. The main problem is non-convex; hence, alternating minimization is applied 
in [14]. Recently, a semi-supervised approach has been proposed in [15] that takes 
into account time-point clustering based on the temporal proximity of time points and 
the correlation of their corresponding values. Again, this is a position/distance-based 
approach, and it cannot be generalized to include other features. Other approaches 
include [16–18], which either cannot handle streaming data scenarios or cannot be gen-
eralized for multidimensional feature-based segmentation. Finally, an online segmenta-
tion algorithm, named Thresholds [19], takes into account thresholds based on speed 
and orientation to define safe areas to decide the inclusion of points in a given trajectory 
(i.e., trajectory sampling). The Thresholds algorithm calculates velocity vectors to deter-
mine a joint safe area considering the intersection of the sample-based (i.e., recent data 
points in the selected sample so far) and trajectory-based (i.e., recent data points in the 
trajectory so far) velocity vectors. Subsequently, the current candidate point is checked 
to determine whether it falls within this joint safe area. As a limitation, the Thresholds 
algorithm [19] is limited in terms of the multidimensional features it takes into account 
(i.e., velocity and orientation), which also necessitates careful fine-tuning of thresholds 
to be used for such features.

Definitions and terminology
In this section, we present the definitions of the concepts used to formulate and explain 
the main ideas of our proposed segmentation algorithm.

•	 Trajectory point: A minimal trajectory point ( li ) is represented as: 
li = (xi, yi, ti, oi) ∈ L, where xi is the longitude of a moving object which varies from 
0 ◦ to ±180◦ , yi is the latitude which varies from 0 ◦ to ±90◦ , ti is the time when xi and 
yi were collected, oi is the identifier of a moving object, and L is the set of all trajec-
tory points. A trajectory point may contain additional elements which would repre-
sent diverse features of the moving object in the application at hand. The sequence of 
spatio-temporal points characterizes a trajectory.



Page 5 of 22Zaman et al. Journal of Big Data          (2023) 10:123 	

•	 Raw Trajectory: A raw trajectory, or simply trajectory, is a time-ordered sequence 
of spatio-temporal points. A formal definition of a raw trajectory for a moving 
object o is given by: τo =< l0, l1, ..., ln >, lj = (xj , yj , tj , oj), lj ∈ L, 0 ≤ j ≤ n where, 
∀lu,lv∈τo ou = ov , ∀lu,lv∈τo if u ≤ v =⇒ tu ≤ tv . As motivated earlier in the intro-
duction section, we split a trajectory into smaller parts, called segments or subtrajec-
tories, defined next.

•	 Segment or Subtrajectory: A segment or subtrajectory is a set of consecutive trajectory 
points belonging to a raw trajectory that represents a useful pattern or behavior of 
the moving object.

•	 Trajectory Point Feature: A trajectory point feature is an attribute that describes the 
state of a moving object. Examples of trajectory point features include the speed, 
direction, velocity, and acceleration, etc. These features can be present in the obser-
vations of the trajectory samples or can be computed from these observations. A 
combination of these point features of trajectories can be used for segmentation.

•	 Buffering State and Buffering Window: Buffering is the state in which the algorithm is idle 
and waiting for new trajectory points to fill the buffering window. A buffering window of 
size w contains the initial w trajectory points of each segment.

•	 Segmentation State: The state of the algorithm when it processes the newly arrived sample 
to decide whether the new trajectory point belongs to the current segment or not.

Time series segmentation
In this section, first, we present the model and problem formulation for the batch sce-
nario. Then, the online segmentation of multidimensional time series is discussed, and 
the proposed segmentation algorithm is detailed.

Model

The model considered in this work is based on n-dimensional features of trajectory 
points. Each trajectory point is mapped to an n-dimensional vector containing various 
features. The (n-dimensional) feature vector corresponding to the trajectory point li can 
be represented as:

where di is the direction, vi is the velocity, and ai is the acceleration of the moving object. 
This is just an example of a feature vector corresponding to a trajectory point. Some 
of these features are available in trajectory samples observed, while others can be com-
puted from the observations. Note that time and location information are not explicitly 
used for trajectory segmentation. Therefore, we exclude time and location from placing 
them in the feature vector.

Batch problem formulation of multidimensional time series segmentation

The problem of multidimensional time series segmentation in batch scenario 
(i.e., when the whole data is available for computation) can be formulated as fol-
lows: Given the trajectory feature vectors {zi}Ti=1 , compute the set of breakpoints of 

zi = [di, vi, ai, . . .]
⊤ ∈ Rn,



Page 6 of 22Zaman et al. Journal of Big Data          (2023) 10:123 

segments S = {b1, . . . , bK } ⊂ {1, . . . ,T } , where K ≪ T  . In the batch scenario, the goal 
is to compute the breakpoints of the segments, i.e., b1, . . . , bK  , where K is the number of 
breakpoints.

We assume that z follows a multidimensional Gaussian distribution, i.e., z ∼ N (µ,�) , 
where µ ∈ Rn is the mean and � ∈ Rn×n is the covariance matrix. The probability density 
function of the multivariate Gaussian distribution is given by:

where | · | denotes the determinant of the input matrix. We assume that the feature vec-
tor denoted by zi corresponding to the trajectory sample at the i-th time instant is an 
independent sample drawn from N (µk ,�k) , and the multidimensional time series is 
partitioned into K segments, and the k-th segment is identified by the parameters µk and 
�k of the Gaussian distribution.

We revisit the batch problem of multidimensional time-series segmentation when the 
feature vector follows a Gaussian distribution. Due to the nature of the problem at hand, 
now the goal is to estimate the locations of the breakpoints as well as the parameters 
of the segments. Thus, the number of parameters to be estimated becomes significantly 
large. The large number of parameters to be estimated makes the problem difficult to 
solve. However, there are available heuristic approaches such as [13] presenting a solu-
tion to the underlying problem.

Online multidimensional time series segmentation

In an online scenario, where the observations (trajectory samples) are streaming, when a 
new sample arrives, the online segmentation algorithm is required to determine whether 
the new sample belongs to the current trajectory segment. Each trajectory segment is 
characterized by a multivariate Gaussian distribution, following the approach in [13]. 
To make a decision about the trajectory sample, we pose a detection problem: the null 
hypothesis ( H0 ) is that the present sample belongs to the current segment, whereas the 
alternate hypothesis ( H1 ) is that the present sample does not belong to the current seg-
ment, mathematically presented as: H0 : zi ∼ p(zi|H0),H1 : zi �∼ p(zi|H0). In order 
to find a rule for deciding whether a trajectory sample belongs to a segment, we need 
a test statistic T for a threshold γ : T (zi) ≶

H0
H1

γ . However, since the parameters (mean 
and covariance) are unknown, it is difficult to derive such a test statistic. Therefore, we 
resort to other heuristic approaches. Due to multidimensional features, we cannot use 
common approaches for univariate Gaussian random variables, such as the 3-stand-
ard deviation rule for γ . One of the most popular approaches is to use the Mahalanobis 
distance, given by di = ((zi − µ)⊤�−1(zi − µ))−1/2 , as a measure for hypothesis test-
ing whether the sample zi belongs to the Gaussian distribution N (µ,�) . Observe that 
d2i = (zi − µ)⊤�−1(zi − µ) is a random variable. The probability distribution of d2 is 
given by χ2

n chi-squared with n degrees of freedom [20]. Given the number of features n 
and the confidence level, we can find the threshold for d such that a sample belongs to a 
given distribution. Specifically, in order to cover (1− α) probability with an ellipsoid of 
radius d, we need d =

√

χ2
n (α) , where χ2

n (α) is the upper 100α percentile from the Chi-
squared distribution with n degrees of freedom [20 Result 4.7], [21].

(1)p(z) =
1

((2π)n|�|)1/2
exp

(

−
1

2
(z − µ)⊤�−1(z − µ)

)

,
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Reactive buffering window trajectory segmentation

Based on the strategy mentioned in the previous subsection, the proposed online seg-
mentation algorithm works as follows. At each time instant τ , the algorithm receives 
a trajectory point, and a feature vector is computed. If the current feature vector is 
different from the previous feature vectors, the algorithm waits for w non-identical 
feature vectors to fill the buffer. Once the buffer is filled, the estimates of the mean 
and covariance are computed. The algorithm can select from a set of different alter-
native estimators of the mean and covariance for this purpose. Immediately after the 
time instant when the buffer is filled, the algorithm computes the distance of the fea-
ture vector from the distribution of the present segment in order to decide whether 
the current belongs to it. If the distance is smaller than a prespecified threshold, the 
parameters of the current segment are recursively updated using the previously esti-
mated parameters and the current feature vector. If the distance is greater than the 
threshold for a consecutive r number of samples, it is decided that a new segment is 
started. The step-by-step procedure of the proposed RBW-TS algorithm for online 
multidimensional trajectory segmentation is presented in Algorithm 1.
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In the following, we discuss the main elements of the RBW-TS algorithm.

•	 Constant trajectory features: When the dynamic point features of a trajectory, such 
as speed, direction, and acceleration, are not changing, this means that we are not 
required to initiate a new segment. In other words, when the latitude and longitude 
change but the dynamic features are constant, the samples corresponding to con-
stant dynamic features belong to the same segment. Hence, the proposed algorithm 
ignores such samples. This strategy also avoids processing repeated samples, mean-
ing that the same observation is repeated multiple times.

•	 Buffering window length: At the start of each new segment, the algorithm waits for 
w number of trajectory points in order to fill the buffer. We call this buffering of the 
online algorithm for streaming data. During the buffering stage, the algorithm does 
not perform segmentation activity. The buffering window length w is an important 
parameter for the proposed online algorithm, as the performance of the algorithm 
is affected by the value of w. Therefore, w needs to be carefully fine-tuned for each 
application. Buffering is essential for the proposed online algorithm since the first 
step after commencing a new segment in the proposed algorithm is to estimate the 
parameters of the current segment. Once the parameters are estimated, the algo-
rithm can correctly classify the newly arrived samples based on the estimated param-
eters of the segment. The higher the value of w, the better the parameter estimates 
(mean and covariance). On the other hand, the lower the value of w, the algorithm 
would be able to detect short segments of trajectories. Hence, there is a trade-off 
between accurately estimating the parameters and detecting short segments.

•	 Parameters estimation: When the buffer fills, i.e., the number of samples in the buffer 
equals the length of the buffering window w, we compute the estimates of the mean 
and covariance of the multivariate Gaussian random variable. The most common 
estimates of the mean and covariance are the sample mean and unbiased sample 
covariance. It is important to mention that the parameters are estimated only once 
when the buffer is filled. In the next time instants, the parameters (mean and covari-
ance) are updated recursively using the previous estimates and the new feature vec-
tor.

•	 Mahalanobis distance: The inverse of the covariance matrix is required in order 
to compute the Mahalanobis distance d. Given the inverse covariance matrix esti-
mated at the previous time instant, the inverse covariance matrix is updated when a 
new sample arrives. To this end, the Sherman-Morrison formula [22] is used, which 
reduces the computational burden compared to computing the inverse of the cur-
rent covariance matrix. Note that the inverse of the covariance matrix is computed 
only once at the start of a new segment when the buffer fills. The threshold for the 
Mahalanobis distance d is a function of the number of features and the confidence 
interval [21, 23, 24]. Once the number of features is specified, the threshold can be 
computed for a given confidence interval.

•	 Inverse covariance matrix: Analysis of the inverse covariance matrix can lead to 
explaining the relations among various features and also can provide insights into the 
trajectory segments [25]. For instance, if the (i,  j)-th element of the inverse covari-
ance matrix is zero, then the i-th and j-th variables are conditionally independent, 
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given the other variables. Thus, an undirected graphical model can be considered, 
and hence, the corresponding relationship graph among features can be drawn [26].

•	 Computational complexity and memory requirements: The proposed algorithm 
RBW-TS does not require high computational resources as it is an online algo-
rithm where no iterations over the whole data are involved. At each time instant, 
most of the mathematical operations are either O(n) or O(n2) , where n is the 
number of features. Thus, the overall computational complexity of the RBW-TS 
becomes O(n2) . Similarly, there is no major memory requirement as the samples 
are not stored; only the estimated parameters are stored, and these parameters 
have a memory requirement of O(n2).

•	 Robustness: To add robustness to the proposed algorithm against impulsive noise and 
outliers, the decision of a new segment is not based on a single sample. A sample 
may be an outlier or a noisy sample, and it is usually highly unlikely to receive mul-
tiple consecutive noisy samples. Therefore, the idea is that if a consecutive r number 
of samples do not fulfill the distance condition, then a new segment is started. The 
range of values for r is 2 ≤ r ≤ w . A commonly acceptable value for r would be r = 2.

Robust estimation of mean and covariance

The length of the buffering window w should be greater than the number of features 
n. Otherwise, the estimated covariance matrix will no longer be positive definite. In 
addition, for a small value of w but greater than the number of features n, the clas-
sical estimators for the mean and covariance suffer from performance degradation. 
Therefore, to avoid ill-conditioned and poor-quality covariance matrix estimates, we 
employ the following estimators in our proposed algorithm.

•	 Ledoit-Wolf estimator: A well-conditioned and accurate estimator of the covari-
ance matrix is proposed in [27]. The proposed estimator is distribution-free, sim-
ple to compute, and easy to interpret. In this method, a scaled version of the iden-
tity matrix, which can be treated as a regularization term, is added to the sample 
covariance matrix. The magnitude of shrinkage is computed by the Ledoit-Wolf 
formula. The regularization ensures that the estimated covariance matrix is always 
positive definite [28].

•	 Shrinkage-based estimator: A shrinkage-based estimator for covariance estimation 
is proposed in [29], where the shrinkage parameter need to be specified. The esti-
mated covariance matrix will be positive definite and hence invertible.

•	 Oracle approximating shrinkage (OAS) estimator: OAS estimator, proposed in [29], 
is an improved version of Ledoit-Wolf estimator. First, a closed-form formula for the 
oracle estimator is derived under the Gaussian assumption. Then, an approximation 
method is used to derive the OAS estimator. Its convergence rate and accuracy are 
significantly improved when the data follows Gaussian distribution.

•	 Minimum covariance determinant (MCD) estimator: MCD, introduced in [30], is 
a robust estimator of the covariance matrix. The idea of the MCD estimator is that 
the data may contain outliers, and these outliers affect the estimates. Hence, in 
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MCD, the estimates are computed by considering only a subset of data, which has 
the minimum determinant of the covariance.

•	 Elliptic envelope estimator: Elliptic envelope estimator is also a robust estimator of 
the covariance proposed in [31], where the outliers are decided by drawing an ellipse 
around the data.

•	 Graphical lasso estimator: Given the sample covariance matrix, an inverse covari-
ance matrix also known as the precision matrix, is estimated by imposing � · �1 , i.e., 
sparsity regularization on the values of the inverse covariance matrix [32].

This completes the discussion about the proposed segmentation algorithm. Next, we 
present the numerical results for the proposed algorithm.

Experimental evaluation
In this section, we describe the experimental evaluation of the proposed RBW-TS algo-
rithm. We present the research questions investigated, the performance metrics consid-
ered in the numerical evaluation, as well as the data sets used in the experiments. Finally, 
we report and discuss the numerical results.

Research questions

To evaluate the proposed algorithm, we consider the following research questions:

•	 RQ1. Detecting True Breakpoints in Streaming Data Scenario: Can the proposed 
algorithm be applied in big data applications where the data is streaming? Is the pro-
posed algorithm capable of detecting the true breakpoints in these applications?

•	 RQ2. Comparing the Effect of Mean and Covariance Estimators in RBW-TS: How do 
different mean and covariance estimators used in the RBW-TS algorithm perform?

•	 RQ3. Comparing to Batch Algorithms: Is the performance of the proposed online 
algorithm in terms of the harmonic mean of purity and coverage comparable to 
batch multidimensional segmentation algorithms?

•	 RQ4. Comparing to Online Algorithms: Is the performance of the proposed online 
algorithm in terms of the harmonic mean of purity and coverage comparable to 
online segmentation algorithms?

•	 RQ5. Impact of Trajectory Features on Segmentation: How do different combinations 
of trajectory point features affect the performance of the segmentation algorithm?

Performance metrics

Purity and coverage were formally introduced as evaluation criteria for segmentation 
algorithms in [33]. We measure the purity and coverage of the estimated segments by 
comparing them with the ground truth data. Purity shows how much of a trajectory 
segment is divided correctly as compared to a subject-matter expert segmentation. The 
coverage quantifies how much the algorithm can cover the segments tagged by a sub-
ject-matter expert. Purity is mathematically defined as in [33]:
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where S is the set of segments discovered by the segmentation algorithm, �L is the set 
of labels (a point feature) provided by a subject-matter expert, k is the number of dis-
covered segments, L is the number of expert labels, and Nij is the number of trajectory 
points inside a segment si with label �j . Coverage is defined as [33]:

where S is the set of segments discovered by the segmentation algorithm, �v is the set of 
segments by a subject-matter expert, Nψi∩sj is the number of trajectory points of the seg-
ment sj that belongs to the ψi segment, and Ni is the total number of points of the identi-
fied segment with segment identifier equal to ψi segment. Since the purity and coverage 
are two orthogonal metrics, we report the harmonic means of purity and coverage, given 
by 2PC/(P + C) where P and C denote purity and coverage respectively, to compare the 
performance of different algorithms [34].

Evaluation data sets

We apply our online segmentation algorithm on three real-world data sets described next.

Geolife data set

Geolife is a well-known data set for mobility data research collected by Microsoft 
Research Asia [35]. Trajectory information of object movements is recorded by GPS 
devices and the transportation mode (labels) such as walking, taxi, bus, car, bike, and 
subway are included in the data set. In our experiments, we use a subset of the Geolife 
data set containing 12,955 trajectory points and 181 segments. For this data set, we use 
the transportation mode as the ground truth for creating the segments. For each trajec-
tory point, several features, such as speed, acceleration, jerk, and bearing, are computed, 
and a feature vector is formed.

Maritime data set

We use a proprietary maritime data set consisting of AIS trajectory data collected for 
monitoring maritime traffic, where the vessels transmit their static information (MMSI, 
IMO number, etc.) as well as their location, speed, direction, and other attributes. The 
maritime data set is collected and anonymized by Navtor AS, Norway. For this data set, 
only two features, i.e., speed and direction, are used for the purpose of trajectory seg-
mentation. The data set contains 7 trajectories from Ålesund to Måløy, and each tra-
jectory contains 200 samples on average. These selected trajectories have an adequate 
number of samples in order to evaluate the proposed algorithm.
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ATC pedestrian tracking data set

ATC Pedestrian Tracking data set1 is introduced in [36], which includes data related 
to trajectories based on human movements obtained in a shopping center in Osaka, 
Japan. The data set includes time, person ID, position (x,  y,  z), velocity, angle of 
motion, and facing angle features, and these features are calculated by processing 
the raw data obtained through 3D sensors. In our experiments, we use 11 random 
trajectories, each including an average of 794 data points. There are no labels availa-
ble for segments associated with this data set. We have generated labels for this data 
set by partitioning velocity and angle of motion considering minimum and maxi-
mum values into three and four intervals, respectively. Changes on the intervals for 
consecutive samples are accepted as a segment’s starting point.

Results and analysis

In this section, we report and discuss the numerical results addressing the five 
research questions. We report the results for the three mentioned real-world data 
sets, where the performance of RBW-TS is evaluated in terms of purity, coverage, 
and the harmonic mean of purity and coverage.

RQ1: detecting true breakpoints in streaming data scenario

RQ1 deals with the performance of the online segmentation algorithm in terms of purity, 
coverage, and the harmonic mean of purity and coverage, when the data is streaming.

Figure 1 depicts a comparison of the performance of the various estimators for both 
data sets. In Fig. 1a, we present the harmonic mean of purity and coverage of the pro-
posed algorithm applied to the Geolife data set for different values of the buffer length w 
for multiple types of mean and covariance estimation algorithms exploited in RBW-TS. 
A subset of the Geolife data set is divided into 10 parts, and the results are averaged over 
them. Observe that the best buffer length for this data set is approximately 170 for all 
the variants of the proposed algorithm. When the individual results of the estimators 
are analyzed, a general trend of increasing/decreasing in the harmonic mean of purity 
and coverage is observed. However, each curve is not locally monotonically increasing/
decreasing before/after the best buffer length w. This is due to several reasons. First, due 
to the nature of the harmonic mean of purity and coverage, different rates of increasing/
decreasing of purity and coverage would result in different trends of the harmonic mean 
of purity and coverage. Second, the data contain various segment lengths and trajecto-
ries of different sizes. For the maritime data set, Fig. 1b presents the harmonic mean of 
purity and coverage against buffer size for different covariance estimation algorithms for 
RBW-TS. We can observe that there is an optimal buffer size w that yields the highest 
value of the harmonic mean of purity and coverage for the maritime data set too. Note 
that the graphical lasso estimator is excluded for this data set because, for smaller values 
of buffer size, the covariance is not accurately estimated, as sometimes the feature vec-
tors of the samples can be very similar.

For the ATC data set, Fig. 1c presents the curve of the harmonic mean of purity and 
coverage for different values of buffer length. Here, the graphical lasso estimator is again 

1  The data set is publicly available at https://​dil.​atr.​jp/​crest​2010_​HRI/​ATC_​datas​et/.

https://dil.atr.jp/crest2010_HRI/ATC_dataset/
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excluded from the comparison because of the unstable behavior for low values of the 
buffer length. For the empirical covariance estimator, minimum covariance determi-
nant, and elliptical envelope estimator, the optimal values of buffer length lie between 3 
and 20. For the remaining estimators, the optimal value of buffer length for the criterion 
of the harmonic mean of purity and coverage is 3, which suggests that the trajectories 
have short segments.

To illustrate the results of RBW-TS, a snapshot of the AIS data-based trajectories, as 
well as the estimated breakpoints of the segments in the region of Ålesund and Måløy 
plotted in the QGIS software, is depicted in Fig. 2. The true breakpoints are depicted in 
orange, whereas the estimated breakpoints of the segments are shown in green. The true 
breakpoints are drawn such that they will be valid for most of the trajectories since they 
are drawn by considering several trajectories. The figure illustrates that when the two 
features of speed and direction are used, the proposed segmentation algorithm yields 
results that are aligned with human intuition. In other words, the estimated breakpoints 
of the segments are near the place where the direction or the speed changes.

RQ2: comparing the performance of estimation algorithms

We report the performance of all the covariance estimation methods in Figures 3, 4, 
and 5. First, the box plot for the coverage is presented in Fig. 3a. The median values 
of the coverage vary across different estimation methods. For the first four estima-
tion methods, i.e., empirical covariance, OAS, Ledoit-Wolf, and shrunk covariance, 

Fig. 1  Harmonic mean of purity and coverage of RBW-TS for different covariance estimation methods vs. 
Buffer Length for the a Geolife, b Maritime, and c ATC data sets. Hyperparameters values: 1− α = 0.95, n = 3
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the median value of the coverage is greater than or equal to 0.9. The box plot for 
the purity is presented in Fig. 3b. The median value for the purity is greater than 0.9 
for all the estimators. Finally, the harmonic mean of purity and coverage is shown 
in Fig. 4. There is no significant difference in the results of some of the covariance 
estimation algorithms. However, these covariance estimation algorithms can pro-
duce different results for different types of data. A median value of the harmonic 
mean of purity and coverage of ≈ 0.87 is observed for four of the estimators. For the 
remaining three, the harmonic mean of the purity and the coverage is low due to 
lower values of the coverage. These variations among the estimators used in the the 
RBW-TS are expected, as all of them follow different strategies to estimate the mean 
and covariance. By having these different choices of estimators in RBW-TS, one can 
select the estimator that works the best among the available estimators for a given 
data set.

For the maritime data set, the harmonic mean of purity and coverage for all the 
different alternative parameter estimators that can be used in RBW-TS are presented 
in Fig.  5. All variants of the RBW-TS yield the harmonic mean of purity and cov-
erage values in different ranges. However, their performances are comparable. In 
other words, all alternative estimators in RBW-TS are able to estimate the mean and 
covariance with a competitive level of accuracy, hence resulting in acceptable values 
of the harmonic mean of the purity and coverage.

We have also evaluated the proposed algorithm on the ATC data set in Fig. 6. The 
empirical covariance, minimum covariance determinant, and elliptic envelope esti-
mators are able to detect the segments more accurately than the remaining estima-
tors. Note that the ATC data set contains samples with high frequency and it may be 
very sensitive to the selection of the hyperparameters such as buffer length.

Fig. 2  A snapshot of the result of the segmentation algorithm RBW-TS applied to the maritime data. The 
orange dots represent the true breakpoints of the segments, and the green dots represent the estimated 
breakpoints. Here the shrunk covariance estimator is employed to estimate the parameters (mean and 
covariance) in RBW-TS
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RQ3: comparison with batch algorithm

To compare the performance of the proposed online segmentation algorithm with 
a batch algorithm, we selected the greedy Gaussian segmentation (GGS) algorithm 
proposed in [37], which uses multidimensional features for segmentation. Figure 7a 
presents a comparison of GGS and two variants of the proposed algorithm in terms of 
the harmonic mean of purity and coverage for the Geolife data set. It can be observed 
that the batch algorithm GGS obtains a higher median value of the harmonic mean 
of purity and coverage at the cost of higher computational complexity as the com-
putational complexity of GGS is O(n3) , where n is the number of trajectory features. 
Note that the computational complexity of RBW-TS is O(n2) , as mentioned earlier. 
Online algorithms have competitive results despite processing the data in a streaming 

Fig. 3  Coverage and purity of RBW-TS for different covariance estimation methods applied to the Geolife 
data set. Hyper-parameters: w = 250, 1− α = 0.99, n = 6
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fashion, meaning that the entire data set is not available to the algorithm at once at 
the beginning of the processing. To demonstrate that the number of breakpoints 
affects the performance of GGS, Fig. 7b presents a comparison among different values 
of the number of breakpoints. Observe that there is an optimal value for the number 
of breakpoints for GGS. Therefore, tuning this parameter is essential. However, due 
to the nature of this parameter, fixing it in a scenario where we do not know the size 
of the data is challenging. In contrast, the distance threshold for RBW-TS does not 
depend on the size of the data and is only related to the dissimilarity of the samples.

For the maritime data set, we repeat the same experiment, and the comparison 
in terms of the harmonic mean of purity and coverage is shown in Fig. 8. Note that 
the median values of the harmonic mean of purity and coverage for GGS and our 

Fig. 4  Harmonic mean of purity and coverage of RBW-TS for different covariance estimation methods 
applied to the Geolife data set. Hyper-parameters: w = 250, 1− α = 0.99, n = 6

Fig. 5  Harmonic mean of purity and coverage of RBW-TS for different covariance estimation methods 
applied to the maritime data set. Hyper-parameters values: w = 7, 1− α = 0.99, n = 3
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proposed algorithm’s variants, that is, empirical covariance and shrinkage covariance, 
are comparable. The slight edge in the performance of GGS is due to the fact that 
the batch algorithm has the access to full data in advance and runs several iterations 
over the whole data, thus incurring more computational complexity than online algo-
rithms. It is pertinent to mention that for GGS, the value of the regularization param-
eter and the number of breakpoints are selected such that it yields the highest value of 
the harmonic mean of purity and coverage.

The above experiment is also repeated for the ATC data set, and the results are pre-
sented in Fig. 9. The figure shows that the performance of RBW-TS in terms of the har-
monic mean of purity and coverage is comparable to that of the batch GGS algorithm for 
two estimators: empirical covariance and minimum covariance determinant. The result 
of RBW-TS with the shrunk covariance estimator is added to underline that each estima-
tor behaves differently for different data sets.

Fig. 6  Harmonic mean of purity and coverage of RBW-TS for different covariance estimation methods 
applied to the ATC data set. Hyper-parameters: w = 5, 1− α = 0.9, n = 2  

(a) Harmonic mean of purity and coverage of
RBW-TS and GGS batch algorithm applied
to the Geolife data set. Hyper-parameters: w =
200, 1 − α = 0.9, n = 3 (i.e., speed, bearing, and
acceleration), number of breakpoints for GGS =
200, the value of the regularization parameter for
GGS = 0.8.

(b) Harmonic mean of purity and coverage of
GGS batch algorithm applied to the Geo-
life data set for multiple values of the num-
ber of breakpoints. Hyper-parameters: n = 3
(i.e., speed, bearing, and acceleration), the
value of the regularization parameter for
GGS = 0.01.

Fig. 7  Comparison of RBW-TS with batch algorithm GGS



Page 18 of 22Zaman et al. Journal of Big Data          (2023) 10:123 

The performance (in terms of the harmonic mean of purity and coverage) of RBW-TS 
is lower yet comparable to SWS (according to what is reported in [34]) for the same data 
set. This is expected since the computational complexity of the proposed online algo-
rithm is lower than the aforementioned batch algorithms.

RQ4: comparison with online algorithm

In this research question, we compare the performance of RBW-TS with Thresholds 
[19] that tracks speed and orientation changes with thresholds to capture segments. 
We choose Thresholds for comparison as it considers speed and orientation thresholds 
( dvs and dϕs , respectively) to decide whether a data point in the trajectory represents a 

Fig. 9  Harmonic mean of purity and coverage of RBW-TS and GGS batch algorithm applied to the ATC data 
set. Hyper-parameters: w = 10, 1− α = 0.9, n = 3 (i.e., speed and horizontal and vertical components of the 
direction of the movement), number of breakpoints for GGS = 50, the value of the regularization parameter 
for GGS = 0.01

Fig. 8  Harmonic mean of purity and coverage of RBW-TS and GGS batch algorithm applied to the maritime 
data set. Hyper-parameters: w = 7, 1− α = 0.9, n = 3 , number of breakpoints for GGS = 10, the value of the 
regularization parameter for GGS = 0.001
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significant change. The Thresholds algorithm constructs velocity vectors based on pre-
viously observed data points (both recently sampled points and trajectory points) and 
defines a joint safe area for the current candidate data point. In the case of the candidate 
data point being in the joint safe area, this candidate point is discarded. Otherwise, it 
is assumed to be a significant deviation considering the thresholds and is added to the 
sample. Our experiments consider such significant points as the beginning of segments. 
In our experiments, we use the Haversine distance for the maritime and Geolife data sets 
for the aforementioned calculations, while the distance formula is used for the ATC data 
set.

Figure 10 depicts the harmonic mean of purity and coverage for the Thresholds algo-
rithm for three data sets used in this study. Note that we report empirically set the speed 
(m/s) and orientation (radian) thresholds that yield the best results for each data set. As 
can be seen from the figure, the Thresholds algorithm yields a value of the median of the 
harmonic mean of purity and coverage of around 0.86 for the maritime and ATC data 
sets, while it is around 0.91 for the Geolife data set. Considering the used thresholds for 
the Geolife data set, using only the speed threshold provides the best results for this data 
set as the segments for the transportation mode depend mainly on the speed feature. 
Considering the scores obtained by RBW-TS in Figs. 4-6 for different data sets, it can be 
deduced that both Thresholds and RBW-TS have the ability to detect the segments in 
different data sets. However, RBW-TS is more generic and flexible as different estimators 
can be employed inside it for different scenarios. Moreover, RBW-TS can include mul-
tidimensional features for the purpose of segmentation, while the Thresholds algorithm 
can only include speed and velocity. We use the publicly available code repository2 for 
the Thresholds algorithm’s implementation.

Fig. 10  Harmonic mean of purity and coverage of the Thresholds algorithm [19] applied to the Geolife, 
maritime, and ATC data sets. Hyper-parameters for Geolife: dvs = 20, Maritime: dvs = 5, dϕs = 0.5, ATC: dvs = 3, 
dϕs = 1.58

2  https://​github.​com/​uestc-​db/​traj-​compr​ession.

https://github.com/uestc-db/traj-compression
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RQ5: trajectory point features impact on segmentation

As previously discussed, the selection of trajectory features is important for segmen-
tation. Hence, RQ5 addresses the impact of feature selection on the performance of 
the segmentation algorithm. Figure 11 compares different sets of features (i.e., speed, 
acceleration, jerk, bearing, rate of change of bearing, and second derivative of bear-
ing) considered for segmentation in the case of the Geolife data set. For each combi-
nation of features, the harmonic mean of purity and coverage is averaged across the 
estimators. It can be noticed that the speed and bearing features yield the highest 
values of the harmonic mean among all sets of features for the given data set.

The corresponding results of the impact of feature selection for the maritime data 
set are not presented, as the true labels of the segments of trajectories are generated 
by only taking into account the speed and the direction of the vessels. Therefore, in 
all the previously presented results based on the maritime data set, we only use speed 
and direction. Similarly, for the ATC data set, the results related to the feature selec-
tion are not presented as there are only two relevant features available.

Conclusions and future work
In this work, we propose an online trajectory segmentation algorithm RBW-TS that 
can incorporate multiple trajectory features. Given the trajectory features relevant 
to the target application, the proposed algorithm can be applied to detect segments 
where the data is streaming. Due to low computational requirements, the proposed 
online algorithm can be applied in applications where the multidimensional trajec-
tory data is generated at a high frequency. The performance of RBW-TS has been 
evaluated on three real-world data sets and compared with relevant online and batch 
segmentation approaches. The numerical results presented in the paper elucidate the 
competitiveness of the proposed online segmentation algorithm.

Fig. 11  Harmonic mean of purity and coverage of RBW-TS Averaged over covariance estimation methods 
applied to the Geolife data set. Hyperparameters values: 1− α = 0.9
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The proposed online segmentation algorithm for multidimensional time series data 
has both advantages and limitations, as expected. However, the advantages have a sig-
nificant impact in certain scenarios, for instance, when the data is streaming. One of 
the challenges is setting the buffer size as a hyper-parameter. Unlike other algorithms, 
tuning buffer size is easy and does not depend on the size of data or the length of tra-
jectories. However, as detecting different length segments depends on the buffer size 
selection, it is essential to set it effectively. For instance, in the case of large buffer size, 
segments smaller than the buffer size cannot be detected. Consequently, the buffer 
size needs to be carefully selected, taking into account the data set (i.e., underlying 
characteristics of the domain). Second, the RBW-TS can have difficulty detecting seg-
ments with a smaller size than the number of the point features (i.e., the degree of 
multidimensionality) of the trajectories. For instance, when the number of processed 
features is high, small segments could remain undetected by the algorithm. Future 
potential extensions of the proposed algorithm include automatic selection of the 
buffer size, where the buffer size will be jointly learned with segments and adjusted 
according to the target application. Another potential direction for future work is 
online activity recognition, e.g., transportation mode, etc., based on the parameters 
of a segment.
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