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Abstract 

In this article, we introduce a novel type of spatio-temporal sequential patterns called 
Constricted Spatio-Temporal Sequential (CSTS) patterns and thoroughly analyze their 
properties. We demonstrate that the set of CSTS patterns is a concise representation 
of all spatio-temporal sequential patterns that can be discovered in a given dataset. To 
measure significance of the discovered CSTS patterns we adapt the participation index 
measure. We also provide CSTS-Miner: an algorithm that discovers all participation 
index strong CSTS patterns in event data. We experimentally evaluate the proposed 
algorithms using two crime-related datasets: Pittsburgh Police Incident Blotter Dataset 
and Boston Crime Incident Reports Dataset. In the experiments, the CSTS-Miner algo-
rithm is compared with the other four state-of-the-art algorithms: STS-Miner, CSTPM, 
STBFM and CST-SPMiner. As the results of the experiments suggest, the proposed algo-
rithm discovers much fewer patterns than the other selected algorithms. Finally, we 
provide the examples of interesting crime-related patterns discovered by the proposed 
CSTS-Miner algorithm.

Keywords:  Data mining, Spatio-temporal sequential patterns, Crime-data analysis, 
Patterns discovery, Concise representation

Introduction
Discovering knowledge in the form of various types of patterns, inference rules or motifs 
from spatio-temporal events data is a topic attracting increasing attention of researchers 
world-wide [1–3]. Specifically, many real-world spatio-temporal datasets consist of a set 
of event types and their event instances defined by geographical locations and occur-
rence times. An example of a spatio-temporal event dataset is a set of crime event inci-
dents, such as arson, homicide or vandalism, each of which is assigned an event type, a 
geographical location and time of occurrence. Discovering sequences of crime types that 
occur in a spatial area over a time period can contribute to a better understanding of the 
causes of these crimes and to their elimination [4–8].

In order to discover such sequences of spatio-temporal event types, one can con-
sider applying one of the algorithms for spatio-temporal sequential patterns discovery. 
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A spatio-temporal sequential pattern (in brief, ST sequential pattern), introduced 
in [9], is defined as a sequence of event types. By discovering ST sequential patterns, 
one can obtain insight into spatio-temporal relations between various event types. For 
example, the discovery of an ST sequential pattern arson → vandalism  → bomb can 
lead to the critical behavior pattern of a dangerous terrorist. The example of another 
ST sequential pattern that could be discovered from the dataset presented in Fig. 1 is 
A → B → C → D.

Limitations of the existing work

In the literature, several types of methods and algorithms were already developed for 
the discovery of ST sequential patterns (see, for example, [9–14]). [9] introduced the 
first algorithm called STS-Miner for the discovery of significant ST sequential patterns. 
[11, 12] define a significant ST sequential pattern as a pattern, whose participation index 

Fig. 1  The example of a spatio-temporal event dataset. The figure also presents neighborhood specification 
of event instances
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measure is greater than the user-specified threshold PImin . [12] refers to such a pattern 
as a PI-strong ST sequential pattern (we adapt this naming convention in this paper).

While the already proposed algorithms (such as STS-Miner [9], STBFM [11], CST-
SPMiner [12], CSTPM [10], STES [15]) can discover PI-strong (closed) ST sequential 
patterns in some datasets, however, in practice, the number of discovered redundant 
patterns can still be too huge to be analyzed by a user of the algorithm. Hence, in this 
paper, we offer a novel representation of ST sequential patterns which we call Con-
stricted Spatio-Temporal Sequential patterns (in brief, CSTS patterns) and analyze their 
theoretical properties. As presented in the paper, given the set of CSTS patterns one can 
approximate participation index values of all ST sequential patterns.

To verify the efficiency and effectiveness of the proposed approach, we use two real-
world datasets of crime events: the Pittsburgh Police Incident Blotter Dataset and the 
Boston Crime Incident Reports Dataset. For example, one of the conducted experiments 
shows that for the Boston Crime Incidents Reports dataset, the proposed approach is 
able to discover 65,967 CSTS patterns, while the three algorithms discovering all spatio-
temporal sequential patterns provide as many as 228,285 patterns. The discovered 65,967 
CSTS patterns can be used to derive all 228,285 spatio-temporal sequential patterns and 
approximate participation index of each of them with a maximal error of ± 0.025.

Contributions

The contributions of the paper are as follows:

•	 We introduce the notion of a Constricted Spatio-Temporal Sequential (CSTS) pat-
tern that constitutes concise representation of all ST sequential patterns.

•	 We thoroughly analyze theoretical properties of CSTS patterns. Specifically, we 
show that the set of CSTS patterns is a subset of the set of closed ST sequential pat-
terns and that each CSTS pattern is also a closed ST sequential pattern. Moreover, 
we show that given the set of Participation Index (PI-)strong CSTS patterns one can 
obtain the set of all PI-strong ST sequential patterns and approximate participation 
index of each of them with an approximation margin of ± ε.

•	 We offer a new algorithm called CSTS-Miner that discovers PI-strong CSTS pat-
terns. CSTS-Miner applies an introduced MAX-Tree structure for more efficient 
candidate patterns generation. The proposed MAX-Tree is generated in two main 
phases of CSTS-Miner: the first phase called “top-down”, in which all PI-strong ST 
sequential patterns are generated using the breadth-first strategy, and the second 
phase called “bottom-up”, which calculates PI-strong CSTS patterns. We also offer 
the analysis of computational and memory complexity of CSTS-Miner.

•	 We experimentally compare the results obtained with the CSTS-Miner algorithm 
with three other state-of-the-art algorithms discovering ST sequential patterns: 
the adapted version of STS-Miner [9], STBFM [11], CSTPM [10], which discover 
PI-strong ST sequential patterns. Moreover, we also compare CSTS-Miner with the 
CST-SPMiner algorithm [12], which discovers PI-strong closed ST sequential pat-
terns. Similarly to our CSTS patterns, closed spatio-temporal sequential patterns dis-
covered by CST-SPMiner also constitute a concise representation of all ST sequential 
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patterns. For the purpose of experiments, we selected and preprocessed two crime 
events datasets: the Pittsburgh Police Incident Blotter Dataset and the Boston Crime 
Incident Reports Dataset. As we show, CSTS-Miner discovers much fewer redun-
dant patterns than the other selected algorithms. Specifically, as the results of the 
experiments confirm, CSTS-Miner provides up to 60% fewer patterns compared to 
the STS-Miner, STBFM and CSTPM algorithms and up to 40% fewer patterns com-
pared to the CST-SPMiner algorithm.

•	 We provide experimental comparison of the effectiveness and efficiency of the 
above-mentioned STS-Miner, CSTPM, STBFM and CST-SPMiner algorithms dis-
covering (closed) spatio-temporal sequential patterns. In our comparison, we showed 
the number of discovered patterns and execution time of each of algorithms for the 
same parameters of participation index threshold and neighborhood specification. 
Our implementations (prepared in the C++ language) of the selected algorithms 
(STS-Miner, STBFM, CSTPM, CST-SPMiner) as well as the proposed CSTS-Miner 
algorithm are available at the GitHub repository.1

•	 Eventually, we provide examples of interesting crime-related patterns discovered 
by CSTS-Miner from the Pittsburgh Police Incident Blotter Dataset.

Structure

The structure of the article is as follows. In Sect. Related work, we offer a brief review of 
the related work. Section Basic notions offers basic notions of ST sequential patterns. In 
Sect. Discovery of constricted ST sequential patterns, we introduce the notion of a CSTS 
pattern. In Sect. Theoretical properties of CSTS patterns, we analyze theoretical proper-
ties of CSTS patterns. Section Constricted ST sequential patterns miner describes the 
proposed CSTS-Miner algorithm. In Sect. Experiments, we provide the results of exper-
iments and in Sect. Conclusion we conclude the article.

Related work
The discovery of concise representations of various patterns (especially frequent pat-
terns and sequential patterns) attracts researchers’ attention. In [16], closed sequential 
patterns representation was introduced for the first time. Following [16], numerous 
works were dedicated to the problem of more efficient mining of closed sequential 
patterns. The examples include methods and algorithms offered in [17, 18] or, more 
recently, in [19] and [20]. Other related research directions include discovery of top 
closed sequential patterns with the highest support [21, 22] and the parallel discovery 
of closed sequential patterns [23]. A survey of the current methods for the discovery of 
closed sequential patterns can be found in [24].

Our proposed notion of CSTS patterns is similar to the notion of delta closed sequen-
tial patterns [25] in that they both avoid returning patterns whose significance meas-
ure is no greater than the significance measure of their supersequence patterns plus the 
approximation margin (which in the case of delta closed patterns is called δ-tolerance). 

1  https://​github.​com/​piotr​Macia​g32/​CSTS-​Miner.

https://github.com/piotrMaciag32/CSTS-Miner
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However, unlike our CSTS patterns, delta closed sequential patterns are not designed to 
work with spatio-temporal event data.

While many methods and algorithms were offered to discover various types of spatio-
temporal patterns, relatively few of them focused on discovering ST sequential patterns. 
To this end, in our experiments the proposed CSTS-Miner algorithm is compared with 
the most representative algorithms mining ST sequential patterns, namely:

•	 STS-Miner [9]—the first algorithm offered for the discovery of ST sequential pat-
terns. STS-Miner uses the depth-first patterns generation strategy. In this work, we 
adapted STS-Miner to use the participation index measure instead of the sequence 
index measure introduced in [9]. Thus, the adapted version of STS-Miner is capable 
of discovering PI-strong ST sequential patterns.

•	 STBFM [11]—the algorithm discovering PI-strong ST sequential patterns by means 
of the breadth-first pattern generation strategy. Maciąg and Bembenik [11] intro-
duced a structure called SP-Tree that allows to efficiently generate candidate pat-
terns using their first and second parent patterns and a children list of the first parent 
pattern. In addition, [11] presented the two variations of STBFM that can discover 
top-K PI-strong ST sequential patterns. The experiments of [11] showed that STBFM 
is capable of discovering some interesting crime-related patterns.

•	 CST-SPMiner [12]—the algorithm discovering closed PI-strong ST sequential pat-
terns. CST-SPMiner applies the breadth-first candidate patterns generation strategy 
to obtain all PI-strong closed ST sequential patterns. For each obtained PI-strong ST 
sequential pattern −→s  , CST-SPMiner determines if this pattern is closed or not using 
a check condition verifying if −→s  is a closure pattern of any of its parent patterns.

•	 CSTPM [10]—the algorithm discovering Cascading Spatio-Temporal Patterns 
(CSTP). CSTP patterns consist not only of ST sequential patterns but also of cas-
cades of event types. In our work, to directly compare CSTPM with the proposed 
CSTS-Miner, we adapted the CSTPM algorithm for the discovery of ST sequential 
patterns rather than cascading ST patterns.

The reviews of methods and algorithms for (spatio-temporal) patterns discovery with 
particular emphasis on spatio-temporal event datasets can be found in [15, 26–33].

Basic notions
The definitions presented in this section are formulated based on the works [9, 11, 12].

ST sequential patterns

Let F denote a set of n event types and D denote a dataset of event instances in which 
each e ∈ D consists of a spatial location, an occurrence time (timestamp) and an event 
type F ∈ F . D will be called a spatio-temporal event dataset. Moreover, let |D| denote the 
number of event instances in D . The set of all event instances of type F in dataset D will 
be denoted by D(F).
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Spatio-temporal event datasets often occur in real-world. The possible examples 
include: a dataset of crime instances and crime event types or a dataset of conflict inci-
dents and their types. Let us consider an example of a spatio-temporal event dataset 
presented in Fig.  1. This dataset consists of event instances D = {a1, a2, b1, . . . , b8, c1, 
. . . , c8, d1, . . . , d3, e1, . . . , e5} and a set of five event types F = {A,B,C ,D,E}.2 To bet-
ter illustrate the notions introduced in this section, let us assign the set of event types 
F = {A,B,C ,D,E} of the dataset presented in Fig.  1 real-world crime event types as 
follows:

•	 A—Vandalism,
•	 B—Robbery,
•	 C—Simple assault,
•	 D—Arson,
•	 E—Aggravated assault.

Spatio-temporal sequential pattern (ST sequential pattern) −→s  is defined as a sequence 
of elements, each of which is an event type from F [9]. Please note that an event type 
F ∈ F can occur multiple times in an ST sequential pattern −→s 3. Before we provide a for-
mal definition of an ST sequential pattern, we recall the definition of a spatio-temporal 
neighborhood of an event instance with respect to an event type:

Definition 1  (Neighborhood of an event instance with respect to an event type [9, 
12]) For an event instance e, the neighborhood of e with respect to an event type F ∈ F is 
denoted by N(e, F) and is defined as follows:

where R and T are user-given spatial distance and time window thresholds, respectively.

In Fig. 1, the neighborhood N(a1,B) consists of event instances {b1, b2} . (We would say 
that the neighborhood of a Vandalism crime event a1 contains with respect to event type 
B two crime events of Robbery b1, b2 ). Similarly, the neighborhood N(c1,E) = {e1, e2} 
(thus, crime instance c1 of Simple assault contains with respect to Aggravated assault 
two crime events e1, e2).

The spatial distance threshold of neighborhoods given in Fig.  1 is R = 10 , while the 
time window threshold is equal to T = 20 . In our experiments, the spatial distance 
between locations of two event instances is calculated as the Euclidean distance between 
these locations. Please note that according to Definition 1, an event instance ej can be 
located in a neighborhood of an event instance ei , only if the occurrence time of ej is 

(1)
N(e, F) ={p | p ∈ D(F)

∧ distance(p.location, e.location) ≤ R

∧ (p.time − e.time) ∈ (0,T ]},

2  Please note that the spatial location of each event instance presented in Fig. 1 is for simplicity specified using only one 
dimension. However, in real datasets, the spatial location of event instances is usually defined by coordinates of two 
dimensions (for example, in the datasets selected for the experiments, spatial location is defined using longitude and 
latitude coordinates).
3  An example of such an ST sequential pattern to be discovered for the dataset in Fig. 1 is A → B → C → E → C (or 
Vandalism → Robbery → Simple assault → Aggravated assault → Simple assault).



Page 7 of 36Maciąg et al. Journal of Big Data           (2023) 10:98 	

greater than the occurrence time of ei (i.e., the two event instances with the same occur-
rence time can not mutually belong to their neighborhoods because the difference 
between their occurrence time would be ei.time − ej .time = 0).

Definition 2  (Spatio-temporal sequential pattern) A spatio-temporal sequential pat-
tern (in brief, ST sequential pattern) is a sequence of event types in F . i-th element of 
sequence −→s  is denoted by −→s [i] . Sequence −→s  which consists of m elements is denoted as 
−→s [1] → −→s [2] → · · · →

−→s [m] . The number of elements of sequence −→s  is defined as its 
length.

An example of an ST sequential pattern for the dataset presented in Fig.  1 is 
−→s = A → B → C , the length of which is 3. The important question is how to effi-
ciently calculate neighborhoods of event instances. In our implementation, we 
adapted the computationally efficient plane sweep algorithm (see e.g. [34]).

Definition 3  (Set of event instances supporting an element of an ST sequential pat-
tern [9, 12]) A Set of event instances supporting i-th element of ST sequential pattern −→s  is 
denoted by I(−→s , i) and is defined as follows:

For each ST sequential pattern −→s  , we can unambiguously distinguish sets of event 
instances supporting elements of that pattern. For the first element of a pattern, the 
set of event instances I(−→s , 1) supporting that element is defined simply as all event 
instances of event type −→s [1] in D . For every next element of −→s  (say i), the set of sup-
porting event instances I(−→s , i) consists of all those event instances of event type 
−→s [i] which belong to neighborhoods of instances contained in the supporting set 
I(
−→s , i − 1).
Let us consider an example of a previously given ST sequential pattern 

−→s = A → B → C (Vandalism → Robbery → Simple assault) of the dataset in Fig. 1. 
The sets of event instances supporting −→s  are as follows:

•	 I(
−→s , 1) = D(A) = {a1, a2};

•	 I(
−→s , 2) =

⋃

a∈I(−→s ,1)

N(a,B) = {b1, b2, b3, b4};

•	 I(
−→s , 3) =

⋃

b∈I(−→s ,2)

N(b,C) = {c1, c2, c3};

In this article, we apply the previously introduced in [10, 11, 15] participation ratio 
and participation index measures of significance of discovered patterns. The partici-
pation ratio of an i-th element of an ST sequential pattern −→s  expresses the quotient 

(2)I(
−→s , i) =







D(
−→s [1]) when i = 1,
�

e∈I(−→s ,i−1)

N(e,−→s [i]) when i > 1.
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of the number of event instances supporting i-th element of −→s  to the number of event 
instances of −→s [i] event type in D.

Definition 4  (Participation Ratio (PR) and Participation Index (PI) [12]) The participa-
tion ratio of an i-th element of ST sequential pattern −→s  , where i ≥ 1 , is denoted by 
PR(−→s , i) and is defined as the ratio of the cardinality of the set of event instances sup-
porting i-th element of −→s  to the number of all instances of type −→s [i] in the dataset D ; 

that is: PR(−→s , i) =
∣

∣I(−→s , i)
∣

∣

∣

∣D(
−→s [i])

∣

∣

.

The participation index of ST sequential pattern −→s =
−→s [1] → −→s [2] → · · · →

−→s [m] is 
denoted by PI(−→s ) and is defined as the minimum from the participation ratios of all ele-
ments of −→s  ; that is, PI(−→s ) = min

(

{PR(−→s , i)| i = 1, 2, . . . ,m}
)

.

By Definition 4, the value of participation ratio is always in the range [0,1]. Partici-
pation index is defined as the minimum of participation ratios of all elements of an ST 
sequential pattern.

Let us consider the pattern −→s = A → B → C (Vandalism → Robbery → Simple 
assault) and let us calculate PR and PI values of this pattern given the dataset and 
neighborhoods parameters of Fig. 1.

•	 PR(−→s , 1) = 1,
•	 PR(−→s , 2) = 4

8 = 0.5 (that is half of all Robbery event instances occur in neighbor-
hoods of Vandalism event instances),

•	 PR(−→s , 3) = 3
8 = 0.375 (only three instances of Simple assault event type occur in 

neighborhoods of event instances of the set I(−→s , 2).

Thus, the participation index of −→s = A → B → C equals to PI(−→s ) = 0.375.
In Table  1, we listed all ST sequential patterns whose participation indexes are 

greater than 0 that can be discovered in the dataset of Fig. 1.

Definition 5  (PI-strong ST sequential pattern) A candidate ST sequential pattern −→s  is 
called PI-strong if its participation index PI(−→s ) is greater than the participation index 
threshold PImin.

Table 1  All ST sequential patterns and their participation indexes (provided in parentheses next to 
the patterns) for the dataset of Fig. 1

Pattern length Patterns set

L1(F) A(1), B(1), C(1), D(1), E(1)

L2 A → B(0.5) , B → B(0.625) , B → C(0.5) , B → D(1) , C → E(0.8) , E → C(0.5)

L3 A → B → B(0.25) , A → B → C(0.375) , A → B → D(0.5) , B → B → C(0.5) , B → B → D(0.33) , 
B → C → E(0.375) , C → E → C(0.25)

L4 A → B → B → C(0.25) , A → B → C → E(0.375) , B → B → C → E(0.375) , 
B → C → E → C(0.25)

L5 A → B → B → C → E(0.25) , A → B → C → E → C(0.25) , B → B → C → E → C(0.25)

L6 A → B → B → C → E → C(0.25)
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Discovery of all PI-strong ST sequential patterns can be performed, for example, 
using the STBFM algorithm introduced in [11].

Let us assume that PImin = 0.5 . The set of all PI-strong ST sequential patterns for the 
dataset of Fig. 1 is: A(1), B(1), C(1), D(1), E(1), B → B(0.625) , B → D(1) , C → E(0.8).

Definition 6  Let −→
s1 =

−→
s1 [1] →

−→
s1 [2] → · · · →

−→
s1 [m1] and −→

s2 =
−→
s2 [1] →

−→
s2 [2] → · · · →

−→
s2 [m2] be ST sequential patterns. −→s1  is a subsequence of −→s2  and −→s2  is a 

supersequence of −→s1  if m1 ≤ m2 and there exists an integer k, where 0 ≤ k ≤ m2 −m1 , 
such that −→s1 [1] = −→s2 [1+ k] ∧ −→s1 [2] =

−→s2 [2+ k] ∧ · · · ∧
−→s1 [m1] =

−→s2 [m1 + k].

If m1 < m2 , then −→s1  is a proper subsequence of −→s2  and −→s2  is a proper supersequence of −→s1 .

Theorem  1  (Anti-monotonicity property of the participation index for superse-
quences [12]) Let −→s1  and −→s2  be ST sequential patterns. If −→s1  is a subsequence of −→s2  , then 
PI(−→s1 ) ≥ PI(−→s2 ).4

For the dataset presented in Fig.  1, −→s1 = A → B is a proper subsequence of 
−→s2 = A → B → C → E ( −→s2  is a proper supersequence of −→s1).

As follows from Theorem 1, the PI value of ST sequential pattern −→s2  is always less than 
or equal to the PI value of any of its proper subsequence −→s1  . The STBFM, CST-SPMiner 
and CSTPM algorithms apply Theorem 1 to efficiently generate candidate ST sequential 
patterns using the breadth-first search strategy.

Closed ST sequential patterns

Maciag 12] introduced a concise and lossless representation of ST sequential patterns 
called closed ST sequential patterns. The important property of closed ST sequen-
tial patterns is that one can obtain the value of participation index of any ST sequen-
tial pattern given only the set of all closed ST sequential patterns. In Sect.  “Discovery 
of constricted ST sequential patterns” of this work, we theoretically and experimentally 
compare the proposed constricted ST sequential patterns to the closed ST sequential 
patterns. Thus, Definition 7 recalls the notions of closed ST sequential pattern, closure 
of an ST sequential pattern and PI-strong closed ST sequential pattern.

Definition 7  (Closed ST sequential pattern and closure of an ST sequential pattern 
[12]) ST sequential pattern −→s1  is closed if there exists no proper supersequence −→s2  of −→s1  , 
such that the participation index PI(−→s2 ) = PI(−→s1 ).

A closure of ST sequential pattern −→s1  is a supersequence −→s2  of −→s1  , such that −→s2  is a closed 
ST sequential pattern and PI(−→s2 ) = PI(−→s1 ).

A PI-strong closed ST sequential pattern is a closed ST sequential pattern whose partici-
pation index is greater than the threshold PImin.

4  We refer the reader to [12] for the proof of the theorem.
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For example, for the set of ST sequential patterns of Table  1, A → B → B → C

→ E → C(0.25) is a closed ST sequential pattern. A → B → B → C → E → C(0.25) is 
also a closure of the following patterns:

•	 A → B → B(0.25),
•	 C → E → C(0.25),
•	 A → B → B → C(0.25),
•	 B → C → E → C(0.25),
•	 A → B → B → C → E(0.25),
•	 A → B → C → E → C(0.25),
•	 B → B → C → E → C(0.25).

An ST sequential pattern can be closed and be its own closure. For example, 
B → B(0.625) is a closed ST sequential pattern and it is also its own closure. Please note 
that according to Definition 7 an ST sequential pattern can have more than one closure. 
For example, pattern B → C → E(0.375) of the dataset in Fig. 1 has two closures:

•	 A → B → C → E(0.375),
•	 B → B → C → E(0.375).

Similarly to Table 1, in Table 2, we provide the set of all closed ST sequential patterns 
that can be discovered from the dataset of Fig. 1.

Discovery of constricted ST sequential patterns
In this section, we first present our motivation for introducing Constricted ST Sequen-
tial patterns. Next, we provide the elementary notions of such type of patterns.

Motivation

Closed ST sequential patterns of Definition  7 are a concise representation of all ST 
sequential patterns: hence, the set of closed ST sequential patterns can be used to derive 
all ST sequential patterns. However, in the case of many real-world spatio-temporal 
event data, participation indexes of ST sequential patterns strictly depend on the speci-
fication of the neighbourhoods of event instances as well as spatial and temporal distri-
bution of the locations of event instances in the dataset D . Specifically, for a given ST 
sequential pattern −→s  of length k, its proper supersequence patterns of length greater 

Table 2  All closed ST sequential patterns and their participation indexes (provided in parentheses 
next to the patterns) for the dataset of Fig. 1

Pattern length Patterns set

L1(F) A(1), C(1), E(1)

L2 B → B(0.625) , B → D(1) , C → E(0.8) , E → C(0.5)

L3 A → B → D(0.5) , B → B → C(0.5) , B → B → D(0.33)

L4 A → B → C → E(0.375) , B → B → C → E(0.375)

L5 A → B → C → E → C(0.25)

L6 A → B → B → C → E → C(0.25)
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than k usually have only slightly smaller values of participation indexes than −→s  . Accord-
ing to Definition 7, none of such supersequences can constitute a closure of −→s  and thus 
be a closed ST sequential pattern.

To illustrate such a situation, let us consider pattern −→s1 = B → B → C(0.5) from 
Table  1. As follows from Table  2, pattern B → B → C(0.5) is a closed pattern (and 
thus as follows from Definition  7 it is its own closure). Let us now consider pattern 
−→s2 = B → B → C → E(0.375) . −→s2  is a proper supersequence of −→s1  (as follows from 
Definition 6). However, because PI value of −→s2  is less than PI value −→s1  , −→s2  cannot be a 
potential closure of −→s1  despite the fact that the difference between participation indices 
of both is only 0.75.

Nevertheless, providing only supersequences of −→s  can often allow us to approximate 
the participation index of −→s .

Hence, in this paper, we offer a notion of a constricted ST sequential pattern. We 
define a constricted ST sequential pattern −→s1  as such a maximal (that is the longest) 
supersequence of pattern −→s  for which (i) the difference between participation indexes 
of −→s  and −→s1  is minimal and (ii) participation index of −→s1  is greater than or equal to the 
participation index of −→s  minus approximation margin ε5. We show in Sect. “Theoreti-
cal properties of CSTS patterns” that given a set of PI-strong constricted ST sequential 
patterns, one can obtain a set of all PI-strong ST sequential patterns and approximate 
participation indexes of each of them with an approximation margin ± ε.

Elementary notions

Let us begin with the definitions of a maximal supersequence of an ST sequential pat-
tern and a minimal proper supersequence of an ST sequential pattern.

Definition 8  (Maximal supersequence of an ST sequential pattern) For an ST sequen-
tial pattern −→s1  of a dataset D , its maximal ST supersequnce pattern −→s2  is such a superse-
quence of −→s1  whose length is the greatest.

Please note that −→s1  can have more than one maximal ST supersequence pattern.

Definition 9  (Minimal proper supersequence of an ST sequential pattern) For an ST 
sequential pattern −→s1  of a dataset D , its minimal proper supersequnce pattern −→s2  is such 
a proper supersequence of −→s1  whose length is the smallest.

Please note that −→s1  can have more than one minimal proper ST supersequence 
patterns.

Let us consider the set of all supersequences of the pattern −→s1 = B → B presented in 
Table 1:

•	 B → B,
•	 A → B → B,

5  As we show in Sect. 5, for approximation margin ε = 0 , the proposed notion of a constricted ST sequential pattern is 
equivalent to the notion of a closed ST sequential pattern.
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•	 B → B → C,
•	 B → B → D,
•	 A → B → B → C,
•	 B → B → C → E,
•	 A → B → B → C → E,
•	 A → B → B → C → E → C.

The maximal supersequence of the pattern −→s1  is A → B → B → C → E → C and the 
minimal proper supersequences of −→s1  are A → B → B , B → B → C , B → B → D.

Definition 10  (ε-constricted maximal supersequence of an ST sequential pattern) ε
-constricted maximal supersequence −→s1  of an ST sequential pattern −→s  (in brief, Con-
stricted ST Sequential pattern, CSTS pattern) is such a supersequence of −→s  which pre-
serves the two conditions: 

1	 PI(−→s1 ) ≥ PI(−→s )− ε , and
2	 the difference PI(−→s )− PI(−→s1  ) is minimal over the set of all maximal supersequences 

of −→s .

We denote the set of all ε-constricted maximal supersequences of pattern −→s  as Cmax(
−→s ) . 

ε is an approximation margin parameter, whose value is user-specified and is in the range 
[0,1].

To illustrate Definition  10, let us consider again the pattern −→s = B → B pre-
sented in Table  1 and let us assume that ε = 0.25 . The participation index of −→s  
equals 0.675. The ε-constricted supersequence of −→s  is the ST sequential pattern 
Cmax(

−→s ) = {B → B → C → E} , whose participation index equals 0.325.
Please note that an ST sequential pattern can have more than one ε-con-

stricted maximal supersequence. For example, let us consider ST sequen-
tial pattern −→s = B → C → E presented in Table  1 and let us assume that 
approximation margin ε = 0.1 . The two ε-constricted maximal supersequences of −→s  are: 
Cmax(

−→s ) = {A → B → C → E,B → B → C → E} , whose PI values are both equal to 
0.375. Please also note that according to Definition 10 an ST sequential pattern −→s  can be 
its own ε-constricted maximal supersequence6.

From Definition 10 follows that an ST sequential pattern −→s  can be a CSTS pattern of 
another ST sequential pattern, but also can have its own CSTS patterns. For example, 
let us consider the pattern −→s = B → B → C → E from Table 1 and let us assume that 
ε = 0.25 . −→s  is a CSTS pattern of the ST sequential pattern B → B , but also has its own 
CSTS pattern Cmax(

−→s ) = {A → B → B → C → E → C}.

Definition 11  By RCmax(
−→s1 ) (reverse maximal closure set) we denote a set of ST 

sequential patterns for which −→s1  is the ε-constricted maximal supersequence ( −→s1  is a 
CSTS pattern).

6  In fact, as we present in Sect. 6, each ST sequential pattern of the maximal length patterns set (say Lk ) is its own ε-con-
stricted maximal supersequence.
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Let us consider an ST sequential pattern −→s1 = A → B → B → C → E → C from 
Table  1, whose PI = 0.25 . Additionally, let us assume that approximation margin is 
ε = 0.25 . The set RCmax(

−→s1 ) is (the numbers in parentheses specify participation 
indexes):

•	 A → B → B → C → E → C(0.25),
•	 A → B → B → C → E(0.25),
•	 B → B → C → E → C(0.25),
•	 A → B → B → C(0.25),
•	 B → B → C → E(0.375),
•	 B → C → E → C(0.25),
•	 A → B → B(0.25),
•	 B → B → C(0.5),
•	 B → C → E(0.375),
•	 A → B(0.5) , B → C(0.5) , E → C(0.5).

The set RCmax(
−→s1 ) is applied by the proposed CSTS-Miner algorithm to identify CSTS 

patterns.

Definition 12  (The set of all PI-strong CSTS patterns) The set of all PI-strong CSTS 
patterns is defined as the set of all ST sequential patterns that are PI-strong (according 
to Definition 5) and are CSTS patterns (according to Definition 10).

The proposed CSTS-Miner algorithm first discovers all PI-strong ST sequential patterns 
and then subsequently returns only those of them which are PI-strong CSTS patterns.

Theoretical properties of CSTS patterns
In this section, we derive theoretical properties of the introduced notions of (PI-strong) 
CSTS patterns. Specifically, we show that:

•	 for the parameter ε = 0 the set of all CSTS patterns is equivalent to the set of all closed 
ST sequential patterns (Lemma 1);

•	 each CSTS pattern is a closed ST sequential pattern regardless of the value of the 
approximation margin ε (Lemma 2);

•	 the set of CSTS patterns is a subset of the set of closed ST patterns for any value of the 
approximation margin parameter ε (Theorem 2);

•	 it can be verified if an ST sequential pattern −→s  is PI-strong given the set of PI-strong 
CSTS patterns and how to approximate PI value of −→s  (Lemma 3);

•	 one can approximate the value of PI of −→s  with an error no greater than ± ε (Lemma 4).
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Lemma 1 shows that given an ST sequential pattern −→s  and its CSTS pattern −→s1  as well as 
for ε = 0 , −→s1  is a closure of −→s  and −→s1  is a closed ST sequential pattern.

Lemma 1  Let −→s  be an ST sequential pattern, ε = 0 and let −→s1  be a CSTS pattern of −→s  . 
The CSTS pattern −→s1  is a closure of −→s  and −→s1  is a closed ST sequential pattern.

Proof
The proof of lemma follows from Definitions 7 and 10. By Definition 7, a closure of ST 
sequential pattern −→s  is such a closed ST sequential pattern −→s∗ that is a supersequence of 
−→s  and whose PI(−→s∗) = PI(−→s ) . For ε = 0 we have:

•	 the PI value of −→s1  being a CSTS pattern of −→s  equals PI value of −→s ,
•	 CSTS pattern −→s1  is a maximal supersequence of −→s .

Thus, for ε = 0 the CSTS pattern −→s1  is a closed ST sequential pattern. �
It follows from Lemma 1 that for the parameter ε = 0 the set of all PI-strong CSTS 

patterns is equivalent to the set of all PI-strong closed ST sequential patterns (in other 
words, for ε = 0 the proposed algorithm CSTS-Miner will return the same patterns set 
as the CST-SPMiner of [12]).

In Lemma 2 we show that each CSTS pattern is a closed ST sequential pattern regard-
less of the value of the approximation margin ε.

Lemma 2  Each CSTS pattern is a closed ST sequential pattern regardless of the value of 
approximation margin ε.

Proof
Let us assume that −→s1  is a CSTS pattern of an ST sequential pattern −→s  given any value 
of ε . Now, let us assume that there exists a proper maximal supersequence −→s2  of −→s1  whose 
participation index PI(−→s2 ) equals the participation index PI(−→s1 ) , that is −→s2  is a closure of 
−→s1  . By Definition 7 −→s2  has to be a closed ST sequential pattern. However, as follows from 
Definition 10 this would contradict that −→s1  is a CSTS pattern. Hence, CSTS pattern −→s1  is 
a closed ST sequential pattern. �

In Theorem 2, we show that the set of CSTS patterns is a subset of the set of closed ST 
patterns for any value of the approximation margin parameter ε.

Theorem 2  For any ε ∈ [0, 1] , the set of all CSTS patterns is a subset of the set of all 
closed ST sequential patterns.
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Proof
We already showed in Lemma 1 that for ε = 0 , the set of all CSTS patterns is equal to the 
set of all closed ST sequential patterns. We also presented in Lemma 2 that each CSTS 
pattern is a closed ST sequential pattern regardless of the value of ε . Let us assume that 
ε > 0 . If there exists a closed ST sequential pattern −→s  that has a CSTS pattern and −→s  is 
not a CSTS pattern itself, then −→s  will not be included in the set of CSTS patterns (in such 
a case, the CSTS patterns set is a proper subset of the set of closed ST sequential patterns). 
Otherwise, if each closed ST sequential pattern is also a CSTS pattern, then the set of 
CSTS patterns is equal to the set of all closed ST sequential patterns. In either case, the 
CSTS patterns set is a subset of the closed ST sequential patterns set.

�

Theorem 2 shows that the number of discovered CSTS patterns is always less than or 
equal to the number of closed ST sequential patterns.

Let us illustrated Lemma  1,  2 as well as Theorem  2 with example patterns of the 
dataset presented in Fig. 1:

•	 For ε = 0.5 , pattern B → B → C → E(PI = 0.375) is a CSTS pattern (as it is ε
-constricted maximal supersequence of e.g. pattern C → E(PI = 0.8) ). At the 
same time pattern B → B → C → E is also a closed ST sequential pattern (as fol-
lows from Table 2).

•	 For ε = 0 , the set of CSTS patterns is the same as the set of closed ST sequential 
patterns. Thus, each closed ST sequential pattern presented in Table  2 is also a 
CSTS pattern (e.g. pattern B → D(PI = 1) is a closed ST sequential pattern and 
CSTS patterns derived from singleton patterns B(PI = 1) and D(PI = 1)).

Lemma 3 shows how to verify if an ST sequential pattern −→s  is PI-strong given the set 
of PI-strong CSTS patterns and how to approximate its PI value.

Lemma 3  For each ST sequential pattern the following hold: 

	(i)	 An ST sequential pattern −→s  is PI-strong only if there exists a supersequence of −→s  in 
the set of PI-strong CSTS patterns.

	(ii)	 The participation index value of a PI-strong ST sequential pattern −→s  is equal to or 
less than PI(−→s1 )+ ε , where −→s1  is such a minimal proper supersequence of −→s  in PI-
strong CSTS patterns, whose PI(−→s1 ) is the greatest.
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Proof

Ad(i)	� Follows immediately from Theorem 1.
Ad(ii)	� Case 1. Let us first assume that there is only one supersequence −→s1  of −→s  in the 

set of PI-strong CSTS patterns. In this case, −→s1  is a ε-constricted maximal ST 
supersequence of −→s  and by Definition 10 PI(−→s ) ∈

[

PI(−→s1 ),PI(
−→s1 )+ ε

]

 . Case 
2. Now let us assume that there is more than one proper supersequence of −→s  
in the set of PI-strong CSTS patterns. Since we can not indicate which one of 
them is ε-constricted maximal ST supersequence, then 
PI(−→s ) ∈

[

PI(−→s1 ),PI(
−→s1 )+ ε

]

 , where −→s1  is a minimal proper supersequence 
from all proper supersequences of −→s  in the set of PI-strong CSTS patterns.

�

Lemma 3 indicates that the set of PI-strong CSTS patterns (unlike the set of all PI-
strong closed ST sequential patterns) is a lossless representation of all PI-strong ST 
sequential patterns but not informative (in a sense that the PI value of a PI-strong ST 
sequential pattern can be obtained from the set of PI-strong CSTS patterns only with 
a certain approximation). The question is how much the approximation of such PI 
value of a PI-strong ST sequential pattern differs from its exact PI value. In Lemma 4, 
we provide the value of such maximal approximation.

Lemma 4  Given an ST sequential pattern −→s  that has a supersequence in the CSTS pat-
terns set one can not:

•	 underestimate the exact PI value of −→s  by less than PI(−→s )− ε , and
•	 overestimate the exact PI value of −→s  by more than PI(−→s )+ ε.

Proof
Let us assume that −→s1  is any proper supersequence of −→s  in the set of CSTS patterns. We 
will consider two extreme cases:

Case 1. The value of PI(−→s1 ) equals PI(−→s )− ε . In such a case, one can not underestimate 
PI(−→s ) by less than PI(−→s )− ε.

Case 2. The value of PI(−→s1 ) equals PI(−→s ) . In such a case, one can not overestimate 
PI(−→s ) by more than PI(−→s )+ ε.

Thus, the estimation of the PI(−→s ) value of the pattern −→s  given the set of CSTS patters is 
always in the range 

[

PI(−→s )− ε,PI(−→s )+ ε

]

 . �
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Constricted ST sequential patterns miner
This section introduces our algorithm called CSTS-Miner for discovering the set of all 
PI-strong CSTS patterns. In Table 3, we present the notation used in the algorithms of 
this section. The main CSTS-Miner procedure is presented in Algorithm 1. The algo-
rithm consists of two phases: (i) “top-down”—iterative generation of all PI-strong ST 
sequential patterns of length k from patterns of length k − 1 until it is impossible to 
generate new patterns; (ii) “bottom-up”—calculation of PI-strong CSTS patterns. The 
“top-down” phase adapts the STBFM algorithm [11] for the discovery of PI-strong 
ST sequential patterns. Specifically, to efficiently generate new PI-strong patterns of 
length k from PI-strong patterns of length k − 1 , we adapted the SP-tree structure 
and extended it to the proposed MAX-Tree structure. MAX-Tree is used to not only 
iteratively generate new patterns but also, unlike SP-Tree offered in [11], to identify 
all PI-strong CSTS patterns. The “bottom-up” phase calculates PI-strong CSTS pat-
terns in a recursive way starting with the set of the longest PI-strong ST sequential 
patterns Lk obtained in the “top-down” phase.

“Top‑down” phase of the CSTS‑miner algorithm

The “top-down” phase of Algorithm  1 is conducted by executing steps 1–18 of this 
algorithm. In step 1 of Algorithm  1, a singular candidate ST sequential pattern is 
generated from each event type in F and remembered in the set L1 (patterns in L1 
constitute the first level of MAX-Tree). By Definition 4, singular patterns are always 
PI-strong since their PI values are equal to 1.

Subsequently, the PI-strong ST sequential patterns of length 2 are generated and 
remembered as L2 . The generation of such PI-strong ST sequential patterns is con-
ducted in steps 3–13 using two nested loops, each of which iterates over all patterns 
in L1 . A new candidate pattern −→s  of length 2 is always generated by concatenating the 

Table 3  Notations and parameters used in the pseudocode listings

Notation Description

D A dataset of spatio-temporal event instances

F A set of event types
−→
s An ST sequential pattern

N(e, F) Neighborhood of event instance e with respect to event type F ∈ F

I(
−→
s , i) A set of event instances supporting i-th element of −→s

PR(
−→
s , i) Participation ratio of i-th element of −→s

PI(
−→
s ) Participation index of pattern −→s

children(
−→
s ) Children patterns of −→s

parent1(
−→
s ) First parent of pattern −→s

parent2(
−→
s ) Second parent of pattern −→s

C
max(

−→
s ) A set of ε-constricted maximal supersequences of −→s

RC(
−→
s ) Set of ST sequential patterns, for which −→s  is a ε-constricted maximal supersequence

PImin Participation index threshold of discovered patterns

ε Approximation margin
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two event types of singular patterns −→si  and −→sj  . We will refer to the patterns −→si  and −→sj  
as the first and the second parent of −→s  , respectively. Please note that −→s  can consist 
of two the same event types (in such a case, −→si =

−→sj  ). The set of instances supporting 
the second element of −→s  is calculated in step 6 and consists of event instances of type 
−→s [2] in D which belong to neighborhoods of event instances in the set I(−→si , 1).

The participation index of the candidate generated pattern −→s  is calculated and veri-
fied in steps 7 and 8 of Algorithm 1. If −→s  occurred to be PI-strong, then −→s  is inserted 
into the list of children of its first parent children(−→si ) and into the set L2.
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Steps from 15 to 18 of the Algorithm 1 consist of the iterative generation and verifi-
cation of PI-strong ST sequential patterns of length greater than 2 using the function 
GenAndVerify shown in Algorithm 2. Specifically, the GenAndVerify function generates 
all PI-strong ST sequential patterns Lk from PI-strong ST sequential patterns Lk−1 . To 
this end, the function uses the first parent, the second parent as well as the children list 
of patterns in Lk−1 . As follows from Lemma 5 (presented in [12] as Lemma 5),7 a can-
didate ST sequential pattern −→s  of length ≥ 3 can be obtained by concatenating all ele-
ments of its first parent with the last element of its second parent.

Lemma 5  [Construction of an ST sequential pattern from its first and second par-
ent [12]] Let −→s  be an ST sequential pattern of length m ≥ 3 and −→s1  be the first par-
ent of −→s  . Then, −→s =

−→s1 → Fm , where Fm is the last element of parent1(
−→s ) , and 

parent2(
−→s ) = parent2(

−→s1 ) → Fm.

Algorithm 2 proceeds as follows. First, the set Lk is initialized. Subsequently, the loop 
in step 2 iterates over all patterns in −→si ∈ Lk−1 ( −→si  is the first parent of a new candidate 
pattern −→s  ) and the loop in step 4 iterates over all children patterns −→sj ∈ parent2(

−→si ) 
of the second parent of −→si  . Each of such −→sj  child patterns constitutes the second par-
ent of a new candidate pattern −→s  . Thus, the elements of −→s  are: −→s :=−→si [1] →

−→si [2] → 
· · · →

−→si [k − 1] → −→sj [k − 1].
After the elements of −→s  are obtained, the set of instances supporting its last element is 

computed according to step 6 of Algorithm 2 and the PI value of −→s  is calculated accord-
ing to step 7 of Algorithm 2. If the PI value is greater than the participation index thresh-
old PImin , then −→s  is inserted to Lk and appended to the children list of −→si  : children(−→si ) . 
Otherwise, −→s  is discarded as not being a PI-strong pattern.

7  We refer the reader to [12] for the proof of Lemma 5.
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The generation of new candidate ST sequential patterns ends when the GenAndVerify 
function can not generate any new patterns.

“Bottom‑up” phase of the CSTS‑miner algorithm

While the “top-down” phase generates all PI-strong ST sequential patterns, the “bot-
tom-up” phase of Algorithm 1 starts in step 19 and is entirely dedicated to calculation of 
these PI-strong ST sequential patterns which are PI-strong CSTS patterns. The verifica-
tion of PI-strong ST sequential patterns as being CSTS patterns starts from the set Lk 
of the longest patterns and is iteratively continued for the subsequent sets of patterns 
Lk−1, Lk−2, . . . , L2.

The function VerifySupersequence presented in Algorithm  3 obtains two ST 
sequential patterns −→s  and −→si  and verifies if −→s  is a CSTS pattern of −→si  . To this end, 
function VerifySupersequence applies Definition  10 and Theorem  1. Specifically, 
VerifySupersequence conducts the following steps: 

1	 Checks if the PI value of −→s  is greater than the PI value of −→si  minus approximation 
margin ε (in step 1). This fulfills the first condition of Definition 10.

2	 Checks if −→si  already belongs to the RCmax list of −→s  (in step 2). Due to construction 
of MAX-Tree, it can happen that the function VerifySupersequence will be invoked 
multiple times for the same two sequences −→s  and −→si  . Thus, the check prevents the 
situation when −→si  is added multiple times to the list RCmax(

−→s ).
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3	 Verifies whether there is no pattern of −→si  in the set Cmax(
−→si ) or the length of −→s  

equals the length of the patterns in Cmax(
−→si ) . In such a case, the two situations are 

possible:

•	 Either Cmax(
−→si ) = 0 or the PI value of −→s  equals the PI values of Cmax(

−→si ) pat-
terns. In any case, −→s  is inserted to Cmax(

−→si ) and −→si  is inserted to RCmax(
−→si ).

•	 Alternatively, if the PI value of −→s  is greater than the PI values of patterns in 
Cmax(

−→si ) , then −→si  is removed from the RCmax lists of all patterns in Cmax(
−→si ) 

and Cmax(
−→si ) is set to be empty. Next, −→s  is added to Cmax(

−→si ) and −→si  is added to 
RCmax(

−→s ) . These operations fulfill the second condition of Definition 10.

If the PI value of −→s  is greater than the PI value of −→si  minus approximation margin ε , 
then VerifySupersequence function is recursively invoked for −→s  and the parent patterns 
parent1(

−→si ) , parent2(
−→si ) of −→si  to verify whether −→s  is also their CSTS pattern. Otherwise, 

as follows from Theorem 1, −→s  can not be a CSTS pattern of any of the parent patterns 
parent1(

−→si ) , parent2(
−→si ) of −→si  . Thus, invokes of VerifySupersequence−→s , parent1(

−→si ) and 
VerifySupersequence−→s , parent2(

−→si ) are skipped.
The complete MAX-Tree created for the dataset shown in Fig. 1 is presented in Fig. 2. 

The tree is created by Algorithm 1 using the following input parameters: spatial thresh-
old value R = 10 , time window threshold value T = 20 , participation index threshold 
value PImin = 0.25 , approximation margin value ε = 0.25 . All patterns in the tree are PI-
strong ST sequential patterns. However, only blue boxes represent those of them, which 
are also PI-strong CSTS patterns.

For the pattern −→s = B → B → C , the set of its CSTS patterns is 
Cmax(

−→s ) = {A → B → B → C → E → C} , while the minimal proper superse-
quence of −→s  among the set of PI-strong CSTS patterns returned by Algo-
rithm  1 is −→s1 = B → B → C → E . Let us consider how one can approximate the 
participation index value of pattern −→s = B → B → C given the set of all PI-strong 
CSTS patterns presented in Fig.  2. Since the set of PI-strong CSTS patterns con-
tains more than one supersequence of −→s  , then the value of participation index of 
PI(

−→
s) ≤ PI(−→s1 )+ ε = 0.375+ 0.25 = 0.625 . In fact, the exact PI value of −→s  equals 

PI(−→s ) = 0.5.

CSTS‑miner complexity analysis

Let us start with the analysis of computational cost of the “Top-down” phase of Algo-
rithm 1. Let us assume that |F| and |D| denote the number of event types and event instances 
in the dataset, respectively. Furthermore, let us assume that AChl is the average number of 
children of a node in the MAX-Tree and AI is the average number of instances support-
ing an element of a sequential pattern. The plane sweep algorithm of [34] applied in this 
study requires on average AI · log |D| number of operations to obtain the neighborhoods 
of event instances I−→s [i] supporting an i-th element of a sequential pattern assuming that 
event instances in D are initially sorted in non-decreasing order according to the occur-
rence times. Thus, the average number of computations needed to obtain children pat-
terns of a sequential pattern in MAX-Tree equals Achl · AI · log |D| . Let us assume that |Lk | 
denotes the average number of PI-strong ST sequential patterns of length k = 2, 3, . . . . The 
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number of computations needed to generate patterns of MAX-Tree of length 3, 4, . . . equals 
|Lk | · Achl · AI · log |D| . Additionally, let T − 1 denote the number of levels of MAX-Tree 
excluding level 1 which contains all event types in F . Since Algorithm 1 generates all pat-
terns of length L2 in two nested loops iterating over patterns L1 that consist of singleton 
event types in F , we can approximate the calculation numbers of “Top-down” phase as

Let us now analyse computational complexity of the “Bottom-up” phase of Algorithm 1. 
CSTS-Miner calls Algorithm  3 for both parents of each pattern of levels k = 2, 3, . . . . 
Given the height of MAX-Tree equal to T, the computational cost of phase “Bottom-up” 
is strictly dependent on the specified value of ε parameter. Let assume that for a gener-
ated MAX-Tree, the participation indexes changes from 1 for singleton patterns L1 to 
PImin for patterns in LT . Given that each pattern has two parent patterns, we can assume 
that the number of ascendant patterns to be verified for a given ST sequential pattern 
equals: 2(1−PImin)·ε·T . Thus, the computational cost of the “Bottom-up” phase equals:

|Cmax(
−→s )| is the average number of CSTS patterns of sequence −→s  . Algorithm  3 in a 

pessimistic cases require to scan over such list when a detection of a CSTS pattern is 
detected.

To analyse memory complexity of Algorithm  1 let us note that in order to restore 
a sequence of elements constituting a pattern, at each level k = 1, 2, . . . , of the tree, it is 
enough to store only the last element of a sequence of event types constituting a pattern. 
Thus, the memory required to store elements of sequences of the discovered PI-strong ST-
sequential patterns along with their participation indexes equals T · |Lk | . Also, in order to 
generate new candidate patterns it is enough to store in the computer’s memory only event 
instances of the last elements of patterns of two subsequent lengths k − 1 and k. Hence, the 
memory complexity of “Top-down” phase of Algorithm 1 equals:

O
(

(T − 1) · |Lk | · Achl · AI · log |D| + |F|2 · AI · log |D|

)

=

O
(

((T − 1) · |Lk | · Achl + |F|2) · AI · log |D|

)

.

O
(

(T − 1) · |Lk | · 2
(1−PImin)·ε·T · |Cmax(

−→s )|
)

.

O
(

T · |Lk | + |Lk | · |Lk−1| · AI

)

= O
(

|Lk | · (T + |Lk | · AI )
)

.

A (1)     B (1) C (1) D (1)

A→B (0.5)

E (1)

2L

F

3L

4L

B→B (0.625) B→C (0.5) B→D (1) C→E (0.8)

A→B→B (0.25) A→B→C (0.375) A→B→D (0.5) B→B→C (0.5)

A→B→B→C (0.25) A→B→C→E (0.375)

A→B→B→C→E(0.25)5L

E→C (0.5)

B→B→D (0.33) C → E → CB→C→E (0.375) C→E→C (0.25)

6L A→B→B→C→E→C

B→B→C→E (0.375) B→C→E→C (0.25)

A→B→C→E→C(0.25) B→B→C→E→C(0.25)

(0.25)

PI    = 0.25, ε = 0.25
1(L )

min

Fig. 2  The complete MAX-Tree generated with parameters PImin = 0.25 and ε = 0.25 for the dataset 
presented in Fig. 1 (all boxes represent PI-strong ST sequential patterns, while blue boxes represent patterns 
being also PI-strong CSTS patterns; PI values are given in parentheses next to the patterns)
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In order to asses the memory complexity of the “Bottom-up” phase let us assume that 
|Cmax(

−→s )| and |RCmax(
−→s )| are the average numbers of CSTS patterns of −→s  and the 

average number of patterns for which −→s  is a CSTS pattern, respectively. For each pattern 
−→s  of MAX-tree, Algorithm 3 maintains the list Cmax(

−→s ) . However, the list RCmax(
−→s ) 

needs to be maintained for all patterns exept the singleton patterns. Thus, we can asses 
the memory complexity of the second phase of Algorithm 1 as:

Experiments
In this section, we first review datasets used for the experiments and describe our exper-
imental setup. Then we provide results of the comparison of the proposed CSTS-Miner 
algorithm with the STS-Miner [9], CST-SPMiner [12], STBFM [12] and CSTPM [10] 
algorithms.

Selected datasets

For the experiments with the proposed CSTS-Miner algorithm we selected two publicly 
available datasets, each of which consists of crime event incidents.

Pittsburgh police incident blotter dataset

The first dataset selected for the experiments is Pittsburgh Police Incident Blotter Data-
set that contains crime incidents collected by the Police Department of Pittsburgh City 
over the period 31.12.1989–31.12.2019 [35]. The dataset was validated according to 
the Uniform Crime Reporting (UCR) standards [36] and consists of such attributes as: 
incident time, incident location (defined by street name and number), incident neigh-
borhood, incident type, description of offense, incident longitude and latitude locations. 
For the purposes of experiments we selected the following attributes of the dataset: 
incident type, incident time, longitude and latitude which are directly used by the pro-
posed CSTS-Miner algorithm. In the experiments, we use only crime incidents reported 
between 01.01.2017 and 31.12.2019. The number of crime incidents reported over this 
time  period is 122,895. However, approximately 40% of them contain missing values 
for one of the selected attributes: incident type, geographical location or incident time. 
Thus, we decided to remove such incidents. The resultant dataset contains 72,867 crime 
event incidents of 236 unique incident types. All of these 236 incident types are selected 
as event type set F. To the most frequent incident types belong: theft from auto, simple 
assault, public drunkenness, criminal mischief or harassment. The attribute incident time 
(which specifies incident occurrence time with exact occurrence date and a timestamp 
given in hours, minutes and seconds) is transformed into the number of minutes that 
passed from the timestamp 01.01.2017 00:00. Thus, the time window parameter T used 
by the CSTS-Miner algorithm is specified in minutes. In Table 4, we present the charac-
teristic of the resultant dataset.

In Fig. 3, we present the location of the first two thousand crime incidents of ten most 
frequent incident types from the resultant Pittsburgh Police Incident Blotter Dataset.

O
(

T · |Lk | · |C
max(

−→s )| + (T − 1) · |Lk | · |RC
max(

−→s )|
)

.
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Boston crime incident reports dataset

The second of the selected datasets is Boston Crime Incidents Reports Dataset pro-
vided by the Boston Police Department [37]. The dataset was collected over the 
period 08.07.2012–10.08.2015. However, in the experiments, we extracted only 
crime incidents that occurred between 01.01.2014–31.12.2014. The Boston Crime 
Incidents Reports Dataset contains several attributes, such as: incident location, 
incident time, incident type, used weapon type (such as, for example, unarmed or 
firearm) shooting presence, police shift or occurrence district and occurrence area. 
Similarly to the Pittsburgh Police Incident Blotter Dataset, for the experiments we 
selected only attributes: incident location (given by longitute and latitude), incident 
time and incident type. Since the attribute incident type does not contain only crime 

40.40
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40.50

−80.0 −79.9
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tit
ud

e

Crime Incident Type
CRIMINAL MISCHIEF
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PUBLIC DRUNKENESS

RETAIL THEFT (SHOPLIFTING)
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THEFT FROM AUTO

THEFT/ALL OTHERS

Fig. 3  The first two thousand crime incidents of ten most frequent incident types from the resultant 
Pittsburgh Police Incident Blotter Dataset
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Fig. 4  Incidents count per crime type in the complete Boston Crime Incident Reports Dataset used for 
experiments
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incident types, but also other incident types, such as medical assist or property 
found, we preprocessed the dataset to obtain incidents of all 26 crime event types 
present in the dataset. The examples of event types are: aggravated assault, arson, 
auto theft, drug charges.

Additionally, to better analyze the results that can be obtained with CSTS-Miner, 
we selected incidents of only the ten least frequent crime types in the complete 
dataset to create the reduced dataset. These crime types are violation of liquor laws, 
operating under influence, manslaughter, homicide, harassment, gambling offense, 
embezzlement, crimes against children, bomb, arson.

In Table 5, we present the characteristic of the complete dataset, while in Table 6 
the characteristic of the reduced dataset is shown. Since there are only 26 crime event 
types in the complete dataset, we decided to present the number of incidents of each 
type in the histogram shown in Fig. 4.

Experimental setup

In our experiments, the spatial distance threshold R of a neighborhood of an event 
instance e is specified in meters. However, the locations of event instances in the 
obtained datasets are specified using the longitude and latitude coordinates. Thus, we 
apply the following procedure to transform the distance between two event instances 
e1, e2 ∈ D into meters. First, each coordinate (either longitude or latitude) of an instance 
e is converted into radians according to Eq. (3) in which, e.lat refers to the latitude coor-
dinate and e.lon refers to the longitude coordinate of instance e, respectively. Next, the 
distance in meters between two instances is obtained according to Eq.  (4). In Eq.  (4), 
earthRadius denotes the radius of Earth in kilometers.

(3)rade.lat =
e.lat · π

180
; rade.lon =

e.lon · π

180
.

(4)

Dslat = sin
(

(rade2.lat − rade1.lat)/2
)

.

Dslon = sin
(

(rade2.lon − rade1.lon)/2
)

.

Dist(e1,e2) = 2 · earthRadius · 1000.

arcsin

(

√

D2
slat + D2

slon · cos(rade1.lat) · cos(rade2.lat)

)

.

Table 4  The characteristic of the resultant Pittsburgh Police Incident Blotter Dataset

Parameter Value

No. of incident types (|F|) 236

No. of incident instances (|D|) 72 867

Avg. no. of incidents per type 309

Median no. of incidents per type 26

Std. of no. of incidents per type 784

Min. no. of instances in a type 1

Max. no. of instances in a type 6201
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The implementations of all algorithms selected for the experiments are prepared in 
C++. We ran the experiments using a computer equipped with Apple M1 processor and 
16 GB of RAM memory. Our implementations of the algorithms (STS-Miner, STBFM, 
CSTPM, CST-SPMiner, CSTS-Miner) are available at the GitHub repository.8

Results of the experiments

In the experiments, we compare our proposed CSTS-Miner with the four other algo-
rithms: STS-Miner applying participation index measure [9], STBFM [11], CSTPM [10]. 
All of them discover PI-strong ST sequential patterns. CSTS-Miner is also compared 
with CST-SPMiner [12], which discovers PI-strong closed ST sequential patterns.

We aim to measure the number of discovered patterns by each algorithm and its com-
putation time for each of the selected datasets. The obtained results for each dataset are 
presented in Tables 7, 8 and 9. The results presented in these tables were obtained for 
the following input parameters of the five compared algorithms:

•	 For the Pittsburgh Police Incident Blotter Dataset: R = 350 m, T = 11,520 (8 days), 
PImin = {0.33, 0.32, . . . , 0.25} , ε = {0.025, 0.05, 0.075}.

•	 For the complete Boston Crime Incidents Report Dataset: R = 300 m, T = 5760 min 
(4 days), PImin = {0.055, 0.05, . . . , 0.015} , ε = {0.05, 0.1, 0.15}.

•	 For the reduced Boston Crime Incidents Report Dataset: R = 500 m, T = 43,200 min 
(30 days), PImin = {0.01, 0.0095, . . . , 0.005} , ε = {0.05, 0.1, 0.15}.

Table 5  The characteristic of the complete Boston Crime Incident Reports Dataset

Parameter Value

No. of incident types (|F|) 26

No. of incident instances (|D|) 40 545

Avg. no. of incidents per type 1559

Median no. of incidents per type 527

Std. of no. of incidents per type 2176

Min. no. of instances in a type 1

Max. no. of instances in a type 8575

8  https://​github.​com/​piotr​Macia​g32/​CSTS-​Miner.

Table 6  The characteristic of the reduced Boston Crime Incident Reports Dataset

Parameter Value

No. of incident types (|F|) 10

No. of incident instances (|D|) 896

Avg. no. of incidents per type 90

Median no. of incidents per type 72

Std. of no. of incidents per type 83

Min. no. of instances in a type 1

Max. no. of instances in a type 245

https://github.com/piotrMaciag32/CSTS-Miner
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Table 7 presents the results for the Pittsburgh Police Incident Blotter dataset. As it can 
be noted from the table, CSTS-Miner can discover much fewer patterns for all three 
selected values of its approximation margin ε parameter than the other four selected 
algorithms. For example, for the participation index threshold PImin = 0.26 , there are 
143,666 PI-strong ST sequential patterns and 100,235 PI-strong closed ST sequential 
patterns, while the number of PI-strong CSTS patterns discovered for the approxima-
tion threshold value ε = 0.1 is only 58,519. As it can be noted from Table 7, the increas-
ing values of approximation margin ε can result in a significant increase of computation 
times of CSTS-Miner. For example, for PImin = 0.25 STBFM and CST-SPMiner both 
executed in 207 s, while CSTS-Miner for ε = 0.025 executed in 253 s and for ε = 0.075 it 
executed in 1744s.

Slightly different results were presented in Table 8 for the complete Boston Crime Inci-
dent Report dataset. In the case of this dataset, it was possible to obtain a similar reduc-
tion in the number of discovered patterns as in the case of the Pittsburgh Police Incident 
Blotter dataset. For example, for the participation index threshold PImin equal to 0.015, 
the numbers of PI-strong ST sequential patterns and PI-strong closed ST sequential pat-
terns are 2,819,490 and 2,040,303, respectively. For the same value of the PImin param-
eter and ε = 0.15 , CSTS-Miner provided 1,171,955 PI-strong CSTS patterns. Thus, the 
reduction in the number of patterns is 58% when compared to the STBFM algorithm as 
well as 43% when compared to the CST-SPMiner algorithm.

Finally, in Table 9 we present the results obtained for the reduced Boston Crime Inci-
dent Report dataset. The reduction in the number of discovered patterns is even more 
impressive in the case of this dataset. For the values of participation index threshold 
PImin = 0.005 and approximation margin ε = 0.15 , CSTS-Miner provided 65 899 PI-
strong CSTS patterns. For the same PImin value, the numbers of PI-strong ST sequen-
tial patterns and PI-strong closed ST sequential patterns discovered are 228 285 and 76 
894 patterns, respectively. Thus, the reduction in the number of discovered patterns by 
CSTS-Miner when compared to STS-Miner, CSTPM, STBFM is 71% and when com-
pared to CST-SPMiner is 24%. However, it is worth noting that the computation time for 
the reduced dataset can be significantly higher in the case of the CSTS-Miner algorithm 
than in the cases of the STBFM and CST-SPMiner algorithms. Also, for the reduced 
Boston Crime Incident Report dataset, CSTPM executes much longer than the other 
algorithms.

In Fig.  5, we provide the plots presenting the percent of the number of the discov-
ered PI-strong CSTS patterns to the number of the discovered PI-strong ST sequen-
tial patterns. As it can be noted from the presented plots, the percent ranges between 
15% and 90%. It was possible to obtain minimal values of the percent (around 15%) 
for the reduced Boston Crime Incidents Report dataset when the spatial threshold 
R = 600 meters as well as temporal window T = 28800 minutes were applied and the 
PImin threshold was equal to the values in the range 0.29−−0.28 . In the case of both 
Pittsburgh Crime Incident Blotter and complete Boston Crime Incidents datasets, for 
the smaller values of the PImin threshold ( < 0.3 ) and the approximation margin ε equal 
to 0.2, the obtained percent is usually below 50%. Interestingly, not always the smaller 
value of the PImin threshold resulted in a more significant reduction of the number of 
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discovered patterns. For example, for the Pittsburgh Crime Incident Blotter dataset and 
parameters R = 350 meters, T = 11, 520 minutes as well as approximation margin ε 
equal to 0.2 or 0.1 the smallest percent was obtained for PImin = 0.28.

In Fig. 6, we provide the plots presenting the percent of the number of PI-strong CSTS 
patterns to the number of PI-strong closed ST sequential patterns. As follows from 
Lemma 1, for ε = 0 the set of PI-strong CSTS patterns is equal to the set of PI-strong 
closed ST sequential patterns. However, for the greater values of ε (such as, for example 
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0.1 or 0.2), CSTS-Miner is capable of providing as few as 50% of the number of PI-strong 
closed ST sequential patterns discovered by CST-SPMiner. Importantly, even for the 
smaller values of the ε parameter (such as, for example, 0.01), CSTS-Miner provided 
as few as 70% of the number of patterns provided by CST-SPMiner (as it is shown, for 
example, in the plots for the complete Boston Crime Incidents Report dataset presented 
in Fig. 6).
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To summarize, the plots presented in Figs. 5 and 6 show that the CSTS-Miner algo-
rithm can discover significantly fewer PI-strong CSTS patterns than PI-strong ST 
sequential patterns and PI-strong closed ST sequential patterns, even when the small 
values of the ε parameter are applied.

In our next experiment, we aimed to compare the computation times of steps 1–18 
(phase “top-down”) and steps 19–25 (phase “bottom-up”) of Algorithm 1. As previously 
noted, the “top-down” phase is responsible for generating all PI-strong ST sequential 
patterns, while the “bottom-up” phase finds those patterns which are also PI-strong 
CSTS patterns.

In Fig.  7, we present the comparison of computation times (using the logarithmic 
scale) of the both phases obtained for the Pittsburgh Police Incident Blotter dataset. 
Please note that for the smaller values of the approximation margin ε (such as ε = 0.025 ), 
the computation times for the “top-down” phase are more significant than for the “bot-
tom-up” phase. However, with the increasing values of ε and for the smaller values of 
PImin , the computation time of the “bottom-up” phase can increase significantly. For 
example, for the parameters ε equal to 0.1 and PImin equal to 0.25, the computation time 
of the “bottom-up” phase of Algorithm 1 can be up to four times longer than the compu-
tation time of the “top-down” phase for the same values of these parameters.

The results presented in Fig.  7 are in-line with the computational and space com-
plexity analysis presented in Sect.  Theoretical properties of CSTS patterns. In par-
ticular, for the increasing values of ε the computational cost of the “Bottom-up” 
phase of Algorithm  1 can be much higher than the computational cost of phase 
“Top-down”. This is the result of the fact that the “Bottom-up” time complexity: 
O
(

(T − 1) · |Lk | · 2
(1−PImin)·ε·T · |Cmax(

−→s )|
)

 contains exponential function with the base 
of the function equal to 2 and exponent assessed by us as (1− PImin) · ε · T .

Representative patterns selection

In this subsection, we provide some interesting examples of discovered sequential pat-
terns of different types of crimes. To this end, we ran CSTS-Miner using the Pittsburgh 
Police Incident Blotter Dataset with the following parameters: R = 300, T = 11, 520 
minutes (8 days), ε = 0.05, PImin = 0.3.

The examples of interesting resultant patterns include: 
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1	 public_drunkenness → robbery/ bank/ knife (PI = 0.5).
2	 public_drunkenness → robbery/ bank/ strongarm (PI = 0.44).
3	 simple_assault/ injury → public_drunkenness → public_drunkenness → all_other_

offenses (expt_traff) → fail_ disord_per_to_disperse (PI = 0.30).
4	 simple_assault/ injury → public_drunkenness → robbery/ bank/ _strongarm (PI = 

0.33).
5	 robbery/ highway/ gun → sale/ use_of_air_rifles (PI = 0.5).

Patterns 1 and 2 could provide essential information about types of banks robberies. Pat-
tern 1 states that half of the bank robberies using a knife were conducted within 300 ms 
from the reported public drunkenness incidents and up to 8 days after they occurred. 
Similarly, pattern 2 communicates that 44% of all bank robberies using weapon (stron-
garm) occurred within 300 ms from the reported public drunkenness incidents and up 
to 8 days after they occurred. Another interesting example is pattern 4, which states that 
half of the usage of air rifles occurred within 300 ms from the highway robbery incidents 
and up to 8 days after they happened.

Conclusion
In this article, we offered a new type of ST sequential patterns called ε-constricted ST 
sequential patterns (CSTS patterns) and we thoroughly analyzed their theoretical prop-
erties. Specifically, we showed that a set of CSTS patterns is a subset of the set of closed 
ST sequential patterns and that each CSTS pattern is also a closed ST sequential pattern. 
Moreover, we showed that given the set of PI-strong CSTS patterns one can obtain the 
set of all PI-strong ST sequential patterns and approximate participation index of each of 
them with the approximation margin ± ε . We also offered a new algorithm called CSTS-
Miner that discovers all PI-strong CSTS patterns. CSTS-Miner adapts the MAX-Tree 
structure for more efficient candidate patterns generation. The proposed MAX-Tree is 
generated in two main phases of CSTS-Miner: the first one called “top-down” in which 
all PI-strong ST sequential patterns are generated using the breadth-first strategy, and 
the second one called “bottom-up” which calculates PI-strong ST sequential patterns 
being CSTS patterns. We analyzed properties and computation times of CSTS-Miner.

The experiments with the CSTS-Miner algorithm were conducted using two crime-
related datasets for the cities of Boston and Pittsburgh: the Pittsburgh Police Incident 
Blotter Dataset and the Boston Crime Incident Reports Dataset. Each of the selected 
datasets consists of various types of crime and numerous event instances. To better ver-
ify the capabilities of the proposed algorithm, we also extracted a reduced dataset from 
the complete Boston Crime Indecent Reports dataset. The resultant reduced dataset 
contains 10 least frequent crime event types and 896 event instances.

During the experimental evaluation, we compared the results obtained with the pro-
posed CSTS-Miner algorithm to four other state-of-the-art algorithms: STS-Miner [9], 
CSTPM [10], STBFM [11] and CST-SPMiner [12]. The STS-Miner, CSTPM and STBFM 
algorithms discover PI-strong ST sequential patterns, whereas CST-SPMiner discov-
ers PI-strong closed ST sequential patterns. Each of the selected algorithms, as well as 
the proposed algorithm, use the participation index to measure the significance of the 
discovered patterns. As we presented in the experiments, in the case of the Pittsburgh 
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Police Incident Blotter Dataset and in the cases of the complete and reduced Boston 
Crime Incident Reports Dataset, CSTS-Miner can return much fewer patterns than 
the other selected algorithms. In particular, in the case of the Pittsburgh Police Incident 
Blotter Dataset, CSTS-Miner provides up to 60% fewer patterns compared to STBFM 
and up to 50% fewer patterns compared to CST-SPMiner. Similarly, for the complete 
Boston Crime Incident Reports Dataset, CSTS-Miner provides up to 60% fewer patterns 
compared to STBFM and up to 40% fewer patterns compared to CST-SPMiner. For the 
reduced Boston Crime Incident Reports Dataset, CSTS-Miner provides up to 85% fewer 
patterns than STBFM and up to 50% fewer patterns than CST-SPMiner.
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