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Abstract 

Nowadays, the online environment is extra information-rich and allows companies to 
offer and receive more and more options and opportunities in multiple areas. Thus, 
decision-makers have abundantly available alternatives to choose from the best one or 
rank from the most to the least preferred. However, in the multicriteria decision-making 
field, most tools support a limited number of alternatives with as narrow criteria as pos-
sible. Decision-makers are forced to apply a screening or filtering method to reduce the 
size of the problem, which will slow down the process and eliminate some potential 
alternatives from the rest of the decision-making process. Implementing MCDM meth-
ods in high-performance parallel and distributed computing environments becomes 
crucial to ensure the scalability of multicriteria decision-making solutions in Big Data 
contexts, where one can consider a vast number of alternatives, each being described 
on the basis of a number of criteria.

In this context, we consider TOPSIS one of the most widely used MCDM methods. We 
present a parallel implementation of TOPSIS based on the MapReduce paradigm. This 
solution will reduce the response time of the decision-making process and facilitate 
the analysis of the robustness and sensitivity of the method in a high-dimension prob-
lem at a reasonable response time.

Three multicriteria analysis problems were evaluated to show the proposed approach’s 
computational efficiency and performance. All experiments are carried out within 
GCP’s Dataproc, a service allowing the execution of Apache Hadoop and Spark tasks in 
Google Cloud. The results of the tests obtained are very significant and promising.

Keywords: Multi-criteria decision making (MCDM), TOPSIS, MapReduce, Apache Spark, 
Apache Hadoop, PySpark, Dataproc, Google cloud platform (GCP)

Introduction
With the digital age and the phenomenon of BIG DATA, decision-making problems 
occur in everyone’s daily life. We are faced with a large number of options, for exam-
ple: buy which product from which supplier, target which customer, hire which candi-
date, etc. MCDM methods help decision-makers structure a complex decision-making 
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problem with various dimensions and explore promising courses of action to converge 
towards optimal solutions that balance the different concerns of decision-makers.

Multi-criteria decision support is an alternative to traditional optimization methods 
based on the definition of a single function that reflects the consideration of several cri-
teria [1]. The advantage of multi-criteria methods is to consider a set of criteria reflect-
ing different dimensions of the decision problem posed in the decision-making process. 
It is not a question of looking for an optimum but a compromise solution with various 
forms: choice, ranking or classification. Several methods exist in the literature. As part 
of this work, given its fame and importance in this field, we are interested in the TOPSIS 
method (Technique for Order Preference by Similarity to the Ideal Solution) [2].

Different software packages have been developed for several years to solve MCDM 
problems with TOPSIS. However, most available software has limitations in terms of the 
alternatives and the criteria to consider [3]. For example, with an exclusive commercial 
license, the Triptych package for TOPSIS analysis [4] requires Microsoft Excel and limits 
the number of alternatives to 200. SANNA and TOPSIS Solver software [3, 4] also need 
Microsoft Excel to run and limit the number of alternatives to 200. In the case of large 
datasets, decision makers (DMs) have to exert more effort to reduce the size of the set 
of alternatives and adapt it to the capacity imposed by the MCDM software programs. 
However, little research has been conducted on how big data tools can be applied to 
overcome this limitation.

Data is constantly increasing with the popularization of means of communication, 
Internet of Things (IoT), social networks, etc. Thus, decision-making has become a com-
plex problem due to the abundance of alternatives and the wide variety of criteria. To 
circumvent this problem, researchers propose new models coupling MCDM methods 
and machine learning and artificial intelligence approaches [5–9]. Nevertheless, these 
models need robust frameworks, techniques, and algorithms for big data problems. 
MCDM methods and big data fill a very valuable research gap. Although there are sev-
eral textbooks and research papers in the field of MCDM [10], there is no framework for 
MCDM methods in the context of emerging big data.

Several solutions have been proposed to cope with the increase in data flow and the 
large number of alternatives to be processed. In [11–13], screening techniques were pro-
posed to eliminate, from the beginning of the decision-making process, the alternatives 
deemed irrelevant. Screening makes it possible to reduce the size of the decision matrix, 
but in the case of a ranking process, the filtered alternatives will not appear in the final 
list, which contains the sorted alternatives. Moreover, the filtering operation risks elimi-
nating relevant alternatives from the beginning of the decision-making process.

To reduce the number of alternatives to be processed by MCDM methods, service 
providers are compelled to devote more effort to simplifying their offerings and facil-
itating the operation of choice. For example, the famous American company Expedia, 
which operates several online travel agencies, allows hotels to present a limited number 
of room types instead of showing all of their available room types [14]. However, with 
larger choice sets, customers have a better chance of matching their purchases to their 
preferences and maintaining their flexibility [15].

In this paper, we propose a parallel implementation to address this problem. A proven 
effective parallel computing paradigm is MapReduce [16]. It is a massively parallel 



Page 3 of 21Lamrini et al. Journal of Big Data           (2023) 10:97  

programming model suitable for processing very large amounts of data. Programs adopt-
ing this model are automatically parallelized and executed on clusters. Indeed, distrib-
uted parallelism has always been a possibility to meet this performance requirement. It 
is even more true today with the massive presence of parallel computing and distributed 
storage clusters as well as the fall in cluster prices.

Implementing distributed parallel algorithms, such as our proposed approach, requires 
an infrastructure of distributed and connected machines in which the calculations are 
carried out in parallel. Today, the least expensive in terms of investment and the best-
distributed computing solution is offered by cloud computing platforms. Indeed, cloud 
computing platforms have provided businesses with on-demand computing resources 
over the Internet, with pricing based on using those resources. Cloud computing 
remains a better solution for companies to avoid investing in buying, owning, and man-
aging physical servers and data centers. Businesses and decision-makers can access tech-
nology services such as computing power, storage, and databases on demand with this 
mobile services solution. To test our proposed parallel distributed approach, we have 
chosen Google Cloud Platform (GCP), considered one of the most popular platforms, 
with the possibility of a free platform trial.

Three examples of multi-criteria analysis problems have been evaluated in this paper 
to prove the computational performance of the proposed Distributed-TOPSIS approach. 
As we will show in the experimentation section, the results of these evaluations are bet-
ter and more significant for the case where the sets of alternatives become very large. 
Indeed, for a set of one million alternatives, we have obtained an execution time of 412 s 
for the sequential algorithm of the TOPSIS method, while for the proposed Distributed-
TOPSIS approach, for the same set, we have obtained, with Dataproc clusters with two 
worker nodes and three worker nodes, an execution time of 121 and 84 s respectively.

The paper is composed of 5 sections. After the introduction in “Introduction” Section, 
the second one presents the background and the motivation for this study; it gives an 
overview of MCDM problems and their constraints. An analysis of the TOPSIS method 
with its computing complexity will be provided. We also present in this section the 
paradigm MapReduce and the importance of the implementation in Spark. “Proposed 
approach: Distributed TOPSIS approach and MapReduce calculation” Section outlines 
the algorithm proposed and its implementation according to the MapReduce para-
digm. “Experimentation and discussion of results” Section demonstrates the algorithm’s 
performance with real and generated data sets. Finally, in “Conclusions and Further 
Research” Section, we conclude this work by highlighting all the results obtained and 
giving some perspectives and future research scopes.

Background and motivation
In this section, we first briefly review the basic idea of MCDM methods. And then, we 
introduce TOPSIS, which is very powerful and widely used. Indeed, the main objective 
of this article is to find a solution for extending MCDM methods to apply them in a Big 
Data context where a large set of alternatives can be considered. The TOPSIS method is 
chosen to illustrate our new approach based on the Map-Reduce paradigm for distrib-
uted and parallel programming through a computing cloud. In addition, we opted for 
this method given its simplicity and the fact that it is considered one of the most widely 
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used MCDM methods. However, as specified in the perspective, the proposed approach 
will be generalized later for other MCDM methods.

The theoretical framework and methodological aspects of multi‑criteria methods

Today’s society gives us easy access to more information, products, and opportuni-
ties. When a decision-maker is given many sets of data, the quality of his decision is 
decreased because of the individual’s limitation of resources to process all the informa-
tion and optimally make the best decision [10]. The human brain cannot process data, 
which can lead to choice overload. A wide range of choices slows down and reduces 
decision-making processes (For example, when a client wants to book a hotel, buy a 
product online, or recruit a candidate).

The advent of modern information technology has been a primary driver of informa-
tion overload on multiple fronts: quantity produced, ease of dissemination, and breadth 
of the audience reached. Technological factors have been further intensified by the rise 
of social media and the attention economy, which facilitates attention theft. In the age 
of connective digital technologies, the Internet culture, information overload is associ-
ated with over-exposure to information and input abundance of choices or alternatives. 
In most cases, too many options lead to suboptimal choice, a phenomenon known as 
choice overload. When people are faced with a large set of alternatives, they report less 
satisfaction and regret their decision [17].

MCDM methods assist decision-makers in decision-making by considering several 
parameters whose importance is different. For example, to buy a car, the customer often 
tends to find a compromise between quality and price. The selection criteria differ from 
person to person.

Decision matrix

Any MCDA problem considers a set A of n alternatives, consisting of candidate solu-
tions, and a family F of m of criteria, the views points according to which the alternatives 
will be examined and compared. A set W of weights is also provided to consider the dif-
ferences between the relative importance of criteria in decision-making. To summarize 
all the data of a decision problem, a matrix M, see Table 1, called a performance matrix, 
or decision matrix, is constructed [18].

– F = {g1, …,  gj, …,  gm} is the family of m criteria m ≥ 2.

Table 1 Decision matrix

Criteria

M = Weights g1 … gj … gm

w1 … wj … wm

Min/Max … Min/Max … Min/Max

a1 g1(a1) … gj(a1) … gm(a1)

… … … … … …

ai g1(ai) … gj(ai) … gm(ai)

… … … … … …

an g1(an) … gj(an) … gm(an)



Page 5 of 21Lamrini et al. Journal of Big Data           (2023) 10:97  

– A = {a1, …, ai, …,an} is the set of alternatives.
– W = {w1, …, wj, …, wm} is the weight vector reflecting the relative importance of the 

criteria.
– gj(ai) is the evaluation of the criterion gj for the alternative ai.
– Min indicates that the criterion is to be minimized.
– Max indicates that the criterion is to be maximized.

Real problems can be formulated using multi-criteria analysis methods according to 
three basic categories [1]:

– The choice problem (Pα) consists of MCDM problems in which the DMs must select 
a subset of alternatives evaluated as the best from a set A.

– The sorting or assignment problem corresponds to assigning each alternative to pre-
defined ordered categories (Pβ). In such a problem, a set of categories must be a pri-
ori-defined, and actions are assigned to them regardless of other actions.

– The ranking problem concerns generating a partial or complete preferred pre-order 
of alternatives (Pδ).

Multi‑criteria decision‑making process

In practice, a multi-criteria decision-making problem is embedded in a wider process of 
problem structuring and resolution [19]. Figure 1 shows the main stages.

As illustrated in Fig.  1, each step in the decision-making process is an iterative and 
recurring step. In phase 4, decision stakeholders should perform several executions of 
the chosen MCDM method to check how robust the results are and study the degree of 
sensitivity of the result to the variation of the parameters. Indeed, robustness analysis 

Fig. 1 Multi-criteria decision-making process [19]
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consists of changing the input parameter values in order to observe what happens to the 
output results. The purpose of the sensitivity analysis is to find the interval  [Vmin,  Vmax] 
in which the variation of the values of the parameters, such as the weight of each crite-
rion, will not affect the final result [20, 21]. The principle consists of varying the model 
parameters to study the solution’s stability (Tables 2 and 3).

Robustness and sensitivity analysis are crucial in a multi-criteria decision support pro-
cess. The main disadvantage of these analyses is that they are expensive in computation 
time and require considerable effort on the part of those involved. Thus, it becomes cru-
cial to obtain fast responses from the decision system support during this stage.

On the other side, MCDM problems have recently received attention from artificial 
intelligence, machine learning, and data mining communities [5, 9, 22]. In [6], authors 
propose a new model, based upon the concept of TOPSIS, to automatically classify 
credit score data into groups of high or low expected repayment. Several recent works 
have focused on consolidating data mining methods with MCDM methods to give DM 
tools to tackle decision-making problems in a big data context, such as supplier selection 
and personnel assessment [23, 24].

In the case of applying the TOPSIS method, the work presented in this article pro-
poses using the MapReduce paradigm to reduce the execution time of each iteration and 
thus generate results within a reasonable time and support stakeholders in the decision-
making process.

TOPSIS: definition and algorithm

The TOPSIS method and its stages

The technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method 
[25] is a robust approach to solving multi-criteria decision-making problems. First 
developed by Hwang and Yoon [25]. It is used to calculate the alternatives ratings. The 

Table 2 Decision matrix for the illustrative example

We emphasize that the weights of the criteria are equal to 1, and all the criteria should be maximized

Criteria

M = Weights g1 g2 g3 g4

1 1 1 1

Max Max Max Max

A1 4 4 5 3

A2 3 3 4 2

A3 5 4 2 2

A4 1 2 3 1

Table 3 Final ranking for the illustrative example

Alternative Rank

Alternative_1 1

Alternative 3 2

Alternative_2 3

Alternative_4 4
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Positive Ideal Solution (PIS) and the Negative Ideal Solution (NIS) are two major notions 
used to find the optimal alternative. The positive ideal maximizes the profit criterion and 
minimizes cost, while the negative maximizes the cost criterion and minimizes profit. 
TOPSIS seeks to select the alternative with the shortest distance to the positive ideal 
solution and the longest to the negative one.

Due to its effectiveness and potentiality, TOPSIS has emerged as a popular MCDM 
method with a wide application domain [2]. It is exploited in several fields, such as Sup-
ply Chain Management, manufacturing systems, business and Marketing Management, 
Health, Human Resources Management, and Other topics.

Recently, many scientists have proposed a combination of business analytics (descrip-
tive, predictive, and prescriptive) with the TOPSIS method to provide robust data-driven 
tools [26]. TOPSIS method was used as a data mining model, and in [6], it was used as 
a classification model for credit scoring. In [27], the authors proposed a Social Media 
Analytics model based on TOPSIS that works better than the standard methods.

TOPSIS consists of the following steps:
Step1: Construction of the decision matrix composed of n alternatives and m criteria.
Step2: Construction of the normalized decision matrix.
To make the preferences on all the criteria homogeneous and comparable and to 

transform all the criteria into criteria to be maximized, there are four normalization pro-
cedures in the literature which are the most commonly used [28]. We present their cal-
culation formulas (1–1), (1–2), (1–3) and (1–4) below.

 (i) Normalization procedure N1: by the maximum value of the scores

 (ii) Normalization procedure N2: by the ratio between the difference of the scores and 
the minimum value of the scores, and the difference between the maximum value 
and the minimum value of the scores

 (iii) Normalization procedure N3: by the sum of the scores
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 (iv) Normalization procedure N4: by the square root of the sum of the squares of the 
scores.

Where for the four normalization procedures:
-  aij is the evaluation of the criterion j for the alternative  ai

-  J+ is the subset of criteria to be maximized
-  J- is the subset of criteria to be minimized
-  nij is the element of the normalized matrix, which varies between 0 and 1
In this work, we opted for the N4 normalization procedure used in the original version 

of the TOPSIS method [25]. In other more recent versions of the TOPSIS method, it is 
proposed to follow up with more than one normalization procedure, as in the TOPSIS-2N 
method [28] [29–31] where it is proposed to combine with the two normalization proce-
dures N2 and N4. All obtained results in this study remain open and easily generalized to all 
standardization procedures.
Step3: Construction of the weighted normalized decision matrix

where  wj is the weight of importance assigned to the criteria j.
Step4: Determination of the positive ideal solution PIS and the negative ideal solution 

NIS

where:
-  J+: associated with the criteria having a positive impact to be maximized (benefit)
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-  J-: associated with the criteria having a negative impact to be minimized (cost)
Step5: Calculation of  L2-distance between the target alternative i and the best/worst 

condition

Step6: Calculate the similarity to the worst condition NIS

Step7: Rank the alternatives according to Si.
Algorithm 1 summarizes the steps of the basic TOPSIS method.

The complexity of the sequential algorithm of the TOPSIS method

The term used in algorithms to qualify the performance of an algorithm is the com-
plexity, and more precisely, the time complexity and Space complexity. Time complex-
ity is measured by the number of computing stages required to execute an algorithm 
as a function of data input size n. At the same time, the space complexity is measured 
by the memory used by the data structure contained in the algorithm as a function of 
n [32, 33].

Time complexity is the most widely used metric to assess the performance of an 
algorithm. Time is an essential factor, especially in a decision-making process. An 
algorithm is classified based on the time it takes to complete compared to the input 
size. There is a range of varieties. Some algorithms complete in a linear time relative 

(5)d+i =

√

√

√

√

m
∑

j=1

(

vij − v+j

)2

∀j

(6)d−i =

√

√

√

√

m
∑

j=1

(

vij − v−j

)2

∀j

(7)Si =
d−i

d−i + d+i
for 1 ≤ i ≤ n



Page 10 of 21Lamrini et al. Journal of Big Data           (2023) 10:97 

to the input size; others complete in a time that is quadratic O(n2); others complete in 
an exponential or worse time; and others stop [32].

With a quadratic algorithm, the time is increased proportionally to the square of 
the number of data. TOPSIS method has a higher time complexity of the order O(n2) 
[34]. This quadratic complexity, therefore, presents a limitation for decision-making 
problems with large data sizes. A parallel programming model, such as MapReduce, is 
a potential solution to overcome this limitation.

MapReduce paradigm

The availability of robust computing infrastructures and the need to process a gigan-
tic volume of data have imposed the use of sophisticated and rapid programming 
models. One of the proven effective parallel computing models is MapReduce [35]. 
The framework of MapReduce is very convenient for distributed computing, which 
can abstract away from many difficulties in parallelizing data management operations 
through a cluster of machines [35]. Many MapReduce-based parallel computing plat-
forms have been developed for the analysis of large-scale data sets, such as Hadoop 
[37, 38], Spark [39], etc.

The MapReduce model was proposed by two engineers at Google, who observed 
that many massively parallel processing operations, implemented for the needs of 
their search engine, followed an identical parallelization strategy. From these obser-
vations was born the MapReduce programming model, first described in 2004 [16]. 
The Map inspires his processing abstraction and Reduce primitives present in many 
functional languages like Lisp. MapReduce jobs processing includes two important 
phases: Map and Reduce. Each phase uses key-value pairs. Programmers specify what 
to do in the two functions, map() and reduce(). All values with the same key are sent 
to the same reducer. The execution framework handles everything else. Figure 2 illus-
trates the MapReduce workflow [35].

Spark via Hadoop

A MapReduce program must be supported by a dedicated software infrastructure 
that allows the MapReduce scheme to be executed in a massively distributed manner 
on a cluster of machines while guaranteeing the challenges of distributed computing:

• Optimization of disk and network transfers by limiting data movement,
• Scalability and fault tolerance

Fig. 2 MapReduce workflow
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The Hadoop MapReduce platform has two major drawbacks [35, 36]:

1. After a map or reduce operation, the result should be written to disk. This data writ-
ten to disk allows mappers and reducers to communicate with each other. It is also 
writing to disk that provides fault tolerance: if a map or reduce operation fails, data is 
retrieved from the disk. However, these writes and reads are very time-consuming.

2. The set of expressions composed exclusively of map and reduce operations is very 
limited and not very expressive. In other words, it is difficult to express complex 
operations using only this set of two operations.

Apache Spark is an alternative to Hadoop MapReduce for distributed computing that 
aims to solve these problems. The fundamental difference between Hadoop MapReduce 
and Spark is that Spark writes data to RAM, not disk. Thus, we achieve a performance 
increase by minimizing disk usage with Spark, especially for the programs with many 
iterative calculations sharing the same data [37].

This has several important consequences on the processing speed of calculations. How-
ever, storing the data of the intermediate calculations in RAM poses a challenge to over-
come to guarantee fault tolerance. When a machine becomes unavailable, the data stored 
in RAM becomes inaccessible. To solve this problem, Spark distributes the calculations 
as a graph. The state of a node can be reconstructed from its neighboring nodes (Fig. 3).

Spark cluster architecture

A Spark cluster is composed of:

• One or more workers: each worker instantiates an executor responsible for execut-
ing the various calculation tasks. Each worker has multiple executors. This allows for 
running multiple Spark applications on a single machine at the same time.

• A driver: in charge of distributing the tasks to the different executors. This is the 
driver that executes the main method of our applications.

• A cluster manager: responsible for instantiating the different workers.

The figure below (Figure 3) gives an overview of a Spark cluster architecture [38].

Fig. 3 Spark cluster architecture
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The support for parallelism in the Spark architecture is incorporated through the 
Resilient Distributed Dataset (RDD) concept. RDD is defined as an immutable distrib-
uted collection of objects [39]. Each dataset in  RDD  is divided into logical partitions, 
which may be computed on different cluster nodes. And it can support two different 
kinds of operations: Transformations, which create a new RDD from the existing RDD, 
and actions that return final results to the driver program or the external storage.

Proposed approach: distributed TOPSIS approach and MapReduce calculation
The design of a distributed parallel TOPSIS algorithm is motivated by, firstly, the need 
to reduce computing time for large-scale datasets. Secondly, taking advantage of tech-
nological advances in computers.

TOPSIS method has a high time complexity of order O(n2). For a large-scale deci-
sion matrix, it will slow down the overall DM process. We have adopted a parallel 
algorithm based on the MapReduce paradigm to solve this problem. The calculations 
are distributed over several nodes.

To reformulate the operations of the TOPSIS algorithm into Map() and Reduce() 
functions, the question is how to define the input form of the data as: (key, value). 
And how to aggregate the values according to the calculations required at each stage. 
To answer these two questions, as shown in the illustrative numerical example of 
algorithm 2 above, we use the most commonly used transformers below.

First, the decision matrix data and criteria weights are stored on the RDDs created 
by the sc.parallelize() methods of the PySpark API. All the transformations applied 
to these RDDs are executed in a distributed and parallel way and produce as a result 
other RDDs [40].

– map() is a transformation operation that applies the transformation on every ele-
ment of RDD and returns a new RDD. The output of map transformations would 
always have the same number of records as the input.

– flatmap() is a  transformation that flattens the RDD after applying the function 
on every element and returns a new RDD. The returned RDD could return more 
rows. It is also referred to as a one-to-many transformation function.

– reduceByKey() is a transformation used to aggregate the values for each key using 
an associative and commutative reduce function like min and max.

– sortByKey() is a transformation used to sort the result by key.
– collect() is an action operation that is used to retrieve all the elements of the RDD 

dataset, from all nodes to the master node.

Distributed TOPSIS algorithm

The implementation of TOPSIS algorithms starts by creating a spark context using the 
SparkContext() function after loading data from the input dataset. Data is partitioned 
into several fragments. Each Spark’s executor node receives a different data partition 
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in the form of RDD. The pseudocode of the TOPSIS algorithm with the MapReduce 
model is given in Algorithm 2.

The SparkContext.parallelize() method is used to create parallelized collection of RDD 
from a list of collections which can be distributed over a cluster for parallel processing.

Numerical illustration of the calculations of algorithm 2

To illustrate the step-by-step execution of Algorithm 2, whose source code is provided as 
an attachment to this article (via the link: related files), we present an example MCDM 
problem with four alternatives and four criteria assumed to be maximized (see Table 2).

To understand how the data will be aggregated to form the final ranking of the alterna-
tives, all the calculation steps with the functions map(), flatmap() and reduceByKey() are 
explained numerically. See Figs. 4, 5, 6, 7 and 8.

Fig. 4 Matrix normalization
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For the decision matrix normalization step, the figure shows how the data was distrib-
uted as a key value with the flatMap() function and how the intermediate results were 
aggregated with the reduceByKey() function. See Figs. 4 and 5 below.

To compute the ideal solution, we transform the weighted normalization of the 
matrix as a set of pairs (key, value). For example, for the alternative A1: we consider 

Fig. 5 Calculation of the weighted matrix

Fig. 6 Calculation of PIS and NIS
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the pairs (key, value): (1,  a11), (2,  a12),…,(m,  a1m) where  a1j represents the perfor-
mance of the alternative A1 on the jth criterion (from the weighted matrix). The 
reduce operation then retrieves the maximum value (function: reduceByKey(max)) 
among the values associated with a given key.

The following figure illustrates the same principle used to calculate the positive 
ideal solution (PIS) and negative ideal solution (NIS).

Fig. 7 Calculation of positive_distance and negative_distance

Fig. 8 Calculation of the degree of similarity and the final ranking
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In conclusion for this example illustration of the application of algorithm  2, the 
ranking in descending order of the four alternatives based on the decision matrix 
and the weighting provided as input is as follows (see Table 3):

Experimentation and discussion of results
Datasets selected for experimentation

To verify the effectiveness of our approach, we performed our experiments on one ran-
domly generated dataset and two real datasets (all deployed data files are attached to this 
paper via the link: related files).

1. Generated data set (https:// gener ateda ta. com/): To analyze the variation of the exe-
cution time according to the number of alternatives, we generated several databases. 
Each time, we increase the number of lines (from 100 lines up to 1 million) and the 
number of criteria (10 to 40 criteria: a number rarely reached in an MCDM prob-
lem).

2. Mobile price data set (https:// www. kaggle. com/ datas ets/ iabhi sheko ffici al/ mobile- 
price- class ifica tion): this database contains 2000 rows and 21 numerical columns. 
Each line represents the characteristics of a phone (like internal memory in GB, clock 
speed, number of cores, weight, pixel resolution price, dual sim etc.). The choice of 
a phone presents an MCDM problem. The choice or order of preference of phones 
depends on the importance (weight) given to each criterion. This importance differs 
from one person to another.

3. Credit Card Clients Dataset (https:// www. kaggle. com/ datas ets/ uciml/ defau lt- of- 
credit- card- clien ts- datas et? select= UCI_ Credit_ Card): This dataset contains infor-
mation on default payments, credit data, history of payment, and bill statements of 
credit card clients. This resource presents information relating to bank customers. It 
allows sorting according to several criteria such as level of education, age, repayment 
status, amount of bill statement, amount of previous payment, default payment etc. 
It has 30 000 rows and 23 criteria.

Experiment environment

We have run the distributed algorithm proposed in GCP’s Dataproc, a managed service 
for running Apache Hadoop and Spark jobs in Google Cloud. We have configured two 
different cluster configurations:

• In the first configuration, we used a cluster with a master node and two workers (the 
master node has an n1-standard-2 system with 2 CPUs with 7.5 GB memory each. 
Worker nodes have the same configuration).

• In the second configuration, we used a cluster with a master node and three worker 
nodes (the same characteristics as the first master node).

We have also run the sequential algorithm of TOPSIS in GCP using an n1-standard-1 
system (1 vCPU, 3.75 GB memory).

https://generatedata.com/
https://www.kaggle.com/datasets/iabhishekofficial/mobile-price-classification
https://www.kaggle.com/datasets/iabhishekofficial/mobile-price-classification
https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset?select=UCI_Credit_Card
https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset?select=UCI_Credit_Card
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Discussion of results

As shown in the proposed algorithm 2, we used the MapReduce paradigm to rank a 
set of alternatives each described by a family of criteria. The objective is to process 
the alternatives at several levels in parallel: at the first level, which consists in nor-
malizing the performance matrix into a weighted matrix, at the second level, which 
is used to calculate the two reference solutions PIS and NIS, at the third level for 
calculate the euclidean distances between the alternatives and the solutions PIS and 
NIS, and finally at the fourth level to calculate the degree of similarity of each alter-
native and classify the alternatives according to these degrees of similarity. However, 
in the original version of TOPSIS, as illustrated in Algorithm 1, these fourth calcula-
tion levels were performed sequentially. Thus, we have deployed the famous methods 
map(), flatmap(), and reduceByKey() [40] to divert the sequential processing, which 
undoubtedly requires a much higher execution time than the parallel version.

In this section, we examine all the results obtained by the different tests carried out.
Figure 9 concerns results regarding generated data sets (results regarding the other 

data sets lead to similar conclusions). We use the size of the dataset as a metric to 
evaluate the execution time. The number of criteria was also considered as a metric 
(curve in Fig.  10). From the observed experimental results in Fig.  9, it is clear that 
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executing time grows with the number of alternatives. We notice that the execution 
time in the cluster with three worker nodes is much lower than in the sequential 
algorithm.

The computation has been performed with MapReduce implementation over the 
Dataproc cluster for all different-size data sets. The sequential algorithm has taken 
approximately 412 s (≈7 min) for 1 million alternatives, while Dataproc clusters with 
two worker nodes and three worker nodes have taken approximately 121 and 84  s, 
respectively. Thus, we can improve the time efficiency by deploying more worker 
nodes.

The curve in Fig.  10 shows the variation in the computation time according to the 
number of criteria. It concerns a data set with 1 M alternatives and a cluster with three 
worker nodes. The number of criteria does not have much influence knowing that the 
number of criteria in a real decision-making problem remains limited. Tests carried out 
confirmed what we mentioned before. The number of alternatives contributes more to 
increasing the execution time than the number of criteria.

The experimentation carried out in this present research work proves that the pro-
posed Distributed-TOPSIS approach has largely overcome the problem of the execution 
time, which remains very high for sets containing a considerable number of alternatives. 
This execution time is obviously linked to the high temporal complexity imposed by the 
sequential version of the TOPSIS method. Thus, the Distributed-TOPSIS approach is a 
notable improvement of the basic version; indeed, the execution time is reduced from 
seven minutes to less than two minutes for a set of up to one million alternatives.

This new approach can therefore be adopted for any multi-criteria decision problem in 
a big data context without having to filter specific alternatives to reduce the size of the 
set of alternatives to be processed. In addition, this same version can be deployed to help 
decision-makers find the best and most stable solution by the robustness analysis opera-
tion, which recommends running the method several times with different parameters, 
such as the criteria weights and evaluations of some alternatives.

For the robustness of this research work, we make available to readers, as attach-
ments to this paper, the complete PySpark program of the proposed parallel distributed 
approach of the TOPSIS method and the data files tested (via the link: related files).

Conclusions and further research
This work presents a MapReduce implementation of TOPSIS, one of the most robust 
MCDM methods. Using this paradigm, a computing response time that could be dis-
appointing for decision-makers may be reduced. This improvement allows for dealing 
with large data sets and the uncertainties generated during several iterative executions of 
TOPSIS in the robustness and sensitivity analysis phase.

For experiments with the distributed parallel algorithm of the TOPSIS method, we 
took advantage of the distributed servers infrastructure of the Google Cloud Platform 
with a trial account. However, decision-makers for a practical application of the pro-
posed approach have many other choices of cloud computing platforms, such as Ama-
zon Web Services and Microsoft Azure, with the possibility of using many worker nodes 
to improve execution time.
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This research opens up multiple prospective for future extensions. The idea of the par-
allel distributed implementation based on the MapReduce paradigm proposed in this 
present work can be judiciously generalized to other MCDM methods. We aim to design 
and develop an integrated Big-Data model for MCDM methods like MLlib Spark that 
comes with a library containing common machine learning (ML) functionality. The 
authors are presently working in this direction.

In the age of the data explosion, the use of new advances in computing is becoming a 
common and inevitable choice. In the future, we are interested in using quantum pro-
gramming to speed up the calculation time. Quantum programming is a breakthrough 
technology that could limit what we can compute, but its future is still fuzzy.
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