
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Lamrini et al. Journal of Big Data (2023) 10:97
https://doi.org/10.1186/s40537-023-00788-3

Journal of Big Data

New distributed-topsis approach
for multi-criteria decision-making problems
in a big data context
Loubna Lamrini1*, Mohammed Chaouki Abounaima1 and Mohammed Talibi Alaoui1

Abstract

Nowadays, the online environment is extra information-rich and allows companies to
offer and receive more and more options and opportunities in multiple areas. Thus,
decision-makers have abundantly available alternatives to choose from the best one or
rank from the most to the least preferred. However, in the multicriteria decision-making
field, most tools support a limited number of alternatives with as narrow criteria as pos-
sible. Decision-makers are forced to apply a screening or filtering method to reduce the
size of the problem, which will slow down the process and eliminate some potential
alternatives from the rest of the decision-making process. Implementing MCDM meth-
ods in high-performance parallel and distributed computing environments becomes
crucial to ensure the scalability of multicriteria decision-making solutions in Big Data
contexts, where one can consider a vast number of alternatives, each being described
on the basis of a number of criteria.

In this context, we consider TOPSIS one of the most widely used MCDM methods. We
present a parallel implementation of TOPSIS based on the MapReduce paradigm. This
solution will reduce the response time of the decision-making process and facilitate
the analysis of the robustness and sensitivity of the method in a high-dimension prob-
lem at a reasonable response time.

Three multicriteria analysis problems were evaluated to show the proposed approach’s
computational efficiency and performance. All experiments are carried out within
GCP’s Dataproc, a service allowing the execution of Apache Hadoop and Spark tasks in
Google Cloud. The results of the tests obtained are very significant and promising.

Keywords: Multi-criteria decision making (MCDM), TOPSIS, MapReduce, Apache Spark,
Apache Hadoop, PySpark, Dataproc, Google cloud platform (GCP)

Introduction
With the digital age and the phenomenon of BIG DATA, decision-making problems
occur in everyone’s daily life. We are faced with a large number of options, for exam-
ple: buy which product from which supplier, target which customer, hire which candi-
date, etc. MCDM methods help decision-makers structure a complex decision-making

*Correspondence:
loubna.lamrini@usmba.ac.ma

1 Laboratory of Intelligent
Systems and Applications,
Faculty of Sciences
and Technologies, Sidi
Mohammed Ben Abdellah
University, Fez, Morocco

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00788-3&domain=pdf

Page 2 of 21Lamrini et al. Journal of Big Data (2023) 10:97

problem with various dimensions and explore promising courses of action to converge
towards optimal solutions that balance the different concerns of decision-makers.

Multi-criteria decision support is an alternative to traditional optimization methods
based on the definition of a single function that reflects the consideration of several cri-
teria [1]. The advantage of multi-criteria methods is to consider a set of criteria reflect-
ing different dimensions of the decision problem posed in the decision-making process.
It is not a question of looking for an optimum but a compromise solution with various
forms: choice, ranking or classification. Several methods exist in the literature. As part
of this work, given its fame and importance in this field, we are interested in the TOPSIS
method (Technique for Order Preference by Similarity to the Ideal Solution) [2].

Different software packages have been developed for several years to solve MCDM
problems with TOPSIS. However, most available software has limitations in terms of the
alternatives and the criteria to consider [3]. For example, with an exclusive commercial
license, the Triptych package for TOPSIS analysis [4] requires Microsoft Excel and limits
the number of alternatives to 200. SANNA and TOPSIS Solver software [3, 4] also need
Microsoft Excel to run and limit the number of alternatives to 200. In the case of large
datasets, decision makers (DMs) have to exert more effort to reduce the size of the set
of alternatives and adapt it to the capacity imposed by the MCDM software programs.
However, little research has been conducted on how big data tools can be applied to
overcome this limitation.

Data is constantly increasing with the popularization of means of communication,
Internet of Things (IoT), social networks, etc. Thus, decision-making has become a com-
plex problem due to the abundance of alternatives and the wide variety of criteria. To
circumvent this problem, researchers propose new models coupling MCDM methods
and machine learning and artificial intelligence approaches [5–9]. Nevertheless, these
models need robust frameworks, techniques, and algorithms for big data problems.
MCDM methods and big data fill a very valuable research gap. Although there are sev-
eral textbooks and research papers in the field of MCDM [10], there is no framework for
MCDM methods in the context of emerging big data.

Several solutions have been proposed to cope with the increase in data flow and the
large number of alternatives to be processed. In [11–13], screening techniques were pro-
posed to eliminate, from the beginning of the decision-making process, the alternatives
deemed irrelevant. Screening makes it possible to reduce the size of the decision matrix,
but in the case of a ranking process, the filtered alternatives will not appear in the final
list, which contains the sorted alternatives. Moreover, the filtering operation risks elimi-
nating relevant alternatives from the beginning of the decision-making process.

To reduce the number of alternatives to be processed by MCDM methods, service
providers are compelled to devote more effort to simplifying their offerings and facil-
itating the operation of choice. For example, the famous American company Expedia,
which operates several online travel agencies, allows hotels to present a limited number
of room types instead of showing all of their available room types [14]. However, with
larger choice sets, customers have a better chance of matching their purchases to their
preferences and maintaining their flexibility [15].

In this paper, we propose a parallel implementation to address this problem. A proven
effective parallel computing paradigm is MapReduce [16]. It is a massively parallel

Page 3 of 21Lamrini et al. Journal of Big Data (2023) 10:97

programming model suitable for processing very large amounts of data. Programs adopt-
ing this model are automatically parallelized and executed on clusters. Indeed, distrib-
uted parallelism has always been a possibility to meet this performance requirement. It
is even more true today with the massive presence of parallel computing and distributed
storage clusters as well as the fall in cluster prices.

Implementing distributed parallel algorithms, such as our proposed approach, requires
an infrastructure of distributed and connected machines in which the calculations are
carried out in parallel. Today, the least expensive in terms of investment and the best-
distributed computing solution is offered by cloud computing platforms. Indeed, cloud
computing platforms have provided businesses with on-demand computing resources
over the Internet, with pricing based on using those resources. Cloud computing
remains a better solution for companies to avoid investing in buying, owning, and man-
aging physical servers and data centers. Businesses and decision-makers can access tech-
nology services such as computing power, storage, and databases on demand with this
mobile services solution. To test our proposed parallel distributed approach, we have
chosen Google Cloud Platform (GCP), considered one of the most popular platforms,
with the possibility of a free platform trial.

Three examples of multi-criteria analysis problems have been evaluated in this paper
to prove the computational performance of the proposed Distributed-TOPSIS approach.
As we will show in the experimentation section, the results of these evaluations are bet-
ter and more significant for the case where the sets of alternatives become very large.
Indeed, for a set of one million alternatives, we have obtained an execution time of 412 s
for the sequential algorithm of the TOPSIS method, while for the proposed Distributed-
TOPSIS approach, for the same set, we have obtained, with Dataproc clusters with two
worker nodes and three worker nodes, an execution time of 121 and 84 s respectively.

The paper is composed of 5 sections. After the introduction in “Introduction” Section,
the second one presents the background and the motivation for this study; it gives an
overview of MCDM problems and their constraints. An analysis of the TOPSIS method
with its computing complexity will be provided. We also present in this section the
paradigm MapReduce and the importance of the implementation in Spark. “Proposed
approach: Distributed TOPSIS approach and MapReduce calculation” Section outlines
the algorithm proposed and its implementation according to the MapReduce para-
digm. “Experimentation and discussion of results” Section demonstrates the algorithm’s
performance with real and generated data sets. Finally, in “Conclusions and Further
Research” Section, we conclude this work by highlighting all the results obtained and
giving some perspectives and future research scopes.

Background and motivation
In this section, we first briefly review the basic idea of MCDM methods. And then, we
introduce TOPSIS, which is very powerful and widely used. Indeed, the main objective
of this article is to find a solution for extending MCDM methods to apply them in a Big
Data context where a large set of alternatives can be considered. The TOPSIS method is
chosen to illustrate our new approach based on the Map-Reduce paradigm for distrib-
uted and parallel programming through a computing cloud. In addition, we opted for
this method given its simplicity and the fact that it is considered one of the most widely

Page 4 of 21Lamrini et al. Journal of Big Data (2023) 10:97

used MCDM methods. However, as specified in the perspective, the proposed approach
will be generalized later for other MCDM methods.

The theoretical framework and methodological aspects of multi‑criteria methods

Today’s society gives us easy access to more information, products, and opportuni-
ties. When a decision-maker is given many sets of data, the quality of his decision is
decreased because of the individual’s limitation of resources to process all the informa-
tion and optimally make the best decision [10]. The human brain cannot process data,
which can lead to choice overload. A wide range of choices slows down and reduces
decision-making processes (For example, when a client wants to book a hotel, buy a
product online, or recruit a candidate).

The advent of modern information technology has been a primary driver of informa-
tion overload on multiple fronts: quantity produced, ease of dissemination, and breadth
of the audience reached. Technological factors have been further intensified by the rise
of social media and the attention economy, which facilitates attention theft. In the age
of connective digital technologies, the Internet culture, information overload is associ-
ated with over-exposure to information and input abundance of choices or alternatives.
In most cases, too many options lead to suboptimal choice, a phenomenon known as
choice overload. When people are faced with a large set of alternatives, they report less
satisfaction and regret their decision [17].

MCDM methods assist decision-makers in decision-making by considering several
parameters whose importance is different. For example, to buy a car, the customer often
tends to find a compromise between quality and price. The selection criteria differ from
person to person.

Decision matrix

Any MCDA problem considers a set A of n alternatives, consisting of candidate solu-
tions, and a family F of m of criteria, the views points according to which the alternatives
will be examined and compared. A set W of weights is also provided to consider the dif-
ferences between the relative importance of criteria in decision-making. To summarize
all the data of a decision problem, a matrix M, see Table 1, called a performance matrix,
or decision matrix, is constructed [18].

– F = {g1, …, gj, …, gm} is the family of m criteria m ≥ 2.

Table 1 Decision matrix

Criteria

M = Weights g1 … gj … gm

w1 … wj … wm

Min/Max … Min/Max … Min/Max

a1 g1(a1) … gj(a1) … gm(a1)

… … … … … …

ai g1(ai) … gj(ai) … gm(ai)

… … … … … …

an g1(an) … gj(an) … gm(an)

Page 5 of 21Lamrini et al. Journal of Big Data (2023) 10:97

– A = {a1, …, ai, …,an} is the set of alternatives.
– W = {w1, …, wj, …, wm} is the weight vector reflecting the relative importance of the

criteria.
– gj(ai) is the evaluation of the criterion gj for the alternative ai.
– Min indicates that the criterion is to be minimized.
– Max indicates that the criterion is to be maximized.

Real problems can be formulated using multi-criteria analysis methods according to
three basic categories [1]:

– The choice problem (Pα) consists of MCDM problems in which the DMs must select
a subset of alternatives evaluated as the best from a set A.

– The sorting or assignment problem corresponds to assigning each alternative to pre-
defined ordered categories (Pβ). In such a problem, a set of categories must be a pri-
ori-defined, and actions are assigned to them regardless of other actions.

– The ranking problem concerns generating a partial or complete preferred pre-order
of alternatives (Pδ).

Multi‑criteria decision‑making process

In practice, a multi-criteria decision-making problem is embedded in a wider process of
problem structuring and resolution [19]. Figure 1 shows the main stages.

As illustrated in Fig. 1, each step in the decision-making process is an iterative and
recurring step. In phase 4, decision stakeholders should perform several executions of
the chosen MCDM method to check how robust the results are and study the degree of
sensitivity of the result to the variation of the parameters. Indeed, robustness analysis

Fig. 1 Multi-criteria decision-making process [19]

Page 6 of 21Lamrini et al. Journal of Big Data (2023) 10:97

consists of changing the input parameter values in order to observe what happens to the
output results. The purpose of the sensitivity analysis is to find the interval [Vmin, Vmax]
in which the variation of the values of the parameters, such as the weight of each crite-
rion, will not affect the final result [20, 21]. The principle consists of varying the model
parameters to study the solution’s stability (Tables 2 and 3).

Robustness and sensitivity analysis are crucial in a multi-criteria decision support pro-
cess. The main disadvantage of these analyses is that they are expensive in computation
time and require considerable effort on the part of those involved. Thus, it becomes cru-
cial to obtain fast responses from the decision system support during this stage.

On the other side, MCDM problems have recently received attention from artificial
intelligence, machine learning, and data mining communities [5, 9, 22]. In [6], authors
propose a new model, based upon the concept of TOPSIS, to automatically classify
credit score data into groups of high or low expected repayment. Several recent works
have focused on consolidating data mining methods with MCDM methods to give DM
tools to tackle decision-making problems in a big data context, such as supplier selection
and personnel assessment [23, 24].

In the case of applying the TOPSIS method, the work presented in this article pro-
poses using the MapReduce paradigm to reduce the execution time of each iteration and
thus generate results within a reasonable time and support stakeholders in the decision-
making process.

TOPSIS: definition and algorithm

The TOPSIS method and its stages

The technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method
[25] is a robust approach to solving multi-criteria decision-making problems. First
developed by Hwang and Yoon [25]. It is used to calculate the alternatives ratings. The

Table 2 Decision matrix for the illustrative example

We emphasize that the weights of the criteria are equal to 1, and all the criteria should be maximized

Criteria

M = Weights g1 g2 g3 g4

1 1 1 1

Max Max Max Max

A1 4 4 5 3

A2 3 3 4 2

A3 5 4 2 2

A4 1 2 3 1

Table 3 Final ranking for the illustrative example

Alternative Rank

Alternative_1 1

Alternative 3 2

Alternative_2 3

Alternative_4 4

Page 7 of 21Lamrini et al. Journal of Big Data (2023) 10:97

Positive Ideal Solution (PIS) and the Negative Ideal Solution (NIS) are two major notions
used to find the optimal alternative. The positive ideal maximizes the profit criterion and
minimizes cost, while the negative maximizes the cost criterion and minimizes profit.
TOPSIS seeks to select the alternative with the shortest distance to the positive ideal
solution and the longest to the negative one.

Due to its effectiveness and potentiality, TOPSIS has emerged as a popular MCDM
method with a wide application domain [2]. It is exploited in several fields, such as Sup-
ply Chain Management, manufacturing systems, business and Marketing Management,
Health, Human Resources Management, and Other topics.

Recently, many scientists have proposed a combination of business analytics (descrip-
tive, predictive, and prescriptive) with the TOPSIS method to provide robust data-driven
tools [26]. TOPSIS method was used as a data mining model, and in [6], it was used as
a classification model for credit scoring. In [27], the authors proposed a Social Media
Analytics model based on TOPSIS that works better than the standard methods.

TOPSIS consists of the following steps:
Step1: Construction of the decision matrix composed of n alternatives and m criteria.
Step2: Construction of the normalized decision matrix.
To make the preferences on all the criteria homogeneous and comparable and to

transform all the criteria into criteria to be maximized, there are four normalization pro-
cedures in the literature which are the most commonly used [28]. We present their cal-
culation formulas (1–1), (1–2), (1–3) and (1–4) below.

 (i) Normalization procedure N1: by the maximum value of the scores

 (ii) Normalization procedure N2: by the ratio between the difference of the scores and
the minimum value of the scores, and the difference between the maximum value
and the minimum value of the scores

 (iii) Normalization procedure N3: by the sum of the scores

(1-1)nij =

aij

max
k∈{1,...,n}

akj
if j ∈ J+

1−
aij

max
k∈{1,...,n}

akj
if j ∈ J−

(1-2)nij =

aij − min
k∈{1,...,n}

akj

max
k∈{1,...,n}

akj − min
k∈{1,...,n}

akj
if j ∈ J+

1−

max
k∈{1,...,n}

akj − aij

max
k∈{1,...,n}

akj − min
k∈{1,...,n}

akj
if j ∈ J−

Page 8 of 21Lamrini et al. Journal of Big Data (2023) 10:97

 (iv) Normalization procedure N4: by the square root of the sum of the squares of the
scores.

Where for the four normalization procedures:
- aij is the evaluation of the criterion j for the alternative ai

- J+ is the subset of criteria to be maximized
- J- is the subset of criteria to be minimized
- nij is the element of the normalized matrix, which varies between 0 and 1
In this work, we opted for the N4 normalization procedure used in the original version

of the TOPSIS method [25]. In other more recent versions of the TOPSIS method, it is
proposed to follow up with more than one normalization procedure, as in the TOPSIS-2N
method [28] [29–31] where it is proposed to combine with the two normalization proce-
dures N2 and N4. All obtained results in this study remain open and easily generalized to all
standardization procedures.
Step3: Construction of the weighted normalized decision matrix

where wj is the weight of importance assigned to the criteria j.
Step4: Determination of the positive ideal solution PIS and the negative ideal solution

NIS

where:
- J+: associated with the criteria having a positive impact to be maximized (benefit)

(1-3)nij =

aij
n
�

k=1

akj

if j ∈ J+

1−
aij
n
�

k=1

akj

if j ∈ J−

(1-4)nij =

aij
�

n
�

k=1

a2kj

if j ∈ J+

1−
aij

�

n
�

k=1

a2kj

if j ∈ J−

(2)
vij =

nij × wj

m
∑

k=1

wk

∀i, j

(3)PIS =

{(

max
i

(

vij
∣

∣j ∈ j+
)

)

,

(

min
i

(

vij
∣

∣j ∈ j−
)

)}

=
{

v+1 v
+
2 , . . .

}

(4)NIS =

{(

max
i

(

vij
∣

∣j ∈ j−
)

)

,

(

min
i

(

vij
∣

∣j ∈ j+
)

)}

=
{

v−1 v
−
2 , . . .

}

Page 9 of 21Lamrini et al. Journal of Big Data (2023) 10:97

- J-: associated with the criteria having a negative impact to be minimized (cost)
Step5: Calculation of L2-distance between the target alternative i and the best/worst

condition

Step6: Calculate the similarity to the worst condition NIS

Step7: Rank the alternatives according to Si.
Algorithm 1 summarizes the steps of the basic TOPSIS method.

The complexity of the sequential algorithm of the TOPSIS method

The term used in algorithms to qualify the performance of an algorithm is the com-
plexity, and more precisely, the time complexity and Space complexity. Time complex-
ity is measured by the number of computing stages required to execute an algorithm
as a function of data input size n. At the same time, the space complexity is measured
by the memory used by the data structure contained in the algorithm as a function of
n [32, 33].

Time complexity is the most widely used metric to assess the performance of an
algorithm. Time is an essential factor, especially in a decision-making process. An
algorithm is classified based on the time it takes to complete compared to the input
size. There is a range of varieties. Some algorithms complete in a linear time relative

(5)d+i =

√

√

√

√

m
∑

j=1

(

vij − v+j

)2

∀j

(6)d−i =

√

√

√

√

m
∑

j=1

(

vij − v−j

)2

∀j

(7)Si =
d−i

d−i + d+i
for 1 ≤ i ≤ n

Page 10 of 21Lamrini et al. Journal of Big Data (2023) 10:97

to the input size; others complete in a time that is quadratic O(n2); others complete in
an exponential or worse time; and others stop [32].

With a quadratic algorithm, the time is increased proportionally to the square of
the number of data. TOPSIS method has a higher time complexity of the order O(n2)
[34]. This quadratic complexity, therefore, presents a limitation for decision-making
problems with large data sizes. A parallel programming model, such as MapReduce, is
a potential solution to overcome this limitation.

MapReduce paradigm

The availability of robust computing infrastructures and the need to process a gigan-
tic volume of data have imposed the use of sophisticated and rapid programming
models. One of the proven effective parallel computing models is MapReduce [35].
The framework of MapReduce is very convenient for distributed computing, which
can abstract away from many difficulties in parallelizing data management operations
through a cluster of machines [35]. Many MapReduce-based parallel computing plat-
forms have been developed for the analysis of large-scale data sets, such as Hadoop
[37, 38], Spark [39], etc.

The MapReduce model was proposed by two engineers at Google, who observed
that many massively parallel processing operations, implemented for the needs of
their search engine, followed an identical parallelization strategy. From these obser-
vations was born the MapReduce programming model, first described in 2004 [16].
The Map inspires his processing abstraction and Reduce primitives present in many
functional languages like Lisp. MapReduce jobs processing includes two important
phases: Map and Reduce. Each phase uses key-value pairs. Programmers specify what
to do in the two functions, map() and reduce(). All values with the same key are sent
to the same reducer. The execution framework handles everything else. Figure 2 illus-
trates the MapReduce workflow [35].

Spark via Hadoop

A MapReduce program must be supported by a dedicated software infrastructure
that allows the MapReduce scheme to be executed in a massively distributed manner
on a cluster of machines while guaranteeing the challenges of distributed computing:

• Optimization of disk and network transfers by limiting data movement,
• Scalability and fault tolerance

Fig. 2 MapReduce workflow

Page 11 of 21Lamrini et al. Journal of Big Data (2023) 10:97

The Hadoop MapReduce platform has two major drawbacks [35, 36]:

1. After a map or reduce operation, the result should be written to disk. This data writ-
ten to disk allows mappers and reducers to communicate with each other. It is also
writing to disk that provides fault tolerance: if a map or reduce operation fails, data is
retrieved from the disk. However, these writes and reads are very time-consuming.

2. The set of expressions composed exclusively of map and reduce operations is very
limited and not very expressive. In other words, it is difficult to express complex
operations using only this set of two operations.

Apache Spark is an alternative to Hadoop MapReduce for distributed computing that
aims to solve these problems. The fundamental difference between Hadoop MapReduce
and Spark is that Spark writes data to RAM, not disk. Thus, we achieve a performance
increase by minimizing disk usage with Spark, especially for the programs with many
iterative calculations sharing the same data [37].

This has several important consequences on the processing speed of calculations. How-
ever, storing the data of the intermediate calculations in RAM poses a challenge to over-
come to guarantee fault tolerance. When a machine becomes unavailable, the data stored
in RAM becomes inaccessible. To solve this problem, Spark distributes the calculations
as a graph. The state of a node can be reconstructed from its neighboring nodes (Fig. 3).

Spark cluster architecture

A Spark cluster is composed of:

• One or more workers: each worker instantiates an executor responsible for execut-
ing the various calculation tasks. Each worker has multiple executors. This allows for
running multiple Spark applications on a single machine at the same time.

• A driver: in charge of distributing the tasks to the different executors. This is the
driver that executes the main method of our applications.

• A cluster manager: responsible for instantiating the different workers.

The figure below (Figure 3) gives an overview of a Spark cluster architecture [38].

Fig. 3 Spark cluster architecture

Page 12 of 21Lamrini et al. Journal of Big Data (2023) 10:97

The support for parallelism in the Spark architecture is incorporated through the
Resilient Distributed Dataset (RDD) concept. RDD is defined as an immutable distrib-
uted collection of objects [39]. Each dataset in RDD is divided into logical partitions,
which may be computed on different cluster nodes. And it can support two different
kinds of operations: Transformations, which create a new RDD from the existing RDD,
and actions that return final results to the driver program or the external storage.

Proposed approach: distributed TOPSIS approach and MapReduce calculation
The design of a distributed parallel TOPSIS algorithm is motivated by, firstly, the need
to reduce computing time for large-scale datasets. Secondly, taking advantage of tech-
nological advances in computers.

TOPSIS method has a high time complexity of order O(n2). For a large-scale deci-
sion matrix, it will slow down the overall DM process. We have adopted a parallel
algorithm based on the MapReduce paradigm to solve this problem. The calculations
are distributed over several nodes.

To reformulate the operations of the TOPSIS algorithm into Map() and Reduce()
functions, the question is how to define the input form of the data as: (key, value).
And how to aggregate the values according to the calculations required at each stage.
To answer these two questions, as shown in the illustrative numerical example of
algorithm 2 above, we use the most commonly used transformers below.

First, the decision matrix data and criteria weights are stored on the RDDs created
by the sc.parallelize() methods of the PySpark API. All the transformations applied
to these RDDs are executed in a distributed and parallel way and produce as a result
other RDDs [40].

– map() is a transformation operation that applies the transformation on every ele-
ment of RDD and returns a new RDD. The output of map transformations would
always have the same number of records as the input.

– flatmap() is a transformation that flattens the RDD after applying the function
on every element and returns a new RDD. The returned RDD could return more
rows. It is also referred to as a one-to-many transformation function.

– reduceByKey() is a transformation used to aggregate the values for each key using
an associative and commutative reduce function like min and max.

– sortByKey() is a transformation used to sort the result by key.
– collect() is an action operation that is used to retrieve all the elements of the RDD

dataset, from all nodes to the master node.

Distributed TOPSIS algorithm

The implementation of TOPSIS algorithms starts by creating a spark context using the
SparkContext() function after loading data from the input dataset. Data is partitioned
into several fragments. Each Spark’s executor node receives a different data partition

Page 13 of 21Lamrini et al. Journal of Big Data (2023) 10:97

in the form of RDD. The pseudocode of the TOPSIS algorithm with the MapReduce
model is given in Algorithm 2.

The SparkContext.parallelize() method is used to create parallelized collection of RDD
from a list of collections which can be distributed over a cluster for parallel processing.

Numerical illustration of the calculations of algorithm 2

To illustrate the step-by-step execution of Algorithm 2, whose source code is provided as
an attachment to this article (via the link: related files), we present an example MCDM
problem with four alternatives and four criteria assumed to be maximized (see Table 2).

To understand how the data will be aggregated to form the final ranking of the alterna-
tives, all the calculation steps with the functions map(), flatmap() and reduceByKey() are
explained numerically. See Figs. 4, 5, 6, 7 and 8.

Fig. 4 Matrix normalization

Page 14 of 21Lamrini et al. Journal of Big Data (2023) 10:97

For the decision matrix normalization step, the figure shows how the data was distrib-
uted as a key value with the flatMap() function and how the intermediate results were
aggregated with the reduceByKey() function. See Figs. 4 and 5 below.

To compute the ideal solution, we transform the weighted normalization of the
matrix as a set of pairs (key, value). For example, for the alternative A1: we consider

Fig. 5 Calculation of the weighted matrix

Fig. 6 Calculation of PIS and NIS

Page 15 of 21Lamrini et al. Journal of Big Data (2023) 10:97

the pairs (key, value): (1, a11), (2, a12),…,(m, a1m) where a1j represents the perfor-
mance of the alternative A1 on the jth criterion (from the weighted matrix). The
reduce operation then retrieves the maximum value (function: reduceByKey(max))
among the values associated with a given key.

The following figure illustrates the same principle used to calculate the positive
ideal solution (PIS) and negative ideal solution (NIS).

Fig. 7 Calculation of positive_distance and negative_distance

Fig. 8 Calculation of the degree of similarity and the final ranking

Page 16 of 21Lamrini et al. Journal of Big Data (2023) 10:97

In conclusion for this example illustration of the application of algorithm 2, the
ranking in descending order of the four alternatives based on the decision matrix
and the weighting provided as input is as follows (see Table 3):

Experimentation and discussion of results
Datasets selected for experimentation

To verify the effectiveness of our approach, we performed our experiments on one ran-
domly generated dataset and two real datasets (all deployed data files are attached to this
paper via the link: related files).

1. Generated data set (https:// gener ateda ta. com/): To analyze the variation of the exe-
cution time according to the number of alternatives, we generated several databases.
Each time, we increase the number of lines (from 100 lines up to 1 million) and the
number of criteria (10 to 40 criteria: a number rarely reached in an MCDM prob-
lem).

2. Mobile price data set (https:// www. kaggle. com/ datas ets/ iabhi sheko ffici al/ mobile-
price- class ifica tion): this database contains 2000 rows and 21 numerical columns.
Each line represents the characteristics of a phone (like internal memory in GB, clock
speed, number of cores, weight, pixel resolution price, dual sim etc.). The choice of
a phone presents an MCDM problem. The choice or order of preference of phones
depends on the importance (weight) given to each criterion. This importance differs
from one person to another.

3. Credit Card Clients Dataset (https:// www. kaggle. com/ datas ets/ uciml/ defau lt- of-
credit- card- clien ts- datas et? select= UCI_ Credit_ Card): This dataset contains infor-
mation on default payments, credit data, history of payment, and bill statements of
credit card clients. This resource presents information relating to bank customers. It
allows sorting according to several criteria such as level of education, age, repayment
status, amount of bill statement, amount of previous payment, default payment etc.
It has 30 000 rows and 23 criteria.

Experiment environment

We have run the distributed algorithm proposed in GCP’s Dataproc, a managed service
for running Apache Hadoop and Spark jobs in Google Cloud. We have configured two
different cluster configurations:

• In the first configuration, we used a cluster with a master node and two workers (the
master node has an n1-standard-2 system with 2 CPUs with 7.5 GB memory each.
Worker nodes have the same configuration).

• In the second configuration, we used a cluster with a master node and three worker
nodes (the same characteristics as the first master node).

We have also run the sequential algorithm of TOPSIS in GCP using an n1-standard-1
system (1 vCPU, 3.75 GB memory).

https://generatedata.com/
https://www.kaggle.com/datasets/iabhishekofficial/mobile-price-classification
https://www.kaggle.com/datasets/iabhishekofficial/mobile-price-classification
https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset?select=UCI_Credit_Card
https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset?select=UCI_Credit_Card

Page 17 of 21Lamrini et al. Journal of Big Data (2023) 10:97

Discussion of results

As shown in the proposed algorithm 2, we used the MapReduce paradigm to rank a
set of alternatives each described by a family of criteria. The objective is to process
the alternatives at several levels in parallel: at the first level, which consists in nor-
malizing the performance matrix into a weighted matrix, at the second level, which
is used to calculate the two reference solutions PIS and NIS, at the third level for
calculate the euclidean distances between the alternatives and the solutions PIS and
NIS, and finally at the fourth level to calculate the degree of similarity of each alter-
native and classify the alternatives according to these degrees of similarity. However,
in the original version of TOPSIS, as illustrated in Algorithm 1, these fourth calcula-
tion levels were performed sequentially. Thus, we have deployed the famous methods
map(), flatmap(), and reduceByKey() [40] to divert the sequential processing, which
undoubtedly requires a much higher execution time than the parallel version.

In this section, we examine all the results obtained by the different tests carried out.
Figure 9 concerns results regarding generated data sets (results regarding the other

data sets lead to similar conclusions). We use the size of the dataset as a metric to
evaluate the execution time. The number of criteria was also considered as a metric
(curve in Fig. 10). From the observed experimental results in Fig. 9, it is clear that

0

50

100

150

200

250

300

350

400

450

1000 5000 10000 100000 1000000

T
IM

E
 (

S
)

NUMBER OF ALTERNATIVES

sequential mapreduce (2 worker nodes) mapreduce (3 worker nodes)

Fig. 9 TOPSIS Sequential and Distributed TOPSIS Computation Time

Fig. 10 Execution time according to the number of criteria (cluster with three worker nodes)

Page 18 of 21Lamrini et al. Journal of Big Data (2023) 10:97

executing time grows with the number of alternatives. We notice that the execution
time in the cluster with three worker nodes is much lower than in the sequential
algorithm.

The computation has been performed with MapReduce implementation over the
Dataproc cluster for all different-size data sets. The sequential algorithm has taken
approximately 412 s (≈7 min) for 1 million alternatives, while Dataproc clusters with
two worker nodes and three worker nodes have taken approximately 121 and 84 s,
respectively. Thus, we can improve the time efficiency by deploying more worker
nodes.

The curve in Fig. 10 shows the variation in the computation time according to the
number of criteria. It concerns a data set with 1 M alternatives and a cluster with three
worker nodes. The number of criteria does not have much influence knowing that the
number of criteria in a real decision-making problem remains limited. Tests carried out
confirmed what we mentioned before. The number of alternatives contributes more to
increasing the execution time than the number of criteria.

The experimentation carried out in this present research work proves that the pro-
posed Distributed-TOPSIS approach has largely overcome the problem of the execution
time, which remains very high for sets containing a considerable number of alternatives.
This execution time is obviously linked to the high temporal complexity imposed by the
sequential version of the TOPSIS method. Thus, the Distributed-TOPSIS approach is a
notable improvement of the basic version; indeed, the execution time is reduced from
seven minutes to less than two minutes for a set of up to one million alternatives.

This new approach can therefore be adopted for any multi-criteria decision problem in
a big data context without having to filter specific alternatives to reduce the size of the
set of alternatives to be processed. In addition, this same version can be deployed to help
decision-makers find the best and most stable solution by the robustness analysis opera-
tion, which recommends running the method several times with different parameters,
such as the criteria weights and evaluations of some alternatives.

For the robustness of this research work, we make available to readers, as attach-
ments to this paper, the complete PySpark program of the proposed parallel distributed
approach of the TOPSIS method and the data files tested (via the link: related files).

Conclusions and further research
This work presents a MapReduce implementation of TOPSIS, one of the most robust
MCDM methods. Using this paradigm, a computing response time that could be dis-
appointing for decision-makers may be reduced. This improvement allows for dealing
with large data sets and the uncertainties generated during several iterative executions of
TOPSIS in the robustness and sensitivity analysis phase.

For experiments with the distributed parallel algorithm of the TOPSIS method, we
took advantage of the distributed servers infrastructure of the Google Cloud Platform
with a trial account. However, decision-makers for a practical application of the pro-
posed approach have many other choices of cloud computing platforms, such as Ama-
zon Web Services and Microsoft Azure, with the possibility of using many worker nodes
to improve execution time.

Page 19 of 21Lamrini et al. Journal of Big Data (2023) 10:97

This research opens up multiple prospective for future extensions. The idea of the par-
allel distributed implementation based on the MapReduce paradigm proposed in this
present work can be judiciously generalized to other MCDM methods. We aim to design
and develop an integrated Big-Data model for MCDM methods like MLlib Spark that
comes with a library containing common machine learning (ML) functionality. The
authors are presently working in this direction.

In the age of the data explosion, the use of new advances in computing is becoming a
common and inevitable choice. In the future, we are interested in using quantum pro-
gramming to speed up the calculation time. Quantum programming is a breakthrough
technology that could limit what we can compute, but its future is still fuzzy.
Acknowledgements
The authors thank the president of the University Sidi Mohmed Ben Abdellah, the dean of the Faculty of Science and
Technology and the director of the Laboratory of Intelligent Systems and Applications for their continuous encourage-
ment and support.

Author contributions
All mentioned authors contribute to the elaboration of the paper. All authors read and approved the final manuscript.

Authors’ information
Loubna Lamrini is a computer engineer and professor in the Department of Computer Engineering, Faculty of Sciences
and Techniques of the University Sidi Mohamed Ben Abdellah, Fez Morocco. She obtained her degree in computer
engineering from ENIM, Rabat, Morocco. Loubna Lamrini is actively engaged in research on various aspects of informa-
tion technology ranging from multi-criteria decision analysis methods and high-performance computing. Mohammed
Chaouki ABOUNAIMA received a Ph.D. in Computer Science from the Mohammed V University, Rabat, Morocco, in 1997.
He is a professor at the Department of Computer Engineering, Faculty of Science and Technology Fez Morocco. He is a
member of the Laboratory of Intelligent Systems & Applications. His research interests lie in data analysis, data mining,
machine learning, and multi-criteria decision-making. Mohammed Talibi Alaoui obtained his PH Degree in automatic
and information processing from Ibn Tofail University, Kenitra, Morocco. He received a Habilitation degree in 2014 from
the Mohammed First University, Oujda (Morocco). He is currently a professor at the Sidi Mohammed Ben Abdellah
University of Fes (Morocco). He teaches computer science. His field of research interest is in image processing, computer
vision, and their applications to medical imaging, quality control, and parallel computing.

Funding
Not applicable.

Availability of data and materials
yspark program file: distopsis. Data files: actions1M.csv, mobile_choice.csv, clients_data.csv (via the link: related files)

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 21 November 2022 Accepted: 22 May 2023

References
 1. Roy B. Decision-aid and decision-making. Eur J Oper Res. 1990;45(2–3):324–31. https:// doi. org/ 10. 1016/ 0377- 2217(90)

90196-I.
 2. Behzadian M, Khanmohammadi Otaghsara S, Yazdani M, Ignatius J. A state-of the-art survey of TOPSIS applications.

Expert Syst Appl. 2012;39(17):13051–69. https:// doi. org/ 10. 1016/j. eswa. 2012. 05. 056.
 3. Yadav V, Karmakar S, Kalbar PP, Dikshit AK. PyTOPS: a python based tool for TOPSIS. SoftwareX. 2019;9:217–22. https:// doi.

org/ 10. 1016/j. softx. 2019. 02. 004.
 4. Jablonsky J. MS Excel based software support tools for decision problems with multiple criteria. Procedia Econ Financ.

2014;12(March):251–8. https:// doi. org/ 10. 1016/ s2212- 5671(14) 00342-6.

https://doi.org/10.1016/0377-2217(90)90196-I
https://doi.org/10.1016/0377-2217(90)90196-I
https://doi.org/10.1016/j.eswa.2012.05.056
https://doi.org/10.1016/j.softx.2019.02.004
https://doi.org/10.1016/j.softx.2019.02.004
https://doi.org/10.1016/s2212-5671(14)00342-6

Page 20 of 21Lamrini et al. Journal of Big Data (2023) 10:97

 5. Selcuk A, Selcuk H, Delen D. Technological forecasting & social change the use of multi-criteria decision-making meth-
ods in business analytics: a comprehensive literature review. Technol Forecast Soc Chang. 2022;174:121193. https:// doi.
org/ 10. 1016/j. techf ore. 2021. 121193.

 6. wu D, Olson DL. A TOPSIS data mining demonstration and application to credit scoring. Int J Data Warehous Min.
2006;2(3):16–26. https:// doi. org/ 10. 4018/ jdwm. 20060 70102.

 7. Mahdiraji HA, Zavadskas EK, Kamardi AA. Marketing strategies evaluation based on big data analysis : a CLUSTERING-
MCDM approach. Economic Res Ekonomska Istraživanja. 2019. https:// doi. org/ 10. 1080/ 13316 77X. 2019. 16585 34.

 8. A Azadnia, Hossein P, Ghadimi M, Molani-Aghdam, “Title A hybrid model for estimating customer lifetime value.” 2011. of
data mining and MCDM methods

 9. Yang M, Nazir S, Xu Q, Ali S, Uddin MI. Deep learning algorithms and multicriteria decision-making used in big data: a
systematic literature review. Complexity. 2020. https:// doi. org/ 10. 1155/ 2020/ 28360 64.

 10. Zavadskas EK, Turskis Z, Kildiene S. State of art surveys of overviews on MCDM/MADM methods. Technol Econ Dev Econ.
2014;20(1):165–79. https:// doi. org/ 10. 3846/ 20294 913. 2014. 892037.

 11. Chen Y, Kilgour DM, Hipel KW. Screening in multiple criteria decision analysis. Decis Support Syst. 2008;45(2):278–90.
https:// doi. org/ 10. 1016/j. dss. 2007. 12. 017.

 12. Lamrini L, Abounaima MC, Talibi M, Alaoui M, Ouzarf FZ, Mazouri EL. MCDM filter with Pareto parallel implementation in
shared memory environment (SOIC-1216). Stat Optim Inf Comput. 2022. https:// doi. org/ 10. 19139/ soic- 2310- 5070- 1216.

 13. Lamrini L, Abounaima MC, Talibi Alaoui M, El Mazouri FZ, El Makhfi N, Ouzarf M, “,. A filtering approach used in a massive
data context to reduce the set of choices in a multicriteria decision aid process: Pareto solutions. Int Conf Electron
Control Optim Computer Sci. 2020. https:// doi. org/ 10. 1109/ ICECO CS501 24. 2020. 93144 45.

 14. Guillet BD, Mattila A, Gao L. The effects of choice set size and information filtering mechanisms on online hotel booking.
Int J Hospitality Manag. 2019. https:// doi. org/ 10. 1016/j. ijhm. 2019. 102379.

 15. Kahneman D, Snell J. Predicting a changing taste: do people know what they will like? J Behav Decis Mak.
1992;5(3):187–200.

 16. Zhang J, Zhang X, Zhang W. Microseismic search engine. Soc Explor Geophys Int Expo 83rd Annu Meet SEG 2013
Expand Geophys Front. 2013. https:// doi. org/ 10. 1190/ segam 2013- 1277.1.

 17. Chernev A, Böckenholt U, Goodman J. Choice overload: a conceptual review and meta-analysis. J Consum Psychol.
2012;25(2):333–58. https:// doi. org/ 10. 1016/j. jcps. 2014. 08. 002.

 18. B. Roy and D. Bouyssou, “Aide multicritere à la décision: méthodes et cas. Production et techniques quantitatives appli-
quées à la gestion,” Econ. Paris, Fr., 1993.

 19. Belton V, Stewart T. Problem structuring and multiple criteria decision analysis. Int Ser Oper Res Manag Sci.
2010;142:209–39. https:// doi. org/ 10. 1007/ 978-1- 4419- 5904-1_8.

 20. DG-M. criteria decision making and undefined 2012, “Sensitivity and robustness analysis of solutions obtained in the
European projects’ ranking process,” mcdm.ue.katowice.pl.. https:// mcdm. ue. katow ice. pl/ files/ mcdm12. pdf# page= 86.
Accessed 26 Apr 2023.

 21. Song JY, Chung E. Robustness, uncertainty and sensitivity analyses of the TOPSIS method for quantitative cli-
mate change vulnerability : a case study of flood damage. Water Resour Manag. 2016. https:// doi. org/ 10. 1007/
s11269- 016- 1451-2.

 22. El Mazouri FZ, Abounaima MC, Zenkouar K. Data mining combined to the multicriteria decision analysis for the
improvement of road safety: case of France. J Big Data. 2019. https:// doi. org/ 10. 1186/ S40537- 018- 0165-0.

 23. Ijadi Maghsoodi A, Kavian A, Khalilzadeh M, Brauers WKM. CLUS-MCDA: a novel framework based on cluster analysis and
multiple criteria decision theory in a supplier selection problem. Comput Ind Eng. 2018. https:// doi. org/ 10. 1016/j. cie.
2018. 03. 011.

 24. Ijadi Maghsoodi A, Riahi D, Herrera-Viedma E, Zavadskas EK. An integrated parallel big data decision support tool using
the W-CLUS-MCDA: a multi-scenario personnel assessment. Knowledge-Based Syst. 2020. https:// doi. org/ 10. 1016/j.
knosys. 2020. 105749.

 25. Hwang C-L, Yoon K. Methods for Multiple Attribute Decision Making. In: Hwang C-L, Yoon K, editors. Multiple Attribute
Decision Making. Berlin: Springer Berlin Heidelberg; 1981.

 26. Nilashi M, Mardani A, Liao H, Ahmadi H, Manaf AA, Almukadi W. A hybrid method with TOPSIS and machine learning
techniques for sustainable development of green hotels considering online reviews. Sustainability. 2019. https:// doi. org/
10. 3390/ su112 16013.

 27. Muruganantham A, Gandhi GM. Framework for social media analytics based on multi-criteria decision making (MCDM)
model. Multimed Tools Appl. 2019. https:// doi. org/ 10. 1007/ S11042- 019- 7470-2.

 28. De Siqueira Silva MJ, et al. A comparative analysis of Multicriteria methods AHP-TOPSIS-2N, PROMETHEE-SAPEVO-M1
and SAPEVO-M: selection of a truck for transport of live cargo. Procedia Comput Sci. 2022. https:// doi. org/ 10. 1016/J.
PROCS. 2022. 11. 152.

 29. De Souza LP, Gomes CFS, De Barros AP. “Implementation of New Hybrid AHP–TOPSIS-2N method in sorting and prioritiz-
ing of an it CAPEX project portfolio. Int J Info Technol Dec Mak. 2018. https:// doi. org/ 10. 1142/ S0219 62201 85002 07.

 30. Silvado MC, Gomes CFS, Souza RC. “TOPSIS-2NE’s proposal. Int J Fuzzy Syst. 2020. https:// doi. org/ 10. 1007/ S40815- 020-
00871-4/ METRI CS.

 31. Silva MDC, Gomes CFS, Da Costa Junior CL. A hybrid Multicriteria methodology topsis-macbeth-2n applied in the order-
ing of technology transfer offices. Pesqui Oper. 2018. https:// doi. org/ 10. 1590/ 0101- 7438. 2018. 038. 03. 0413.

 32. B Bollig and I Wegener. 2005 complexity theory exploring the limits of efficient algorithms. 32(4)
 33. Burgin M. Algorithmic complexity as a criterion of unsolvability. Theor Comput Sci. 2007;383(2–3):244–59. https:// doi.

org/ 10. 1016/j. tcs. 2007. 04. 011.
 34. R. Wardoyo, “The complexity calculation for group decision making using TOPSIS algorithm,” 2017, doi: https:// doi. org/

10. 1063/1. 49585 02.
 35. H. Jin, S. Ibrahim, L. Qi, H. Cao, S. Wu, and X. Shi. 2011 “The MapReduce Programming Model and Implementations,” in

Cloud Computing: Principles and Paradigms, John Wiley and Sons. 373–390.
 36. Asghar H, Nazir B. Analysis and implementation of reactive fault tolerance techniques in Hadoop: a comparative study. J

Supercomput. 2021;77(7):7184–210. https:// doi. org/ 10. 1007/ s11227- 020- 03491-9.

https://doi.org/10.1016/j.techfore.2021.121193
https://doi.org/10.1016/j.techfore.2021.121193
https://doi.org/10.4018/jdwm.2006070102
https://doi.org/10.1080/1331677X.2019.1658534
https://doi.org/10.1155/2020/2836064
https://doi.org/10.3846/20294913.2014.892037
https://doi.org/10.1016/j.dss.2007.12.017
https://doi.org/10.19139/soic-2310-5070-1216
https://doi.org/10.1109/ICECOCS50124.2020.9314445
https://doi.org/10.1016/j.ijhm.2019.102379
https://doi.org/10.1190/segam2013-1277.1
https://doi.org/10.1016/j.jcps.2014.08.002
https://doi.org/10.1007/978-1-4419-5904-1_8
https://mcdm.ue.katowice.pl/files/mcdm12.pdf#page=86
https://doi.org/10.1007/s11269-016-1451-2
https://doi.org/10.1007/s11269-016-1451-2
https://doi.org/10.1186/S40537-018-0165-0
https://doi.org/10.1016/j.cie.2018.03.011
https://doi.org/10.1016/j.cie.2018.03.011
https://doi.org/10.1016/j.knosys.2020.105749
https://doi.org/10.1016/j.knosys.2020.105749
https://doi.org/10.3390/su11216013
https://doi.org/10.3390/su11216013
https://doi.org/10.1007/S11042-019-7470-2
https://doi.org/10.1016/J.PROCS.2022.11.152
https://doi.org/10.1016/J.PROCS.2022.11.152
https://doi.org/10.1142/S0219622018500207
https://doi.org/10.1007/S40815-020-00871-4/METRICS
https://doi.org/10.1007/S40815-020-00871-4/METRICS
https://doi.org/10.1590/0101-7438.2018.038.03.0413
https://doi.org/10.1016/j.tcs.2007.04.011
https://doi.org/10.1016/j.tcs.2007.04.011
https://doi.org/10.1063/1.4958502
https://doi.org/10.1063/1.4958502
https://doi.org/10.1007/s11227-020-03491-9

Page 21 of 21Lamrini et al. Journal of Big Data (2023) 10:97

 37. Mavridis I, Karatza H. Performance evaluation of cloud-based log file analysis with apache Hadoop and apache spark. J
Syst Softw. 2017;125:133–51. https:// doi. org/ 10. 1016/j. jss. 2016. 11. 037.

 38. “Cluster Mode Overview—Spark 3.3.0 Documentation.” https:// spark. apache. org/ docs/3. 3.0/. Accessed 26 Apr 2023.
 39. H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark LIGHTNING-FAST DATA ANALYSIS. O’Reilly Media, 2015.
 40. “PySpark Tutorial For Beginners|Python Examples - Spark By {Examples}.” https:// spark byexa mples. com/ pyspa rk- tutor ial/.

Accessed 26 Apr 2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jss.2016.11.037
https://spark.apache.org/docs/3.3.0/
https://sparkbyexamples.com/pyspark-tutorial/

	New distributed-topsis approach for multi-criteria decision-making problems in a big data context
	Abstract
	Introduction
	Background and motivation
	The theoretical framework and methodological aspects of multi-criteria methods
	Decision matrix
	Multi-criteria decision-making process

	TOPSIS: definition and algorithm
	The TOPSIS method and its stages
	The complexity of the sequential algorithm of the TOPSIS method

	MapReduce paradigm
	Spark via Hadoop
	Spark cluster architecture

	Proposed approach: distributed TOPSIS approach and MapReduce calculation
	Distributed TOPSIS algorithm
	Numerical illustration of the calculations of algorithm 2

	Experimentation and discussion of results
	Datasets selected for experimentation
	Experiment environment
	Discussion of results

	Conclusions and further research
	Acknowledgements
	References

